Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RHAMNOLIPID-CONTAINING DETERGENTS AND CLEANING AGENTS
Document Type and Number:
WIPO Patent Application WO/2019/034490
Kind Code:
A1
Abstract:
The aim of the invention is to improve the washing power of detergents and cleaning products, in particular with respect to soiling containing oil and/or grease. This was essentially achieved by the use of a rhamnolipid mixture composed of 35 wt% to 45 wt% of C10C10 monorhamnolipid and 55 wt% to 65 wt% of C10C10 dirhamnolipid.

Inventors:
SCHULZ ALEXANDER (DE)
DREJA MICHAEL (DE)
STROTZ MICHAEL (DE)
Application Number:
PCT/EP2018/071468
Publication Date:
February 21, 2019
Filing Date:
August 08, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HENKEL AG & CO KGAA (DE)
International Classes:
C11D1/66; C11D1/83; C11D1/29; C11D1/72
Domestic Patent References:
WO2012010405A12012-01-26
WO2012010406A12012-01-26
WO2012010407A12012-01-26
Foreign References:
EP2410039A12012-01-25
EP2787065A12014-10-08
EP0499434A11992-08-19
EP0499434B11995-07-19
EP1445302B12006-06-07
EP0605308A11994-07-06
EP2410039A12012-01-25
EP2787065A12014-10-08
EP2786743A12014-10-08
Download PDF:
Claims:
Patentansprüche

1. Wasch- oder Reinigungsmittel, enthaltend ein Rhamnolipidgemisch aus 35 Gew.-% bis 45 Gew.- % 3-({3-[(6-deoxy-a-L-mannopyranosyl)oxy]decanoyl}oxy)decansäure und/oder deren Natrium-, Kalium-, Ammonium-, Alkylammonium- und/oder Hydroxyalkylammoniumsalz und 55 Gew.-% bis 65 Gew.-% 3-[(3-{[6-deoxy-2-0-(6-deoxy-a-L-mannopyranosyl)-a-L-mannopyranosyl]oxy}deca- noyl)oxy]decansäure und/oder deren Natrium-, Kalium-, Ammonium-, Alkylammonium- und/oder Hydroxyalkylammoniumsalz.

2. Mittel nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den Alkylgruppen in den Al- kylammoniumionen um solche mit jeweils 1 bis 4 C-Atomen und deren Mischungen, und bei den Alkylgruppen in den Hydroxyalkylammoniumionen um solche mit jeweils 2 bis 4 C-Atomen und deren Mischungen handelt.

3. Mittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es 0,000001 Gew.-% bis 50 Gew.- %, insbesondere 0, 1 Gew.-% bis 20 Gew.-% des Rhamnolipidgemischs enthält.

4. Verwendung eines Rhamnolipidgemischs aus 35 Gew.-% bis 45 Gew.-% 3-({3-[(6-deoxy-ol_- mannopyranosyl)oxy]decanoyl}oxy)decansäure und/oder deren Natrium-, Kalium-, Ammonium-, Alkylammonium- und/oder Hydroxyalkylammoniumsalz und 55 Gew.-% bis 65 Gew.-% 3-[(3-{[6- deoxy-2-0-(6-deoxy-a-L-mannopyranosyl)-a-L-mannopyranosyl]oxy}decanoyl)oxy]decansäure und/oder deren Natrium-, Kalium-, Ammonium-, Alkylammonium- und/oder Hydroxyalkylammoniumsalz zur Erhöhung der Wasch- oder Reinigungsleistung von Wasch- oder Reinigungsmitteln.

5. Verwendung nach Anspruch 4, dadurch gekennzeichnet, dass es sich bei den Alkylgruppen in den Alkylammoniumionen um solche mit jeweils 1 bis 4 C-Atomen und deren Mischungen, und bei den Alkylgruppen in den Hydroxyalkylammoniumionen um solche mit jeweils 2 bis 4 C-Atomen und deren Mischungen handelt.

6. Verwendung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass man das Rhamnolipidgemisch einer wasch- oder reinigungsmittelhaltigen wässrigen Flotte zusetzt oder es als Bestandteil eines Wasch- oder Reinigungsmittels in die wässrige Flotte einbringt, und zu waschende oder reinigende Gegenstände mit der Flotte in Kontakt bringt.

7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, dass man zu waschende oder reinigende Gegenstände bei Temperaturen von 10 °C bis 60 °C, insbesondere 20 °C bis 40 °C mit der Flotte in Kontakt bringt.

8. Mittel nach einem der Ansprüche 1 bis 3 oder Verwendung nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass das Mittel neben dem Rhamnolipidgemisch mindestens 3, insbesondere mindestens 4 weitere Tenside enthält.

Description:
Rhamnolipidhaltige Wasch- und Reinigungsmittel

Die vorliegende Erfindung betrifft Wasch- und Reinigungsmittel, die bestimmte Rhamnolipide enthalten.

Moderne Waschmittel, die oft in flüssiger Form eingesetzt werden, kommen oft bei tiefen Temperaturen bis herunter zu Raumtemperatur oder noch darunter zum Einsatz. Dabei dient vor allem das in ihnen enthaltene Tensidsystem zur Entfernung von insbesondere fettigen Anschmutzungen. Übliche dabei verwendete Tenside sind petrochemisch basiertes lineares Alkylbenzolsulfonat, oleochemisch oder petrochemisch basiertes Alkoholethersulfat sowie petro- oder oleochemisch gewonnene nichtionische Tenside wie Alkoholethoxylate. Es ist eine Herausforderung, ein leistungsfähiges Waschmittel zu entwickeln, welches Inhaltsstoffe auf Basis alternativer Rohstoffquellen enthält und das ein Leistungsspektrum aufweist, das mit einem Waschmittel auf Basis solcher herkömmlicher tensidischer Inhaltsstoffe konkurrieren kann. Seit einigen Jahren sind Biotenside, die zum Beispiel aus Zucker oder anderen Kohlenhydrat-Quellen gewonnen werden können, kommerziell verfügbar. Allerdings erfüllt das Leistungsprofil der Biotenside in manchen Fällen nicht ohne weiteres die Ansprüche, die an ein modernes Waschmittel gestellt werden.

Rhamnolipide sind Verbindungen, in denen eine Mono- oder Dirhamnoseeinheit glycosidisch mit der Hydroxylgruppe einer ß-hydroxylgruppenhaltigen Fettsäure verbunden ist, wobei die Fettsäure mit einer Hydroxylgruppe eines weiteren hydroxylgruppenhaltigen Fettsäuremoleküls verestert sein kann. Man erhält sie durch Fermentation von Bakterien der Gattung Pseudomonas, insbesondere von Pseudomonas aeruginosa, bevorzugt bei deren Wachstum auf hydrophoben Substraten wie n- Alkanen oder Pflanzenölen. Rhamnolipide gehören wegen ihres oberflächenaktiven Verhaltens und ihrer Herkunft zu den sogenannten Biotensiden. Das 3-(Hydroxydecanoyloxy)decansäure-dirham- nosid zum Beispiel besitzt die Formel

In üblichen Rhamnolipiden liegen neben Oo-Carbonsäuren und/oder -Hydroxycarbonsäuren auch längerkettige, beispielsweise Ci2-Carbonsäuren und/oder -Hydroxycarbonsäuren, vor. Aus der Patentschrift EP 0 499 434 B1 sind Waschmittel bekannt, die 1 bis 60 Gew.-% eines bei pH 7,0 und 25 °C in 1 gewichtsprozentiger wässriger Lösung eine micellare Phase ausbildendes Tensid und ein bei pH 7,0 und 25 °C in 1 gewichtsprozentiger wässriger Lösung eine lamellare Phase ausbildendes Tensid enthalten, wobei Rhamnolipid sowohl das die micellare Phase wie auch das die lamellare Phase ausbildende Tensid sein kann. Die europäische Patentschrift EP 1 445 302 B1 betrifft Waschmittel, die mindestens ein Glykolipid-Biotensid und mindestens ein Nicht-Glykolipid-Tensid enthalten, wobei diese sich in einer micellaren Phase befinden. Aus der internationalen Patentanmeldung WO 2012/010405 A1 sind Reinigungsmittel bekannt, die mindestens 1 Gew.-% Biotensid und ein Enzym bakterieller Herkunft enthalten. Die europäische Patentanmeldung EP 0 605 308 A1 offenbart Zusammensetzungen, die 0,001 Gew.-% bis 99,99 Gew.-% anionisches und/oder nichtionisches Tensid und 0,001 Gew.-% bis 99,99 Gew.-% Glykolipid enthalten, wobei unter den Glykolipiden zum Beispiel Sophorolipide, Rhamnolipide, Glucoselipide, Trehaloselipide und Cellobioselipide sein können. Aus der internationalen Patentanmeldung WO 2012/010406 A1 sind Waschmittel bekannt, die Lipase und Rhamnolipid enthalten, wobei das Rhamnolipid zu mindestens 50 Gew.-% aus Mono- Rhamnolipid besteht. Aus der internationalen Patentanmeldung WO 2012/010407 A1 sind Waschmittel bekannt, die Glykolipid-Tensid und Lipase bakterieller Herkunft enthalten, wobei das Glykoli- pid-Tensid zu mindestens 20 Gew.-% aus disaccharidischem säuregruppen-aufweisenden Glykolipid-Tensid besteht; das dort offenbarte Rhamnolipid besteht zu ca. 30 Gew.-% aus Mono-Rhamno- lipid und zu ca. 70 Gew.-% aus Di-Rhamnolipid. Die europäische Patentanmeldung EP 2 410 039 A1 betrifft mono- und di-rhamnolipidhaltige Reinigungsmittel, in denen das Gewichtsverhältnis von Mono-Rhamnolipid zu Di-Rhamnolipid im Bereich von 95:5 bis 45:55 liegt; konkret offenbart werden Mittel, in denen das Gewichtsverhältnis von Mono-Rhamnolipid zu Di-Rhamnolipid bei 50:50 und zum Vergleich bei etwa 25:75 liegt. Die europäische Patentanmeldung EP 2 787 065 A1 betrifft mono- und di-rhamnolipidhaltige Textilwaschmittel, in denen das Gewichtsverhältnis von Di-Rhamnolipid zu Mono-Rhamnolipid größer als 51 :49 ist; in der dort konkret offenbarten Rhamnolipidzu- sammensetzung aus P. putida liegt das Gewichtsverhältnis von Mono-Rhamnolipiden zu Di-Rham- nolipiden bei 1 :99, wobei das Di-Rhamnolipid zu etwa 18 Gew.-% aus Di-Rhamnolipid mit mindestens einer Ci2-Carbonsäure besteht. Aus der europäischen Patentanmeldung EP 2 786 743 A1 sind Rhamnolipidmischungen bekannt, die 51 Gew.-% bis 95 Gew.-% eines bestimmten Di-Rhamnolipids und 0,5 Gew.-% bis 9 Gew.-% eines bestimmten Mono-Rhamnolipids enthalten, in denen das Gewichtsverhältnis von Di-Rhamnolipid zu Mono-Rhamnolipid größer als 91 :9 ist.

Überraschenderweise wurde gefunden, dass der Einsatz von bestimmte Rhamnolipide mit ange- passtem Verhältnis von Mono-Rhamnolipid zu Di-Rhamnolipid zu einer überlegenen Waschleistung führt. Gegenstand der Erfindung ist daher ein Wasch- oder Reinigungsmittel, enthaltend ein Rhamnolipid- gemisch aus 35 Gew.-% bis 45 Gew.-% 3-({3-[(6-deoxy-a-L-mannopyranosyl)oxy]decano- yl}oxy)decansäure und/oder deren Natrium-, Kalium-, Ammonium-, Alkylammonium- und/oder Hy- droxyalkylammoniumsalz (CioCio-Mono-Rhamnolipid) und 55 Gew.-% bis 65 Gew.-% 3-[(3-{[6-de- oxy-2-0-(6-deoxy-a-L-mannopyranosyl)-a-L-mannopyranosyl]oxy} decanoyl)oxy]decansäure und/oder deren Natrium-, Kalium-, Ammonium-, Alkylammonium- und/oder Hydroxyalkylammoni- umsalz (CioCio-Di-Rhamnolipid). Das Rhamnolipidgemisch ist vorzugsweise frei von anderen Rham- nolipiden. Erfindungsgemäß brauchbare Rhamnolipidgemische sind beispielsweise unter der Bezeichnung NatSurFact® kommerziell erhältlich. Bei den Alkylgruppen in den Alkylammoniumionen handelt es vorzugsweise um solche mit jeweils 1 bis 4 C-Atomen und deren Mischungen, und bei den Alkylgruppen in den Hydroxyalkylammoniumionen handelt es vorzugsweise um solche mit jeweils 2 bis 4 C-Atomen und deren Mischungen.

Ein weiterer Gegenstand der Erfindung ist die Verwendung des genannten Rhamnolipidgemisches zur Erhöhung der Wasch- oder Reinigungsleistung von Wasch- oder Reinigungsmitteln. Die erfindungsgemäße Verwendung kann beispielsweise derart ausgeführt werden, dass man das Rhamnolipidgemisch einer wasch- oder reinigungsmittelhaltigen wässrigen Flotte zusetzt oder es als Bestandteil eines Wasch- oder Reinigungsmittels in die wässrige Flotte einbringt, und zu waschende oder reinigende Gegenstände bei Temperaturen von beispielsweise 10 °C bis 60 °C oder beispielsweise 20 °C bis 40 °C mit der Flotte in Kontakt bringt.

Ein erfindungsgemäßes Wasch- oder Reinigungsmittel enthält vorzugsweise 0,000001 Gew.-% bis 50 Gew.-%, insbesondere 0, 1 Gew.-% bis 20 Gew.-% des genannten Rhamnolipidgemischs neben herkömmlichen Bestandteilen solcher Mittel.

Die erfindungsgemäßen Mittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren, Polymere mit Spezialeffekten, wie soil release-Polymere, Farbübertragungsinhibitoren, Ver- grauungsinhibitoren, knitterreduzierende und formerhaltende polymere Wirkstoffe, und weitere Hilfsstoffe, wie optische Aufheller, Schaumregulatoren, Färb- und Duftstoffe enthalten.

Die Mittel können neben dem Rhamnolipidgemisch ein oder mehrere zusätzliche Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische in Frage kommen, aber auch kationische und/oder amphotere Tenside enthalten sein können. Dabei ist bevorzugt, wenn die Mittel neben dem Rhamnolipidgemisch mindestens 3, insbesondere mindestens 4 weitere Tenside enthalten, wobei gewunschtenfalls beispielsweise 10 weitere Tenside anwesend sein können. Als nichtionische Tenside können alle dem Fachmann bekannten nichtionischen Tenside eingesetzt werden. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann oder lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkohol- ethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 Mol EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Ci2-i4-Alkohole mit 3 EO oder 4 EO, Cg-n-Alkohol mit 7 EO, Cis-is-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus Ci2-i4-Alkohol mit 3 EO und Ci2-is-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt einer ganzen oder einer gebrochenen Zahl entsprechen können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE).

Alternativ oder zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel R 5 0(G)x eingesetzt werden, in der R 5 einem primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen entspricht und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosi- den und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.

Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.

Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylami- noxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können eingesetzt werden.

Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel,

R1

I

R-C O-N— [Z] in der R für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch re- duktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alka- nolamin und nachfolgender Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R 2 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei Ο-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes. [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.

Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-i3-Alkylbenzolsulfonate, Olefinsulfo- nate, das heißt Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus Ci2-i8-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonie- ren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfo- nierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus Ci2-is-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse oder Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.

Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von Glycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.

Weitere geeignete Aniontenside sind Alkylsulfate und Ethersulfate. Unter einem Alkylsulfat ist ein Salz eines Schwefelsäurehalbesters eines Alkohols zu verstehen, der einen linearen, verzweigtket- tigen oder cyclischen gesättigten Kohlenwasserstoffrest mit 10 bis 22 C-Atomen aufweist. Zur Ladungsneutralisation des Schwefelsäurehalbesters ist ein Gegenkation vorhanden, insbesondere ein Natrium- oder Kaliumion oder ein Ammonium-, Alkylammonium- oder Hydroxyalkylammoniumion. Bevorzugte Alkoholreste leiten sich von nativen Ci2-Ci8-Fettalkoholen, wie beispielsweise von Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol, oder den C10-C20-OXO- alkoholen oder sekundären Alkoholen dieser Kettenlängen ab. Weiterhin bevorzugt sind Alkylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Ci2-Ci6-Alkylsulfate, Ci2-Ci5-Alkylsulfate sowie Ci4-Ci5-Alkylsulfate sind besonders bevorzugt. Ethersulfate sind analog den Alkylsulfaten Schwefelsäurehalbester alkoxylierter Alkohole, wobei die durchschnittliche Anzahl von Alkoxygrup- pen pro Alkoholfunktion in der Regel 1 bis 10, vorzugsweise 3 bis 7, beträgt. Bevorzugte Alkoxy- gruppen sind die Ethoxygruppe, die Propoxygruppe und deren Mischungen. Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21- Alkohole, wie 2-Methyl-verzweigte C9-n-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Ci2-i8-Fettalkohole mit 1 bis 4 EO, sind geeignet.

Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen, darstellen. Bevorzugte Sulfosuccinate enthalten Cs -is-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.

Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische. Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.

An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden.

Als kationische Aktivsubstanzen können beispielsweise kationische Verbindungen der nachfolgenden Formeln eingesetzt werden:

Ri

-N-(C H 2 ) n -T- (C H 2 ) n -T-R2

worin jede Gruppe R unabhängig voneinander ausgewählt ist aus Ο-6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R 2 unabhängig voneinander ausgewählt ist aus Cs-28-Alkyl- oder -Alkenylgruppen; R 3 = R oder (CH 2 )n-T-R 2 ; R 4 = R oder R 2 oder (CH 2 )n-T-R 2 ; T = -CH 2 -, -O- CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.

Derartige zusätzlich zu Rhamnolipid einsetzbare Tenside sind in Mengen von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 10 Gew.-% bis 30 Gew.-%, in erfindungsgemäßen Mitteln enthalten, können gewünschtenfalls aber auch ganz fehlen.

Zur Pflege der Textilien und zur Verbesserung der Textileigenschaften wie einem weicheren "Griff (Avivage) und verringerter elektrostatischer Aufladung (erhöhter Tragekomfort) können textil- weichmachende Verbindungen eingesetzt werden. Die Wirkstoffe dieser Formulierungen sind quar- täre Ammoniumverbindungen mit zwei hydrophoben Resten, wie beispielsweise das Disteraryldime- thylammoniumchlorid, welches jedoch wegen seiner ungenügenden biologischen Abbaubarkeit zunehmend durch quartäre Ammoniumverbindungen ersetzt wird, die in ihren hydrophoben Resten Estergruppen als Sollbruchstellen für den biologischen Abbau enthalten.

Derartige "Esterquats" mit verbesserter biologischer Abbaubarkeit sind beispielsweise dadurch erhältlich, dass man Mischungen von Methyldiethanolamin und/oder Triethanolamin mit Fettsäuren verestert und die Reaktionsprodukte anschließend in an sich bekannter Weise mit Alkylierungsmit- teln quaterniert. Als Appreturwirkstoff geeignet ist Dimethylolethylenharnstoff.

Ein erfindungsgemäßes Mittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Methylglycindiessigsäure, Nitrilotriessigsäure und Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetrakis(methylenphos- phonsäure) und 1-Hydroxyethan-1 ,1-diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere durch Oxidation von Polysacchariden beziehungsweise Dextrinen zugänglichen Polycarboxylate, und/oder polymere Acrylsäuren, Methacryl- säuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättigter Carbonsäuren liegt im allgemeinen zwischen 5 000 und 200 000, die der Copolymeren zwischen 2 000 und 200 000, vorzugsweise 50 000 bis 120 000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 50 000 bis 100 000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpo- lymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder einem veresterten Vinylalkohol oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethyl- enisch ungesättigten C3-Cs-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-Cs-Dicarbonsäure, wobei Maleinsäure besonders bevorzugt ist, und/oder ein Derivat einer Allylsulfonsäure, die in 2-Stellung mit einem Alkyl- oder Arylrest substituiert ist, sein. Derartige Polymere weisen im Allgemeinen eine relative Molekülmasse zwischen 1 000 und 200 000 auf. Weitere bevorzugte Copolymere sind solche, die als Monomere Acrolein und Acrylsäure/Acryl- säuresalze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger Mittel, in Form wässriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wässriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.

Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen in der oberen Hälfte der genannten Bereiche werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen Mitteln eingesetzt.

Als wasserlösliche anorganische Buildermaterialien kommen insbesondere polymere Alkaliphosphate, die in Form ihrer alkalischen neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können, in Betracht. Beispiele hierfür sind Tetranatriumdiphosphat, Dinatriumdihydrogendiphosphat, Pentanatriumtriphosphat, sogenanntes Natriumhexametaphosphat sowie die entsprechenden Kaliumsalze beziehungsweise Gemische aus Natrium- und Kaliumsalzen. Als wasserunlösliche, was- serdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A, P und gegebenenfalls X, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenför- migen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 μιη auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 μιη. Ihr Calciumbindevermögen liegt in der Regel im Bereich von 100 mg bis 200 mg CaO pro Gramm.

Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu S1O2 unter 0,95, insbesondere von 1 : 1 , 1 bis 1 : 12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na20:Si02 von 1 :2 bis 1 :2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2Six02x+i y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate (Na2Si20s y H2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1 ,9 bis 2, 1 bedeutet, können eingesetzt werden. In einer weiteren bevorzugten Ausführungsform wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es n aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1 ,9 bis 3,5 werden in einer weiteren be- vorzugten Ausführungsform eingesetzt. In einer bevorzugten Ausgestaltung setzt man ein granuläres Compound aus Alkalisilikat und Alkalicarbonat ein, wie es zum Beispiel unter dem Namen Nabion® 15 im Handel erhältlich ist. Falls als zusätzliche Buildersubstanz auch Alkalialumosilikat, insbesondere Zeolith, vorhanden ist, beträgt das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf wasserfreie Aktivsubstanzen, vorzugsweise 1 : 10 bis 10:1. In Mitteln, die sowohl amorphe als auch kristalline Alkalisilikate enthalten, beträgt das Gewichtsverhältnis von amorphem Alkalisilikat zu kristallinem Alkalisilikat vorzugsweise 1 :2 bis 2: 1 und insbesondere 1 :1 bis 2:1.

Buildersubstanzen sind in Waschmitteln vorzugsweise in Mengen bis zu 60 Gew.-%, insbesondere von 5 Gew.-% bis 40 Gew.-%, enthalten.

In einer bevorzugten Ausgestaltung weist das Mittel einen wasserlöslichen Builderblock auf. Durch die Verwendung des Begriffes„Builderblock" soll hierbei ausgedrückt werden, dass die Mittel keine weiteren Buildersubstanzen enthalten als solche, die wasserlöslich sind, das heißt sämtliche in dem Mittel enthaltenen Buildersubstanzen sind in dem so charakterisierten„Block" zusammengefasst, wobei allenfalls die Mengen an Stoffen ausgenommen sind, die als Verunreinigungen beziehungsweise stabilisierende Zusätze in geringen Mengen in den übrigen Inhaltsstoffen der Mittel handelsüblicher Weise enthalten sein können. Unter dem Begriff„wasserlöslich" soll dabei verstanden werden, dass sich der Builderblock bei der Konzentration, die sich durch die Einsatzmenge des ihn enthaltenden Mittels bei den üblichen Bedingungen ergibt, rückstandsfrei löst. Vorzugsweise sind mindestens 15 Gew.-% und bis zu 55 Gew.-%, insbesondere 25 Gew.-% bis 50 Gew.-% an wasserlöslichem Builderblock in den Mitteln enthalten. Dieser setzt sich vorzugsweise zusammen aus den Komponenten

a) 5 Gew.-% bis 35 Gew.-% Citronensäure, Alkalicitrat und/oder Alkalicarbonat, welches auch zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann,

b) bis zu 10 Gew.-% Alkalisilikat mit einem Modul im Bereich von 1 ,8 bis 2,5,

c) bis zu 2 Gew.-% Phosphonsäure und/oder Alkaliphosphonat,

d) bis zu 50 Gew.-% Alkaliphosphat, und

e) bis zu 10 Gew.-% polymerem Polycarboxylat,

wobei die Mengenangaben sich auf das gesamte Wasch- oder Reinigungsmittel beziehen. Dies gilt auch für alle voranstehenden oder noch folgenden Mengenangaben, sofern nicht ausdrücklich anders angegeben.

In einer bevorzugten Ausführungsform enthält der wasserlösliche Builderblock mindestens 2 der Komponenten b), c), d) und e) in Mengen größer 0 Gew.-%.

Hinsichtlich der Komponente a) sind in einer bevorzugten Ausführungsform 15 Gew.-% bis 25 Gew.-% Alkalicarbonat, welches zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann, und bis zu 5 Gew.-%, insbesondere 0,5 Gew.-% bis 2,5 Gew.-% Citronensäure und/oder AI- kalicitrat enthalten. In einer alternativen Ausführungsform sind als Komponente a) 5 Gew.-% bis 25 Gew.-%, insbesondere 5 Gew.-% bis 15 Gew.-% Citronensäure und/oder Alkalicitrat und bis zu 5 Gew.-% , insbesondere 1 Gew.-% bis 5 Gew.-% Alkalicarbonat, welches zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann, enthalten. Falls sowohl Alkalicarbonat wie auch Alkalihy- drogencarbonat vorhanden sind , weist die Komponente a) Alkalicarbonat und Alkalihydrogencarbonat vorzugsweise im Gewichtsverhältnis von 10: 1 bis 1 : 1 auf.

Hinsichtlich der Komponente b) sind in einer bevorzugten Ausführungsform 1 Gew.-% bis 5 Gew.-% Alkalisilikat mit einem Modul im Bereich von 1 ,8 bis 2,5 enthalten.

Hinsichtlich der Komponente c) sind in einer bevorzugten Ausführungsform 0,05 Gew.-% bis 1 Gew.-% Phosphonsäure und/oder Alkaliphosphonat enthalten. Unter Phosphonsäuren werden dabei auch gegebenenfalls substituierte Alkylphosphonsäuren verstanden, die auch mehrere Phos- phonsäuregruppierungen aufweisen könne (sogenannte Polyphosphonsäuren). Bevorzugt werden sie ausgewählt aus den Hydroxy- und/oder Aminoalkylphosphonsäuren und/oder deren Alkalisalzen, wie zum Beispiel Dimethylaminomethandiphosphonsäure, 3-Aminopropan-1-hydroxy-1 , 1-diphos- phonsäure, 1-Amino-1-phenyl-methandiphosphonsäure, 1-Hydroxyethan-1 , 1-diphosphonsäure, Amino-tris(methylenphosphonsäure), N,N,N',N'-Ethylendiamin-tetrakis(methylenphosphonsäure) und acylierte Derivate der phosphorigen Säure, die auch in beliebigen Mischungen eingesetzt werden können.

Hinsichtlich der Komponente d) sind in einer bevorzugten Ausführungsform 15 Gew.-% bis 35 Gew.- % Alkaliphosphat, insbesondere Trinatriumpolyphosphat, enthalten. Alkaliphosphat ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HP03)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei. Natriumdihy- drogenphosphat, NaH2PÜ4, existiert als Dihydrat (Dichte 1 ,91 gern 3 , Schmelzpunkt 60°) und als Mo- nohydrat (Dichte 2,04 gern 3 ). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatrium- hydrogendiphosphat, ΝΒΣΗΣΡΣΟ), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3Ü9) und Madrellsches Salz übergehen. NaH2PÜ4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogen- phosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gern 3 , hat einen Schmelzpunkt 253° (Zersetzung unter Bildung von (KPÜ3)x, Kaliumpolyphosphat) und ist leicht löslich in Wasser. Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPÜ4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol (Dichte 2,066 gern -3 , Wasserverlust bei 95°), 7 Mol (Dichte 1 ,68 gern 3 , Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol Wasser (Dichte 1 ,52 gern 3 , Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P20 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhy- drogenphosphat (sekundäres oder zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist. Trinatriumphosphat, tertiäres Natriumphosphat, NasPC , sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1 ,62 gern 3 und einen Schmelzpunkt von 73- 76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gern 3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gern 3 , hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt. Tetranatriumdiphosphat (Natri- umpyrophosphat), Na4P20, existiert in wasserfreier Form (Dichte 2,534 gern 3 , Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1 ,815-1 ,836 gern 3 , Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2Ü7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern 3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1 %igen Lösung bei 25° 10,4 beträgt. Durch Kondensation des NaH2PÜ4 oder des KH2PO4 entstehen höhermolekulare Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- oder Kaliummetaphosphate und kettenförmige Typen, die Natrium- oder Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Madrell- sches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet. Das technisch wichtige Pentanatriumtriphosphat, NasPsO-io (Natriumtripolyphos- phat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(0)(ONa)-0] n -Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Ortho- phosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lösung, durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentaka- liumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%- igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Weiter existieren auch Natriumkaliumtripoly- phosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:

(NaP0 3 ) 3 + 2 KOH Na 3 K 2 P30io + H2O

Diese sind genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind einsetzbar.

Hinsichtlich der Komponente e) sind in einer bevorzugten Ausführungsform der Mittel 1 ,5 Gew.-% bis 5 Gew.-% polymeres Polycarboxylat, insbesondere ausgewählt aus den Polymerisations- beziehungsweise Copolymerisationsprodukten von Acrylsäure, Methacrylsäure und/oder Maleinsäure enthalten. Unter diesen sind die Homopolymere der Acrylsäure und unter diesen wiederum solche mit einer mittleren Molmasse im Bereich von 5 000 D bis 15 000 D (PA-Standard) besonders bevorzugt.

Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Lipasen, Cutinasen, Amylasen, Pullulanasen, Mannanasen, Cellulasen, Hemicellulasen, Xylanasen und Peroxidasen sowie deren Gemische in Frage, beispielsweise Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® und/oder Purafect® OxAm, Lipasen wie Lipolase®, Lipomax®, Lumafast®, Lipozym® und/oder Lipex®, Cellulasen wie Celluzyme® und/oder Carezyme®. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes oder Pseudomonas cepacia gewonnene enzymatische Wirkstoffe. Die gegebenenfalls verwendeten Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den Mitteln vorzugsweise in Mengen bis zu 5 Gew.-%, insbesondere von 0,5 Gew.-% bis 2 Gew.-%, enthalten.

Ein bevorzugtes Lösungsmittel in flüssigen erfindungsgemäßen Mitteln ist Wasser. Zu den in den Mitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.-Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol und Propy- lenglykol, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Wassermischbare Lösungsmittel sind in den Mitteln vorzugsweise in Mengen von 1 Gew.-% bis 60 Gew.-%, insbesondere von 2 Gew.-% bis 40 Gew.-%, vorhanden. Wasser kann in erfindungsge- mäßen flüssigen Mitteln gewünschtenfalls in Mengen bis zu 94 Gew.-% enthalten sein. In bevorzugten Ausführungsformen wasserarmer Mittel beträgt der Wassergehalt nicht mehr als 15 Gew.-%, insbesondere 1 Gew.-% bis 8 Gew.-%.

Aus der Natur stammende Polymere, die in wässrigen flüssigen Mitteln als Verdickungsmittel Verwendung finden können, sind beispielsweise Agar-Agar, Carrageen, Tragant, Gummi arabicum, Al- ginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Gelatine und Casein, Cellulosederivate wie Carboxymethylcellulose, Hydroxyethyl- und -propylcellulose, und po- lymere Polysaccharid-Verdickungsmittel wie Xanthan; daneben kommen auch vollsynthetische Polymere wie Polyacryl- und Polymethacryl-Verbindungen, Vinylpolymere, Polycarbonsäuren, Po- lyether, Polyimine, Polyamide und Polyurethane als Verdicker in Frage.

Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die Mittel System- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den Mitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 1 ,2 Gew.-% bis 17 Gew.-%, enthalten.

Schmutzablösevermögende Polymere, die oft als "Soil Release' -Wirkstoffe oder wegen ihres Vermögens, die behandelte Oberfläche, zum Beispiel der Faser, schmutzabstoßend auszurüsten, als "Soil Repellents" bezeichnet werden, sind beispielsweise nichtionische oder kationische Cellulosederivate. Zu den insbesondere polyesteraktiven schmutzablösevermögenden Polymeren gehören Copolyester aus Dicarbonsäuren, beispielsweise Adipinsäure, Phthalsäure oder Terephthalsäure, Diolen, beispielsweise Ethylenglykol oder Propylenglykol, und Polydiolen, beispielsweise Polyethyl- englykol oder Polypropylenglykol. Zu den bevorzugt eingesetzten schmutzablösevermögenden Po- lyestern gehören solche Verbindungen, die formal durch Veresterung zweier Monomerteile zugänglich sind, wobei das erste Monomer eine Dicarbonsäure HOOC-Ph-COOH und das zweite Monomer ein Diol HO-(CHR -) a OH, das auch als polymeres Diol H-(0-(CHR -) a )bOH vorliegen kann, ist. Darin bedeutet Ph einen o-, m- oder p-Phenylenrest, der 1 bis 4 Substituenten, ausgewählt aus Alkyl- resten mit 1 bis 22 C-Atomen, Sulfonsäuregruppen, Carboxylgruppen und deren Mischungen, tragen kann, R Wasserstoff, einen Alkylrest mit 1 bis 22 C-Atomen und deren Mischungen, a eine Zahl von 2 bis 6 und b eine Zahl von 1 bis 300. Vorzugsweise liegen in den aus diesen erhältlichen Poly- estern sowohl Monomerdioleinheiten -0-(CHR -) a O- als auch Polymerdioleinheiten -(O- (CHR -) a )bO- vor. Das molare Verhältnis von Monomerdioleinheiten zu Polymerdioleinheiten beträgt vorzugsweise 100: 1 bis 1 :100, insbesondere 10: 1 bis 1 :10. In den Polymerdioleinheiten liegt der Polymerisationsgrad b vorzugsweise im Bereich von 4 bis 200, insbesondere von 12 bis 140. Das Molekulargewicht beziehungsweise das mittlere Molekulargewicht oder das Maximum der Moleku- largewichtsverteilung bevorzugter schmutzablösevermögender Polyester liegt im Bereich von 250 bis 100 000, insbesondere von 500 bis 50 000. Die dem Rest Ph zugrundeliegende Säure wird vorzugsweise aus Terephthalsäure, Isophthalsäure, Phthalsäure, Trimellithsäure, Meilithsäure, den Isomeren der Sulfophthalsäure, Sulfoisophthalsäure und Sulfoterephthalsäure sowie deren Gemischen ausgewählt. Sofern deren Säuregruppen nicht Teil der Esterbindungen im Polymer sind, liegen sie vorzugsweise in Salzform, insbesondere als Alkali- oder Ammoniumsalz vor. Unter diesen sind die Natrium- und Kaliumsalze besonders bevorzugt. Gewünschtenfalls können statt des Monomers HOOC-Ph-COOH geringe Anteile, insbesondere nicht mehr als 10 Mol-% bezogen auf den Anteil an Ph mit der oben gegebenen Bedeutung, anderer Säuren, die mindestens zwei Carboxylgruppen aufweisen, im schmutzablösevermögenden Polyester enthalten sein. Zu diesen gehören beispielsweise Alkylen- und Alkenylendicarbonsäuren wie Malonsäure, Bernsteinsäure, Fumarsäure, Maleinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure und Sebacinsäure. Zu den bevorzugten Diolen HO-(CHR -) a OH gehören solche, in denen R Wasserstoff und a eine Zahl von 2 bis 6 ist, und solche, in denen a den Wert 2 aufweist und R unter Wasserstoff und den Alkylresten mit 1 bis 10, insbesondere 1 bis 3 C-Atomen ausgewählt wird. Unter den letztgenannten Diolen sind solche der Formel HO-CH2-CHR -OH, in der R die obengenannte Bedeutung besitzt, besonders bevorzugt. Beispiele für Diolkomponenten sind Ethylenglykol, 1 ,2-Propylenglykol, 1 ,3-Propylengly- kol, 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol, 1 ,8-Octandiol, 1 ,2-Decandiol, 1 ,2-Dodecandiol und Neopentylglykol. Besonders bevorzugt unter den polymeren Diolen ist Polyethylenglykol mit einer mittleren Molmasse im Bereich von 1000 bis 6000. Gewünschtenfalls können diese Polyester auch endgruppenverschlossen sein, wobei als Endgruppen Alkylgruppen mit 1 bis 22 C-Atomen und Ester von Monocarbonsäuren in Frage kommen. Den über Esterbindungen gebundenen Endgruppen können Alkyl-, Alkenyl- und Arylmonocarbonsäuren mit 5 bis 32 C-Atomen, insbesondere 5 bis 18 C-Atomen, zugrunde liegen. Zu diesen gehören Valeriansäure, Capronsäure, Önanthsäure, Caprylsäure, Pelargonsäure, Caprinsäure, Undecansäure, Undecensäure, Laurinsäure, Laurolein- säure, Tridecansäure, Myristinsäure, Myristoleinsäure, Pentadecansäure, Palmitinsäure, Stearinsäure, Petroselinsäure, Petroselaidinsäure, Ölsäure, Linolsäure, Linolaidinsäure, Linolensäure, Elä- ostearinsäure, Arachinsäure, Gadoleinsäure, Arachidonsäure, Behensäure, Erucasäure, Brassidin- säure, Clupanodonsäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, Benzoesäure, die 1 bis 5 Substituenten mit insgesamt bis zu 25 C-Atomen, insbesondere 1 bis 12 C-Atomen tragen kann, beispielsweise tert.-Butylbenzoesäure. Den Endgruppen können auch Hydroxymonocarbonsäuren mit 5 bis 22 C-Atomen zugrunde liegen, zu denen beispielsweise Hydroxyvaleriansäure, Hydroxyca- pronsäure, Ricinolsäure, deren Hydrierungsprodukt Hydroxystearinsäure sowie o-, m- und p-Hydro- xybenzoesäure gehören. Die Hydroxymonocarbonsäuren können ihrerseits über ihre Hydroxylgruppe und ihre Carboxylgruppe miteinander verbunden sein und damit mehrfach in einer Endgruppe vorliegen. Vorzugsweise liegt die Anzahl der Hydroxymonocarbonsäureeinheiten pro Endgruppe, das heißt ihr Oligomerisierungsgrad, im Bereich von 1 bis 50, insbesondere von 1 bis 10. In einer bevorzugten Ausgestaltung der Erfindung werden Polymere aus Ethylenterephthalat und Po- lyethylenoxid-terephthalat, in denen die Polyethylenglykol-Einheiten Molgewichte von 750 bis 5000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 50:50 bis 90:10 beträgt, allein oder in Kombination mit Cellulosederivaten verwendet.

Die Mittel können Knitterschutzmittel enthalten, da textile Flächengebilde, insbesondere aus Reyon, Wolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäu- reamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.

Vergrauungsinhibitoren haben die Aufgabe, den von der harten Oberfläche und insbesondere von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ether- carbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Car- boxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methyl- hydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0, 1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.

Die Mittel können optische Aufheller, unter diesen insbesondere Derivate der Diaminostilbendisul- fonsäure beziehungsweise deren Alkalimetallsalze, enthalten. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1 ,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4- Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.

Insbesondere beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an Cis-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbe- sondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt.

Als in den Mitteln, insbesondere den Mitteln in fester Form, gegebenenfalls enthaltene Persauerstoffverbindungen kommen insbesondere organische Persäuren oder persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure oder Salze der Diperdodecandisäure, Wasserstoffperoxid und unter den Waschbedingungen Wasserstoffperoxid abgebende anorganische Salze, wie Perborat, Percarbonat und/oder Persilikat, in Betracht. Wasserstoffperoxid kann dabei auch mit Hilfe eines enzymatischen Systems, das heißt einer Oxidase und ihres Substrats, erzeugt werden. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Besonders bevorzugt wird Alkalipercarbonat, Alkaliperborat-Monohydrat, Alkaliperborat-Tetrahydrat oder, insbesondere in flüssigen Mitteln, Wasserstoffperoxid in Form wässriger Lösungen, die 3 Gew.-% bis 10 Gew.-% Wasserstoffperoxid enthalten, eingesetzt. Vorzugsweise sind Persauerstoffverbindungen in Mengen von bis zu 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, in Waschmitteln vorhanden.

Zusätzlich können übliche Bleichaktivatoren, die unter Perhydrolysebedingungen Peroxocarbonsäu- ren oder Peroxoimidsäuren bilden, und/oder übliche die Bleiche aktivierende Übergangsmetallkomplexe eingesetzt werden. Die fakultativ, insbesondere in Mengen von 0,5 Gew.-% bis 6 Gew.-%, vorhandene Komponente der Bleichaktivatoren umfasst die üblicherweise verwendeten N- oder O- Acylverbindungen, beispielsweise mehrfach acylierte Alkylendiamine, insbesondere Tetraacetyl- ethylendiamin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hy- drazide, Triazole, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natrium-iso- nonanoyl-phenolsulfonat, und acylierte Zuckerderivate, insbesondere Pentaacetylglukose, sowie kationische Nitrilderivate wie Trimethylammoniumacetonitril-Salze. Die Bleichaktivatoren können zur Vermeidung der Wechselwirkung mit den Persauerstoffverbindungen bei der Lagerung in bekannter Weise mit Hüllsubstanzen überzogen beziehungsweise granuliert worden sein, wobei mit Hilfe von Carboxymethylcellulose granuliertes Tetraacetylethylendiamin mit mittleren Korngrößen von 0,01 mm bis 0,8 mm, granuliertes 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin, und/oder in Teilchenform konfektioniertes Trialkylammoniumacetonitril besonders bevorzugt ist. In Waschmitteln sind derartige Bleichaktivatoren vorzugsweise in Mengen bis zu 8 Gew.-%, insbesondere von 2 Gew.-% bis 6 Gew.-%, jeweils bezogen auf gesamtes Mittel, enthalten.

Die Herstellung fester Mittel bietet keine Schwierigkeiten und kann in im Prinzip bekannter Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen. Zur Herstellung der Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein einen Extrusionsschritt aufweisendes Verfahren bevorzugt. Waschmittel in Form wässriger oder sonstige übliche Lösungsmittel enthaltender Lösungen werden besonders vorteilhaft durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.

In einer auch bevorzugten Ausführungsform liegen die Mittel, insbesondere in konzentrierter flüssiger Form, als Portion in einer ganz oder teilweise wasserlöslichen Umhüllung vor. Die Portionierung erleichtert dem Verbraucher die Dosierbarkeit.

Die Mittel können dabei beispielsweise in Folienbeutel eingepackt vorliegen. Beutelverpackungen aus wasserlöslicher Folie machen ein Aufreißen der Verpackung durch den Verbraucher unnötig. Auf diese Weise ist ein bequemes Dosieren einer einzelnen, für einen Waschgang bemessenen Portion durch Einlegen des Beutels direkt in die Waschmaschine oder durch Einwerfen des Beutels in eine bestimmte Menge Wasser, beispielsweise in einem Eimer, einer Schüssel oder im Handwaschbecken, möglich. Der die Waschportion umgebende Folienbeutel löst sich bei Erreichen einer bestimmten Temperatur rückstandsfrei auf.

Im Stand der Technik existieren zahlreiche Verfahren zur Herstellung wasserlöslicher Waschmittelportionen, die grundsätzlich auch zur Herstellung von im Rahmen der vorliegenden Erfindung brauchbaren Mitteln geeignet sind. Bekannteste Verfahren sind dabei die Schlauchfolienverfahren mit horizontalen und vertikalen Siegelnähten. Weiterhin geeignet zur Herstellung von Folienbeuteln oder auch formstabilen Waschmittelportionen ist das Thermoformverfahren (Tiefziehverfahren). Die wasserlöslichen Umhüllungen müssen allerdings nicht zwangsläufig aus einem Folienmaterial bestehen, sondern können auch formstabile Behältnisse darstellen, die beispielsweise mittels eines Spritzguss-Verfahrens erhalten werden können.

Weiterhin sind Verfahren zur Herstellung wasserlöslicher Kapseln aus Polyvinylalkohol oder Gelatine bekannt, die prinzipiell die Möglichkeit bieten, Kapseln mit einem hohen Befüllgrad bereitzustellen. Die Verfahren beruhen darauf, dass in eine formgebende Kavität das wasserlösliche Polymer eingeführt wird. Das Befüllen und Versiegeln der Kapseln erfolgt entweder synchron oder in nacheinander folgenden Schritten, wobei im letzteren Fall die Befüllung der Kapseln durch eine kleine Öffnung erfolgt. Die Befüllung der Kapseln erfolgt dabei beispielsweise durch einen Befüllkeil, der oberhalb von zwei sich gegeneinander drehenden Trommeln, die auf ihrer Oberfläche Kugelhalbschalen aufweisen, angeordnet ist. Die Trommeln führen Polymerbänder, die die Kugelhalbschalenkavitäten bedecken. An den Positionen, an denen das Polymerband der einen Trommel mit dem Polymerband der gegenüberliegenden Trommel zusammentrifft findet eine Versiegelung statt. Parallel dazu wird das Befüllgut in die sich ausbildende Kapsel injiziert, wobei der Injektionsdruck der Befüllflüssigkeit die Polymerbänder in die Kugelhalbschalenkavitäten presst. Ein Verfahren zur Herstellung wasserlöslicher Kapseln, bei dem zunächst die Befüllung und anschließend die Versiegelung erfolgt, basiert auf dem sogenannten Bottle-Pack ® -Verfahren. Hierbei wird ein schlauchartiger Vorformling in eine zweiteilige Kavität geführt. Die Kavität wird geschlossen, wobei der untere Schlauchabschnitt versiegelt wird, anschließend wird der Schlauch aufgeblasen zur Ausbildung der Kapselform in der Kavität, befüllt und abschließend versiegelt.

Das für die Herstellung der wasserlöslichen Portion verwendete Hüllmaterial ist vorzugsweise ein wasserlöslicher polymerer Thermoplast, besonders bevorzugt ausgewählt aus der Gruppe (gegebenenfalls teilweise acetalisierter) Polyvinylalkohol, Polyvinylalkohol-Copolymere, Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Cellulose und deren Derivate, Stärke und deren Derivate, Blends und Verbünde, anorganische Salze und Mischungen der genannten Materialien, vorzugsweise Hydroxy- propylmethylcellulose und/oder Polyvinylalkohol-Blends. Polyvinylalkohole sind kommerziell verfügbar, beispielsweise unter dem Warenzeichen Mowiol ® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol ® 3-83, Mowiol ® 4-88, Mowiol ® 5-88, Mowiol ® 8-88 sowie Clariant L648. Das zur Herstellung der Portion verwendete wasserlösliche Thermoplast kann zusätzlich gegebenenfalls Polymere ausgewählt aus der Gruppe, umfassend Acrylsäure-haltige Polymere, Polyacrylamide, Oxazolin-Polymere, Polystyrolsulfonate, Polyurethane, Polyester, Polyether und/oder Mischungen der vorstehenden Polymere, aufweisen. Bevorzugt ist, wenn das verwendete wasserlösliche Thermoplast einen Polyvinylalkohol umfasst, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% ausmacht. Weiter bevorzugt ist, dass das verwendete wasserlösliche Thermoplast einen Polyvinylalkohol umfasst, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol "1 , vorzugsweise von 1 1.000 bis 90.000 gmol "1 , besonders bevorzugt von 12.000 bis 80.000 gmol und insbesondere von 13.000 bis 70.000 gmol liegt. Weiterhin bevorzugt ist, wenn die Thermoplaste in Mengen von mindestens 50 Gew.-%, vorzugsweise von mindestens 70 Gew.-%, besonders bevorzugt von mindestens 80 Gew.-% und insbesondere von mindestens 90 Gew.-%, jeweils bezogen auf das Gewicht des wasserlöslichen polymeren Thermoplasts, vorliegt.

Beispiele

Die in der nachfolgenden Tabelle angegebenen standardisierten Anschmutzungen (auf Baumwolle, wenn nicht anders angegeben, oder auf Polyester-Baumwoll-Mischgewebe) wurden gewaschen, dann gespült, getrocknet und anschließend ihr Remissionswert spektralphotometrisch (Minolta® CR400-1 ) vermessen und mit dem Remissionswert vor der Wäsche verglichen (Waschtemperatur 40°C, Waschzeit 90 Minuten, Waschmitteldosierung 4,06 g/l im Hauptwaschgang; Mittelwert aus einer 6-fach Bestimmung).

Tabelle 1 : Anschmutzungen

Zum Einsatz kam ein wasserhaltiges Flüssigwaschmittel mit 5,5 Gew.-% C9-13 Na-Alkylbenzolsulfo- nat, 5,5 Gew.-% C12-18 Fettalkohol-7 EO, und 5 Gew.-% C12-14 Na-Alkohol-2 EO-sulfat (V1 ), sowie ein ansonsten gleich zusammengesetztes Flüssigwaschmittel, das zusätzlich 2 Gew.-% C10C10- Mono- und Di-Rhamnolipid (NatSurFact® 90LCBS-4) enthielt (M1 ); Ausgleich über die enthaltene Wassermenge. Die in der nachfolgenden Tabelle 2 angegebenen Werte zeigen die Unterschiede der ΔΥ-Werte der Remissionsmessung zwischen dem Mittel M1 und dem Mittel V1 , wobei höhere Werte bedeuten, dass die Anschmutzung durch die Anwendung des erfindungsgemäßen Mittels besser ausgewaschen wurden.

Tabelle 2: Helligkeitsunterschiedsdifferenzen

Anschmutzung ΔΔΥ

A 3,4

B 7,2

C 2,1

D 1 ,9

E 5,4