Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RNAI APPROACH FOR CROP PEST PROTECTION
Document Type and Number:
WIPO Patent Application WO/2018/204398
Kind Code:
A1
Abstract:
Provided herein is the identification of insect RNAi target genes (IRTG) involved in gut microbial clearance and containment and examples of a novel biotechnology for devising pesticidal RNAi approaches.

Inventors:
VENKATA BALA P (US)
Application Number:
PCT/US2018/030506
Publication Date:
November 08, 2018
Filing Date:
May 01, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DONALD DANFORTH PLANT SCIENCE CENTER (US)
International Classes:
A01N63/60; A61K31/713; C12N15/113; C12N15/63
Domestic Patent References:
WO2007035650A22007-03-29
WO2001034815A12001-05-17
Foreign References:
US20090307803A12009-12-10
US20070269815A12007-11-22
US20170137841A12017-05-18
Other References:
BOLOGNESI ET AL.: "Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte)", PLOS ONE, vol. 7, no. 10, 11 October 2012 (2012-10-11), pages e47534, XP055268106
KAMATH RS. ET AL.: "Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans", GENOME BIOL., vol. 2, 2000, pages 1 - 10, XP002411133
NEWMARK ET AL., PROC. NATL. ACAD. SCI. USA, vol. 100, 2003, pages 11861 - 11865
WANG ET AL., J BIOL. CHEM., vol. 281, no. 14, 2006, pages 9271 - 9278
TERENIUS O ET AL., J. INSECT PHYSIOL., vol. 57, no. 2, 2011, pages 231 - 245
GAYATRI PRIYA N. ET AL., PLOS ONE, vol. 7, no. 1, 2012, pages E30768
PENUELAS JTERRADAS J: "The foliar microbiome", TRENDS PLANT SCI., vol. 19, no. 5, 2014, pages 278 - 280, XP028644689, DOI: 10.1016/j.tplants.2013.12.007
ENGELMORAN, FEMS MICROBIOL. REV., vol. 37, no. 5, 2013, pages 699 - 735
CASANOVA-TORRESGOODRICH-BLAIR: "Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera", INSECTS, vol. 4, no. 4, 2013, pages 320 - 338
GAYATRI PRIYA N. ET AL.: "Host Plant Induced Variation in Gut Bacteria of Helicoverpa armigera", PLOS ONE, vol. 7, no. 1, 2012, pages e30768
RYU JH. ET AL.: "Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila", SCIENCE, vol. 319, no. 5, 2008, pages 777 - 82
SHRESTHA S. ET AL., J. ASIA PAC. ENTOMOL., vol. 12, 2009, pages 277 - 283
BUCHON, N. ET AL., FRONT. CELL. INFECT. MICROBIOL., vol. 11, 2013, pages 615 - 626
KARLINALTSCHUL, PROC. NATL. ACAD. SCI. USA., vol. 90, no. 12, 1993, pages 5873 - 5877
WATSON JM. ET AL.: "RNA silencing platforms in plants", FEBS LETTERS, vol. 579, 2005, pages 5982 - 8987
TANG X ET AL., PLOS 6WE, vol. 7, no. 7, 2012, pages e36978
ZHONG X ET AL., INSECT BIOCHEM. MOL. BIOL., vol. 42, no. 7, 2012, pages 514 - 524
ZHANG X. ET AL.: "Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta", INSECT BIOCHEM. MOL. BIOL., vol. 62, 2015, pages 38 - 50
KANOST MR ET AL., INSECT BIOCHEM. MOL. BIOL, vol. 76, 2016, pages 118 - 147
ODMAN-NARESH ET AL.: "Dominant inheritance of field-evolved resistance to Bt corn in Busseola fusca", PLOS ONE, vol. 8, no. 7, 2013, pages e69675
ENGELMORAN, FEMS MICROBIOL REV., vol. 37, 2013, pages 699 - 735
SIEPEL A. ET AL.: "Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes", GENOME RES., vol. 15, 2005, pages 1034 - 1050
WANG ET AL.: "Interaction of 0-1,3-Glucan with Its Recognition Protein Activates Hemolymph Proteinase 14, an Initiation Enzyme of the Prophenoloxidase Activation System in Manduca sexta", J. BIOL. CHEM., vol. 281, no. 14, 2006, pages 9271 - 9278
WARD NMORENO-HAGELSIEB G: "Quickly Finding Orthologs as Reciprocal Best Hits with BLAT, LAST, and UBLAST: How Much Do We Miss?", PLOS ONE, vol. 9, no. 7, 2014, pages el 01850
TIMMONS L. ET AL.: "Ingestion of bacterially expressed ds RNAs can produce specific and potent genetic interference in Caenorhabditis elegans", GENE, vol. 263, 2001, pages 103 - 112
PAUCHET Y ET AL., INSECT. MOL. BIOL., vol. 19, 2010, pages 61 - 75
KIM SHLEE WJ: "Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions", FRONT. CELL. INFECT. MICROBIOL., vol. 3, 2014, pages 116
LEE WJHASE K: "Gut microbiota-generated metabolites in animal health and disease", NAT. CHEM. BIOL., vol. 10, 2014, pages 416 - 424
GUNARATNA RTJIANG H: "A comprehensive analysis of the Manduca sexta immunotranscriptome", DEV. COMP. IMMUNOL., vol. 39, 2013, pages 388 - 398
BRODERICK NA ET AL., ENVIRON. ENTOMOL., vol. 29, 2009, pages 101 - 107
GREGORY R. RICHARDS: "Xenorhabdus nematophila lrhA is necessary for motility, lipase activity, toxin expression, and virulence in Manduca sexta insects", JOURNAL OF BACTERIOLOGY, vol. 190, 2008, pages 4870 - 4879
TIMMONSFIRE: "A. Specific interference by ingested dsRNA", NATURE, vol. 395, 1998, pages 854
CAO ET AL.: "A systematic study of RNAi effects and dsRNA stability in Tribolium castaneum and Acyrthosiphon pisum, following injection and ingestion of analogous dsRNAs", INT. J. MOL. SCI., vol. 19, 2018, pages 1079
RAJKUMAR ET AL.: "Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq", BMC GENOMICS, vol. 16, no. 1, 2015, pages 548, XP021225400, DOI: 10.1186/s12864-015-1767-y
ZHANG ET AL.: "Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids", SCIENCE, vol. 347, no. 6225, 2015, pages 991 - 994, XP055190061, DOI: 10.1126/science.1261680
KIM SRYAO RHAN QCHRISTENSEN BMLI J: "Identification and molecular characterization of a prophenoloxidase involved in Aedes aegypti chorion melanization", INSECT MOLECULAR BIOLOGY, vol. 14, no. 2, 2005, pages 185 - 194
PACKEYSARTOR, CURR. OPIN. INFECT. DIS., vol. 22, no. 3, 2009, pages 292 - 301
BRUMMETT ET AL.: "The immune properties of Manduca sexta transferrin", INSECT BIOCHEM MOL BIOL., vol. 81, 2017, pages 1 - 9
XIA XU ET AL.: "Manduca sexta Gloverin Binds Microbial Components and is Active against Bacteria and Fungi", DEV COMP IMMUNOL., vol. 38, no. 2, 2012, pages 275 - 284
POLASZEK A., AFRICAN CEREAL STEM BORERS: ECONOMIC IMPORTANCE, TAXONOMY NATURAL ENEMIES AND CONTROL, 1998, pages 530
KHAN ZR. ET AL.: "Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020", PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B: BIOLOGICAL SCIENCES, vol. 369, no. 1639, 2014, pages 20120284
TABASHNIK BE ET AL.: "Insect resistance to Bt crops: lessons from the first billion acres", NAT. BIOTECH., vol. 31, 2013, pages 510 - 521
TERENIUS O. ET AL.: "RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design", JOURNAL OF INSECT PHYSIOLOGY, vol. 57, 2011, pages 231 - 245, XP002639616, DOI: 10.1016/j.jinsphys.2010.11.006
TANG X. ET AL.: "Complexity and Variability of Gut Commensal Microbiota in Polyphagous Lepidopteran Larvae", PLOS ONE, vol. 7, no. 7, 2012, pages e36978
SHRESTHA S. ET AL.: "An inhibitor of NF-kB encoded in Cotesia plutella bracovirus inhibits expression of antimicrobial peptides and enhances pathogenicity of Bacillus thuringiensis", JOURNAL OF ASIA-PACIFIC ENTOMOLOGY, vol. 12, 2009, pages 277 - 283, XP026698108, DOI: 10.1016/j.aspen.2009.06.004
BUCHON N. ET AL.: "Gut homeostasis in a microbial world: insights from Drosophila melanogaster", NAT. REV. MICROBIOL., vol. 11, 2013, pages 615 - 626
KARLIN SALTSCHUL SF: "Method for assessing the statistical significance of molecular sequence features by using general scoring schemes", PROC. NATL. ACAD. SCI. USA., vol. 87, 1990, pages 2264 - 2268
ZHONG X. ET AL.: "A Toll-Spatzle Pathway in the Tobacco Hornworm", MANDUCA SEXTA, vol. 42, no. 7, 2012, pages 514 - 524
CAO X. ET AL.: "The immune signaling pathways of Manduca sexta", INSECT BIOCHEM. MOL. BIOL., vol. 62, 2015, pages 64 - 74
KANOST MR. ET AL.: "Multifaceted Biological Insights From a Draft Genome Sequence of the Tobacco Hornworm Moth, Manduca Sexta", INSECT BIOCHEM. MOL. BIOL., vol. 76, 2016, pages 118 - 147, XP029709439, DOI: 10.1016/j.ibmb.2016.07.005
ODMAN-NARESH J. ET AL.: "A lepidopteran- specific gene family encoding valine-rich midgut proteins", PLOS ONE, vol. 8, 2013, pages e82015
ENGEL PMORAN NA: "The gut microbiota of insects - diversity in structure and function", FEMS MICROBIOLOGY REVIEWS, vol. 37, no. 5, 2013, pages 699 - 735
PAUCHET Y. ET AL.: "Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence", INSECT MOL BIOL., vol. 19, 2010, pages 61 - 75
BRODERICK NA. ET AL.: "Contributions of gut bacteria to Bacilllus thuringiensisinduced mortality vary across a range of Lepidoptera", BMC BIOL., vol. 7, 2009, pages 11
PACKEY CDSARTOR RB: "Commensal Bacteria, Traditional and Opportunistic Pathogens, Dysbiosis and Bacterial Killing in Inflammatory Bowel Diseases", CURRENT OPINION IN INFECTIOUS DISEASES, vol. 22, no. 3, 2009, pages 292 - 301
ARAKANE ET AL.: "The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix", INSECT MOLECULAR BIOLOGY, vol. 14, no. 5, 2005, pages 453 - 463
MORRIS ET AL.: "Tribolium castaneum larval gut transcriptome and proteome: A resource for the study of the coleopteran gut", J. PROTEOME RES., vol. 8, no. 8, 2009, pages 3889 - 98
See also references of EP 3618634A4
Attorney, Agent or Firm:
HOLTZ, William A. et al. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. An isolated double stranded RNA (dsRNA) molecule comprising a nucleic acid sequence complementary to about 200 to 1000 contiguous nucleotides of a target gene sequence, wherein the target gene is a MIGGS-IRTG involved in gut microbe clearance and/or containment induced by microbes ingested during feeding and/or active feeding , wherein the target gene sequence includes at least one of the protein coding region, the 5' UTR region, the 3' UTR region, and any combination thereof, of a target gene, and

wherein the double stranded RNA molecule silences the target gene when ingested by an insect.

2. The isolated dsRNA molecule of claim 2, wherein the dsRNA molecule comprises two annealed complementary RNA strands.

3. The isolated dsRNA molecule of claim 3, wherein the dsRNA molecule comprises a single

RNA strand comprising an inversely repeated sequence with a spacer in between and wherein the single RNA strand can anneal to itself to form a hairpin loop structure.

4. The isolated dsRNA molecule of any one of claims 1 to 3, comprising a nucleic acid

sequence complementary to about 200 to 1000 contiguous nucleotides of the protein coding region of the target gene sequence.

5. The isolated dsRNA molecule of any one of claims 1 to 3, comprising a nucleic acid sequence complementary to about 200 to 1000 contiguous nucleotides of the 5' UTR region or the 3' UTR region of the target gene sequence.

6. The isolated dsRNA molecule of any one of claims 1 to 5, comprising a nucleic acid

sequence complementary to a contiguous region comprising at least about 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% of the length of the target gene sequence protein coding region, 5' UTR region, or 3' UTR region.

7. The isolated dsRNA molecule of any one of claims 1 to 6, comprising a nucleic acid

sequence complementary to about 200 to 650 contiguous nucleotides of a target gene sequence.

8. The isolated dsRNA molecule of any one of claim 1 to 7, wherein the target gene is a type 1

MIGGS RNAi target or a type 2 MIGGS RNAi target.

9. The isolated dsRNA molecule of any one of claims 1 to 8, wherein the target gene is a pattern recognition receptor (PRR) class gene or an insect midgut structural component gene.

10. The isolated dsRNA molecule of any one of claims 1 to 9, wherein the target gene is

expressed abundantly in a midgut specific manner during active feeding.

11. The isolated dsRNA molecule of any one of claims 1 to 10, wherein the target gene is

selected from the group consisting ofM sexto-Hem olin (MsHEM), M. sexto-Serine proteinase homolog 3 (MsSPH-3), M sexto-Peptidoglycan recognition protein 2

(MsPGRP2), M sexto-Beta- 1, 3-glycan-recognition protein 2 (MsPGRP2), M. sexta- Relish family protein 2A (MsREL2A), M sexto-Dorsal (MsDor), M. sexto-Spatzle (MsSPZl A), M. sexto-Toll receptor (MsTOLL), M sexto- Scolexin A (MsSCAl), M. sexto-Hem olymph proteinase 18 (MsHP18), M sexto- Transferrin (MsTRN), M. sexta- Arylphorin beta subunit (MsARP), M. sexto-Chymotrypsinogen-like protein 1 (MsCTLl), M sexto- Valine Rich Midgut Protein (MsVMPl), M sexto-Imd (Mslmd), M sexto- FADD (MsFADD), M sexto-Dredd (MsDRD), M sexto-Relish F (MsRelF), M. sexta- Cdc42 (MsCdc42), M sexto-Dsorl (MsDsorl), M sexto-Fos (MsFos), M sexto- Jra (MsJra), M sexto-Caudal (MsCADl), M sexto- Atg8 (MsAtg8), M. sexto-Atgl3

(MsAtgl3), M sexto-IAPl(MsIAPl), M sexto-Chitin synthase 2 (MsChs2), M. sexta- Beta-1 tubulin (MsPTub), M sexto- Beta fructofuranosidase 1 (MsSucl), and orthologs thereof.

12. The isolated dsRNA molecule of any one of claims 1 to 11, wherein the target gene is

selected from the group consisting ofM sexto-Hem olin (MsHEM), M. sexto-Serine proteinase homolog 3 (MsSPH-3), M sexto-Peptidoglycan recognition protein 2

(MsPGRP2), M sexto-Beta- 1, 3-glycan-recognition protein 2 (MsPGRP2), M. sexta- Relish family protein 2A (MsREL2A), M sexto-Dorsal (MsDor), M. sexto-Spatzle (MsSPZl A), M. sexto-Toll receptor (MsTOLL), M sexto- Scolexin A (MsSCAl), M. sexto-Hem olymph proteinase 18 (MsHP18), M sexto- Transferrin (MsTRN), M. sexta- Arylphorin beta subunit (MsARP), M. sexto-Chymotrypsinogen-like protein 1 (MsCTLl), M sexto- Valine Rich Midgut Protein (MsVMPl), M sexto-Imd (Mslmd), M sexto- FADD (MsFADD), M sexto-Dredd (MsDRD), M sexto-Relish F (MsRelF), M. sexta- Cdc42 (MsCdc42), M. sexto-Dsorl (MsDsorl), M sexto-Fos (MsFos), M sexta-ha (MsJra), M sexto-Caudal (MsCADl), M sexta- Atg8 (MsAtg8), M. sexta- Atgl3

(MsAtgl3), M sexto-IAPl(MsIAPl), M sexta-Chitin synthase 2 (MsChs2), M. sexta- Beta-1 tubulin (MsPTub) andM sexta- Beta fructofuranosidase 1 (MsSucl).

13. An isolated double stranded RNA (dsRNA) molecule comprising a nucleic acid sequence complementary to about 200 to 1000 contiguous nucleotides of a target gene sequence, wherein the target gene comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106-110, wherein the target gene sequence includes at least one of the protein coding region, the 5' UTR region, the 3' UTR region, and any combination thereof, of a target gene, and

wherein the double stranded RNA molecule silences the target gene when ingested by an insect.

14. The isolated dsRNA molecule of claim 13, wherein the target gene sequence selected from the group consisting of:

i) SEQ ID NOs: 1-9, 11, 14, 31, 39, 43, 44, and 71-75;

ii) SEQ ID NOs: 3, 4, and 43, wherein the dsRNA molecule causes impeded growth, developmental progression, and/or mortality and the like of TH, DMB, and FAW in an orthologous manner;

iii) SEQ ID NOs: 76, 77, 80, 81, 85, 87, and 88, wherein the dsRNA molecule causes impeded growth, developmental progression, and/or mortality and the like of DBM, optionally wherein the DBM is a Bt resistant strain; iv) SEQ ID NOs: 89, 92, 96, 101, 103, and 105, wherein the dsRNA molecule causes impeded growth, developmental progression, and/or mortality and the like of FAW; and v) SEQ ID NOs: 107-110, wherein the dsRNA molecule caused impeded growth, developmental progression, and/or mortality and the like of RFB.

15. The isolated dsRNA molecule of claim 13 or 14, wherein the dsRNA molecule comprises two annealed complementary RNA stands.

16. The isolated dsRNA molecule of claim 15, wherein the dsRNA molecule comprises a single

RNA strand comprising an inversely repeated sequence with a spacer in between and where the single RNA strand can anneal to itself to form a hairpin loop structure.

17. The isolated dsRNA molecule of any one of claims 13 to 16, comprising a nucleic acid

sequence complementary to about 200 to 1000 contiguous nucleotides of the protein coding region of the target gene sequence.

18. The isolated dsRNA molecule of any one of claims 13 to 17, comprising a nucleic acid

sequence complementary to a contiguous region comprising at least about 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% of the length of a sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106-110.

19. The isolated dsRNA molecule of claim 18, comprising a nucleic acid sequence

complementary to a contiguous region comprising at least about 50%, 60%, 70%, 80%, 90%, 95%, 98%), 99%), or 100%> of the length of the target gene sequence protein coding region, 5' UTR region, or 3' UTR region.

20. The isolated dsRNA molecule of claim 1, comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 111-119, 120-126, 127-135, and 136-139, or a fragment of at least about 200 nucleotides thereof; optionally, wherein:

i) the isolated dsRNA molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 110-119, or the fragment thereof, causes impeded growth, developmental progression, and/or mortality and the like of TH;

ii) the isolated dsRNA molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 120-126, or the fragment thereof, causes impeded growth, developmental progression, and/or mortality and the like of DBM;

iii) the isolated dsRNA molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 127-135, or the fragment thereof, causes impeded growth, developmental progression, and/or mortality and the like of FAW; or

iv) the isolated dsRNA molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 136-139, or the fragment thereof, causes impeded growth, developmental progression, and/or mortality and the like of RFB.

21. The isolated dsRNA molecule of any one of claims 1 to 20, wherein the dsRNA molecule can form siRNA.

22. An isolated siRNA molecule derived from the processing of the dsRNA molecule of any one of claims 1 to 21.

23. An insecticidal composition comprising the isolated dsRNA molecule of any one of claims 1 to 21 or the siRNA molecule of claim 21 and a synthetic carrier or microbial conduit that can be a microorganism that has a natural capacity or is engineered to produce and/ or deliver dsRNA to increase its bioavailability and/or biostability for causing RNA interference including but not restricted to plant growth promoting organisms, normal commensal and/or symbiotic microorganisms associated with the target insect pest or parasites and/or natural enemies of the target pest or pest target host or host cultivation range etc. from an insect or parasite and/or natural enemies of the target pest engineered or identified from natural populations containing microbial conduit to produce and/or deliver dsRNA and/or drive the transmission of such microbial conduits into natural populations of insect pests as a control option.

24. The insecticidal composition of claim 23, wherein the dsRNA molecule is conjugated with the synthetic carrier.

25. A recombinant DNA construct encoding a dsRNA molecule of any one of claims 1 to 21.

26. A recombinant DNA construct comprising a gene silencing sequence comprising about 200 to 1000 contiguous nucleotides of a target gene sequence,

wherein the target gene is a MIGGS-IRTG involved in gut microbe clearance and/or containment induced by microbes ingested during feeding and/or active feeding , and wherein the target gene sequence includes at least one of the protein coding region, the 5' UTR region, the 3' UTR region, and any combination thereof, of a target gene.

27. The recombinant DNA construct of claim 26, wherein the gene silencing sequence comprises about 200 to 1000 contiguous nucleotides of the protein coding region of the target gene sequence.

28. The recombinant DNA construct of claim 25, wherein the gene silencing sequence comprises about 200 to 1000 contiguous nucleotides of the 5' UTR region or the 3 ' UTR region of the target gene sequence.

29. The recombinant DNA construct of any one of claims 25 to 28, wherein the gene silencing sequence comprises at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% contiguously of the length of target gene sequence protein coding region, 5' UTR region, or 3' UTR region.

30. The recombinant DNA construct of any one of claims 25 to 29, wherein the gene silencing sequence comprises about 200 to 650 contiguous nucleotides of the target gene sequence.

31. The recombinant DNA construct of any one of claims 25 to 30, wherein the target gene is a type I MIGGS RNAi target or a type 2 MIGGS RNAi target.

32. The recombinant DNA construct of any one of claims 25 to 31, wherein the target gene is a pattern recognition receptor (PRR) class gene or an insect midgut structural component gene.

33. The recombinant DNA construct of any one of claims 25 to 32, wherein the target gene is expressed abundantly in a midgut specific manner during active feeding.

34. The recombinant DNA construct of any one of claims 25 to 33, wherein the target gene is selected from the group consisting ofM sexto-Hem olin (MsHEM), M. sexto-Serine proteinase homolog 3 (MsSPH-3), M sexto-Peptidoglycan recognition protein 2

(MsPGRP2), M sexto-Beta- 1, 3-glycan-recognition protein 2 (MsPGRP2), M. sexta- Relish family protein 2A (MsREL2A), M sexto-Dorsal (MsDor), M. sexto-Spatzle (MsSPZl A), M. sexto-Toll receptor (MsTOLL), M sexto- Scolexin A (MsSCAl), M. sexto-Hem olymph proteinase 18 (MsHP18), M sexto- Transferrin (MsTRN), M. sexta- Arylphorin beta subunit (MsARP), M. sexto-Chymotrypsinogen-like protein 1 (MsCTLl), M sexto- Valine Rich Midgut Protein (MsVMPl), M sexto-Imd (Mslmd), M sexto- FADD (MsFADD), M sexto-Dredd (MsDRD), M sexto-Relish F (MsRelF), M. sexta- Cdc42 (MsCdc42), M sexto-Dsorl (MsDsorl), M sexto-Fos (MsFos), M sexto- Jra (MsJra), M sexto-Caudal (MsCADl), M sexto- Atg8 (MsAtg8), M. sexto-Atgl3

(MsAtgl3), M sexto-IAPl(MsIAPl), M sexto-Chitin synthase 2 (MsChs2), M. sexta- Beta-1 tubulin (MsPTub), M sexto- Beta fructofuranosidase 1 (MsSucl), and orthologs thereof.

35. The recombinant DNA construct of any one of claims 25 to 33, wherein the target gene is selected from the group consisting ofM sexto-Hem olin (MsHEM), M. sexto-Serine proteinase homolog 3 (MsSPH-3), M sexto-Peptidoglycan recognition protein 2

(MsPGRP2), M sexto-Beta- 1, 3-glycan-recognition protein 2 (MsPGRP2), M. sexta- Relish family protein 2A (MsREL2A), M sexto-Dorsal (MsDor), M. sexto-Spatzle (MsSPZl A), M. sexto-Toll receptor (MsTOLL), M sexto- Scolexin A (MsSCAl), M. sexto-Hem olymph proteinase 18 (MsHP18), M sexto- Transferrin (MsTRN), M. sexta- Arylphorin beta subunit (MsARP), M. sexto-Chymotrypsinogen-like protein 1 (MsCTLl), M sexto- Valine Rich Midgut Protein (MsVMPl), M sexto-Imd (Mslmd), M sexto- FADD (MsFADD), M sexto-Dredd (MsDRD), M sexto-Relish F (MsRelF), M. sexta- Cdc42 (MsCdc42), M sexto-Dsorl (MsDsorl), M sexto-Fos (MsFos), M sexto- Jra (MsJra), M sexto-Caudal (MsCADl), M sexto- Atg8 (MsAtg8), M. sexto-Atgl3

(MsAtgl3), M sexto-IAPl(MsIAPl), M sexto-Chitin synthase 2 (MsChs2), M. sexta- Beta-1 tubulin (MsPTub) andM sexto- Beta fructofuranosidase 1 (MsSucl).

36. A recombinant DNA construct comprising a gene silencing sequence comprising about 200 to 1000 contiguous nucleotides of a target gene sequence,

wherein the target gene comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106-110,

wherein the target gene sequence includes at least one of the protein coding region, the 5' UTR region, the 3' UTR region, and any combination thereof, of a target gene.

37. The recombinant DNA construct of claim 36, wherein the target gene sequence is selected from the group consisting of:

i) SEQ ID NOs: 1-9, 11, 14, 31, 39, 43, 44, and 71-75;

ii) SEQ ID NOs: 3, 4, and 43;

iii) SEQ ID NOs: 76, 77, 80, 81, 85, 87, and 88;

iv) SEQ ID NOs: 89, 92, 96, 101, 103, and 105; and

v) SEQ ID NOs: 107-109, and 110.

38. The recombinant DNA construct of claim 36 or 37, wherein the gene silencing sequence

comprises about 200 to 1000 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106-110.

39. The recombinant DNA construct of claim 36 or 37, wherein the gene silencing sequence

comprises at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% contiguously of a sequence selected from the group consisting of SEQ ID Nos: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106-110.

40. The recombinant DNA construct of any one of claims 36 to 39, wherein the gene silencing sequence comprises about 200 to 650 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106- 110.

41. The recombinant DNA construct of any one of claims 25 to 40, wherein the gene silencing sequence is operably linked to one or more promoters for the expression of a dsRNA molecule that silences the target gene when ingested by an insect.

42. The recombinant DNA construct of any one of claims 25 to 41 wherein the construct is an expression vector.

43. The recombinant DNA construct of claim 42, wherein the expression vector can target single or multiple insect RNAi target genes or chimeric RNAi target genes.

44. A host cell comprising the dsRNA molecule of any one of claim 1 to 21, the siRNA molecule of claim 20, a polynucleotide encoding the dsRNA molecule of any one of claim 1 to 21, and/or the construct or a dsRNA encoding segment thereof of any one of claims 25 to 43.

45. The host cell of claim 44, wherein the cell is a bacterial or plant cell or organelle; optionally wherein the organelle is a plastid.

46. The host cell of claim of 44 or 45, wherein the cell is a transgenic and/or transplastomic plant cell.

47. The host cell of any one of claims 44 to 46, wherein said cell expresses the dsRNA of any one of claims 1 to 21 and/or produces the siRNA of claim 22.

48. A transgenic and/or transplastomic plant comprising the dsRNA molecule of any one of claim 1 to 21, the siRNA molecule of claim 22, a polynucleotide encoding the dsRNA of any one of claim 1 to 21, and/or the construct or a dsRNA encoding segment thereof of any one of claims 25 to 43.

49. The transgenic and/or transplstomic plant of claim 48, wherein at least one cell of the plant expresses the dsRNA molecule of any one of claim 1 to 21 and/or produces the siRNA molecule of claim 22.

50. A seed, part, tissue, cell, or organelle of the plant of claim 48 or 49, wherein said seed, part, tissue, cell, or organelle comprises a dsRNA molecule according to any one of claims 1 to 21 and/or the siRNA molecule of claim 22; optionally wherein the organelle is a plastid.

51. A method of silencing: (i) an insect immune response gene and/or (ii) an insect gene

encoding for structural components of the insect midgut,

the method comprising providing for ingesting the isolated dsRNA molecule of any one of claims 1 to 21, the siRNA molecule of claim 22, the insecticidal composition of claim 23 or 24, the host cell of any one of claims 44 to 47, the transgenic and/or transplastomic plant of claim 48 or 49, and/or the seed, part, tissue, cell, or organelle of claim 50, to an insect.

52. A method of protecting a plant from an insect pest of the plant, the method comprising

topically applying to the plant the isolated dsRNA molecule of any one of claims 1 to 21, the siRNA molecule of claim 2, and/or the insecticidal composition of claim 23 or 24, and providing the plant in the diet of the insect pest.

53. The method of claim 52, wherein said dsRNA is topically applied by expressing the dsRNA in a microbe and topically applying the microbe onto the plant.

54. A method of producing a plant resistance to a pest insect of said plant, the method comprising transforming the plant with a polynucleotide encoding the dsRNA molecule of any one of claims 1 to 21 and/or the construct or a dsRNA encoding segment thereof of any one of claims 25 to 43, wherein the plant expresses the dsRNA molecule of any one of claim 1 to 21 and/or produces the siRNA of claim 21.

55. A method of improving crop yield, the method comprising growing a population of crop plants transformed with a polynucleotide encoding the dsRNA molecule of any one of claims 1 to 21 and/or the construct or a dsRNA encoding segment thereof of any one of claims 25 to 43 wherein the plant expresses the dsRNA molecule of any one of claim 1 to 21 and/or produces the siRNA molecule of claim 22, and wherein the population of transformed plants produces higher yields in the presence of pest insect infestation than a control population of untransformed plants.

56. A method for producing a plant resistant against a pest insect of said plant, the method

comprising: a) transforming a plant cell and/or organelle with a polynucleotide encoding the dsRNA molecule of any one of claim 1 to 21 and/or the construct or a dsRNA encoding segment thereof of any one of claims 25 to 43;

b) regenerating a plant from the transformed plant cell and/or organelle; and c) growing the transformed plant under conditions suitable for the expression of said double stranded RNA molecule,

wherein said transformed plant of (c) is resistant to the plant pest insect compared to an untransformed plant.

57. The method of any one of claims 51 to 56, wherein the dsRNA is ingested by the actively feeding stage of the insect.

58. The method of any one of claims 51 to 57, wherein ingestion of the dsRNA induces a

melanotic response in the insect larvae.

59. The method of any one of claims 51 to 58, wherein the ingestion of the dsRNA results in perturbation of gut microbial homeostasis.

60. The method of any one of claims 51 to 59, wherein the ingestion of the dsRNA results in defective clearance of opportunistic microbes.

61. The method of any one of claims 51 to 60, wherein the ingestion of the dsRNA results in defective containment of gut microbes.

62. The isolated dsRNA molecule of any one of claims 1 to 21, the siRNA molecule of claim 22, the insecticidal composition of claim 23 or 24, the construct or a dsRNA encoding segment thereof of any one of claims 25 to 43, the host cell of any one of claims 44 to 47, the transgenic and/or transplastomic plant of claim 48 or 49, the seed, part, tissue, cell, or organelle of claim 50, or the method of any one of claims 51 to 60, wherein the silencing of the target gene results in reduced appetite and/or developmental defects resulting in incomplete development and/or mortality and/or decrease the reproductive success of the insect.

63. The isolated dsRNA molecule, the siRNA, the insecticidal composition, the construct or a dsRNA encoding segment thereof, the host cell, the transgenic and/or transplastomic plant, the seed, part, tissue, cell, organelle, or the method of any of the above claims, wherein the reduced appetite and/or developmental defects and/or mortality and/or reduced reproductive fitness of the insect is observed after sustained feeding for at least 72 hours.

64. The isolated dsRNA molecule, the siRNA, the insecticidal composition, the construct or a dsRNA encoding segment thereof, the host cell, the transgenic and/or transplastomic plant, the seed, part, tissue, cell, or organelle, or the method of any of the above claims, wherein the insect is of the order Lepidoptera, Coleoptera, Hemiptera, Blattodea, or Diptera.

65. The isolated dsRNA molecule, the siRNA, the insecticidal composition, the construct or a dsRNA encoding segment thereof, the host cell, the transgenic and/or transplastomic plant, the seed, part, tissue, cell, or organelle, or the method of any of the above claims, wherein the insect is Manduca sexta (M sexto) (tobacco hornworm), Spodoptera frugiperda (fall armyworm), Ostrinia nubilalis (European corn borer), Plutella xylostella (Diamondback moth), Leptinotarsa decemlineata Say (Colorado potato beetle),

Diabrotica spp. (Corn rootworm complex), Tribolium castaneum (Red flour beetle), Popillia japonica (Japanese beetle), Agrilus planipennis (Emerald ash borer), Diaphorina citri (Asian citrus psyllid), Cimex lectularius (Bed bug), a cockroach or termite, or insect pests such as mosquitoes and flies.

66. The isolated dsRNA molecule, the siRNA, the insecticidal composition, the construct or a dsRNA encoding segment thereof, the host cell, the transgenic and/or transplastomic plant, the seed, part, tissue, cell, or organelle, or the method of any of the above claims, wherein the plant host is selected from the group consisting of Zea mays L (corn), Sorghum bicolor (sorghum), Setaria italica (fox tail millet), Pennisetum glaucum (Pearl millet), Solarium tuberosum (potato), Oryza sativa (rice), Lycopersicon esculentum (tomato), Solarium melongena (eggplant), cultivars of the Brassica oleracea family, Citrus sinensis (Orange), trees of the Oleaceae family, and crops of Rosaceae.

Description:
RNAi APPROACH FOR CROP PEST PROTECTION

BACKGROUND

[0001] Insect pests are detrimental to crop production and human health throughout the world and insect control can in some instances consume between 10-25% of a country's gross national product (GNP). (http World Wide Web internet site "fao.org/3/a-av013e.pdf '). In the U.S., annual loss due to crop pests is estimated to exceed $120 billion USD/year. (Polaszek A. (1998) Wallingford, UK: CABI. 530 pp.).

[0002] Within crop pests, Lepidoptera are the most detrimental insect pests of cereal crop cultivation. Chemical control is often expensive, inefficient, and can be associated with negative environmental consequences. Host plant resistance is an attractive option but impeded by lack of robust Lepidoptera resistant germplasm (http World Wide Web internet site

"cnbc.com/2015/05/08/insects-feast-on-plants-endangering- crops-and-costing-billions.html").

[0003] Since 1996, commercialization of crop plants genetically engineered to produce Bacillus thuringiensis (Bt) insecticidal proteins have resulted in efficient pest control, increased yield, reduced insecticidal use, and enhanced farmer profits. (Khan ZR, et al. (2014). Philos.

Trans. R Soc. LondBiol Sci. 369: 1639).

[0004] Consequently, the cumulative area planted with Bt crops worldwide reached greater than 1 billion acres during 2011. Within the U.S., Bt Corn, Bt Soybean, and Bt Cotton accounted for 90% of all the total corn, soybean and cotton acres during 2013 (Tabashnik BE, et al. (2013). Nat. Biotech. 31 : 510-521). However, evolution of field resistance against Bt in lepidopteran pests raises potential concerns about the sustainability of this approach. (Campagne P., et al. (2013) PLoS ONE 8(7): e69675. Doi: 10.1371). That is further exacerbated by loss of resistance against pyramided Bt traits as well (https World Wide Web internet site dt npf.com/agriculture/web/ag/news/article/2016/08/10/rootworm- resistance- pyramided-bt.html).

SUMMARY

[0005] Provided herein is an isolated double stranded RNA (dsRNA) molecule comprising a nucleic acid sequence complementary to about 200 to 1000 contiguous nucleotides of a target gene sequence-wherein the target gene is a MIGGS-IRTG as defined herein-involved in gut microbe clearance and/or containment induced by microbes ingested during feeding and/or active feeding. In certain aspects, the target gene is critical for insect immune responses and certain aspects provide that it is abundantly expressed in the midgut. In certain aspects, the target gene sequence includes at least one of the protein coding region, the 5' UTR region, the 3' UTR region, and any combination thereof, of a target gene. Further, certain aspects provide that the dsRNA molecule silences the target gene when ingested by an insect. In certain aspects, the target gene is a type 1 MIGGS RNAi target or a type 2 MIGGS RNAi target as defined elsewhere herein. In certain aspects, the target gene is a pattern recognition receptor (PRR) class gene or an insect midgut structural component gene. In certain aspects, the target gene is expressed abundantly in a midgut specific manner during active feeding.

[0006] In certain aspects, a dsRNA molecule disclosed anywhere herein comprises two annealed complementary RNA strands. In certain aspects, said dsRNA molecule comprises a single RNA strand comprising an inversely repeated sequence with a spacer in between, wherein the single RNA strand can anneal to itself to form a hairpin loop structure.

[0007] In certain aspects, a dsRNA molecule disclosed anywhere herein comprises a nucleic acid sequence complementary to about 200 to 1000 contiguous nucleotides of the protein coding region of the target gene sequence. In certain aspects, said dsRNA molecule comprises a nucleic acid sequence complementary to about 200 to 1000 contiguous nucleotides of the 5' UTR region or the 3 ' UTR region of the target gene sequence. In certain aspects, said dsRNA molecule comprises a nucleic acid sequence complementary to a contiguous region comprising at least about 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% of the length of the target gene sequence protein coding region, 5' UTR region, or 3' UTR region. In certain aspects, said dsRNA molecule comprises a nucleic acid sequence complementary to about 200 to 650 contiguous nucleotides of a target gene sequence.

[0008] Certain aspects of this disclosure are drawn to a target gene selected from the group consisting of M. sexto-Hemolin (MsHEM), M sexto-Serine proteinase homolog 3

(MsSPH-3), M sexto-Peptidoglycan recognition protein 2 (MsPGRP2), M. sexto-Beta- 1, 3- glycan-recognition protein 2 (MsPGRP2), M sexto-Relish family protein 2 A (MsREL2A), M. sexto-Dorsal (MsDor), M sexto-Spatzle (MsSPZIA), M sexto-Toll receptor (MsTOLL), M. sexto-Scolexin A (MsSCAl), M sexto-Hemolymph proteinase 18 (MsHP18), M. sexta- Transferrin (MsTRN), M sexto- Arylphorin beta subunit (MsARP), M. sexto-Chymotrypsinogen- like protein 1 (MsCTLl), M. sexto-Valine Rich Midgut Protein (MsVMPl), M sexto-Imd

(Mslmd), M. sexto-FADD (MsFADD), M sexto-Dredd (MsDRD), M sexto-Relish F (MsRelF), M. sexta-Cdc42 (MsCdc42), M. sexto-Dsorl (MsDsorl), M. sexto-Fos (MsFos), M. sexto-Jra (MsJra), M sexto-Caudal (MsCADl), M. sexta- Atg8 (MsAtg8), M. sexto-Atgl3 (MsAtgl3), M. sexto-IAPl(MsIAPl), M. sexto-Chitin synthase 2 (MsChs2), M. sexto-Beta- 1 tubulin (MsPTub), M sexto-Beta fmctofuranosidase 1 (MsSucl), and orthologs thereof. In certain aspects, the target gene is selected from the group consisting of M sexto-Hemolin (MsHEM), M. sexto-Serine proteinase homolog 3 (MsSPH-3), M. sexto-Peptidoglycan recognition protein 2 (MsPGRP2), M. sexto-Beta- 1, 3-glycan-recognition protein 2 (MspGRP2), M sexto-Relish family protein 2 A (MsREL2A), M. sexto-Dorsal (MsDor), M sexto-Spatzle (MsSPZIA), M sexto-Toll receptor (MsTOLL), M sexto-Scolexin A (MsSCAl), M sexto-Hemolymph proteinase 18 (MsHP18), M. sexto-Transferrin (MsTRN), M. sexto- Arylphorin beta subunit (MsARP), M. sexta- Chymotrypsinogen-like protein 1 (MsCTLl), M. sexto- Valine Rich Midgut Protein (MsVMPl), M sexto-Imd (Mslmd), M. sexto-FADD (MsFADD), M sexto-Dredd (MsDRD), M. sexto-Relish F (MsRelF), M. sexta-Cdc42 (MsCdc42), M. sexto-Dsorl (MsDsorl), M. sexto-Fos (MsFos), M sexto-Jra (MsJra), M sexto-Caudal (MsCADl), M. sexto-Atg8 (MsAtg8), M. sexto-Atgl3 (MsAtgl3), M. sexto-IAPl(MsIAPl), M sexto-Chitin synthase 2 (MsChs2), M sexto-Beta-1 tubulin (MsPTub) and M sexto-Beta fructofuranosidase 1 (MsSucl).

[0009] Also provided herein is an isolated double stranded RNA (dsRNA) molecule comprising a nucleic acid sequence complementary to about 200 to 1000 contiguous nucleotides of a target gene sequence, wherein the target gene comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106- 110. In certain aspects, the target gene sequence includes at least one of the protein coding region, the 5' UTR region, the 3' UTR region, and any combination thereof, of a target gene. Further, certain aspects provide that the dsRNA molecule silences the target gene when ingested by an insect.

[0010] In certain aspects disclosed herein, the target gene is sequence selected from the group consisting of: i) SEQ ID NOs: 1-9, 11, 14, 31, 39, 43, 44, and 71-75.

[0011] In certain aspects disclosed herein, the target gene is sequence selected from the group consisting of: ii) SEQ ID NOs: 3, 4, and 43. In certain aspects, the dsRNA molecule causes impeded growth, developmental progression, and/or mortality and the like of TH, DMB, and FAW in an orthologous manner.

[0012] In certain aspects disclosed herein, the target gene is sequence selected from the group consisting of: iii) SEQ ID NOs: 76, 77, 80, 81, 85, 87, and 88. In certain aspects, the dsRNA molecule causes impeded growth, developmental progression, and/or mortality and the like of DBM. Further, in certain aspects, the DBM is a Bt resistant strain.

[0013] In certain aspects disclosed herein, the target gene is sequence selected from the group consisting of: iv) SEQ ID NOs: 89, 92, 96, 101, 103, and 105. In certain aspects, the dsRNA molecule causes impeded growth, developmental progression, and/or mortality and the like of FAW.

[0014] In certain aspects disclosed herein, the target gene is sequence selected from the group consisting of: v) SEQ ID NOs: 107-110. In certain aspects, the dsRNA molecule caused impeded growth, developmental progression, and/or mortality and the like of RFB.

[0015] In certain aspects of the dsRNA molecule disclosed above, the dsRNA molecule comprises two annealed complementary RNA stands. In certain aspects, the dsRNA molecule comprises a single RNA strand comprising an inversely repeated sequence with a spacer in between and where the single RNA strand can anneal to itself to form a hairpin loop structure.

[0016] In certain of the dsRNA molecule disclosed above, the dsRNA molecule comprises a nucleic acid sequence complementary to about 200 to 1000 contiguous nucleotides of the protein coding region of the target gene sequence. In certain aspects, the dsRNA molecule comprises a nucleic acid sequence complementary to a contiguous region comprising at least about 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% of the length of a sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106- 110. In certain aspects, the dsRNA molecule comprises a nucleic acid sequence complementary to a contiguous region comprising at least about 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100%) of the length of the target gene sequence protein coding region, 5' UTR region, or 3' UTR region.

[0017] In certain aspects disclosed herein the dsRNA molecule comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 111-119, 120-126, 127-135, and 136-139. In certain aspects, the dsRNA is a fragment of at least about 200 nucleotides thereof. In certain aspects, i) the isolated dsRNA molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 110-119, or the fragment thereof, causes impeded growth, developmental progression, and/or mortality and the like of TH; ii) the isolated dsRNA molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 120-126, or the fragment thereof, causes impeded growth, developmental progression, and/or mortality and the like of DBM; iii) the isolated dsRNA molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 127-135, or the fragment thereof, causes impeded growth, developmental progression, and/or mortality and the like of FAW; or iv) the isolated dsRNA molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 136-139, or the fragment thereof, causes impeded growth, developmental progression, and/or mortality and the like of RFB.

[0018] In certain of any of the above aspects, the dsRNA molecule can form siRNA.

Certain aspects provide for an isolated siRNA molecule derived from the processing of said dsRNA molecule.

[0019] Certain further aspects provide of an insecticidal composition comprising an isolated dsRNA molecule or an siRNA molecule disclosed anywhere herein, and a synthetic carrier or microbial conduit. In certain aspects, a microorganism has a natural capacity or is engineered to produce and/ or deliver dsRNA to increase its bioavailability and/or biostability for causing RNA interference including but not restricted to plant growth promoting organisms, normal commensal and/or symbiotic microorganisms associated with the target insect pest or parasites and/or natural enemies of the target pest or pest target host or host cultivation range etc. from an insect or parasite and/or natural enemies of the target pest engineered or identified from natural populations containing microbial conduit to produce and/or deliver dsRNA and/or drive the transmission of such microbial conduits into natural populations of insect pests as a control option. In certain aspects of an insecticidal composition disclosed herein, the dsRNA molecule is conjugated with the synthetic carrier.

[0020] Certain aspects are also drawn to a recombinant DNA construct encoding a dsRNA molecule disclose anywhere herein. In certain aspects, the recombinant DNA construct comprising a gene silencing sequence comprising about 200 to 1000 contiguous nucleotides of a target gene sequence. In certain aspects, the target gene is a MIGGS-IRTG, as defined herein, involved in gut microbe clearance and/or containment induced by microbes ingested during feeding and/or active feeding. In certain aspects, the target gene is critical for insect immune responses. In certain aspects, the target gene is abundantly expressed in the midgut. In certain aspects, said target gene sequence includes at least one of the protein coding region, the 5' UTR region, the 3' UTR region, and any combination thereof, of a target gene. In certain aspects, the target gene is a type I MIGGS RNAi target or a type 2 MIGGS RNAi target as described elsewhere herein. In certain aspects, the target gene is a pattern recognition receptor (PRR) class gene or an insect midgut structural component gene. In certain aspects, the target gene is expressed abundantly in a midgut specific manner during active feeding.

[0021] In any of the above aspects of a recombinant DNA construct, the gene silencing sequence comprises about 200 to 1000 contiguous nucleotides of the protein coding region of the target gene sequence. In certain aspects, the gene silencing sequence comprises about 200 to 1000 contiguous nucleotides of the 5' UTR region or the 3' UTR region of the target gene sequence. In certain aspects, the gene silencing sequence comprises at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% contiguously of the length of target gene sequence protein coding region, 5' UTR region, or 3 ' UTR region. In certain aspects, the gene silencing sequence comprises about 200 to 650 contiguous nucleotides of the target gene sequence.

[0022] In any of the above aspects of a recombinant DNA construct, and as noted throughout this disclosure, in certain aspects, a target gene can be selected from the group consisting of M sexto-Hemolin (MsHEM), M se to- Serine proteinase homolog 3 (MsSPH-3), M sexto-Peptidoglycan recognition protein 2 (MsPGRP2), M. sexto-Beta- 1, 3-glycan-recognition protein 2 (Ms GRP2), M. sexto-Relish family protein 2A (MsREL2A), M sexto-Dorsal (MsDor), M sexto-Spatzle (MsSPZIA), M. sexto-Toll receptor (MsTOLL), M. sexto-Scolexin A (MsSCAl), M sexto-Hemolymph proteinase 18 (MsHP18), M. sexto-Transferrin (MsTRN), M. sexto- Arylphorin beta subunit (MsARP), M. sexto-Chymotrypsinogen-like protein 1 (MsCTLl), M sexto-Valine Rich Midgut Protein (MsVMPl), M. sexto-Imd (Mslmd), M sexto-FADD (MsFADD), M. sexto-Dredd (MsDRD), M. sexto-Relish F (MsRelF), M. sexta-Cdc42 (MsCdc42), M sexto-Dsorl (MsDsorl), M sexto-Fos (MsFos), M. sexta-ha (MsJra), M sexto- Caudal (MsCADl), M sexto-Atg8 (MsAtg8), M sexto-Atgl3 (MsAtgl3), M. sexta- IAPl(MsIAPl), M. sexto-Chitin synthase 2 (MsChs2), M. sexto-Beta-1 tubulin (MspTub), M. sexto-Beta fructofuranosidase 1 (MsSucl), and orthologs thereof. In certain aspects a target gene can be selected from the group consisting of M sexto-Hemolin (MsHEM), M sexto-Serine proteinase homolog 3 (MsSPH-3), M. sexto-Peptidoglycan recognition protein 2 (MsPGRP2), M. sexto-Beta-1, 3-glycan-recognition protein 2 (MsPGRP2), M sexto-Relish family protein 2 A (MsREL2A), M. sexto-Dorsal (MsDor), M sexto-Spatzle (MsSPZIA), M sexto-Toll receptor (MsTOLL), M sexto-Scolexin A (MsSCAl), M sexto-Hemolymph proteinase 18 (MsHP18), M. sexto-Transferrin (MsTRN), M. sexto- Arylphorin beta subunit (MsARP), M. sexta- Chymotrypsinogen-like protein 1 (MsCTLl), M. sexto-Valine Rich Midgut Protein (MsVMPl), M sexto-Imd (Mslmd), M. sexto-FADD (MsFADD), M sexto-Dredd (MsDRD), M. sexto-Relish F (MsRelF), M. sexta-Cdc42 (MsCdc42), M. sexto-Dsorl (MsDsorl), M. sexta-Fos (MsFos), M sexta-ha (MsJra), M sexto-Caudal (MsCADl), M. sexto-Atg8 (MsAtg8), M. sexto-Atgl3 (MsAtgl3), M. sexto-IAPl(MsIAPl), M sexto-Chitin synthase 2 (MsChs2), M sexto-Beta-1 tubulin (MsPTub) and M sexto-Beta fructofuranosidase 1 (MsSucl).

[0023] Further aspects provide for a recombinant DNA construct comprising a gene silencing sequence comprising about 200 to 1000 contiguous nucleotides of a target gene sequence, wherein the target gene comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106-110. In certain aspects, the target gene sequence includes at least one of the protein coding region, the 5' UTR region, the 3' UTR region, and any combination thereof, of a target gene.

[0024] In any of the above aspects of a recombinant DNA construct, the target gene sequence is selected from the group consisting of: i) SEQ ID NOs: 1-9, 11, 14, 31, 39, 43, 44, and 71-75; ii) SEQ ID NOs: 3, 4, and 43; iii) SEQ ID NOs: 76, 77, 80, 81, 85, 87, and 88; iv) SEQ ID NOs: 89, 92, 96, 101, 103, and 105; and v) SEQ ID NOs: 107-109, and 110. In certain aspects, the gene silencing sequence comprises about 200 to 1000 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106-110. In certain aspects, the gene silencing sequence comprises at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% contiguously of a sequence selected from the group consisting of SEQ ID Nos: 1-14, 16-29, 31-70, 71-75, 76-88, 89-105, and 106-110. In certain aspects, the gene silencing sequence comprises about 200 to 650 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-70, 71-75, 76- 88, 89-105, and 106-110. In certain aspects, the gene silencing sequence is operably linked to one or more promoters for the expression of a dsRNA molecule that silences the target gene when ingested by an insect. In certain aspects, the construct is an expression vector. And, in certain aspects, the expression vector can target single or multiple insect RNAi target genes or chimeric RNAi target genes.

[0025] Certain aspects of the disclosure also provide for a host cell comprising the dsRNA molecule, the siRNA molecule, a polynucleotide encoding a dsRNA molecule, and/or the construct or a dsRNA encoding segment thereof disclose anywhere herein. In certain aspects, the host cell is a bacterial or plant cell or organelle. In certain aspects, the organelle is a plastid. In certain aspects, the host cell is a transgenic and/or transplastomic plant cell. In certain aspects, the hose cell expresses a dsRNA and/or produces an siRNA disclosed anywhere herein. [0026] Certain aspects also provide for a transgenic and/or transplastomic plant comprising a dsRNA molecule, an siRNA molecule, a polynucleotide encoding the dsRNA, and/or a construct or a dsRNA encoding segment disclosed anywhere herein. In certain aspects, at least one cell of the plant expresses the dsRNA molecule and/or produces the siRNA molecule. Further, certain aspects provide for a seed, part, tissue, cell, or organelle of the above transgenic and/or transplastomic plant. In certain aspects, the seed, part, tissue, cell, or organelle comprises the dsRNA molecule and/or the siRNA molecule. In certain aspects, the organelle is a plastid.

[0027] Certain aspects provide for a method of silencing: (i) an insect immune response gene and/or (ii) an insect gene encoding for structural components of the insect midgut. In certain aspects, the method comprises providing for ingesting an isolated dsRNA molecule, an siRNA molecule, an insecticidal composition, a host cell, a transgenic and/or transplastomic plant, transplastomic plant and/or a seed, part, tissue, cell, or organelle as disclosed anywhere herein, to an insect.

[0028] Certain aspects provide for a method of protecting a plant from an insect pest of the plant. In certain aspects, the method comprises topically applying to a plant an isolated dsRNA molecule, an siRNA molecule, and/or an insecticidal composition disclosed anywhere herein, and providing the plant in the diet of the insect pest. In certain aspects, the dsRNA is topically applied by expressing the dsRNA in a microbe and topically applying the microbe onto the plant.

[0029] Certain aspects provide for a method of producing a plant resistance to a pest insect of said plant. In certain aspects, the method comprises transforming a plant with a polynucleotide encoding the dsRNA molecule and/or a construct or a dsRNA encoding segment thereof as disclosed anywhere herein, wherein the plant expresses a dsRNA molecule and/or produces an siRNA disclose anywhere herein.

[0030] Certain aspects provide for a method of improving crop yield. In certain aspects, the method comprises growing a population of crop plants transformed with a polynucleotide encoding a dsRNA molecule and/or a construct or a dsRNA encoding segment thereof wherein the plant expresses a dsRNA molecule and/or produces an siRNA molecule as discloses anywhere herein. In certain aspects, the population of transformed plants produces higher yields in the presence of pest insect infestation than a control population of untransformed plants.

[0031] Certain aspects provide for a method for producing a plant resistant against a pest insect of said plant. In certain aspects, the method comprises: a) transforming a plant cell and/or organelle with a polynucleotide encoding a dsRNA molecule and/or a construct or a dsRNA encoding segment thereof as disclosed anywhere herein; b) regenerating a plant from the transformed plant cell and/or organelle; and c) growing the transformed plant under conditions suitable for the expression of said double stranded RNA molecule, wherein said transformed plant of (c) is resistant to the plant pest insect compared to an untransformed plant.

[0032] In certain of any of the aforementioned aspects, the method the dsRNA is ingested by an actively feeding stage of the insect. In certain aspects, the ingestion of the dsRNA induces a melanotic response in the insect larvae. In certain aspects, the ingestion of the dsRNA results in perturbation of gut microbial homeostasis. In certain aspects, the ingestion of the dsRNA results in defective clearance of opportunistic microbes. In certain aspects, the ingestion of the dsRNA results in defective containment of gut microbes.

[0033] In certain of any of the aforementioned aspects, the silencing of the target gene results in reduced appetite and/or developmental defects resulting in incomplete development and/or mortality and/or decrease the reproductive success of the insect. In certain aspects, the reduced appetite and/or developmental defects and/or mortality and/or reduced reproductive fitness of the insect is observed after sustained feeding for at least 72 hours.

[0034] In certain of any of the aforementioned aspects, the insect is of the order

Lepidoptera, Coleoptera, Hemiptera, Blattodea, or Diptera. In certain aspects, the insect is Manduca sexta (M. sexto) (tobacco hornworm), Spodoptera frugiperda (fall armyworm), Ostrinia nubilalis (European corn borer), Plutella xylostella (Diamondback moth), Leptinotarsa decemlineata Say (Colorado potato beetle), Diabrotica spp. (Corn rootworm complex), Tribolium castaneum (Red flour beetle), Popillia japonica (Japanese beetle), Agrilus planipennis (Emerald ash borer), Diaphorina citri (Asian citrus psyllid), Cimex lectularius (Bed bug), a cockroach or termite, or insect pests such as mosquitoes and flies.

[0035] In certain of any of the aforementioned aspects, the plant host is selected from the group consisting of Zea mays L (corn), Sorghum bicolor (sorghum), Setaria italica (fox tail millet), Pennisetum glaucum (Pearl millet), Solarium tuberosum (potato), Oryza sativa (rice), Lycopersicon esculentum (tomato), Solarium melongena (eggplant), cultivars of the Brassica oleracea family, Citrus sinensis (Orange), trees of the Oleaceae family, and crops of Rosaceae. BRIEF DESCRIPTION OF THE DRAWINGS

[0036] Figure 1. Figure 1 shows schematic representation of bacterially ingestible dsRNA assay. (Kamath RS, et al. (2000) Genome Biol. 2: 1-10; Newmark et al. (2003) Proc. Natl. Acad. Sci. USA 100: 11861-11865).

[0037] Figure 2A-C. Figure 2A-C shows representative phenotypes of TH larvae. TH larvae exposed to bacterially (HT115 (DE3)) expressed dsRNA against MIGGS RNAi targets MsPGRP2 (A); MsVMPl(B); and negative control dsRNA against Cassava plant specific gene MeCATl (C).

[0038] Figure 3A,B. Figure 3A,B shows feeding activity of TH larvae exposed to dsRNA against negative control MeCATl (A) and MIGGS RNAi target MsPGRP2 (B) containing bacterial (HT115 (DE3)) plates.

[0039] Figure 4. Figure 4 shows survival rates of healthy conventionally-reared (CR) and germ-free (GF) first instar TH larvae exposed to bacterially (HT115 (DE3)) expressed dsRNA against MIGGS RNAi targets MsPGRP2; MsVMPl and negative control dsRNA against Cassava plant specific gene MeCATl . The differences observed using 4 replicates/treatment were statistically significant across all time points at a P value between P<0.001 to P<0.05.

[0040] Figure 5. Figure 5 shows percentage melanotic reaction of healthy conventionally-reared (CR) and germ-free (GF) first instar TH larvae exposed to bacterially (HT115 (DE3)) expressed dsRNA against MIGGS RNAi targets MsPGRP2; MsVMPl and negative control dsRNA against Cassava plant specific gene MeCATl . The differences observed using 4 replicates/treatment were statistically significant across all time points at a P value between P<0.001 to P<0.05.

[0041] Figure 6. Figure 6 shows schematic representation of dsRNA producing L4440 vector containing coding sequence of Cassava CATl (MeCATl) and TH MIGGS RNAi targets MsPGRP2 and MsVMP 1.

[0042] Figure 7. Figure 7 shows midgut-preferred expression of two TH MIGGS RNAi target genes MsHEM and MsSPH3 in comparison to the control gene RPS3. The control cDNA libraries were derived from conventionally reared larvae and treatment cDNA libraries were derived from TH larvae injected with 75 CFU of E. coli. The control and treatment larvae were used to isolate hemolymph fraction (HL), dissect midgut (MDG) to obtain rest of the body (RB). The HL, MDG and RB were used for RNA isolation and cDNA synthesis. [0043] Figure 8. Figure 8 shows schematic representation of oral induction procedure for

MIGGS RNAi target genes. The insect larvae were reared on induction media containing live gram-negative bacteria E. coli and lyophilized cell wall signatures from gram-positive bacteria and fungi, following a previously published protocol (Wang et al. (2006). J. Biol. Chem. 281(14): 9271-9278).

[0044] Figure 9A,B. Figure 9A,B shows expression of MIGGS RNAi target genes in TH larvae in response to feeding on induction media. Genes with immunity function (A,B) are induced (I) between 24-48 hours post larval exposure to induction media and mostly not detected in the absence of induction (UI).

[0045] Figure 9C,D. Figure 9C,D also shows expression of MIGGS RNAi target genes in TH larvae in response to feeding on induction media. Genes with immunity function (C) are induced (I) between 24-48 hours post larval exposure to induction media and mostly not detected in the absence of induction (UI). While, the genes essential for midgut structural integrity (D) are expressed under both conditions.

[0046] Figure 10A-F. Figure 10A-F shows representative phenotypes of TH larvae

(initial size shown in A) exposed to bacterially expressed dsRNA against insecticidal MIGGS- RNAi target genes MsToll2, MsSucl, and MspTub in comparison to negative (B) and positive (C) control treatment. The insecticidal activity is manifested as stunted growth and development, loss of appetite and melanotic reaction (D-F) in comparison to regular growth and development observed with negative control treatment (B).

[0047] Figure 11. Figure 11 shows percentage mortality of TH larvae feeding on bacterially expressed dsRNA against insecticidal MIGGS RNAi targets MsToll2, MsSucl, and MspTub. The insecticidal MIGGS candidates confer statistically significant mortality that is comparable to positive control treatment (MsVATPaseE). Data is average of 3- replicates/treatment ± SEM at p< 0.001 (* * *).

[0048] Figure 12A-C. Figure 12A-C shows the induction of MIGGS-IRTGS in DBM larvae feeding on induction media. The genes with immunity function (A-B) are induced (I) between 24-48 hours post larval exposure to induction media and mostly not detected in the absence of induction (UI). While, the genes essential for midgut structural integrity (C) are expressed under both conditions.

[0049] Figure 13A-H. Figure 13A-H shows representative phenotypes of Bt resistant

DBM larvae (initial size shown in A) exposed to bacterially expressed dsRNA against insecticidal DBM MIGGS RNAi targets PxPGRP2 (D), PxIMD (E), PxPGRP2 (F), PxCAC (G), and PxCHSl (H) in comparison to positive (C) and negative control (B) treatment. The insecticidal activity is manifested as stunted growth and development, loss of appetite and melanotic reaction (D-H) in comparison to regular growth and development observed with negative control treatment (B).

[0050] Figure 14. Figure 14 shows percentage mortality of DBM larvae feeding on bacterially expressed dsRNA against insecticidal MIGGS RNAi targets PxPGRP2, PxFMD, PxPGRP2, PxCAC, and PxCHSl. The insecticidal MIGGS candidates confer statistically significant mortality that is comparable to positive control treatment (MsVATPaseE). Data is average of 3 -replicates/treatment ± SEM at p< 0.001(***) p< 0.01(**).

[0051] Figure 15A,B. Figure 15A,B illustrates a sprayable RNAi set up using dsRNA against TH MIGGS targets MsPGRP2, Ms pGRP2, MsCHS2, and MsVMPl. One cm 2 leaf discs from field soil grown tobacco plants (A) were drop inoculated with various concentrations of purified dsRNA against TH MIGGS RNAi targets (B). The bioassays were carried out for 5 days with 3 first instar larvae per well and leaf discs changed at the end of every 24 hours.

[0052] Figure 16. Figure 16 shows percentage mortality of TH larvae feeding on various concentrations of dsRNA against the core set of TH MIGGS RNAi targets MsPGPRP2, MsPGRP2, MsCHS2, and MsVMPl . The leaf disc coated dsRNA causes significant mortality at 8 and 16 μg of dsRNA concentration. The leaf disc coated dsRNA against three core MIGGS targets confers statistically significant mortality that is comparable to positive control treatment (MsVATPaseE). Data is average of 3 -replicates/treatment ± SEM at p≤ 0.001(***); p< 0.01(**) and p< 0.05(***).

[0053] Figure 17A-H. Figure 17A-H shows representative phenotypes of TH larvae

(initial size shown in A and E) exposed to 8 and 16 μg of dsRNA against the core set of of MIGGS RNAi targets MsPGPRP2 (D), MspGRP2 (F), MsCHS2 (G), and MsVMPl (H). The insecticidal activity is comparable to the positive control treatment (C) and manifested as stunted growth and development, loss of appetite and melanotic reaction (D,F-G) in contrast to the regular growth and development observed with negative control treatment (B).

[0054] Figure 18A-D. Figure 18A-D shows representative phenotypes of TH larvae feeding on leaves from transplastomic plants expressing dsRNA against core MIGGS targets MsPGRP2 (PTS-28-10 and PTS-28-7-B), MsPGRP2 (PTS-26-19 and PTS-26-4-C), and dsCHS2 (PTS-27-3-1 and PTS-27-13-1-D). The TH larvae feeding on leaves expressing dsRNA against MIGGS targets MsPGRP2 (B), MsPGRP (C), and MsCHS2 (D) display stunted growth, development, loss of appetite and melanotic reaction in comparison to negative control PTS-27- 13-2 (A).

[0055] Figure 18E. Figure 18E shows that the insecticidal activity of transplastomic lines is manifested as significant reduction in mean weights in comparison to negative control.

[0056] Figure 18F. Figure 18F shows that the transplastomic events confer significant mortality in comparison to negative control. The mortality rate was scored on a 0-3 score were 0, 1, 2 and 3 indicated < 0, 25, 50 or > 50 mortality respectively. Data is average of 6 replicates/treatment (N=24) ± SEM at p< 0.001 (***); p< 0.01(**) and p< 0.05(*).

[0057] Figure 19. Figure 19 shows percentage mortality of Bt resistant DBM larvae feeding on various concentrations of dsRNA against the DBM orthologs of TH core MIGGS RNAi targets PxPGPRP2, PxPGRP2, Px TUB, and PxCHSl. The leaf disc coated dsRNA causes significant mortality at 0.5-1 μg of dsRNA concentration. The leaf disc coated dsRNA against all core MIGGS targets confers statistically significant mortality between 0.5 μg and 1 μg dsRNA dosage that is comparable to positive control treatment (MsVATPaseE). Data is average of 3- replicates/treatment ± SEM at p< 0.01(**) and p< 0.05(*).

[0058] Figure 20A-H. Figure 20A-H shows representative phenotypes of Bt resistant

DBM larvae (initial size shown in A and E) exposed to 0.5-1 μg of dsRNA against the DBM orthologs of TH core MIGGS RNAi targets PxPGPRP2(D), PxpGRP2(F), PxpTUB(G), and PxCHSl(H). The insecticidal activity is comparable to the positive control treatment (C) and manifested as stunted growth and development, loss of appetite and melanotic reaction (D,F-H) in contrast to the regular growth and development observed with negative control treatment (B).

[0059] Figure 21A-D. Figure 21A-D illustrates MIGGS-IRTG induction procedure in

FAW feeding on wheat plants grown microbe rich field soil (A) and microbe depleted sterile surface (B). Ten first instar FAW larvae (C) were infested into each pot containing five wheat seedlings and contained using porous netting material (D). The larval samples were collected at various time points after infestation and used for pooled RNA-Seq approach to identify differential expressed transcripts in response to induction by the microbes in the filed soil.

[0060] Figure 22A,B. Figure 22A,B shows bi-clustering comparison of differential gene expression in FAW larvae feeding on microbe-depleted plants (A) in comparison to larvae feeding on microbe rich plants (B). RNA-Seq data indicated that plants growing on field soil caused preferential up-regulation of MIGGS pathway genes in FAW. In total, 100 differential expressed genes were identified, 30 of which were associated with MIGGS pathways. Notably, FAW orthologs of TH insecticidal targets including PGRP2, PGRP2 and IMD were captured in the data set, indicating clearly that MIGGS pathway genes are up regulated in response to insect feeding on plants exposed to soil microbiome.

[0061] Figure 23A-F. Figure 23A-F shows representative phenotypes of FAW larvae exposed to pure dsRNA against FAW orthologs of TH core MIGGS RNAi targets SFCHS2 (B), SFpGRP2 (C), SFPGRP2 (D), and two novel MIGGS RNAi targets from RNA-Seq study SFRC (un-annotated-E) and C-type lectin-6 (SFCTL-F). Leaf discs coated with dsRNA causes reduced growth, development and loss of appetite in comparison to negative control treatment (A) when supplied at 8 and 16 μg of dsRNA concentration per leaf disc.

[0062] Figure 23G,H. Figure 23G,H illustrates from Figure 23A-F significant weight reduction (G) and mortality (H). The rates of mortality was scored on a 0-3 scale where 0, 1, 2 and 3 indicated < 0, 25, 50 or > 50 mortality respectively. The dsRNA treatments imposed caused statistically significant reduction in mean weights (G) that translated into significant rates of mortality (H) in comparison to negative control. Data is average of 3 replicates/treatment ± SEM at p< 0.001(***); p< 0.01(**) and p< 0.05(*).

[0063] Figure 24A,B. Figure 24 shows mean weights (A) of FAW larvae exposed to

16μg of pure dsRNA against newly discovered MIGGS RNAi targets from the RNA-Seq data. The rates of mortality was scored on a 0-3 score were 0, 1, 2 and 3 indicated < 0, 25, 50 or > 50 mortality respectively. The dsRNA treatments imposed caused statistically significant reduction in mean weights (A) that also translated into significant rates of mortality (B) in comparison to negative control. Data is average of 3 replicates/treatment ± SEM at p< 0.001 (***); p< 0.01(**) and p< 0.05(*).

[0064] Figure 25. Figure 25 shows representative phenotypes of RFB beetles feeding on rice flour mixed with 1 μg of pure dsRNA against core MIGGS targets in RFB TcPGRP2, MsPGRP2, dsCHS2, and a previously discovered target MDGP. The RFB beetles feeding on dsRNA against all MIGGS targets displayed significant mortalities at the end of 72 hours of feeding in comparison to negative control treatment (TE). The rates of mortality were significantly higher than negative control treatment and were comparable to the positive control treatment TcvATPaseE. Mortality rate was scored on a 0-3 scale were 0, 1, 2 and 3 indicated < 0, 25, 50 or > 50 mortality respectively. Data is average of 6 replicates/treatment (N=18) ± SEM at p< 0.001(***); p< 0.01(**) and p< 0.05(*). [0065] Figure 26A,B. Figure 26A,B shows imageJ analyzed RT-PCR data correlating

TH larval phenotypes observed when exposed to 8-16 μg pure dsRNA against a positive control (A) and a core insecticidal MIGGS RNAi target MsPGRP2 (B). The transcript down regulation is correlated with the larval phenotypes observed in Figure 17.

[0066] Figure 26C,D. Figure 26C,D shows imageJ analyzed RT-PCR data correlating

TH larval phenotypes observed when exposed to 8-16 μg pure dsRNA against core set of insecticidal MIGGS RNAi targets MsPGPRP2 (C) and MsCHS2 (D). The transcript down regulation is correlated with the larval phenotypes observed in Figure 17.

DETAILED DESCRIPTION

Overview

[0067] RNAi-mediated gene-silencing offers a sustainable alternative approach to insect control. Most of the successful RNAi -based pest control strategies thus far employ homology dependent silencing of essential gene functions. Despite this, effective RNAi-based crop protection is lacking for Lepidopteran pests, due to their variable sensitivity to ingested double stranded RNA (dsRNA). (Terenius O, et al. (2011). J. Insect Physiol. 57(2): 231-245).

[0068] Plant pests are in constant contact with, and ingest significant amount of microbes during herbivory. (Gayatri Priya N. et al. (2012). 7(1), PLos ONE. E30768; Penuelas and Terradas (2014). 19(5): Trends Plant Sci. 278 - 280; Engel and Moran (2013). FEMS microbiol. rev. 37(5): 699-735). This interaction between ingested microbes and insect midgut is often considered passive. Recent studies suggest, however, an active role of midgut specific immune responses in reducing variation of core microbial communities during insect herbivory through the activation of pattern recognition receptors (PRR). (Casanova-Torres and Goodrich-Blair (2013). Insects. 4: 320-338; Tang X, et al. (2012) 7(7) PLoS ONE:e36978; Ryu JH. et al. (2008). Science. 37(5): 777-82; Shrestha S. et al. (2009). J. Asia Pac. Entomol. M: 277-283; Buchon, N. et al. (2013). Front. Cell. Infect. Microbiol. 11 : 615-626). Further, maintenance of core gut microbial communities via active immune responses and/or their containment in the midgut is key to successful herbivory.

[0069] Although, the core innate immune response pathways are conserved, their specific components are under strong selection for diversification. (Casanova-Torres and Goodrich-Blair (2013). Insects. 4: 320-338). Therefore, it is contemplated herein that these pathways provide novel and specific targets for devising sustainable pesticidal RNAi biotechnologies against insect pests. Although gut immune responses have been studied from an immunological perspective, their active manipulation via genetic engineering for pest protection is currently lacking.

[0070] Provided herein is the identification of "insect RNAi target genes" (IRTGs) involved in gut microbial clearance and/or containment induced by microbes ingested during feeding and/or active feeding (referred to herein as microbe-induced gut specific genes (MIGGS)) and examples of a novel biotechnology for insect protection via inter-specific silencing of MIGGS-IRTGs. In certain aspects, the MIGGS-IRTGs are Lepidoptera-specific. For example, in certain aspects detailed below, the insect is Manduca sexta (M sexta; Lepidoptera) (tobacco hornworm (TH)). For example, in certain aspects detailed below, the insect is Spodoptera frugiperda (fall armyworm (FAW)). For example, in certain aspects detailed below, the insect is Plutella xylostella (Diamondback moth (DBM). For example, in certain aspects detailed below, the insect is Ostrinia nubilalis (European corn borer). Still, it is also considered understood that successful, feeding-induced loss of appetite, developmental defects, and/or lethality has the potential to provide protection beyond the order Lepidoptera in an orthologous manner. For example, protection against coleopteran pests such as Leptinotarsa decemlineata (Say) (Colorado potato beetle), Diabrotica spp. (Corn rootworm complex), and Tribolium castaneum (Red Flour Beetle (RFB)). Additionally, this MIGGS-RNAi technique may allow containment of disease transmitting insect vectors and/or enable further manipulation of the plant-microbe-insect interactions for devising pesticidal RNAi for crop protection.

[0071] In certain aspects detailed below, silencing of a target gene can result in reduced appetite and/or developmental defects and/or mortality and/or reduced fitness of the insect. In certain aspects these effects are observed after sustained feeding for at least about 24, 36, 48, or 72 hours, or any time inbetween. Definitions

[0072] To the extent necessary to provide descriptive support, the subject matter and/or text of the appended claims is incorporated herein by reference in their entirety.

[0073] It will be understood by all readers of this written description that the exemplary embodiments described and claimed herein may be suitably practiced in the absence of any recited feature, element or step that is, or is not, specifically disclosed herein.

[0074] It is to be noted that the term "a" or "an" entity refers to one or more of that entity; for example, "a dsRNA molecule," is understood to represent one or more dsRNA molecules. As such, the terms "a" (or "an"), "one or more," and "at least one" can be used interchangeably herein.

[0075] Furthermore, "and/or" where used herein is to be taken as specific disclosure of each of the specified features or components with or without the other. Thus, the term and/or" as used in a phrase such as "A and/or B" herein is intended to include "A and B," "A or B," "A" (alone), and "B" (alone). Likewise, the term "and/or" as used in a phrase such as "A, B, and/or C" is intended to encompass each of the following embodiments: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).

[0076] It is understood that wherever aspects are described herein with the language "comprising," otherwise analogous aspects described in terms of "consisting of and/or "consisting essentially of are also provided.

[0077] Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure is related. Numeric ranges are inclusive of the numbers defining the range. Even when not explicitly identified by "and any range in between," or the like, where a list of values is recited, e.g., 1, 2, 3, or 4, unless otherwise stated, the disclosure specifically includes any range in between the values, e.g., 1 to 3, 1 to 4, 2 to 4, etc.

[0078] The headings provided herein are solely for ease of reference and are not limitations of the various aspects or aspects of the disclosure, which can be had by reference to the specification as a whole.

[0079] As used herein, the term "non-naturally occurring" condition, substance, polypeptide, polynucleotide, composition, entity, plant, organism, individual, and/or any combination thereof, or any grammatical variants thereof and the like, is a conditional term that explicitly excludes, but only excludes, those forms that are well-understood by persons of ordinary skill in the art as being "naturally-occurring," or that are, or might be at any time, determined or interpreted by a judge or an administrative or judicial body to be, "naturally- occurring."

[0080] As used herein, the term "identity," e.g., "percent identity" to an amino acid sequence or to a nucleotide sequence disclosed herein refers to a relationship between two or more amino acid sequences or between two or more nucleotide sequences. When a position in one sequence is occupied by the same nucleic acid base or amino acid in the corresponding position of the comparator sequence, the sequences are said to be "identical" at that position. The percentage of "sequence identity" is calculated by determining the number of positions at which the identical nucleic acid base or amino acid occurs in both sequences to yield the number of "identical" positions. The number of "identical" positions is then divided by the total number of positions in the comparison window and multiplied by 100 to yield the percentage of "sequence identity." Percentage of "sequence identity" is determined by comparing two optimally aligned sequences over a comparison window. In order to optimally align sequences for comparison, the portion of a nucleotide or amino acid sequence in the comparison window can comprise additions or deletions termed gaps while the reference sequence is kept constant. An optimal alignment is that alignment which, even with gaps, produces the greatest possible number of "identical" positions between the reference and comparator sequences. Percentage "sequence identity" between two sequences can be determined using, e.g., the program "BLAST" which is available from the National Center for Biotechnology Information, and which program incorporates the programs BLASTN (for nucleotide sequence comparison) and BLASTP (for amino acid sequence comparison), which programs are based on the algorithm of Karlin and Altschul ((1993). Proc. Natl. Acad. Sci. USA. 90(12): 5873-5877).

[0081] As used herein, the term "complementary" refers to the ability of polynucleotides to form base pairs with one another. Base pairs are typically formed by hydrogen bonds between nucleotide units in antiparallel polynucleotide strands. Complementary polynucleotide strands can base pair in the Watson-Crick manner (e.g., A to T, A to U, C to G), or in any other manner that allows for the formation of duplexes. When using RNA as opposed to DNA, uracil (U) rather than thymine (T) is the base that is considered to be complementary to adenosine. However; when a U is denoted in the context of the present invention, the ability to substitute a T is implied, unless otherwise stated.

[0082] As used herein, the term "polypeptide" is intended to encompass a singular "polypeptide" as well as plural "polypeptides," and refers to a molecule composed of monomers (amino acids) linearly linked by peptide bonds (also known as amide bonds). The term "polypeptide" refers to any chain or chains of two or more amino acids, and does not refer to a specific length of the product. Thus, peptides, dipeptides, tripeptides, oligopeptides, "protein," "amino acid chain," or any other term used to refer to a chain or chains of two or more amino acids are included within the definition of "polypeptide," and unless specifically stated otherwise the term "polypeptide" can be used instead of, or interchangeably with any of these terms. The term "polypeptide" is also intended to refer to the products of post-expression modifications of the polypeptide, including without limitation glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, or modification by non-standard amino acids. A polypeptide can be derived from a natural biological source or produced by recombinant technology, but is not necessarily translated from a designated nucleic acid sequence. Thus, it can be generated in any manner, including by chemical synthesis.

[0083] As used herein, the term "protein" refers to a single polypeptide, i.e., a single amino acid chain as defined above, but can also refer to two or more polypeptides that are associated, e.g., by disulfide bonds, hydrogen bonds, or hydrophobic interactions, to produce a multimeric protein.

[0084] As used herein, the term "nucleotide" refers to a ribonucleotide or a deoxyribonucleotide or modified form thereof, as well as an analog thereof. Nucleotides include species that comprise purines, e.g., adenine, hypoxanthine, guanine, and their derivatives and analogs, as well as pyrimidines, e.g., cytosine, uracil, thymine, and their derivatives and analogs. Further, the term nucleotide also includes those species that have a detectable label, such as for example a radioactive or fluorescent moiety, or mass label attached to the nucleotide.

[0085] As used herein, the term "polynucleotide" refers to polymers of nucleotides, and includes but is not limited to DNA, RNA, DNA/RNA hybrids including polynucleotide chains of regularly and/or irregularly alternating deoxyribosyl moieties and ribosyl moieties (i.e., wherein alternate nucleotide units have an— OH, then and— H, then an— OH, then an— H, and so on at the 2' position of a sugar moiety), and modifications of these kinds of polynucleotides, wherein the attachment of various entities or moieties to the nucleotide units at any position are included. The term "polynucleotide" is also intended to encompass a singular nucleic acid as well as plural nucleic acids, and refers to an isolated nucleic acid molecule or construct, e.g., messenger RNA (mRNA) or plasmid DNA (pDNA). A polynucleotide can comprise a conventional phosphodiester bond or a non-conventional bond (e.g., an amide bond, such as found in peptide nucleic acids (PNA)). A polynucleotide can be single stranded or double stranded.

[0086] As used herein, the term "nucleic acid" refers to any one or more nucleic acid segments, e.g., DNA or RNA fragments, present in a polynucleotide. By "isolated" nucleic acid or polynucleotide is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, a recombinant polynucleotide encoding a polypeptide subunit contained in a vector is considered isolated as disclosed herein. Further examples of an isolated polynucleotide include recombinant polynucleotides maintained in heterologous host cells or purified (partially or substantially) polynucleotides in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of polynucleotides. Isolated polynucleotides or nucleic acids further include such molecules produced synthetically. In addition, polynucleotide or a nucleic acid can be or can include a regulatory element such as a promoter, ribosome binding site, or a transcription terminator.

[0087] As used herein, a "coding region" is a portion of nucleic acid comprising codons translatable into amino acids. Although a "stop codon" (TAG, TGA, or TAA) is not translated into an amino acid, it can be considered to be part of a coding region, but any flanking sequences, for example 5' untranslated regions (5' UTRs; also known as a leader sequence), 3' untranslated regions (3' UTRs; also known as a trailer sequence), promoters, ribosome binding sites, transcriptional terminators, introns, and the like, are not part of a coding region. Two or more coding regions can be present in a single polynucleotide construct, e.g., on a single vector, or in separate polynucleotide constructs, e.g., on separate (different) vectors. Furthermore, any vector can contain a single coding region, or can comprise two or more coding regions, e.g., a single vector can separately encode a selection marker gene and a gene of interest. In addition, a vector, polynucleotide, or nucleic acid can encode heterologous coding regions, either fused or unfused to a nucleic acid encoding a polypeptide subunit or fusion protein as provided herein. Heterologous coding regions include without limitation specialized elements or motifs, such as a secretory signal peptide or a heterologous functional domain.

[0088] A variety of transcription regulatory regions are known to those skilled in the art.

These include, without limitation, transcription regulatory regions that function in vertebrate cells, such as, but not limited to, promoter and enhancer segments from cytomegaloviruses (the immediate early promoter, in conjunction with intron-A), simian virus 40 (the early promoter), and retroviruses (such as Rous sarcoma virus). Other transcription regulatory regions include those derived from vertebrate genes such as actin, heat shock protein, bovine growth hormone and rabbit β-globin, as well as other sequences capable of controlling gene expression in eukaryotic cells. Additional suitable transcription regulatory regions include tissue-specific promoters and enhancers.

[0089] Similarly, a variety of translation regulatory elements are known to those of ordinary skill in the art. These include, but are not limited to ribosome binding sites, translation initiation and termination codons, and elements derived from picornaviruses (particularly an internal ribosome entry site, or IRES).

[0090] As used herein, the term "vector" is nucleic acid molecule as introduced into a host cell or organelle, thereby producing a transformed host cell or organelle. A vector can include nucleic acid sequences that permit it to replicate in a host cell, such as an origin of replication. A vector can also include one or more selectable marker gene and other genetic elements known in the art. Illustrative types of vectors include plasmids, phages, viruses and retroviruses.

[0091] As used herein, the term "transformed" cell or organelle, or a "host" cell organelle, is a cell or organelle into which a nucleic acid molecule has been introduced by molecular biology techniques. As used herein, the term transformation encompasses those techniques by which a nucleic acid molecule can be introduced into such a cell or organelle, including transfection with viral vectors, transformation with plasmid vectors, and introduction of naked DNA by electroporation, lipofection, and particle gun acceleration. A transformed cell or a host cell can be a bacterial cell or a eukaryotic cell.

[0092] As used herein, the term "expression" refers to a process by which a gene produces a biochemical, for example, a polynucleotide or a polypeptide. The process includes any manifestation of the functional presence of the gene within the cell including, without limitation, gene knockdown as well as both transient expression and stable expression. It includes without limitation transcription of the gene into messenger RNA (mRNA), and the translation of such mRNA into polypeptide(s). It also includes without limitation transcription of the gene into an RNA molecule that is not translated into a polypeptide but is capable of being processed by cellular RNAi mechanisms. If the final desired product is a biochemical, expression includes the creation of that biochemical and any precursors. Expression of a gene produces a "gene product." As used herein, a gene product can be either a nucleic acid, e.g., an RNA produced by transcription of a gene or a polypeptide that is translated from a mRNA transcript. Gene products described herein further include nucleic acids with post transcriptional modifications, e.g., polyadenylation, or polypeptides with post translational modifications, e.g., methylation, glycosylation, the addition of lipids, association with other protein subunits, proteolytic cleavage, and the like.

[0093] As used herein the term "engineered" includes manipulation of nucleic acid or polypeptide molecules by synthetic means (e.g. by recombinant techniques, in vitro peptide synthesis, by enzymatic or chemical coupling of peptides or some combination of these techniques).

[0094] As used herein, the term "hpRNA" refers to hairpin RNA comprising a single- stranded loop region and a base-paired stem of an inversely repeated sequence. hpRNA can be generated from an hpRNA construct (or vector) and/or an hpRNA transgene comprising an inversely-repeated sequence of the RNAi target gene with a spacer region between the repeats. The RNA transcribed from such a sequence self-hybridizes to form a hairpin structure. The stem can be used as a substrate for the generation of siRNAs, but few or none are generated from the loop. Since a spacer region is needed for the stability of the transgene construct, but is not involved in siRNA production, an intron sequence is often used in this position. (Watson JM, et al. (2005). FEBS Letters. 579: 5982-8987).

[0095] As used herein, the term "siRNA" refers to small (or short) interfering RNA (or alternatively, silencing RNA) duplexes that are capable of inducing the RNA interference (RNAi) pathway. These molecules can vary in length (generally between 18-30 base pairs) and contain varying degrees of complementarity to their target mRNA in the antisense strand. Some, but not all, siRNA have unpaired overhanging bases on the 5 ' or 3' end of the sense strand and/or the antisense strand. The term "siRNA" includes duplexes of two separate strands, as well as single strands that can form hairpin structures comprising a duplex region.

[0096] As used herein, the phrase "duplex region" refers to the region in two complementary or substantially complementary polynucleotides that form base pairs with one another, either by Watson-Crick base pairing or any other manner that allows for a stabilized duplex between polynucleotide strands that are complementary or substantially complementary. For example, a polynucleotide strand having 21 nucleotide units can base pair with another polynucleotide of 21 nucleotide units, yet only 19 bases on each strand are complementary or substantially complementary, such that the "duplex region" has 19 base pairs. The remaining bases may, for example, exist as 5' and 3' overhangs. Further, within the duplex region, 100% complementarity is not required; substantial complementarity is allowable within a duplex region. Substantial complementarity as used herein refers to 79% or greater complementarity. For example, a mismatch in a duplex region consisting of 19 base pairs results in 94.7% complementarity, rendering the duplex region substantially complementary.

[0097] As used herein, the phrase "gene silencing" refers to a process by which the expression of a specific gene product is lessened or attenuated. Silencing of a gene does not require that the expression or presence of the gene product is completely absent, but that in the context (e.g., comparing expression of a target gene in a plant expressing a gene silencing nucleic acid compared to a control plant or the health of an insect feeding on a gene silencing nucleic acid compared to a control insect), an observable effect in comparison to a control is observed. While gene silencing can take place by a variety of pathways, unless specified otherwise, as used herein, gene silencing refers to decreases in gene product expression that results from RNA interference (RNAi) as understood by one of ordinary skill in the art. The level of gene silencing can be measured by a variety of means, including, but not limited to, measurement of transcript levels by Reverse transcription polymerase chain reaction (PCR), Northern Blot Analysis, B- DNA techniques, transcription-sensitive reporter constructs, expression profiling (e.g. DNA chips), and related technologies. Alternatively, the level of silencing can be measured by assessing the level of the protein encoded by a specific gene. This can be accomplished by performing a number of studies including Western Analysis, measuring the levels of expression of a reporter protein that has e.g. fluorescent properties (e.g. GFP) or enzymatic activity (e.g. alkaline phosphatases), or several other well-known procedures. Further, gene silencing can be assessed by its effect on a pest insect such as resulting in reduced appetite and/or developmental defects and/or mortality of an insect.

[0098] As used herein, the term "control" is consistent with its well-established scientific use that refers to a standard of comparison recognized by one of ordinary skill in the art as having a representative level of expression, phenotype, resistance, feeding, mortality, development, etc. Further, one of ordinary skill in the art will recognize, for example, that a statistical outlier and/or non-representative result produced by chance, abnormal environmental condition, manipulation, or other reason, that varies from a standard representation, would not be an appropriate control.

[0099] As used herein, "microbe-induced gut specific genes (MIGGS)" refers to a gene or group of genes expressed in the insect midgut in response to microbes ingested during normal process of insect feeding and primarily functioning to clear or respond to the ingested microbes and/ or contain the microbes to insect gut via maintenance of midgut structural integrity.

[0100] As used herein, "actively feeding stage of the insect" refers to all feeding stages of insects with both complete and incomplete metamorphosis. Nucleic Acids for Gene Silencing

[0101] Provided herein are nucleic acid molecules for use in, among other things, crop protection from insect pests. In certain aspects disclosed herein, the nucleic acid molecules are isolated. The nucleic acid molecules specifically target certain insect genes (referred to herein interchangeably as "target genes," "RNAi target genes," "insect RNAi target genes," and "IRTGs"), in insects for gene silencing. For example, in certain aspects, the nucleic acid molecules target certain insect microbe-induced gut gene (MIGGS) RNAi targets. In certain aspects, the silencing of a target gene occurs when a nucleic acid molecule of this disclosure is ingested by an insect. In certain aspects, the target gene is an insect gene that is implicated in insect immune responses (type 1 MIGGS RNAi target). A critical immune response gene is a genetically tractable nuclear or cytoplasmic loci that is important for providing cellular and/or humoral defense in insects against internal microorganisms, external microorganisms, and/or other insect parasites. In certain aspects, the immune response genes (type 1 MIGGS RNAi target) can also be a pattern recognition receptor (PRR) gene (Casanova-Torres and Goodrich- Blair (2013). Insects. 4:320-338). A PPR gene is a genetically tractable loci of an insect that encodes soluble or membrane bound proteins that recognize signatures associated with and/or released by microorganisms. PRR genes can activate or be activated by the immune response pathways to minimize microbial infection and can be co-regulated by the immune deficiency (FMD) pathway (Tang X, et al. (2012) 7(7) PLoS ONE:e36978; Ryu JH. et al. (2008). Science. 37(5): 777-82; Shrestha S. et al. (2009). In certain aspects the PRR type genes are co-regulated by the immune deficiency (FMD) pathway in TH were identified, these genes having been recently summarized. (Casanova-Torres and Goodrich-Blair (2013). Insects (4): 320-338; Zhong X, et al. (2012). Insect Biochem. Mol. Biol. 42(7): 514-524); Zhang X, et al. (2015). Insect Biochem. Mol. Biol. 62:38-50; Cao X, et al. (2015). Insect Biochem. Mol. Biol. 62:64-74; Kanost MR, et al. (2016). Insect Biochem. Mol. Biol 76: 118-147). In certain aspects, the target gene is an insect gene that is necessary for structural integrity of insect organs including the mid-gut and also facilitates the containment of the ingested microbes to the insect gut. (type 2 MIGGS RNAi target). In certain aspects, the target gene is an insect midgut structural component gene (type 2) (Odman-Naresh et al. (2013). PLoS ONE 8:e82015. 10.1371/journal.pone.0082015). A midgut structural component gene is a genetically tractable loci in an insect that encodes chitin fibrils, proteins, or glycoproteins that form a protective sac-like structure called peritrophic matrix enveloping the insect food bolus/midgut also functioning to contain the ingested microbes in the gut (Engel and Moran (2013). FEMS Microbiol Rev. 37 699-735). In certain aspects, the target genes (type 1 and 2 MIGGS RNAi targets) are predominantly expressed in the insect midgut, for example, abundantly and/or exclusively expressed in the larval and/or adult insect midgut in response to active feeding and/or microbial infection and/or responding to microbes ingested during feeding. In certain aspects, the target gene is induced predominantly in a midgut specific manner during active feeding (type 1 and type 2 MIGGS RNAi targets). The midgut abundance of both type 1 and 2 MIGGS RNAi target genes may mitigate problems associated with reduced amounts of bioavailability.

[0102] Representative examples of insect MIGGS RNAi target genes and their nucleic acid sequences identified from published literature are provided herein. In certain aspects, the target gene is one or more ofM sexto-Hemolin (MsHEM), M sexto-Serine proteinase homolog 3 (MsSPH-3), M sexto-Peptidoglycan recognition protein 2 (MsPGRP2), M. sexto-Beta- 1, 3- glycan-recognition protein 2 (Ms GRP2), M. sexto-Relish family protein 2 A (MsREL2A), M. sexto-Dorsal (MsDor), M. sexto-Spatzle (MsSPZIA), M. sexto-Toll receptor (MsTOLL), Msexto-Scolexin A (MsSCAl), M sexto-Hemolymph proteinase 18 (MsHP18), M. sexta- Transferrin (MsTRN), M sexto-Arylphorin beta subunit (MsARP), M. sexto-Chymotrypsinogen- like protein 1 (MsCTLl), M. sexto-Valine Rich Midgut Protein (MsVMPl), M sexto-Imd (Mslmd), M. sexto-FADD (MsFADD), M sexto-Dredd (MsDRD), M sexto-Relish F (MsRelF), M sexto-Cdc42 (MsCdc42), M. sexto-Dsorl (MsDsorl), M. sexto-Fos (MsFos), M. sexto-Jra (MsJra), M sexto-Caudal (MsCADl), M. sexto- Atg8 (MsAtg8), M. sexto-Atgl3 (MsAtgl3), M. sexto-IAPl(MsIAPl), M sexto-Chitin synthase 2 (MsChs2), M sexto- Beta fructofuranosidase 1 (MsSucl), and orthologs thereof.

[0103] In certain aspects, the target gene is one or more ofM sexto-Hemolin (MsHEM),

M sexto-Serine proteinase homolog 3 (MsSPH-3), M. sexto-Peptidoglycan recognition protein 2 (MsPGRP2), M sexto-Beta-1, 3-glycan-recognition protein 2 (MsPGRP2), M. sexto-Relish family protein 2A (MsREL2A), M sexto-Dorsal (MsDor), M sexto-Spatzle (MsSPZIA), M sexto-Toll receptor (MsTOLL), Msexto-Scolexin A (MsSCAl), M. sexto-Hemolymph proteinase 18 (MsHP18), M sexto-Transferrin (MsTRN), M sexto-Arylphorin beta subunit (MsARP), M. sexto-Chymotrypsinogen-like protein 1 (MsCTLl), M. sexto-Valine Rich Midgut Protein (MsVMPl), M. sexto-Imd (Mslmd), M sexto-FADD (MsFADD), M. sexto-Dredd (MsDRD), M. sexto-Relish F (MsRelF), M. sexta-Cdc42 (MsCdc42), M sexto-Dsorl (MsDsorl), M. sexto-Fos (MsFos), M. sexto- Jra (MsJra), M sexto-Caudal (MsCADl), M. sexto- Atg8 (MsAtg8), M. sexta

in Atgl3 (MsAtgl3), M sexta-lAP 1 (MsIAP 1 ), M sexto-Chitin synthase 2 (MsChs2), and M sexto- Beta fructofuranosidase 1 (MsSucl), , M. sexto-Sickie (MsSck), M. sexto-Akirin (MsAki), M. sexto-Cactus (MsCac), M sexta- Gloverin (MsGlv) and M sexto-Beta- 1 -tubulin (MsPTub).

[0104] In certain aspects, the target gene is an ortholog of one or more of M. sexta- Hemolin (MsHEM), M sexto-Serine proteinase homolog 3 (MsSPH-3), M sexto-Peptidoglycan recognition protein 2 (MsPGRP2), M. sexto-Beta-1, 3-glycan-recognition protein 2 (MsPGRP2), M. sexto-Relish family protein 2A (MsREL2A), M. sexto-Dorsal (MsDor), M. sexto-Spatzle (MsSPZIA), M. sexto-Toll receptor (MsTOLL), Msexto-Scolexin A (MsSCAl), M sexto- Hemolymph proteinase 18 (MsHP18), M sexto-Transferrin (MsTRN), M sexto- Arylphorin beta subunit (MsARP), M. sexto-Chymotrypsinogen-like protein 1 (MsCTLl), M sexto- Valine Rich Midgut Protein (MsVMPl), M sexto-Imd (Mslmd), M. sexto-FADD (MsFADD), M sexto- Dredd (MsDRD), M. sexto-Relish F (MsRelF), M sexto-Cdc42 (MsCdc42), M sexto-Dsorl (MsDsorl), M. sexto-Fos (MsFos), M sexto-Jra (MsJra), M sexto-Caudal (MsCADl), M. sexta- Atg8 (MsAtg8), M. sexto-Atgl3 (MsAtgl3), M sexto-IAPl (MsIAP 1), M sexto-Chitin synthase 2 (MsChs2), M. sexta- Beta fructofuranosidase 1 (MsSucl), and other FMD pathway or structural integrity genes.

[0105] One of ordinary skill in the art would understand that nucleic acid molecules can be, for example, deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). In certain aspects of any target gene silencing nucleic acid molecule described anywhere herein, the nucleic acid molecule is a DNA molecule. In certain aspects of any target gene silencing nucleic acid molecule described anywhere herein, the nucleic acid molecule is a RNA molecule. In certain aspects of any target gene silencing nucleic acid molecule described anywhere herein, the RNA molecule is a double stranded molecule (dsRNA), for example, for use in the RNA interference (RNAi) process. As used herein, a dsRNA molecule is a RNA molecule comprising at least one annealed, double stranded region. In certain aspects, the double stranded region comprises two separate RNA strands annealed together. In certain aspects, the double stranded region comprises one RNA strand annealed to itself, for example, as can be formed when a single RNA strand contains an inversely repeated sequences with a spacer in between. One of ordinary skill in the art will understand that complementary nucleic acid sequences are able to anneal to each other but that two sequences need not be 100% complementary to anneal. The amount of complementarity needed for annealing can be influenced by the annealing conditions such as temperature, pH, and ionic condition. In certain aspects, the annealed RNA sequences are 100% complementary across the annealed region. In certain aspects, the annealed RNA sequences are less than 100% complementary across the annealed region but have enough complementarity to anneal within their environment, such as in a host cell or the gut of an insect. In certain aspects, the annealed RNA sequences are substantial complementarity as defined elsewhere herein.

[0106] It is contemplated that the nucleic acid molecules disclosed anywhere herein for the silencing of target genes derive their specificity from comprising a nucleic acid sequence that is complementary or substantially complementary to at least a portion of a target gene sequence. Substantially complementary sequences, however, may be more likely to have reduced specificity and produce off-target effects. As referred to anywhere herein, a target gene sequence can include at least the target gene protein coding region, the 5' untranslated region (5' UTR), and/or the 3' untranslated region (3' UTR) and any portion or combination thereof. For example, predicted UTR regions can be identified using previously established criteria (Siepel, et al. (2005). Genome Res. 15: 1034-1050) when corresponding genomic sequences are available.

[0107] In certain aspects, an isolated double stranded RNA (dsRNA) molecule comprises a nucleic acid sequence complementary to about 21 to 2000 contiguous nucleotides of a target gene sequence discloses anywhere herein. For example, in certain aspects, an isolated double stranded RNA (dsRNA) molecule comprises a nucleic acid sequence complementary to about any of 21, 22, 23, 24, 25, 30, 40, 50, 60, 100, 120, 200, 240, 300, 400, 500, 600, 650, 750, 1000 to about any of 23, 24, 25, 30, 40, 50, 100, 200, 300, 400, 500, 600, 650, 750, 1000, or 2000 contiguous nucleotides of a target gene sequence. For example, in certain aspects, an isolated dsRNA molecule comprises a nucleic acid sequence complementary to about 100 to 1000 or about 200 to 1000 contiguous nucleotides of a target gene sequence. For example, in certain aspects, an isolated dsRNA molecule comprises a nucleic acid sequence complementary to about 100 to 1000 or about 200 to 1000 contiguous nucleotides of the protein coding region of a target gene sequence. For example, in certain aspects, an isolated dsRNA molecule comprises a nucleic acid sequence complementary to about 100 to 1000 or about 200 to 1000 contiguous nucleotides of the 5' UTR region or the 3' UTR region of a target gene sequence. In certain aspects, the isolated dsRNA molecule comprises a nucleic acid sequence complementary to a contiguous region comprising at least about 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% of the length of the target gene sequence protein coding region, the target gene sequence 5' UTR region, the target gene 3 ' UTR region, and/or any combination thereof. For example, if a target gene sequence protein coding region is determined to be 200 nucleotides long, then an isolated dsRNA molecule comprising a nucleic acid sequence complementary to a contiguous region comprising 95% of the length of the target gene sequence protein coding region would be complementary to a contiguous region 190 nucleotides long.

[0108] In certain aspects of any target gene silencing nucleic acid molecule described anywhere herein, including dsRNA molecules for RNAi, the target gene comprises one or more of the nucleic acid sequence of SEQ ID NO: 1-14, 16-29, 31-69, 70-75, 76-88, 89-105, and 106- 110. In certain aspects, the target gene comprises the nucleic acid sequence of SEQ ID NO: 3 or 14. Thus, in certain aspects, the isolated dsRNA molecule comprises a nucleic acid sequence complementary to about any of 21, 22, 23, 24, 25, 30, 40, 50, 100, 200, 300, 400, 500, 600, 650, 750, 1000 to about any of 23, 24, 25, 30, 40, 50, 100, 200, 300, 400, 500, 600, 650, 750, 1000, or 2000 contiguous nucleotides of a target gene sequence comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-69, 70-75, 76-88, 89-105, and 106-110. For example, in certain aspects, the isolated dsRNA molecule comprises a nucleic acid sequence complementary to about 100 to 1000 or about 200 to 1000 contiguous nucleotides of a target gene sequence comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-69, 70-75, 76-88, 89-105, and 106-110. In certain aspects, the isolated dsRNA comprises a nucleic acid sequence complementary to about 200 to 1000 contiguous nucleotides of the protein coding region of a target gene sequence comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-69, 70-75, 76-88, 89-105, and 106-110. In certain aspects, the isolated dsRNA molecule comprises a nucleic acid sequence complementary to a contiguous region comprising at least about 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% of the length of the target gene sequence protein coding region, the target gene 5' UTR region, and/or the target gene 3' UTR region. In certain aspects, the isolated dsRNA molecule comprises a nucleic acid sequence complementary to a contiguous region comprising at least about 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100%) of the length of a sequence selected from the group consisting of SEQ ID NOs: 1-14, 16- 29, 31-69, 70-75, 76-88, 89-105, and 106-110.

[0109] In certain aspects of any target gene silencing nucleic acid molecule described anywhere herein, the nucleic acid molecule can form siRNA. Thus, certain aspects provide for an siRNA molecule derived from the processing of a dsRNA molecule for silencing a target gene disclosed herein. Insecticidal Compositions

[0110] Certain aspects of the disclosure provide for an insecticidal composition comprising a nucleic acid molecule disclosed anywhere herein for silencing a target gene, including long dsRNA, hpRNA, and siRNA. In certain aspects, the insecticidal composition also comprises a synthetic carrier or a microbial conduit. For example, a microbial conduit can be a microorganism that has a natural capacity or is engineered to produce and/ or deliver dsRNA to increase its bioavailability and/or biostability for causing RNA interference. Representative examples include plant growth promoting organisms, normal commensal and/or symbiotic microorganisms associated with the target insect pest or pest target host or host cultivation range etc. from an insect engineered or identified from natural populations to produce and/or deliver dsRNA. In certain aspects a microbial conduit can be used as a direct topical application on a whole plant or coated onto a seed or mixed with growth media or transmitted through fertilizer or irrigation, etc. In certain aspects, the nucleic acid molecule of the insecticidal composition is conjugated to the synthetic carrier. For example, a synthetic carrier can be an inert chemical compound with a natural or engineered affinity to bind (conjugate) a dsRNA molecule to increase its biostability and/or bioavailability for causing RNA interference. In certain aspects, a synthetic carrier comprises a combination of inert chemicals or nanoparticles that upon combining and/or individually have a net positive charge or general affinity to bind to negatively charged dsRNA. Representative examples include chitosan, liposomes, carbon quantum dots, biodegradable particles of plant (e.g. coconut coir or grain flour, etc.) or soil (e.g. calcified clay) origin etc. In certain aspects, the dsRNA conjugated with a synthetic carrier can be used as a direct topical application directly and/or after aerosolization on a whole plant or coated onto a seed or mixed with growth media or transmitted through fertilizer or irrigation, etc. In certain aspects, dsRNA or a composition comprising dsRNA can be used as a direct topical spray on application to whole plant, coated onto a seed or mixed with growth media or transmitted through fertilizer or irrigation or combined with plant growth promoting microbes etc.

Recombinant Constructs

[0111] Certain aspects of this disclosure provide for a recombinant nucleic acid construct, such as a DNA vector, comprising and/or encoding a nucleic acid molecule disclosed anywhere herein for silencing a target gene, including long dsRNA, hpRNA, and siRNA. Certain aspects provide for recombinant nucleic acid constructs comprising and/or encoding an RNAi precursor of a nucleic acid molecule disclosed anywhere herein for silencing a target gene, including long dsRNA, hpRNA, and siRNA.

[0112] Certain aspects of this disclosure provide for a recombinant nucleic acid construct, such as a DNA vector, comprising a target gene silencing sequence for silencing a target gene described anywhere herein. In certain aspects, a recombinant DNA construct comprises a gene silencing sequence comprising about any of 21, 22, 23, 24, 25, 30, 40, 50, 60, 100, 120, 200, 240, 300, 400, 500, 600, 650, 750, 1000 to about any of 23, 24, 25, 30, 40, 50, 100, 200, 300, 400, 500, 600, 650, 750, 1000, or 2000 contiguous nucleotides of a target gene sequence disclosed anywhere herein. In certain aspects, a recombinant DNA construct comprises a gene silencing sequence comprising about 100 to 1000 or about 200 to 1000 contiguous nucleotides of a target gene sequence. In certain aspects, the gene silencing sequence comprises about 100 to 1000 or about 200 to 1000 contiguous nucleotides of the protein coding region of the target gene sequence. In certain aspects, the gene silencing sequence comprises about 100 to 1000 or about 200 to 1000 contiguous nucleotides of the 5' UTR region or the 3' UTR region of the target gene sequence. In certain aspects, the gene silencing sequence comprises at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% contiguously of the length of target gene sequence protein coding region, the target gene sequence 5' UTR region, target gene sequence 3' UTR region and/or any combination thereof.

[0113] In certain aspects, the target gene comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-69, 70-75, 76-88, 89-105, and 106-110. In certain aspects, the gene silencing sequence comprises about 100 to 1000 or about 200 to 1000 contiguous nucleotides of a sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-69, 70-75, 76-88, 89-105, and 106-110. In certain aspects, the gene silencing sequence comprises at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% contiguously of the length of a sequence selected from the group consisting of SEQ ID NOs: 1-14, 16-29, 31-69, 70- 75, 76-88, 89-105, and 106-110.

[0114] In certain aspects, the recombinant DNA construct has a gene silencing sequence operably linked to one or more promoters for the expression of a dsRNA molecule that silences the target gene when ingested by an insect. Thus, in certain aspects, the construct is an expression vector. Representative promoters for use in expressing a dsRNA molecule include, but are not limited to, CaMV35S or ZmUbil promoters etc. In certain aspects, the expression vector can target single or multiple insect RNAi target genes, for example, the vector could comprise one or more gene silencing sequences or could employ multiple vectors to target multiple insect RNAi target genes or chimeric dsRNA molecules.

Host Cells and Plants

[0115] Provided herein are host cells, plants, and plants parts comprising, expressing, processing, and the like a dsRNA as described anywhere herein for inducing RNAi in an insect. In certain aspects, a host cell comprises a dsRNA molecule, siRNA molecule, a polynucleotide encoding a dsRNA molecule, and/or a construct or a dsRNA encoding segment thereof described anywhere herein. Representative examples of host cells include bacterial cells, fungal cells, yeast cells, plant cells, plant organelles (e.g., including plastids), and mammalian cells. In certain aspects, the host cell is a bacterial or plant cell. In certain aspects, the host cell is a transgenic and/or transplastomic plant cell. One of ordinary skill will understand that there are many well- known methods for introducing a nucleic acid, such as a vector, into a host cell including well- known methods for generating transgenic and/or transplastomic plant cells. In certain aspects, the hose cell expresses a dsRNA molecules and/or produces siRNA to silence a target gene. In certain aspects, a transgenic and/or transplastomic plant can comprise a dsRNA molecule, siRNA, a polynucleotide encoding a dsRNA, and/or a construct or a dsRNA encoding segment thereof. In certain aspects, at least one cell of a transgenic and/or transplastomic plant expresses a dsRNA molecule and/or produces a siRNA for silencing a target gene. Certain aspects provide for a seed, part, tissue, cell, or organelle of a plant described herein, wherein said seed, part, tissue, cell, or organelle comprises a dsRNA molecule and/or the siRNA for silencing a target gene.

Methods of Insect Control

[0116] Also provided for herein are various methods of using a dsRNA molecule or vector encoding such dsRNA described anywhere herein for inducing RNAi in an insect and/or silencing a target gene. In certain aspects, this provides for control of insect pests.

[0117] Certain aspects provide for a method of silencing an insect immune response gene and/or an insect gene encoding for structural components of the insect midgut. In certain aspects, a method provides for the silencing an insect MIGGS-IRTG. Such method comprises providing for ingestion through spray, drenches, granules, seed coating or plant-incorporated protectant, or the like, to an insect an isolated dsRNA (pure or crude extract), siRNA, insecticidal composition, host cell, transgenic and/or transplastomic plant, and/or the seed, part, tissue, cell, or organelle thereof described anywhere herein.

[0118] Certain aspects provide for a method of silencing an insect immune response gene and/or an insect gene encoding for structural components of the insect midgut. In certain aspects, a method provides for the silencing an insect MIGGS-IRTG. Such method comprises providing for ingestion through spray, drenches, granules, seed coating or plant-incorporated protectant, or the like, to an insect an isolated dsRNA, siRNA, insecticidal composition, host cell, transgenic and/or transplastomic plant, and/or the seed, part, tissue, cell, or organelle thereof described anywhere herein.

[0119] Certain aspects provide for protecting a plant, such as a crop plant, from an insect pest including but not limited to pests of the order Lepidoptera like Manduca sexta (tobacco hornworm), Spodoptera frugiperda (fall armyworm), Ostrinia nubilalis (European corn borer), Plutella xylostella (Diamondback moth) or pests of the order Coleoptera like Leptinotarsa decemlineata Say (Colorado potato beetle), Diabrotica spp. (Corn rootworm complex), Tribolium castaneum (Red flour beetle), Popillia japonica (Japanese beetle), Agrilus planipennis (Emerald ash borer) or pests of the order Hemiptera like Diaphorina citri (Asian citrus psyllid), Cimex lectularius (Bed bug) or pests of the order Blattodea like all species of cockroaches and termites or insect pests of the order Diptera like all species of Mosquitoes and flies etc. Representative examples of plant hosts include, but are not restricted to, Zea mays L (corn), Sorghum bicolor (sorghum), Setaria italica (fox tail millet), Pennisetum glaucum (Pearl millet), Solarium tuberosum (potato), Oryza sativa (rice), Lycopersicon esculentum (tomato), Solarium melongena (eggplant), all cultivars of Brassica oleracea family, Citrus sinensis (Orange), trees of Oleaceae family and crops of Rosaceae etc. Such methods comprise, for example, topically applying to the plant the isolated dsRNA (pure or crude extract), the siRNA, and/or the insecticidal composition described anywhere herein, and providing the plant in the diet of the insect pest. In certain aspects the dsRNA molecule is topically applied by expressing the dsRNA in a microbe followed by topically applying the microbe onto the plant and/or seed.

[0120] Certain aspects provide for producing a plant resistance to a pest insect of said plant. Such methods comprises transforming the plant with a polynucleotide encoding a dsRNA and/or a construct or a dsRNA encoding segment describe anywhere herein, wherein the plant expresses a dsRNA and/or siRNA and/or the plant comprises a dsRNA and/or siRNA containing insecticidal compositions described anywhere herein, for silencing a target gene. In certain aspects, the transformed plant is more resistant to a pest insect of said plant than untransformed plants.

[0121] Certain aspects provide for improving crop yield. Such methods comprise growing a population of crop plants transformed with a polynucleotide encoding a dsRNA and/or the construct or a dsRNA encoding segment thereof described anywhere herein, wherein the plant expresses a dsRNA and/or siRNA and/or the plant comprises a dsRNA and/or siRNA containing insecticidal compositions described anywhere herein, for silencing a target gene. In certain aspects, a population of transformed plants produces higher yields in the presence of pest insect infestation than a control population of untransformed plants.

[0122] Certain aspects of the disclosure provide for an insecticidal composition comprising a nucleic acid molecule disclosed anywhere herein for silencing a target gene, including long dsRNA, hpRNA, and siRNA. In certain aspects, the insecticidal composition also comprises a synthetic carrier or a microbial conduit. For example, a microbial conduit can be a microorganism that has a natural capacity or is engineered to produce and/ or deliver dsRNA to increase its bioavailability and/or biostability for causing RNA interference. Representative examples include plant growth promoting organisms, normal commensal and/or symbiotic microorganisms associated with the target insect pest or parasites and/or natural enemies of the target pest or pest target host or host cultivation range etc. from an insect or parasite and/or natural enemies of the target pest engineered or identified from natural populations containing microbial conduit to produce and/or deliver dsRNA and/or drive the transmission of such microbial conduits into natural populations of insect pests as a control option. In certain aspects a microbial conduit can be used as a direct topical application on a whole plant or coated onto a seed or mixed with growth media or transmitted through fertilizer or irrigation, etc. In certain aspects, the nucleic acid molecule of the insecticidal composition is conjugated to the synthetic carrier. For example, a synthetic carrier can be an inert chemical compound with a natural or engineered affinity to bind (conjugate) a dsRNA molecule to increase its biostability and/or bioavailability for causing RNA interference. In certain aspects, a synthetic carrier comprises a combination of inert chemicals or nanoparticles that upon combining and/or individually have a net positive charge or general affinity to bind to negatively charged dsRNA. Representative examples include chitosan, liposomes, carbon quantum dots, biodegradable particles of plant (e.g. coconut coir or grain flour, etc.) or soil (e.g. calcified clay) origin etc. In certain aspects, the dsRNA conjugated with a synthetic carrier can be used as a direct topical application directly and/or after aerosolization on a whole plant or coated onto a seed or mixed with growth media or transmitted through fertilizer or irrigation, etc. In certain aspects dsRNA or composition comprising the dsRNA can be used as a direct topical spray on application to whole plant, coated onto a seed or mixed with growth media or transmitted through fertilizer or irrigation or combined with plant growth promoting microbes etc.

[0123] Certain aspects provide for producing a plant resistant against a pest insect of said plant. Such methods comprise first transforming a plant cell with a polynucleotide encoding the dsRNA and/or the construct or a dsRNA encoding segment described anywhere herein. Next, a plant is regenerated from the transformed plant cell. The plant is then grown under conditions suitable for the expression of the dsRNA. In certain aspects, the transformed plant confers genetically tractable (maternal and/or paternal inherited) gain of function phenotypically manifested as an ability to impair the normal feeding and/or growth and/or development and/or reproductive success of the target plant pest and is consequently resistant to the plant pest insect compared to a control untransformed plant.

[0124] In certain aspects of any of the aforementioned methods, the insect larvae ingest the dsRNA. In certain aspects of any of the aforementioned methods, ingestion of the dsRNA induces a melanotic response in the insect larvae. In certain aspects of any of the aforementioned methods, ingestion of the dsRNA results in perturbation of gut microbial homeostasis. In certain aspects of any of the aforementioned methods, ingestion of the dsRNA results in defective clearance of opportunistic microbes. In certain aspects of any of the aforementioned methods, ingestion of the dsRNA results in defective containment of gut microbes.

[0125] One of ordinary skill in the art will recognize that, the inventors have demonstrated midgut specific expression of a representative number of MIGGS-IRTGS in TH in response to their feeding on a lab strain of Escherichia coli (E. coli) bacteria. For example, a set of 20 MIGGS-IRTGS (SEQ ID NOs: 1-9, 11, 14, 31, 39, 43, 44, 71-75) that are induced in TH larvae feeding on an induction medium (Wang et al. (2006). J. Biol. Chem. 281(14): 9271-9278) is disclosed herein. It was previously reported that these twenty genes are expressed abundantly in the gut (Table 1). The gut specific expression of 2/20 genes were tested and validated the same (Figure 7).

[0126] Orthologs of the representative TH MIGGS-IRTG (SEQ ID NOs: 76-88) set were identified from transcriptomic resources of an economically important Bt. resistant lepidopteran pest DBM using a combination of reciprocal best Blast analysis (Ward et al. (2014). PLoS ONE 9(7): el 01850) and literature curation. Most of these MIGGS-IRTGS were induced in response to the feeding of DBM larvae on induction medium (Wang et al. (2006). J. Biol. Chem. 281(14): 9271-9278), similar to observations with TH larvae.

[0127] It was also demonstrated that most of the MIGGS-IRTGS were induced in another economically important lepidopteran pest, FAW, feeding on plants grown on representative field soil, using a RNA-Seq approach.

[0128] The RNA-Seq approach also identified additional RNAi candidates (SEQ ID NOs:

89-105) belonging to the MIGGS category. Further, orthologs of the expanded representative TH MIGGS-IRTG set (SEQ ID NO: 106-110) were identified from transcriptomic resources of an economically important Coleopteran pest RFB. It was demonstrated that most of the MIGGS- IRTGS were induced in response to the feeding of RFB beetles on induction medium (Wang et al. (2006). J. Biol. Chem. 281(14): 9271-9278), similar to observations with the order lepidoptera.

[0129] It was demonstrated that the targeted silencing of 9 out of 20 MIGGS-IRTGS employing bacterially expressed dsRNA protocol (Timmons L. et al. (2001). Gene. 263: 103- 112.) is insecticidal to TH larvae. Insecticidal activity against TH larvae correlated with the down regulation of target transcripts. It was demonstrated that the targeted silencing of 7 out of 14 MIGGS-IRTGS using bacterially expressed dsRNA protocol (Timmons L. et al. (2001). Gene. 263: 103-112.) is insecticidal to DBM larvae. It was demonstrated that targeted silencing of 9 MIGGS-IRTGS are insecticidal to FAW larvae using bacterially expressed dsRNA protocol (Timmons L. et al. (2001). Gene. 263: 103-112.). A core set of three MIGGS-IRTGS (SEQ ID NO: 3, 4, and 43) was identified that are efficacious against all three lepidopteran pests TH, DBM and FAW in an orthologous manner and that leaf discs coated with dsRNA against the core MIGGS-IRTGS are insecticidal against TH, DBM and FAW larvae. Further, plastidal expressed dsRNA against the core MIGGS-IRTGS impacted larval growth and survival.

[0130] The following examples are included to demonstrate certain embodiments of the disclosure. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the disclosure. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the disclosure.

EXAMPLES

[0131] In certain aspects, work was performed towards the identification, induction, isolation and cloning of the selected M. sexta (tobacco hornworm (TH)) MIGGS-IRTGS into a bacterial expression system capable of enabling the cloned genes to produce dsRNA (Timmons L. et al. (2001). Gene. 263: 103-112.). Upon ingestion by M. sexta larvae, the bacterially expressed dsRNA is intended to silence, or at least knock-down, reduce, and the like the corresponding MIGGS-IRTG in order to curtail the feeding behavior and/or cause lethal effects in the insect pests. Based upon these results, additional testing was done on other representative insect species to demonstrate and establish for purposes of support wide applicability of the compositions and approaches of the disclosure.

[0132] For MIGGS-IRTG selection, PRR type genes co-regulated by the immune deficiency (FMD) pathway in TH were identified, these genes having been recently summarized (Casanova-Torres and Goodrich-Blair (2013). Insects (4): 320-338; Zhong X, et al. (2012). Insect Biochem. Mol. Biol. 42(7): 514-524); Zhang X, et al. (2015). Insect Biochem. Mol. Biol. 62:38- 50; Cao X, et al. (2015). Insect Biochem. Mol. Biol. 62:64-74; Kanost MR, et al. (2016). Insect Biochem. Mol. Biol 76: 118-147). Notably, most of the PRR genes selected for this study are abundantly induced or predicted to express in a midgut specific manner (Pauchet Y, et al. (2010). Insect. Mol. Biol. 19: 61-75; Kim and Lee (2014). Front. Cell. Infect. Microbiol. 3 : 116; Lee and Hase (2014). Nat. Chem. Biol, 10: 416-424).

[0133] The TH-Transferrin, Arylphorin β subunit, chymotrypsinogen-like protein 1 and few other immunity related genes do not belong to the conventional PRR type immune responsive genes. However, these genes were included as they potentially contribute to the midgut microbial homeostasis through FMD co-regulation (Pauchet Y, et al. (2010). Insect. Mol. Biol. 19: 61-75). Additionally identified were a TH gene indicated to be a valine rich midgut protein critical for the formation of midgut peritrophic matrix and related genes critical for maintaining the structural integrity of the midgut, which are possibly involved, in the gut microbial containment. (Odman-Naresh et al. (2013). PLoS ONE 8:e82015. 10.1371/journal.pone.0082015; Engel and Moran (2013). FEMS Microbiol Rev. 37 699-735). A non-insect gene that encodes for catalase 1 from cassava {Manihot esculanta) was used as a control.

Materials and Methods

[0134] TH larvae required for isolation of IRTG genes and subsequent bioassays were reared as follows: Eggs were procured from Carolina Biological Sciences (Burlington, NC, USA). The eggs were not surface sterilized and used directly for conventional rearing (CR). The larval colony establishment and maintenance was performed employing a Phytatray II (Sigma, MO, USA) unit containing Gypsy Moth diet. (Gunaratna RT and Jiang H (2013). Dev. Comp. Immunol. 39: 388-398).

[0135] Bt. -resistant DBM eggs were procured from Benzon Research (Carlisle, PA,

USA) and reared conventionally, as described above.

[0136] FAW eggs were procured from Benzon Research (Carlisle, PA, USA) and reared conventionally, as described above.

[0137] For germ free (GF) rearing procedure, all eggs were surface sterilized with a solution of Tween-80 (polyoxyethylene sorbitan monooleate), bleach, and distilled water as described previously. (Broderick NA, et al. (2009). Environ. Entomol. 29: 101-107). The surface sterilized eggs were transferred to Phytatray II (Sigma, MO, USA) unit containing Gypsy Moth diet augmented with antibiotics (500 mg/1 each of penicillin, gentamicin, rifampicin, streptomycin). (Broderick NA, et al. (2009). Environ. Entomol. 29: 101-107; Gregory R. Richards (2008). Journal of Bacteriology. 190, 4870-4879).

[0138] Both CR and GF larvae were reared in an environmental chamber with a 16:8 hours (light: dark) photoperiod at 25 °C, until use. For the induction of a representative set of MIGGS-IRTGS of PRR category, 75 colony forming units (CFU) of DH5a competent cells (Invitrogen, CA, USA) re-suspended in PBS buffer were injected into healthy 2-3 instar M. sexta larvae. The larvae were snap frozen in liquid nitrogen and processed for RNA isolation and cDNA synthesis described herein.

[0139] For testing the up-regulation of MIGGS-IRTGS by oral feeding on induction media, first instar larvae were reared on Luria broth agar media plated with a mixture of live E. coli (3 x 107 cells), M. luteus (30 μg), and curdlan (30 μg) in 50 μΐ of H20 (Wang et al. (2006). J. Biol. Chem. 281(14): 9271-9278). [0140] Total RNA was isolated using RNeasy Mini Kit reagent (QIAGEN, NY, USA) and treated with TURBO DNase (Ambion-Life Technologies, NY, USA) using manufacturer's protocols. One μg of DNase treated RNA was used for cDNA synthesis using iScript cDNA synthesis kit (Bio-Rad, CA, USA). The cDNA was used as a template for amplifying near full- length transcripts of the IRTG. Similarly, a control gene from cassava was also amplified. For tissue specific cDNA synthesis the control and treatment larvae were squeezed to isolate hemolymph fraction (HL), dissect midgut (MDG) to obtain rest of the body as described in Pauchet et al. (2010). Insect. Mol. Biol. 19: 61-75). The cDNA template was used for RT-PCR reactions were appropriate using the Superscript III One-Step RT-PCR system following manufacturers protocol (Thermo Scientific; USA).

[0141] Transcripts of TH, DBM, and FAW MIGGS-IRTGS and non-insect control genes were PCR amplified using PrimeSTAR GXL DNA Polymerase (Clontech Laboratories, CA, USA). The PCR reactions were conducted using the following conditions: denaturation at 98 °C for 30 s, annealing at 55/60 °C for 30 s and elongation at 72 °C for 45 s, for 35 cycles. The PCR products were resolved by agarose gel electrophoresis and stained with ethidium bromide. The transcripts were gel eluted using QIAquick gel extraction kit (QIAGEN, NY, USA).

[0142] Sequence confirmed transcripts were cloned into pCR8/GW vector (Invitrogen,

CA, USA) using manufacturer's protocol. The sequence confirmed recombinant pCR8 clones were cloned into L4440gtwy using LR clonase enzyme (Inivtrogen, CA, USA). The L4440gtwy is a modified version of Timmons and Fire feeding Vector and was a kind gift from Guy Caldwell (Addgene plasmid # 11344). (Timmons & Fire (1998). Nature, 395: 854).

[0143] For ingestible RNAi bioassays, sequence confirmed MIGGS-IRTG were cloned into an L4440 feeding vector between two T7 promoters in inverted orientation and transformed into an E. coli bacterial strain carrying IPTG-inducible expression of T7 polymerase, HT115 (DE3). (Timmons & Fire (1998). Nature, 395: 854). Modification of IRTG in this manner was previously demonstrated to induce the expression of dsRNA. (Timmons L, et al. (2001). Gene, 263, 103-112; Kamath RS, et al. (2000). Genome Biol. 2: 1-10.).

[0144] The HT115 (DE3) strain is an RNase Ill-deficient E. coli strain whose T7 polymerase activity is IPTG-inducible. The HT115 (DE3) genotype is as follows: F-, mcrA, mcrB, IN (rrnD-rrnE) 1, lambda -, rncl4: :TnlO (DE3 lysogen: lavUV5 promoter -T7 polymerase) (IPTG-inducible T7 polymerase) (RNase III minus), with tetracycline as a selectable marker. (Kamath RS, et al. (2000). Genome Biol. 2: 1-10). The standard heat shock protocol for transformation of L4440: :IRTG and control construct was used.

[0145] Single colonies of HT115 bacteria containing cloned L4440 plasmids were picked and grown in a 5 mL LB culture with 50 mg/ml ampicillin (Amp). One mL of the liquid culture was saved for plasmid isolation followed by sequence confirmation of the L4440: :IRTG clone. The recombinant bacterial clones were grown for 8 hours in liquid culture and were seeded directly on LB plates containing 1 mM IPTG and 50 mg/ml Amp for inducing the dsRNA. (Kamath RS, et al. (2000). Genome Biol. 2: 1-10). Seeded plates were allowed to dry under laminar airflow chamber and incubated at 37 °C temperature overnight.

[0146] For larval bioassay three to five 1-2-instar TH, DBM, and FAW larvae were placed on induced plates containing HT115 (DE3) cells containing the desired L4440: :IRTG. Bioassays were conducted testing the TH larvae against MIGGS-IRTGS and controls listed in Table 1.

Atty. Dkt. No. 47004-173514

Table 1. List of total MIGGS-IRTGS from TH tested.

[0147] Phenotypic differences in the larval development on L4440: :IRTG containing

HT115 (DE3) plates were documented and compared with the larval growth on negative and positive controls containing HT115 (DE3) plates. The larval phenotypes for a given treatment with appropriate controls were only considered true and documented if they were reproducibly observed in 2/3 or 4/5 larvae, in at least two independent feeding experiments.

[0148] For sprayable RNAi, a 24-well plate-based bioassay system was developed using a modified cetyl trimethylammonium bromide method of MEGAscript RNAi kit following manufacturer's protocol (Thermo Scientific, USA) for large-scale purification of dsRNA against a given MIGGS-IRTG. Integrity of the dsRNA was determined by electrophoresis on 1% agarose gel and its concentration determined using NanoDrop UV-VIS spectrometer. Leaf discs of 1 cm 2 diameter were detached from Nicotiana benthamiana (for TH) or Arabidopsis Col-WT (for DBM) or wheat cultivar Bobwhite (for FAW) plants grown on field soil were drop inoculated with 0, 4, 8 or 16 μ of purified dsRNA in TE buffer. Air-dried dsRNA coated leaf discs were placed in the bioassay plate containing 1 mL of 1% Murashige and Skoog agar medium per well. Each well contained one leaf disc and was infested with conventionally reared three first instar TH or DBM or FAW larvae. dsRNA coated leaf discs were replaced once every 24 hours and insecticidal activity of each dsRNA measured as a function of larval mortality after five days continuous feeding. The RFB bioassays were conducted using a previously published flour disc assay protocol (Cao et al. (2018). Int. J. Mol. Sci. 19, 1079) with adult beetles.

[0149] For RNA-Seq analysis to test if the MIGGS pathway genes are induced by soil microbiome in FAW, wheat (Triticum aestivum) seeds were surface sterilized and planted in 4.5" pots containing field soil or filled with 4: 1 sterile turface:sand mix. Seedlings were grown a growth chamber at for 20 days and infested with ten first-instar FAW larvae per pot. Vigorous larval feeding activity was confirmed and larval samples collected for RNA-Seq analysis. A "pooled RNA-Seq" approach (Rajkumar et al. (2015). BMC Genomics. 16(1): 548) was used to obtain a snap shot of differential FAW gene expression in response to feeding on plants grown on microbe rich (field soil) and microbe depleted (sterile surface) substrate.

[0150] In order to demonstrate additional dsRNA delivery methods a plastidal dsRNA expression system was employed. Since high concentrations of long dsRNAs can be stably produced in plastids (Zhang et al. (2015). Science. 347(6225): 991-994), three of the most potent insecticidal TH MIGGS -IRTGS (SEQ ID NO: 3, 4, and 43) dsRNAs (dsMsPGRP2; dsMspGRP2 and dsMsCHS2) were expressed by plastid transformation in tobacco plants in collaboration with Plastomics Inc. following a previously published protocol (Zhang et al. (2015). Science. 347(6225): 991-994). Detached leaves of stable transplastomic lines expressing dsRNA against MIGGS targets were fed to TH larvae and assessed for insecticidal activity. Results

[0151] Bioassays (Figure 1) indicated that the oral feeding activity of TH larvae on

L4440: :MsPGRP2 and L4440: MsVMPl containing HT115 (DE3) plates resulted in growth impediment and/or mortality. Contrawise, the larvae growing on L4440: :MeCATl containing HT115 (DE3) plates developed normally without any aberrant phenotypes.

[0152] The representative phenotypes of TH larvae at 192 hours post exposure (HPE) to larvae exposed to bacterially (HT115 (DE3)) expressed dsRNA against MIGGS RNAi targets MsPGRP2 (Figure 2 A); MsVMPl (Figure 2B) and negative control dsRNA against Cassava plant specific gene MeCATl (Figure 2C). The phenotypic effects leading to larval mortality were usually associated with the development of melanotic reaction, reduced appetite, growth and development (Figure 2A and B).

[0153] Consistent with above, the TH larvae exposed to bacterially expressed negative control MeCATl dsRNA displayed vigorous feeding (area between the arrowheads Figure 3A). In contrast, the TH larvae exposed to bacterially expressed dsRNA against the MIGGS RNAi target MsPGRP2 displayed a curtailed feeding (representative picture, area between arrowheads Figure 3B).

[0154] In general, melanization is a highly conserved immune response and is often associated with microbial infection of insects. (Kim SR, et al. (2005). Insect molecular biology, 14(2): 185-194. doi: 10.1111/j .1365-2583.2004.00547). The intensification of melanotic response in TH larvae upon continued exposure to bacterially expressed dsRNA against the MIGGS RNAi targets MsPGRP2 and MsVMPl containing HT115 (DE3) plates strongly indicates an infection, possibly due to the defective clearance of opportunistic microbes ingested during feeding. Such defective clearance has been previously associated with the perturbation of gut microbial homeostasis. (Packey and Sartor (2009). Curr. Opin. Infect. Dis. 22(3): 292-301).

[0155] Closer observation indicated that the CR larvae feeding on bacterially expressed dsRNA against the MIGGS RNAi targets MsPGRP2 and MsVMPl displayed discemable mortality starting at day 5, reaching up to 100% and 80% mortality respectively, by day 8 (Figure 4). [0156] To test if both the incidence and intensity of the observed phenotype could be delayed by clearing gut microbiotas, a GF set of TH larvae were also subjected to the above treatment with appropriate controls, in parallel. Interestingly, that the incidence of larval mortality was not only delayed, but also lower in GF larvae in comparison to CR larvae (Figure 4) was observed.

[0157] The incidence of larval mortality on bacterially expressed dsRNA against MIGGS

RNAi targets MsPGRP2 and MsVMPl plates also correlated with the development of melanotic reaction (Figure 5). Most notably, there was a concomitant delay in the development of melanotic reaction in GF larvae in comparison to CR larvae (Figure 5). All the phenotypes observed were statistically significant at a p-value between 0.001 and 0.05. No significant development of mortality or melanotic reaction was observed in larvae exposed to the bacterially expressed negative control MeCATl dsRNA (Figures 4 and 5).

[0158] Although MsVMPl is not directly involved in immune responses, down regulation may abrogate microbial containment, resulting in an infectious phenotype (Figure 2B). Alternatively or in addition, down regulation of MsVMPl may have resulted in wounding of the peritrophic matrix (the protective lining of the larval midgut) that also may have contributed to a sepsis mediated infectious phenotype (Figure 2B); this is further substantiated by delayed onset of infectious symptoms in the larvae (CR or GF) exposed to dsRNA against MsVMPl in comparison with larvae exposed to dsRNA against MsPGRP2 (Figures 4 and 5). Both defective clearance and defective containment of opportunistic microbes have been previously associated with lethal phenotypes. (Packey and Sartor (2009). Curr. Opin. Infect. Dis. 22(3): 292-301). The schematic representation of dsRNA delivery vectors used for above study is indicated in Figure 6.

[0159] Most of the TH MIGGS RNAi targets disclosed herein (e.g., Table 1) are inducible and have been identified from open access midgut specific immunotranscriptome and/or other datasets (Pauchet Y, et al. (2010) Insect. Mol. Biol. 19:61-75; Odman-Naresh et al.

(2013) PLoS ONE 8:e82015; Kanost MR, et al. (2016) Insect Biochem. Mol. Biol 76: 118-147;

Brummett et al. (2017) Insect Biochem Mol Biol. 81 : 1-9; Cao X, et al. (2015) Insect Biochem.

Mol. Biol. 62:64-74); Zhong X, et al. (2012) Insect Biochem. Mol. Biol. 42(7): 514-524; Xia Xu et al (2012). Dev Comp Immunol. 38(2): 275-284). A validation study targeting two MIGGS

RNAi targets MsHEM and MsSPFB confirmed their preferential midgut specific manner (Figure 7) when injected with 75 CFU of gram negative E. coli. Further, literature curation confirmed the abundant expression of these MIGGS targets in the insects gut (Table 1).

[0160] Oral feeding of TH larvae on induction media containing a mixture of live E. coli and lyophilized cell wall signatures from gram positive bacteria and fungi (Figure 8) successfully induced (Figure 9) the MIGGS RNAi target genes listed in Table 1. The genes with immunity related function were induced between 24-48 hours post larval exposure to induction media and mostly not detected in the absence of induction (Figure 9A-C). While, the genes essential for midgut structural integrity are expressed under both conditions (Figure 9D). This, clearly suggests that the MIGGS RNAi targets are induced in response to microbes ingested during feeding.

[0161] High-throughput screening of microbe induced MIGGS RNAi targets (Figure 9) using bacterially delivered dsRNA screen identified 3 insecticidal candidates (Figure 10). These MIGGS RNAi targets include Toll receptor (MsToll2), Beta fructofuranosidase 1 (MsSucl) and Beta tubulin (MsPTub) genes (Figure 10D-F). The insecticidal activity was manifested as stunted growth and development, loss of appetite and melanotic reaction (Figure 10D-F) as observed with the positive control MsVATPaseE treatment (Figure IOC) in comparison to the negative control treatment (Figure 10B). The developmental defects due to the bacterially expressed dsRNA exposure resulted in lethality ranging from 60-70% (Figure 11), with MsSucl being the most effective target for killing TH larvae. Mortality rates were statistically significant and comparable to the MsVATPaseE positive control.

[0162] Additionally, a combination of reciprocal best BLAST analysis and literature curation was used to identify the orthologs of TH MIGGS RNAi targets from the DBM transcriptomic resources (Table 2).

Arty. Dkt. No. 47004-173514

Table 2. List of MIGGS-IRTGS identified from DBM transcriptome resources.

Arty. Dkt. No. 47004-173514

Table 2 Cont. List of MIGGS-IRTGS identified from DBM transcriptome resources.

[0163] It was demonstrated that 14 MIGGS RNAi target genes identified could also be induced in Bt resistant strain of DBM feeding on the induction media (Figure 12), thus suggesting that oral induction of microbe associated cell wall signatures could induce the MIGGS RNAi target genes in economically important DBM.

[0164] High throughput screening of microbe induced DBM MIGGS RNAi target genes

(Figure 12) using bacterially delivered dsRNA screen indicated that 7/15 MIGGS RNAi targets tested showed insecticidal activity against a Bt resistant strain of DBM (Figure 13). The DBM insecticidal targets included PxPGRP2 (SEQ ID NO. 76), PxpGRP2 (SEQ ID NO. 85), PxCHS2 (SEQ ID NO. 87), PxCAC (SEQ ID No. 80), PxFMDl (SEQ ID No. 77), PxDor (SEQ ID No. 81) and PxPTub (SEQ ID NO. 88). The insecticidal activity was manifested as stunted growth and development, loss of appetite and melanotic reaction (Figure 13D-H) as observed with the positive control MsVATPaseE treatment (Figure 13C) in comparison to the negative control treatment (Figure 13B). The developmental defects due to the bacterially expressed dsRNA exposure resulted in lethality ranging from 53-70% (Figure 14), with PxPGRP2 the most effective target for killing DBM larvae (Figure 14). Mortality rates were statistically significant and comparable to the PxVATPaseE positive control (Figure 14).

[0165] In order to test if our MIGGS RNAi technology could work using multiple dsRNA delivery platforms we tested if dsRNA against the four TH MIGGS insecticidal targets could work in a sprayable format. We used dsRNA against MsPGRP2, MspGRP2, MsCHS2 and MsVMPl for sprayable RNAi assays (Figure 15) at a concentration of 0, 4, 8 or 16 μg of purified dsRNA in TE buffer. Most efficacious leaf disc coated dsRNA was 16 μg of dsRNA against MsCHS2 that caused 58% mortality. Similar, but slightly reduced, mortality was observed when insects were fed 8 g of leaf disc coated dsRNA against the same MIGGS targets. Observed mortality rates were statistically significant and comparable to those observed in TH larvae exposed to dsRNA against a known positive control target MsVATPaseE (Figure 16). No statistically significant larvae death was observed when feeding on 4 μg dsRNA (Figure 16), indicating that 8-16 μg dsRNA per leaf disc was required to cause mortality in this assay. In addition to death, TH larvae feeding on dsRNA were characterized by developmental defects, loss of appetite, melanotic reaction and reduced growth compared to negative controls, indicating significant detrimental impact of MIGGs targeting on insect health (Figure 17). The insecticidal TH MIGGS targets MsPGRP2, MsPGRP2 and MsCHS2 will be henceforth referred to as core set. [0166] Similarly, in order to test an additional delivery platform, the core insecticidal

MIGGS RNAi targets MsPGRP2; MsPGRP2 and MsCHS2 were expressed by plastid transformation in tobacco plants in collaboration with Plastomics Inc. Detached leaves of stable transplastomic lines (Figure 18) expressing dsRNA against MIGGS targets indicated that the TH larvae feeding on leaves expressing dsRNA against MIGGS targets MsPGRP2 (B); MsPGRP (C) and MsCHS2 (D) display stunted growth, development, loss of appetite and melanotic reaction in comparison to negative control (A). The insecticidal activity is manifested as significant reduction in mean weights in comparison to negative control (E). The mortality rate was scored on a 0-3 score were 0, 1, 2 and 3 indicated < 0, 25, 50 or > 50 mortality respectively. The transplastomic events confer significant mortality in comparison to negative control (F). Data is average of 6 replicates/treatment (N=24) ± SEM at p< 0.001(***); p< 0.01(**) and p< 0.05(*). Clearly suggesting that the stably expressed dsRNA against the core MIGGS RNAi targets also impacts larval growth and development.

[0167] Next, we tested if our MIGGS RNAi technology can also work in a sprayable format against Bt resistant strain of DBM. We used the DBM orthologs of insecticidal TH MIGGS core set (PxPGRP2, PxPGRP2 and PxCHS2) and two newly discovered insecticidal DBM MIGGS targets (PxCAC and PxFMDl) for sprayable RNAi assays at a concentration of 0,1, 0.5 and 0.25 μg. We observed lethality ranging from 53-67%, with PxPGRP2 being the most effective target for killing DBM larvae (Figure 19). Mortality rates were statistically significant and comparable to the PxVATPaseE positive control (Figure 19). In a manner similar to that seen for sprayable dsRNA against TH, in addition to death, DBM larvae exposed dsRNA treatments were characterized by developmental defects, loss of appetite, melanotic reaction and arrested growth (Figure 20). Clearly suggesting that dsRNA against the insecticidal MIGGS RNAi targets identified herein when used in sprayable format is also effective against Bt resistant strain of DBM.

[0168] Most of our MIGGS RNAi target gene induction procedures thus far relied upon either direct injection or oral feeding of extraneously supplied microbial signatures. To determine if our MIGGS RNAI target genes are induced under field conditions, we exposed the larvae of economically important lepidopteran pest FAW to wheat seedlings grown on microbe rich and microbe depleted plants (Figure 21). Pooled RNA-Seq analysis indicated that plants growing on field soil caused preferential up-regulation of MIGGS pathway genes in FAW. In total, 100 differential expressed genes were identified, thirty of which were MIGGS pathway related genes (Figure 22).

Atty. Dkt. No. 47004-173514

Table 3. List of MIGGS-IRTGS identified from using RNA-Seq approach in FAW.

[0169] Most notably, FAW orthologs of TH insecticidal targets including PGRP2,

PGRP2 and IMD were captured in the data set. This discovery indicated that MIGGS pathway genes are up regulated in response to insect feeding on plants exposed to microbes in the field soil.

[0170] Preliminary experiments were performed to screen the insecticidal activity of 17

FAW MIGGS RNAi targets discovered during RNA-Seq (Table 3, above) in which dsRNA against the FAW orthologs of insecticidal TH MIGGS core set (SfPGRP2 (SEQ ID NO. 89), SfpGRP2 (SEQ ID NO. 101) and SfCHS2 (SEQ ID NO. 105) and three newly discovered MIGGS targets SfCTL (SEQ ID NO. 96), SfRC (SEQ ID NO. 103) and SfGAL(SEQ ID NO. 92) from RNA-Seq were fed to FAW larvae at 0, 4, 8 or 16 μg- urifϊed dsRNA in TE buffer. FAW 1st instar larvae were allowed to feed on dsRNA coated leaves following the bioassay described for TH above. Data indicated that FAW larvae (Figure 23) exposed to pure dsRNA against SFCHS2 (B); SFpGRP2 (C); SFPGRP2 (D), SFRC (E), and SFCTL (F) causes reduced growth, development and loss of appetite in comparison to negative control treatment (A) resulting in significant weight reduction (G) and mortality (H) at 8 and 16 μg of dsRNA concentration. The rates of mortality was scored on a 0-3 score were 0, 1, 2 and 3 indicated < 0, 25, 50 or > 50 mortality respectively. The dsRNA treatments imposed caused statistically significant reduction in mean weights (G) that also translated into significant rates of mortality (H) in comparison to negative control (Figure 23). Screening of insecticidal activity of additional MIGGS RNAi target genes identified from the RNA-Seq dataset indicated that 16 μg of leaf disc coated dsRNA against MIGGS RNAi targets SfTSP (SEQ ID NO. 95), SfAtta (SEQ ID NO. 90), SfCec (SEQ ID NO. 98) and SfHplO (SEQ ID NO. 94) caused statistically significant reduction (Figure 24) in mean weights (A) that also translated into significant rates of mortality (B) in comparison to negative control. Data is average of 3 replicates/treatment ± SEM at p< 0.001 (***); p< 0.01(**) and p≤0.05(*).

[0171] Experiments with an economically important coleopteran pest RFB were also conducted to test if MIGGS-IRTGS targets identified by a combination of reciprocal best BLAST analysis and literature curation (Table 4) are insecticidal against the order coleoptera.

[0172] Preliminary feeding trails with 1 μ of purified indicated that dsRNA against RFB MIGG RNAi targets TcPGRP2 (SEQ ID NO. 107), TcpGRP2 (SEQ ID NO. 108), TcMDGP (SEQ ID NO. 109) and TcCHS2 (SEQ ID NO. 110) is insecticidal to the adult RFB beetles. Significant rates of RFB mortalities were observed (Figure. 25) when scored on a 0-3 scale were 0, 1, 2 and 3 indicated < 0, 25, 50 or > 50 mortality respectively in comparison to the negative control treatment. Data is average of 3 replicates/treatment ± SEM at p< 0.001(***); p< 0.01(**) and p< 0.05(*). Table 4. List of MIGGS-IRTGS identified from RFB transcriptome resources.

[0173] One possible reason for larval mortality could involve down regulation of

MIGGS-IRTGS transcripts upon feeding on exogenously supplied dsRNA against the target genes. Preliminary RT-PCR data indicated that the larval phenotypes (Figure 17) also correlated with down regulation of target transcripts (Figure 26).

[0174] Importantly RNA-Seq analysis indicated that the MIGGS-IRTG pathway targets are induced by soil microbiome indicating that our novel RNAi approach could be effective even under field conditions.

[0175] Given the ease of identification, high specificity, and applicability to diverse pests and delivery platforms, RNAi silencing of the MIGGS-IRTG pathway genes identified, this approach offers an unprecedented potential as a novel pesticidal strategy.

[0176] The translation of these preliminary findings into a pesticidal RNAi technology against economically important pests might lead to sustainable alternatives including but not restricted to the methods described anywhere herein. [0177] Additionally, the proposed approach will shed more light into understanding the tri-trophic interaction between plants-microbe-insect interactions as it pertains to sustainable insect pest protection. Sequences

[0178] SEQ ID NOs: 1-14 and 31-44 are representative examples of M. sexta-RN Ai target gene sequences.

[0179] SEQ ID NO: 15 is non-insect gene sequence that encodes for catalase 1 from cassava (Manihot esculanta).

[0180] SEQ ID NOs: 16-29 are coding region sequences of representative M. sexto-RNAi target genes.

[0181] SEQ ID NO: 30 is the coding region sequence of catalase 1 from cassava

{Manihot esculanta).

[0182] SEQ ID NOs: 45-70 are 5'UTR and 3'UTR region sequences of representative M 5i?xto-RNAi target genes.

[0183] SEQ ID NOs: 71-75 are the coding region sequences of additional representative

M. sexta-RNAi target genes.

[0184] SEQ ID NOs: 76-88 are the coding region sequences of representative P. xylostella-RNAi target genes.

[0185] SEQ ID NOs: 89-105 are the coding region sequences of representative S. fi'ugiperda-KN Ai target genes.

[0186] SEQ ID NOs: 106-110 are the coding region sequences of representative

T.castaneum-RN Ai target genes.

[0187] SEQ ID NOs: 111-119 are representative examples of Manduca sexta insecticidal dsRNA sequences.

[0188] SEQ ID NOs: 120-126 are representative examples of Plutella xylostella insecticidal dsRNA sequences.

[0189] SEQ ID NOs: 127-135 are representative examples of Spodoptera frugiperda insecticidal dsRNA sequences.

[0190] SEQ ID NOs: 136-139 are representative examples of Tribolium castaneum insecticidal dsRNA sequences. [0191] > M. sexfa-Hemolin (MsHEM); M64346.1 (SEQ ID NO: 1 )

ATGGTTTCAAAAAGTATCGTCGCTTTGGCTGCGTGCGTCGCAATGTGCGTAGCCCAG CCA GTGGAGAAGATGCCTGTGCTGAAGGACCAACCCGCTGAAGTCCTCTTCCGGGAGTCTCAG GCCACCGTTCTCGAATGTGTTACCGAGAATGGCGATAAAGATGTCAAATATTCTTGGCAA AAAGAC G G C AAAGAAT T C AAAT G G C AG GAAC AC AAT AT C G C C C AG C G C AAAGAC GAAG G C

AGCCTGGTCTTCCTCAAGCCCGAGGCTAAAGATGAAGGCCAATACAGATGTTTCGCT GAG TCGGCCGCCGGAGTCGCCACCTCCCACATCATCTCCTTTAGAAGGACCTACATGGTCGTA C C T AC T AC T T T T AAGAC T G T AGAAAAGAAAC C G G T AGAAG G G T CAT G G C T C AAAC T T GAG TGCAGCATCCCCGAAGGTTATCCTAAACCTACTATTGTATGGAGAAAGCAGCTTGGTGAA GAC GAAAG TAT AG C AGAT T C TAT AC T G G C AC G T C G T AT T AC AC AAT C T C C AGAG GGAGAC

CTGTACTTCACGAGCGTCGAGAAAGAAGACGTAAGCGAAAGCTATAAATACGTTTGC GCT GCTAAGTCACCGGCTATTGATGGGGATGTCCCTCTTGTTGGATACACTATTAAAAGCTTA GAAAAGAAT AC AAAT C AGAAAAAC G G T GAG CTGGTCCCGATGTACGT C AG T AAT GAT AT G ATAGCTAAGGCCGGAGACGTTACTATGATCTACTGCATGTATGGTGGAGTCCCAATGGCT TAC C CCAACTGGTTCAAAGACGGTAAGGACGT GAAC GGCAAACCGAGC GAC CGCATCACC

C G C C AC AAC AGAAC C T C C G G C AAAAGAC T G T T CAT C AAG GAGAC G C T G C T C GAAGAT C AG GGCACTTTTACTTGC GAC G T GAAC AAC GAAG T C G G C AAG C C AC AG AAAC AT T C C G T C AAA CTTACCGTAGT CAG T G GAC C C AGAT T T AC GAAGAAAC C AGAAAAG C AAG T C AT C GC T AAG CAGGGCCAGGACTTTGTAATCCCCTGTGAAGTATCCGCCTTACCGGCCGCCCCTGTCTCC TGGACGTTCAACGCCAAGCCCATCAGCGGCAGCCGCGTGGTAGCCAGCCCGAGCGGACTG AC CAT C AAG G G CAT C C AGAAG T C T GAC AAG GGTTATTATGGCTGC CAG G C C C AC AAC GAG CACGGAGATGCCTACGCTGAGACGCTCGTGATTGTTGCTTAA

[0192] > M. sexfa-Serine proteinase homolog 3 (MsSPH-3); AF413067.1 (SEQ ID NO: 2)

ATGTTGTTGCTTCTGTATTGTCTTGTGGCGGCCTCCGCGCCGTTCTTTATTGCAGCGGAC C AAG G CAG C C C T GAC C T G C C T T TAG C TAC C GAAC C AC C AAC AGAAT G C G GAAC AAT AG C A CCTGATGATAGCTTAGTATTAGATGGGTCCGTTGGTAAAAGTGACAAATTACCTTGGTAT GCTATTATC T ACAC AAC C AC C AC C C G G C CAT AC AAG C AGAT C G G T G GAG GAAC C C T CAT C ACTCCTTCAGTAGTAATCTCAGCCGCTCACTGTTTCTGGCGCAATGGTGAGGTTCCATCT AAGGATAATTACGCCGTGGCGCTCGGCAAGACCCATAGTGCTTGGAATAGCCATGCCGAT G T AAAC G C T CACAAG T C T GAT G T AAAAGAAAT AC AC AT AC C AC C G CAG T T T AAG GGAAG G AAC AC TAATTATCG GAAT GAT AT AG C AAT CGTGGTCATGT C AGAC C C T G T GAC C TAC AAA GTGGACATCCGCCCTATCTGTTTGAACTTCGATGTACAATTTGAAAGACTGCAATTAAAA GAC G G CAT T AT GG G GAAGAT C G G C AC AT G GAAT G T AAG T C G T GAGAC AC T GAAAC T AT C G AAAAC AT TAAAAG T G G T G GAGAAT C CAT AC AT T GAC G C AG C GAC TTGTATTAGT GAG T C T CCGGCAAGCTTCAGAAATTCCATCACTGCGGACAAAATATGCATCGGATACGTTAACGGC ACCGGGCTATGTAGAGGTGATGGCGGCGCTGGGGTGGCTTTCCCTAGCCAGGAACAAGGA G T G C AAC G T T AC T AC C T C AGAG GTGTTATATC T AC AG C C CAT AC C AG C GAT GAT GG C AAC T T AT G T G C AGAT G GAT T T G T AAC T G C C AC T G C TAT AG G C CAT C AC GAAC AT T T TAT C AAA C AG T T TAT AAG C G T T TAG [0193] > M. sexia-Peptidoglycan recognition protein 2 (MsPGRP2);

GQ293365.1 (SEQ ID NO: 3)

ATGGCGAGCTTCGCTTTAATAGTTATCCTTAGCGTAATTGGCTTTATATCGGCCTATCCT AGTCCTGAAGGTTACAGTTCTGCCTTCAACTTTCCATTCGTAACCAAGGAGCAGTGGGGC GGCAGGGAGGCACGCACGTCGACGCCACTCAACCACCCAGTGCAGTTCGTGGTGATCCAC CACAGTTACATTCCCGGCGTGTGCCTCAGCCGGGACGAGTGCGCGCGCAGCATGCGCTCC AT G C AGAAC T T C C AC AT GAAC AG T AAC G G G T GGAG T GAT AT T G GAT AC AAC TTCGCTGTC GGCGGTGAAGGGTCGGTGTACGAGGGCCGCGGCTGGGACGCGGTCGGCGCACACGCAGCT GGCTATAACAGTAACAGTATCGGCATCGTGCTCATCGGCGATTTTGTTTCAAACCTCCCG CCGGCGGTGCAAATGCAAACCACACAAGAATTGATCGCAGCGGGCGTGCGACTCGGTTAC ATCAGGCCCAACTACATGCTCATCGGGCATCGTCAGGTCTCCGCCACTGAGTGCCCAGGA AC CAGAC T C T T CAAC GAAAT C AC C AAC T G GAAC AAC T T C G T GAG GAT AT GA

[0194] > M. sexia-Beta-1 , 3-glucan-recognition protein 2 (MspGRP2);

AY135522.1 (SEQ ID NO: 4)

ATGTGGATCAAGAGCGTCTGTTTGTTCGCAACCATTGCGGGCTGCTTGGGCCAGCGAGGG GGTCCATACAAGGTGCCTGATGCGAAACTCGAAGCTATCTACCCCAAAGGCTTGAGAGTC TCTGTGCCAGATGATGGCTACTCCCTATTTGCCTTCCACGGCAAGCTCAATGAGGAGATG GAAG G T T T AGAGG C T G G C CAT T G G T C C AGAGAC AT C AC C AAAG C GAAG C AG G G C AGAT G G AT AT T C AGAGAT AG GAAT G C T GAGCT GAAGCT T G GAGAC AAAAT T TAC T T C TGGAC T TAC G T T AT T AAG GAT G GAT T G G GAT AC AG G C AG GAC AAT G GAGAAT G GAC T G T T AC AGAAT T C

G T C AAT GAGAAC G G TAC AG T G G T G GAC AC TAG TAC AG C G C C G C C AC C AG TAG C AC C C G C C GTTTCAGAGGAAGATCAATCGCCAGGTCCTCAGTGGAGACCTTGCGAAAGATCCCTGACT GAGTCCTTGGCCCGCGAACGCGTTTGCAAAGGCAGCCTTGTCTTTAGCGAGGACTTTGAT GGTTCCAGTTTGGCCGACTTGGGCAATTGGACCGCTGAAGTCAGATTCCCTGGCGAACCG GACTACCCGTACAACTTGTACACTACGGACGGCACTGTGGGATTCGAAAGTGGGTCTCTG GTGGTGAGACCCGTCATGACCGAGTCCAAATACCACGAGGGCATCATATACGACCGCCTC GAC C T T GAGAGAT G T AC AG GAC AG C T G G G T AC G C T G GAAT G C AG G C GAGAGAG C AG C G G C GGTCAGATTGTACCACCTGTGATGACAGCTAAACTGGCCACTCGACGCAGCTTCGCGTTC AAGTTCGGCAGGATCGATATAAAGGCGAAGATGCCGCGCGGGGACTGGTTGATACCAGAA C T C AAC C T C GAAC C T T T AGAT AAC AT AT AC G GC AAC C AG C GAT AC GCTTCGGGTCT CAT G CGGGTCGCGTTCGTGAGAGGAAACGATGTATACGCCAAGAAGCTCTACGGAGGTCCGATA ATGTCCGACGCGGACCCGTTCAGGTCCATGCTGTTGAAGGACAAGCAAGGGTTGGCCAAC TGGAATAATGATTACCACGTCTACTCGCTGCTGTGGAAGCCTAACGGTTTAGAGCTGATG GTGGACGGTGAAGTGTACGGCACCATCGACGCTGGCGATGGCTTCTACCAGATTGCGAAG AACAACCTCGTGAGCCACGCCTCGCAGTGGCTCAAGGGCACCGTCATGGCGCCGTTTGAT GAAAAGTTCTTCATCACTCTGGGTCTTCGCGTGGCGGGTATCCACGACTTCACGGACGGT CCGGGCAAACCTTGGGAGAACAAGGGCACCAAGGCCATGATCAACTTCTGGAACAATCGG TTCCGCTGGTTCCCCACGTGGCACGACACCAGTCTTAAAGTCGACTACGTCAGAGTCTAT GCTCTTTAG > M. sexfa-Relish family protein 2A (MsREL2A); HM363513.1 (SEQ ID ATGTCCTCTTGTCCAAGCGACTATGATCCCAGTGAATCGTCCAAATCTCCACAAAGTATT TGGGAGTCAGGAGGATACAGTTCTCCGTCGCAACAAGTTCCTCAATTGACTTCTAACTTA AC AGAAT TGTCTGTTGAT C AC AG C TAT AGAT AC AAT G GAAAT G GAC CAT AT C T ACAGAT C AC AGAG C AAC C AC AGAAAT AC TTTCGGTTCCGTTATGT TAG C GAGAT G G T G G GAAC AC AT G GAT GTTTGCTTGG C AAAT C T T AT AC AAC AAAC AAAG T T AAAAC T CAT C C GAC AG T T GAA CTCGT GAAT TACACCGGTCGAGCCCTGATAAAGTGCC AAC TAT CGC AAAAC AAGAGCGAA

GAC GAAC AC C C GC AC AAAC T G C T C GAT GAAC AAGAC AGAGAC AT GAG C C AC C AC G T T C C C GAGCACGGCAGTTATAGAGTGGTATTTGCTGGTATGGGTATAATTCATGCTGCCAAAAAG GAAG TTGCGGGGTGGCTC T AT AGAAAAT AT AT AC AG C AGAAC AAGAAT GAAAAG T T T AAT AAGAAAGAG C T C GAAG C G CAT T G T GAGAG GAT G T C C AAAGAGAT C GAT T T AAAT AT AG T T AGACTGAAGTTTAGCGCTCACGATATTGACACTGGCATTGAAATTTGCCGGCCAGTGTTC T C T GAAC C C AT T T AT AAT T T GAAG T G T G C G T C T AC GAAT GAT T T GAAAAT AT G C C G C AT A AGCCGTTGTTACGGTAGACCGAGAGGCGGCGAAGATATCTTCATATTTGTCGAAAAGGTC AACAAGAAAAACATCCAAGTTCGGTTCTTTAGACTGGAAAACGGGGAGCGCACCTGGTCA GCGATGGCGAACTTTCTGCTAAGCGATGTTCACCACCAATACGCTATCGCTTTTAGAACG C C AC C G T AC G T CAAT C AC C AAAT T T C T GAAGAC G T G C AAG T T T T T AT AGAAC T C G T AC G C C C T T C AGAC G G TAG GAC GAG C G C T C C CAT G GAG T T C AC AT AC AAG G C T GAG C AAAT C T AT AAAC AGAAC AAGAAAC G T AAAAC T AC T T C G T C G T AC T C G T C G C T C GAC AG C T C C T C AG G T TCGGCCGGTTCAATTAAAAGCATCAGCGAACTGCCCGCGCCCGTTGTTTTTGCTGAAAAC G T AAG TTTTTTCTAT GAC AC AT TACTCATTCTT C AAC C C AT GAC GAAT C T AT AA

> M.sexta-Dorsal (MsDor); HM363515.1 (SEQ ID NO: 6)

ATGCTTGTGACGTTATGCGGCGGGAACTATAGTGGATTGTCGTTAACAAAAACTAATCAT TATATGTCACCAAAATCATATGTGCCAGGAAATGGTTATGACGCCGCCGTAATCCTAGGT AC C AC G GAG C AGAAT GAC AG C GAAC C C T C AAAC T T GAAT AT TAGTGATGTTTTT GAAG C C ATCACGCTCGCTGATCCGTCGTTCGGCGCGGGCGTGCCGTCGGTAGAGGAGACGATGGCG CACACGCAGCCCCAGCCGCTGCAAATGCCGTACGTGGTCGTCGTGCAGCAGCCCGCCAGC AAAGCGCTCAGATTTCGATATGAGTGCGAGGGCAGATCAGCCGGTTCGATTCCCGGCGCG TCGAGCACGCCCGAGAACCGAACCTTCCCCGCCATCAAGATAATCGGCTACACCGGCACC GTCTCCATCGTAGTGTCGTGTGTCACCAAAGATGAGCCTTGCAGGCCGCACCCACACAAC CTGGTCGGGCGCGACCACTGCGACCGCGGCGTGTTCTCCGTCCGCATCGAGATCACCGAC GAGAAT AAC GAAT AC C AG T T T C G GAAC C T G G GC AT AC AG T G C G T C AAG C G G C G C GAC AT C GGCGAGGCGCTGCGGATCCGAGAGGACCTGCGCGTCGATCCGTTCAAAACCGGCTTCACC CACCGGAACCACCCGCAAGGCATCGATCTGAATGCAGTGCGGCTCGCGTTCCAAGTGTTC CTGCCGCACTCCAGCGGCAAGATGCGGCGCACGCTCGCGCCCGTCGTGTCCGACGTCATC TACGACAAGAAGGCCATGAGCGACCTGCTCATCGTGCGCGCGAGCCACTGCGCCGGCCCG GCGCGCGGCGGCACGCAGGTCGTACTGCTCTGTGAAAAGGTGACTCGCGAGGACACCGTG GTGGTGTTCTACCAGGAGGACAACAACCGCGTGCTGTGGGAGGAGATGGCGATCATCATC G T G G T G C AC AAAC AG T AT G C CAT AG C G T T C GAGAC G C C G C C AT AC AAGAAC C C AAAC AT T AC T GAT AAT G T CAAT G T AC GAT T C C AG C T GAGAAG G C T C T C C GAC AAGAT GAC GAG C AAC TCGCTGCCGTTC GAG T AC AT T C C C GAAT AC C AAGAT T AC C C TAG T T AC AG G C AG GAT AAC T C AGAAAGAAAT C C C CAAT C G C AG C CAAT T AC G C AC AAG G T AAC G G T G GAG GAC T T T GAA T C GAC AAC T AAAAGAT AT T T T AC G C GAAG C AC T GAC AAC AG T AAT T AC G G T T G G GAT G C G GTTCCGGTCACGTACAATGGAAGAAAGAAGGTTTGCTATTGCCCCAAGAGGAGCTAA [0197] > M. sexfa-Spatzle (MsSPZIA); GQ249944.1 (SEQ ID NO: 7)

ATGGCCTGGATCCAGCATTTACTCGTTTGGCTCTTCGTTATGTCAACATCAGCATACAAA T G CAAAGAC T G C T T C AG T T T C G C AT C AC AAT AT CCGTCGTACGATAGT CAAG TAT AC GAA C AAC C T GAC AGAC G GAT AG C G G GAC G G T C AG CAC AAT AC GAAC AT T T AAGAAC AAAC GAG AGGTCTCTCCCGGTC T AC AG C GAGAC C C AGAGGAT AC AAG C AGAAGAGAGAAGAAGAC AC

AG T T C GAGAC T AGAAGAAC C GAGAC AAC G T G C T GAGAAT G G T T C AT AT AAGAT AT T GAAT AAC C C T C C GAAAC C C T G TAT T AC T AAT AG GAGAAG T C AAAT T GAT T C G T C GAAT GAT AG G GTAGTGTTCCCCGGTCCGACTTCAGAAAGGTCGTACGTACCCGAAGTGCCAGAGGAATGC AAGAAAAT CGGCATATGC GAC AG TAT AC C GAAT T AC C C AGAAGAAC AC GTAGCTAATATT ATATCTC GAC T T G GAGAC AAAG GAAAAG TAT T AC AAAT AGAC GAAC T G GAC G T AT C AGAC

AC T C C AGAT AT C G C C C AGAG GTTGGGTCCG C AG GAG GAC AAC AT G GAAC T AT G TAG C T T T AGAGAAAAGATTTTTTACCCCAAGGCAGCGCCAGACAAAGATGGAAATTGGTTCTTCGTT G T GAAT T C AAAAGAAAAC C C AG T AC AG G G T TAT AAAG T T GAAAT T T G C GAC C G T CAG C AA TTACCATGCGCGGAGTTCGCGAGCTTCCAACAGGGATATGAAGCGAGGTGCATCCAGAAA TACGTTCGCCGGACCATGTTGGCGTTGGATCCCAAGGGTCAGATGACCGACATGCCCCTT AAAGTGCCCAGCTGTTGCTCATGCGTGGCCAAATTGACAATCATATGA

[0198] > M. sexta-To\\ receptor (MsTOLL); EF442782.1 (SEQ ID NO: 8)

ATGCAGGCTCGGCGGTGGTGCGCGGCACTGCTATTAATGCAGATGCTGAGCTGGCTCGGA GTCAGTGGACACTTACCGCGTCCCGAGTGCGCGCCAGCCGCAGATTGCCAACTTATACGA GAC AAC AT AAT C GAT G GAT AT G CAC AAT T C TAC T T CAACGTAT CAGGACAT GAAGT GAAA T T T GAAC AT T ACAT C G GAAAC GAC TTCGATGTC GAAT T G T C AT G C AAT TAC AT C GC C AT G GACAACGCAATGCTGCCGCGGTTCTCAACGACCTTTTCAGTCAACGTAATAGTGGTTAAA GAATGTGCTTTGCCAAGAAGTGGGTCAATCGATGCCGCTGTCGCTGCACTTAATATCAAC GTTTTGACGGAGCTGACTCTGGACAAATTCCTAGAGCCGGCGGTGATCACGCGCGCACAT C T TAC CAG T T TAC AAC GAC T AGAGAG G C T G GAG C TAC AC G G T AAC T C AAAC AC AAG C C T C GCCCCCGGCGCACTGGCCGCGCTCTCCGCCGCGTCCGCACTGAAATGTCTTGTATTGCAT GCAGTACGCGTGCCCGCCGCTGACCTGGCGCGCTTGCCGTCGTCACTGCAAGAACTAGCG TTGTTGGATGTGGGCGCTGCGAGTATGCATTTAGATTCATCGGTTAATTTGACGTCACTC TTCGTAATCGATACACATTATCCTGTCGTCGTGAATGTGAGCAACGCCGTTGCGCTCAGA GACTTGCACATAAATACCCCAAGTACTGTGTTGACCGAAGACGTGCTCCCGTCGTCACTC AACTCACTTGAACTAGAGGGGTGGAACGAAACGCATCCGGTGCCTAAGACACGTTGTGTA CTACTTAAGGAACTTAATGTAATCGGCACCGACAATGATGCCTATCCGGTGACTCTCCCG GACGAGTGGCTGTCCAACTGCGGACAGCTGAGGGATCTTGAAATGATCTCCGTGCCGATT AGCGCCGTACTTCCGGCGCGGATGCTGGCTAACGCAATTAGGCTTGAAACGATTACTATC TGGAACTGTAACCTGACCGCGTTGCCGTCGGGCCTGTTAGACGACACGCTGAACCTCGCC AC AC T C GAC T T G T C C AAC AAT C AAC T T G CAT C G T T G C C C AGAAAAT T AT T T GAG CAC AC G AAG T T AC T AC G CAG T C T CAT AC T AT C GAAC AAT C AG C T GAC GAG C GAG G TAG T G T G GAC G

CTGTCGACCGTCACCTCGCTTGTTGAACTAAAGCTCAGCAATAATAACCGCATAGGC GAC TTATGTTCCCACGACTCAGTGTCAGCAGGTCCCTCACCACTGAGTTCACTGACGGGGCTA AAC T AT C T C CAT C T GAG C AAC AC AG GAG TAT CAC AC GTGTGCTCC GAC T G G C GAGAAAAG CTAACCTACCTCACGAATCTCAACTTAAGGGACAACCCCATCACTCTCTACAATTTGGCG GATCTACAGTTTCGTCGAATCTGGGTGGACGCTCGTGTGTATTTAGGACATTTCAAGCAG CAG T T T AC G C G CAC AGAT T AC GAAC T C G C CAG T AAT AAT AAC AC T GAG G C G G T C G T AAC T TTATCCGGTTCGTTAGAATGCGACTGCAATTCATACTGGGCAGCACAGGTGTTCCGTATG AAAGCTTGGCAGGCATCCAGCTCCATGATATATTGTGAAAAAAAACCGGTCATTGAGGTG GATCCCGACACCTTTACCTGCCTTGAGCCAGCGAAGTGTGCTGCGCTGGCGGATAGTTGT ACGTGCCGTATCCGCGACGACATTCAGTACAAACAAGTGGTCGTTGTGCACTGCACCGGA CTCGCCGAGTTCCCGCGCCTGCCACTAACCACGGACAAGTGGATCCTGCACCTGCCCCAC AACAACATATCATACCTCGCCGCGGCCGACGTATCGCCGAACATCGTGGAACTCGATCTA AGAAAC AAT T C AAT C AAGAAT AT C GAC G T AC AG G CAT CAG C AAAAC TAG CCTTCGTCCGG CTGCAATTGGGTGGTAACCCGATCGAGTGTGACTGCGAGGCGTTGAAGCTGCTGGCGCCG CTGCTCAAACCTGACTCAAAGCTGCTTGACAGAAAGGACGTGAAATGTGAGAACGACGCG CAGATTACCTTGGCGATGCTGAAATTATGTACTAAGTCATCCAATGGGCTGATGTACTTG CTGTTCCTGTTGCTGTTACTCGCATTTGTCGTAACCGGACTGCTCGCACGAACCGCAATT CGCCTGCGCATCAAAATGATCCTCATGAGACTGGGTTGGATGTCGAGACTACTGGAGCCC GCGGACGACGATCGCCCGTACGACGCGTTTGTGTCTTTCGCACACGAGGATGAGGAGCTG GTGATGGAGCAGCTGGCGGCACGGCTCGAGAGCGGCTCGCGGCCGTACCGACTGTGTCTG CACTACCGCGATTGGGCGCCAGGCGAGTGGATCCCGGCGCAAATAGCGGCTTCGGTGCGG GCCTCTCGGCGCACGGTGGCGGTTGTGTCGGCGCACTACTTACAGTCGGGCTGGGCGCTT GCCGAGATCCGGGAGGCGACCGCAGCCTCGCTGCAGGAAGGCATGCCACGTCTCATCATC GTGCTGCTCGACGAGACCGACCGGTTGATGCTCGATATAGACCCTGAGTTGCACGCCTAT GTGCGCAACAATACCTACGTGCGCTGGCATGATCCATGGTTTTGGGAGAAGCTGAAGCAG GCGCTGCCTCCACCGCGGGAACAACGGTCGCCAATAGCTCCGTCGCTACCAGCGCTGGCG CTGTCCCATGACAGCCTAACTCTGCGCACGTACTCTCCCAGAGAAAGTGACCCAGCGCCC GCTGCTAAGCCGGCGCACACTCCGCACGAGACGGACGAGCCAGCGCCGGGCGCGAGTCCT TGCTACAAATGA

[0199] > M. sexfa-Scolexin A (MsSCAI ); AF087004.1 (SEQ ID NO: 9)

CGGCAGTCGGTTGTGTTGGCAGTGGCGGCGGTGCTCTTCGGGTGCGCGTGCGCAGCGCCC AAT CCTGGCGC CAAC GAC AT AC AAC T T AAT C AAAAAT T AAG T AT C GAAG C T AAG GG G G C A AAG C AG C C AAT T GAT AC GAG G G C AG T GAAG GAAC G G T AT C CAT AC G C AG T T C G GAG T T T C GGAGGCTTCTGCGGAGGAACCATTATCAGTCCCACCTGGATCCTGACCGCCGGCCACTGC TCGATACTCTATGCGGGGAGCGGCCTACCGGCCGGCACCAACATTACCGAGGTATCTAGC TTGTACCGCTTCCCCAAGCGGCTCGTCATACACCCGCTCTTCTCCATAGGACCCGTCTGG CTCAACGCTACGGAGTTCAACCTCAAACAGGCGGCTGCACGATGGGACTTCTTGTTGATA GAACTGGAGGAACCGCTGCCGTTGGACGGCAAGATCCTGGCGGCTGCGAAGCTCGACGAC CAGCCCGACCTCCCCGCAGGCCTCGACGTGGGCTATCCGAGCTACAGCACCGACACCTAC GAG G C T AAGAT AC AAAG C GAGAT G C AC G GAAAGAAG CTTTCGGTT C AAT C T AAC GAG G T G TGCTCGAAGCTAGAGCAGTTCAAGGCGGAGGACATGTTGTGCGCCAAGGGACGTCCACCG CGATACGACTTCGTCTGCTTCAGCGACAGTGGCAGTGGGCTAGTAGACAACAATGGTCGC CTAGTCGGCGTGGTGTCGTGGGCCGAGAACAACGCTTTCGAGTGCCGCAACGGCAACCTG GCGGTCTTCTCGCGAGTGTCCAGCGTACGCGAGTGGATCCGACAAGTCACCAACATATAA [0200] > M. sexfa-Hemolymph proteinase 18 (MsHP18); AY672794.1 (SEQ ID

NO: 10)

ATGGTTTATATTTTAATAATTTTAGTGATTTGCAATTTTAGTTGTATTAGTTGTCAGTCC G G GAC AG T G GAAAG C AG GAT T CAT T T T AAAGAT GAAG G G C C G GAAT G T T AT GAT GC AAAT AAAAAG G G C AC CTGTGTTAGTGCT C AC AGAT GCCTTGATGTAGT T AGAAAAC T TAAAGAC G GAGAGAAAC C CAC GAT AT G T G G C T AC C AAG GC AC G GAAC C AAT GGTGTGTTG C AC AGAC

TGTACTCTGGTTGATAATATTAGTAATTTGGTCGTAAGTTCCATATCCGGGTACCTG TGG AAGGATGGTCAGAAAGCGTGGGACAAATGTCTGGAATACGTTGACAAGCTGTCGTACCCA TGCGCTTCAACCTACTCCCACTACCTCAGCTCCGTTTGGGAGAAAGATAAGGAGTGCAGT ATGGTTCAGTTTGTTGGCGTGAGGCGATTCGCCTCGTATAACGGACAACCGGCGAAACGG AACGAGTACCCTCACATGGCTCTGCTCGGCTACGGCGACGACCAGGAGACGGCGCAGTGG CTCTGCGGCGGCTCAGTGATCAGTGATCAATTCATCCTCACGGCTGCACACTGCATCTTT ACAAATCTATTGGGTCCAGTACGTTTCGCAGCGCTAGGAATACTGCAGCGATCGGATCCA G T AGAG T T AT G GC AAG T T T AC AAGAT C G G C G GC AT AG T T C C C CAT C C G C AG TAT AAG T C A C C T AT CAAG T AC C AC GAC AT TGCTCTCCT G AAGAC T GAAAAC AAAAT AAAG T T T AAT GAG AACGTGCTGCCAGCGTGTTTGTTCATAGAGGGCAGAGTGGGTGGGAGTGAGCAGGCTAAA GCGACCGGTTGGGGCGCGCTTGGACATAAACAGACGGCAGCTGACGTACTGCAAGTGGTT GACCTTCAAAAGTTCAGTGACGAAGAGTGCGGAAGTACCTACCGTCCTTACCGGCATTTG C C T CAAG G C T AC GAC AG C G C C AC G C AGAT G T GC T AC G G C GAC AAG G GAAAAC T GAAT AT G

GACACCTGTGAGGGCGACAGCGGCGGTCCTCTACAGTTCCAAAACTCCTCGCTCCTC TGC ATACACATAGTAGCGGGAGTGACGTCATTCGGCGACGCGTGCGGGTTTGCGGGCGGCGCC GGGATGTACACACGAGTGTCGTACTATATTCCCTGGATCGAGAGCGTTGTATGGCCGTGA > M. sexfa-Transferrin (MsTRN); M62802.1 (SEQ ID NO: 11 )

ATGGCTTTGAAACTTTTAACTTTGATAGCCCTGACTTGTGCGGCTGCGAATGCAGCTAAA T C T T C AT AC AAAC TATGCGTGC C AG C AG CAT AC AT GAAG GAC T G C GAG C AGAT G C T T GAA GTACCCACGAAGTCTAAAGTGGCCTTGGAATGTGTACCGGCTAGAGACAGGGTGGAATGC CTCAGCTTTGTTCAGCAGCGACAGGCGGACTTCGTCCCCGTCGACCCTGAGGACATGTAC GTGGCCTCCAAGATCCCCAACCAGGACTTCGTCGTCTTCCAGGAGTACAGGACTGATGAA GAGCCTGATGCGCCATTCCGTTATGAAGCCGTTATTGTGGTTCACAAAGACCTACCCATC AACAACTTGGATCAGCTGAAGGGACTGAGGTCTTGCCACACCGGAGTCAATCGTAACGTC GGGTACAAGATCCCACTAACGATGTTGATGAAACGTGCCGTGTTCCCGAAAATGAACGAC C AC AG C AT T T C GC C GAAAGAGAAC GAAC T GAAAG C G C T AT C GAC G T T C T T C G C AAAG T C G TGCATCGTCGGCAAATGGTCGCCTGACCCCAAAACCAACTCGGCTTGGAAATCACAATAC AGCCATTTGTGTTCAATGTGCGAACACCCGGAGCGTTGTGACTATCCCGACAATTACAGC GGGTACGAGGGCGCGTTGAGATGCCTCGCCCACAACAACGGGGAGGTCGCGTTCACCAAA GTCATATTCACACGTAAATTCTTTGGGCTTCCAGTAGGTACCACTCCAGCGAGTCCATCA AACGAAAATCCCGAAGAGTTCAGATATCTCTGCGTGGACGGATCTAAAGCCCCCATCACT GGCAAGGCTTGTTCATGGGCTGCCAGACCTTGGCAAGGACTGATCGGTCACAATGACGTA CTTGCCAAACTCGCTCCGCTCAGAGAGAAGGTTAAGCAACTTGCTGATTCTGGTGCAGCT GACAAACCGGAGTGGTTCACCAAAGTCCTTGGTCTATCAGAGAAGATCCACCATGTCGCT GAC AAT AT C C C AAT CAAG C C CAT C GAC T AC C T GAAC AAG G C T AAC T AC AC G GAG G T CAT T GAAAGAGGACATGGAGCTCCCGAGCTGGTCGTCAGGCTATGTGTGACGTCAAACGTGGCA TTATCTAAGTGCCGGGCTATGTCCGTGTTCGCATTCAGTAGAGACATCAGGCCGATCCTA GAC T G T G T T C AAGAAAAC AG C GAAGAT GCCTGTCT T AAGAG C G T C C AAGAC AAC GG T T C A GAT C T T G C C T C AG T AGAC GAT AT GAGAG TAG C T G C AG C G G C T AAGAAG T AC AAC T T AC AT CCAGTTTTCCACGAAGTGTATGGAGAGCTAAAGACGCCCAACTACGCAGTGGCTGTTGTC AAGAAG G G C AC T G C C T AC AAC AAGAT C GAC GAC T T AAG G G GAAAGAAAT C T T G C CAC AG C TCTTACAGTACTTTCAGCGGTCTGCACGCGCCTCTCTTCTACCTTATTAACAAGAGGGCC ATTCAATCTGACCACTGCGTGAAGAACTTGGGAGAATTCTTCTCAGGCGGATCTTGCTTG C C T G G T G T C GACAAAC C C GAAAAC AAC C C AAGC G G T GAT GAT G T G T C T AAAT T GAAGAAG C AAT G T G GAT C C GAC AG C AG C G C T T G GAAG T GC T T G GAAGAG GAC AGAG GAGAC G T C G C A

TTTGTTTCAAGTGCCGATCTGTCCCACTTCGACGCCAACCAATACGAGCTGCTCTGC CTG AACCGCGACGCTGGCGGTAGAGATGTTCTCTCCAGTTTCGCCACTTGCAACGTCGCCATG GCCCCGTCCAGGACCTGGGTGGCTGCGAAGGACTTCCTGTCTGACGTATCTATCGCCCAC ACACCATTGAGCCTCGCCCAAATGCTCGCTACGAGACCTGACCTCTTCAACATTTACGGA GAGTT C T T GAAGAAC AAC AAT G T T AT T T T CAATAAT GCCGC TAAAGGC T TAGCAACAAC T

GAGAAACTTGACTTCGAGAAGTTCAAGACCATCCACGACGTCATCTCTTCATGTGGT CTC GCCTAA

> M. sexia-Arylphorin β subunit (MsARP); M28397.1 (SEQ ID NO: 12)

ATGAAGACTGTCATAATCCTAGCGGGGTTGGTGGCCCTGGCCCTCGGCAGCGAAGTG CCT GTCAAGCACTCCTTCAAAGTTAAGGATGTTGATGCGGCTTTCGTCGAACGTCAAAAGAAG G T C T T AGAT C T T T T C C AAGAT G T C GAC C AAG T AAAT C C T AAC GAT GAG T AC T AC AAGAT T G G C AAG GAAT ACAAC AT C GAG G C T AAC AT C GAC AAT T AC T C GAAC AAGAAG G C C G T C GAA GAATTCTTGCAGTTATACAGGACAGGTTTCTTGCCTAAGTACTATGAATTTTCACCCTTC TAT GAC AGAC T AAG G GAC GAG G C CAT TGGTGTTTTC CAC C T C T T T T AC T AC G C T AAAGAT TTTGATACGTTCTACAAATCTGCCGCATGGGCGCGTGTGTACCTCAACGAAGGACAGTTC TTATACGCCTACTACATTGCTGTGATTCAGCGTAAAGATACTCAGGGCTTCGTTGTACCA GCACCGTATGAAGTCTACCCTCAATTCTTCGCAAACTTGAACACTATGCTCAAAGTCTAC C G T AC C AAAAT GC AG GAT G GAG T T G T TAG T G C C GAT T TAG C T G CAC AAC AC G G CAT C G T A AAG GAGAAAAAC T AC T AC G TAT AC T AT G C C AAT T AC T C C AAC T C AT T AG T G T AC AAC AAC GAG GAAC AGAGAC TGTCGTACTT CAC T GAG GAC AT C G G C T T GAAT T C G T AC T AC T AC T AC TTCCACTCTCACTTGCCTTTCTGGTGGAATTCTGAGAGATACGGAGCACTAAAATCGCGC C G T G G T GAAAT C T AC T AT T AC T T C T AT C AG C AAT T AAT T G C AC G T T AT T AC T T T GAAC G T CTCTCGAACGGCCTGGGTGACATTCCCGAATTCTCATGGTACTCACCAGTCAAGTCTGGC TACTATCCACTGATGTCTTCTTATTACTACCCCTTCGCTCAAAGGCCCAACTACTGGAAC G T G CAC AG C GAAGAAAAC T AC GAGAAAG TACGATTCTTG GAC AC G T AT GAAAT G T C AT T C C T T C AG T T C C T C CAAAAC G GAC AC T T CAAAG C G T T T GAC C AGAAGAT T GAC T T C CAC GAT T T C AAAG C T AT CAAC T T T G T T G GAAAC T AC T GG C AAGAT AAT G C T GAC C T G T AC GG T GAG GAAG T T AC TAAGGAC T AC C AAC G T T C AT AT GAAAT TATAGCCCGC CAAG TGCTTGGTGCT G C AC C TAAAC CAT T C GACAAG T AC AC AT T C AT G C C C AG C G C T T TAGAC T T C T AC CAGAC G TCTCTGCGT GAC C CAAT G T T C T AC C AAC T T T AC AAC AGAAT T C T GAAG T AC AT AT AT GAG TACAAGCAGTACCTGCAACCGTACTCTTCAGAAAAACTGGCATTCAAGGGTGTCAAGGTG GTCGATGTTGTAGTAGACAAACTGGTTACCTTCTTCGAGTACTACGACTTTGATGCGTCC AAC AG CGTTTTCTG GAG C AAAGAG GAG G T T AAAT C TAG C T AC C C C CAT GAT T T C AAGAT C CGTCAGCCACGCCTTAACCACAAGCCATTCTCTGTCTCTATCGACATCAAATCTGAAGCT GCCGTTGATGCCGTTGTCAAGATATTCATGGCACCTAAATACGACGATAATGGATTCCCT C T GAAAT TAGAAAACAAC T GGAACAAAT T C T TCGAGC T GGAC TGGTT CACATACAAAT T T G T T G C T G G T GACAACAAAAT C G T GAG GAAC T CAAAC GAC T T C T T GAT C T T CAAG GAC GAC TCTGTTCCCAT GAC T GAG T T G T AC AAAT TAT T AGAAC AAAAT AAG G T T C C AC AC GAC AT G TCCGAGGATTACGGCTACCTGCCTAAAAGACTGATGCTGCCAAGAGGTACTGAGGGTGGT TTCCCATTCCAGTTCTTCGTTTTCGTATATCCATTCAACGCTGACAGCAAAGATCTTGCA CCGTTCGAGGCCTTCATCCAGGACAACAAACCTTTGGGCTATCCATTCGACCGTCCCGTT G T T GAC G C T T AC T T CAAG C AAC AC AAC AT G T T C T T CAAG GAC GTCTTCGTATACCAT GAC GGCGAGTACTTCCCGTACAAGTTCAATGTTCCTTCCCATGTGATGCACTCAAACGTTGTT CC TAAAC AC TGA

[0203] > M. sexia-Chymotrypsinogen-like protein 1 (MsCTLI); AM419170.1

(SEQID NO: 13)

ATGTACGTGAAAGTAGCACTTCTGTTGGTAGCCCTCATTGCTGGGAGCTGGGCCTTCCCA AAGCTCGAAGATGAGCAGGACATGTCCATCTTCTTCACGCAGCTCGATTCGAGCGCGCGT ATCGTGGGTGGTACCCAGGCCCCCAGCGGAAGTCACCCTCACATGGTGGCGATGACCACC GGTACCTTCATCAGGAGCTTCAGCTGTGGAGGCTCAGTTGTCGGTAGACGTTCCGTTCTG ACTGCGGCTCATTGCATCGCTGCTGTTTTCAGTTTCGGTTCCCTCGCCAGTACCCTCCGC TTGACGGTCGGCACCAACTTCTGGAACCAGGGAGGCACCATGTACACCGTCGCTCGCAAC ATAACCCACCCCCACTACGTCTCTGCGACCATCAAGAACGACATCGGTCTGTTCATCACT C AC AAC AAC AT CAT C GAC AC GAC T G T C G T C C GC AG C AT C C C T C T T AAC T T T GAC T AT G T G CCCGGTGGTGTTCTCACTAGAGTCGCCGGATGGGGCAGGATCAGGACCGGCGGTGCCATC TCTCCCTCTCTGCTGGAGATCATTGTGCCTACTATCAGTGGAAGCGCATGCGTAGCCAGT GCAATCCAAGCTGGCATCGATCTGAACATGAGACCACCTCCCGTCGAGCCTCACATCGAG CTGTGCACCTTCCACGGTCCTAACGTAGGCACTTGTAATGGTGACTCCGGCAGCGCTCTT GCCCGCCTAGACAACGGCCAGCAGATCGGTGTGGTATCGTGGGGCTTCCCGTGCGCACGC GGCGGTCCCGACATGTTCGTCAGGGTCAGCGCCTACCAATCCTGGCTGCAGCAGAGCATC GTATAA

[0204] > M. sexia-Valine Rich Midgut Protein (MsVMPI); NCBI accession number not assigned as yet (SEQ ID NO: 14)

ATCATTGACGGACCTTCCGTTGGACCNGCCATCATCGGCGCTGGAGACATCGCTGTCGGC CCTGCTATCGTCGACTTCCCTTTCCCCGACGGCGGTGCCGTGTCTGCCCCCGTTGAGCCT TCCCCCATCGCCATCGGACCCGCTATCGTCGGTGAATCCCCTATCTCCGTCGGACCTGCC ATCGTTGAGGCCGGAGACATCGCTGTTGGACCCGCTATCATCGACTTCCCCCTTCCCGAC GGTGGCGCCGTGTCCGCCCCCGTTGAGGTTTCTCCCGTCGACTCCGTCGTCGTCGGCCCT GCCGCCGGCTCTCAGAGCTCTCCCCTCGTCCAGATCATCATCAACGTTAAGGCCCCCGCT GGTGCCGGCCCCGTTGTCGATGCCGTCGCTGACAAGCCCATGGACATCATTGATGTTATG CCCGTCGTCGACCCTGCTGATTTCGTGGACCTCACCCCCGTTGTAGAGCCTGTAGAAGTC GTCGACATTGTCGATGTCATGCCCGTGGTTGACCCCATCAACATCATCGATGTTATGCCT GTTGTTAAGCCCGTAAACCCCCTTGCCCGTTCTTAAGGG

[0205] > M. escu/anfa-Catalase 1 (MeCATI); AF170272 (SEQ ID NO: 15)

ATGGATCCTTGCAAGTTCCGTCCATCAAGCTCAAACAATACCCCCTTCTGGACCACCGAT GCTGGTGCTCCAGTATGGAACAACAATTCCTCCATGACTGTTGGAACCAGAGGTCCAATC CTTTTGGAGGACTATCATATGATAGAGAAACTTGCCAACTTTACCAGAGAGAGGATTCCA

GAGCGTGTCGTCCATGCTAGGGGAATGAGTGCAAAGGGCTTCTTTGAAGTCACCCAC GAT GTCTCTCACCTTACTTGTGCTGATTTCCTTCGAGCCCCTGGAGTTCAAACCCCTGTCATC GTCCGTTTCTCCACTGTTATCCACGAGCGTGGCAGCCCTGAAACACTCAGGGATCCTCGA GGTTTTGCGACTAAGTTCTACACCAGAGAGGGCAACTTTGATATTGTGGGAAACAACTTC CCTGTCTTCTTCATCCGTGATGGAATAAAATTCCCAGATGTGATACACGCTTTTAAGCCC AATCCCAAGTCTCACATCCAAGAATACTGGAGGATCTTTGACTTCTTATCACACCATCCT GAGAGCTTGAGCACCTTCGCCTGGTTCTTCGATGATGTTGGAATTCCCCAAGATTACAGA CACATGGAAGGTTTCGGTGTTCACACCTTTACTTTCATCAACAAGGCTGGAAAAGTAACC TACGTGAAATTTCACTGGAAACCCACTTGCGGGGTCAAGTGTTTGATGGATGATGAGGCA CTTAAGATCGGAGGTGCCAACCACAGCCATGCTACGCAGGATTTATACGACTCCATTGCC

GCTGGCAACTATCCTGAGTGGAGACTCTTCATCCAGACAATGGATCCAGCTGATGAA GAC AAATTCGACTTTGATCCACTTGATATGACCAAGATCTGGCCTGAGGATATTTTTCCTCTA CAGCAAATTGGCCGTTTGGTCTTGAACAGGAACATCGATAACTGGTTTGCTGAGAATGAA ATGCTCGCATTCGACCCTGGTCATATTGTTCCTGGCATTCACTATTCAAACGACAAGTTG TTTCAGCTCAGAACCTTTGCATATGCTGACACTCAGAGGCACCGTCTCGGACCCAACTAT AAGATGCTCCCTGTTAATGCTCCCAAGTGTGCTTATCACAACAATCATTACGATGGTTTC AT GAAT T T CAT GC AC AG G GAT GAG GAG G T G GAT T AC T T C C CAT C C AG G T AT GAT C C AG T T CGCCATGCTGAGAGAAGCCCCATTCCTAACGCTATCTGTAGTGGAAGGCGTGAAAAGTGC G T C AT T GAAAAGGAGAAC AAT T T CAAG C AAC C T G GAGAGAGAT AT C GAT C C T G G GC AC C T GAT AGAC AAGAAAGAT T C C T G T G C AGAT T G G T T AAC G C C T T AT C AGAG C C AC G T AT C AC C TTTGAGATTCGCAGTATCTGGGTCTCTTACTGGTCTAAGTGCGACGCGTCTCTGGGTCAA AAGCTGGCTTCTCGTCTCAACGTGAGGCCAAATATATGA

[0206] > M. sexia-Hemolin (MsHEM); M64346.1 (SEQ ID NO: 16)

G G C AAAGAAT T CAAAT G G C AG GAAC AC AAT AT C G C C C AG C G C AAAGAC GAAG G C AG C C T G GTCTTCCTCAAGCCCGAGGCTAAAGATGAAGGCCAATACAGATGTTTCGCTGAGTCGGCC GCCGGAGTCGCCACCTCCCACATCATCTCCTTTAGAAGGACCTACATGGTCGTACCTACT AC T T T T AAG AC T G T AG AAAAG AAAC C G G T AG AAG GGTCATGGCT C AAAC T T GAG T G C AG C

ATCCCCGAAGGTTATCCTAAACCTACTATTGTATGGAGAAAGCAGCTTGGTGAAGAC GAA AG TAT AG C AGAT T C TAT AC T G G C AC G T C G T AT T AC AC AAT C T C C AGAG G GAGAC C T G T AC T T C AC GAG C G T C GAGAAAGAAGAC G T AAG C GAAAG C T AT AAAT AC GTTTGCGCTGC T AAG TCACCGGCTATTGATGGGGATGTCCCTCTTGTTGGATACACTATTAAAAGCTTAGAAAAG AAT AC AAAT C AGAAAAAC G G T GAG CTGGTCCC GAT G T AC G T C AG T AAT GAT AT GAT AG C T

AAGGCCGGAGACGTTACTATGATCTACTGCATGTATGGTGGAGTCCCAATGGCTTAC CCC AACTGGTTCAA

[0207] > M. sexta- Serine Proteinase homolog 3 (MsSPH-3); AF413067.1 (SEQ ID NO: 17)

ATGTTGTTGCTTCTGTATTGTCTTGTGGCGGCCTCCGCGCCGTTCTTTATTGCAGCGGAC CAAG G C AG C C C T GAC C T G C C T T TAG C T AC C GAAC C AC C AAC AGAAT G C G GAAC AAT AG C A CCTGATGATAGCTTAGTATTAGATGGGTCCGTTGGTAAAAGTGACAAATTACCTTGGTAT GCTATTATC T ACAC AAC C AC C AC C C G G C CAT AC AAG C AGAT C G G T G GAG GAAC C C T CAT C ACTCCTTCAGTAGTAATCTCAGCCGCTCACTGTTTCTGGCGCAATGGTGAGGTTCCATCT AAGGATAATTACGCCGTGGCGCTCGGCAAGACCCATAGTGCTTGGAATAGCCATGCCGAT G T AAAC G C T CACAAG T C T GAT G T AAAAGAAAT AC AC AT AC C AC C G C AG T T T AAG GGAAG G AAC AC TAATTATCG GAAT GAT AT AG C AAT CGTGGTCATGT C AGAC C C T G T GAC C T AC AAA GTGGACATCCGCCCTATCTGTTTGAACTTCGATGTACAATTTGAAAGACTGCAATTAAAA GAC G G CAT T AT GG G GAAGAT C G G C AC AT G GAAT G T AAG T C G T GAGAC AC T GAAAC T AT C G AAAAC AT TAAAAG T G G T G GAGAAT C CAT AC AT T GAC G C AG C GAC T [0208] > M. sexta- Peptidoglycan recognition protein 2 (MsPGRP2);

GQ293365.1 (SEQ ID NO: 18)

ATGGCGAGCTTCGCTTTAATAGTTATCCTTAGCGTAATTGGCTTTATATCGGCCTATCCT AGTCCTGAAGGTTACAGTTCTGCCTTCAACTTTCCATTCGTAACCAAGGAGCAGTGGGGC GGCAGGGAGGCACGCACGTCGACGCCACTCAACCACCCAGTGCAGTTCGTGGTGATCCAC CACAGTTACATTCCCGGCGTGTGCCTCAGCCGGGACGAGTGCGCGCGCAGCATGCGCTCC AT G C AGAAC T T C C AC AT GAAC AG T AAC G G G T GGAG T GAT AT T G GAT AC AAC TTCGCTGTC GGCGGTGAAGGGTCGGTGTACGAGGGCCGCGGCTGGGACGCGGTCGGCGCACACGCAGCT GGCTATAACAGTAACAGTATCGGCATCGTGCTCATCGGCGATTTTGTTTCAAACCTCCCG CCGGCGGTGCAAATGCAAACCACACAAGAATTGATCGCAGCGGGCGTGCGACTCGGTTAC ATCAGGCCCAACTACATGCTCATCGGGCATCGTCAGGTCTCCGCCACTGAGTGCCCAGGA AC CAGAC T C T T CAAC GAAAT C AC C AAC T G GAAC AAC T T C G T GAG

[0209] > M. sexta- Beta-1 , 3-glucan-recognition protein 2 (MspGRP2);

AY135522.1 (SEQ ID NO: 19)

GCGTCTGTTTGTTCGCAACCATTGCGGGCTGCTTGGGCCAGCGAGGGGGTCCATACAAGG TGCCTGATGCGAAACTCGAAGCTATCTACCCCAAAGGCTTGAGAGTCTCTGTGCCAGATG ATGGCTACTCCCTATTTGCCTTCCACGGCAAGCTCAATGAGGAGATGGAAGGTTTAGAGG C T G G C CAT T G G T C C AGAGAC AT C AC C AAAG C GAAG C AG G G C AGAT G GAT AT T C AGAGAT A GGAAT GC T GAGCT GAAGC T T GGAGACAAAAT T TAC T T C T GGAC T TACGT TAT TAAGGAT G GAT T G G GAT AC AG G C AG GAC AAT G GAGAAT G GAC T G T T AC AGAAT T C G T C AAT GAGAAC G

GTACAGTGGTGGACACTAGTACAGCGCCGCCACCAGTAGCACCCGCCGTTTCAGAGG AAG ATCAATCGCCAGGTCCTCAGTGGAGACCTTGCGAAAGATCCCTGACTGAGTCCTTGGCCC GCGAACGCGTTTGCAAAGGCAGCCTTGTCTTTAGCGAGGACTTTGATGGTTCCAGTTTGG CCGACTTGGGCAATTGGACCGCTGAAGTCAGATTCCCTGGCGAACCGGACTACCCGTACA ACTTGTACACTACGGACGGCACTGTGGGATTCGAAAGTGGGTCTCTGGTGGTGAGACCCG T C AT GAC C GAG T C C AAAT AC C AC GAG G G CAT CAT AT AC GAC C G C C T C GAC C T T GAGAGAT GTACAGGACAGCTGGGTACGCTGGAATGCAGGCGAGAGAGCAGCGGCGGTCAGATTGTAC CACCTGTGATGACAGCTAAACTGGCCACTCGACGCAGCTTCGCGTTCAAGTTCGGCAGGA TCGATATAAAGGCGAAGATGCCGCGCGGGGACTGGTTGATACCAGAACTCAACCTCGAAC CTTTAGATAACATATACGGCAACCAGCGATACGCTTCGGGTCTCATGCGGGTCGCGTTCG TGAGAGGAAACGATGTATACGCCAAGAAGCTCTACGGAGGTCCGATAATGTCCGACGCGG ACCCGTTCAGGTCCATGCTGTTGAAGGACAAGCAAGGGTTGGCCAACTGGAATAATGATT ACCACGTCTACTCGCTGCTGTGGAAGCCTAACGGTTTAGAGCTGATGGTGGACGGTGAAG TGTACGGCACCATCGACGCTGGCGATGGCTTCTACCAGATTGCGAAGAACAACCTCGTGA GCCACGCCTCGCAGTGGCTCAAGGGCACCGTCATGGCGCCGTTTGATGAAAAGTTCTTCA TCACTCTGGGTCTTCGCGTGGCGGGTATCCACGACTTCACGGACGGTCCGGGCAAACCTT GGGAGAACAAGGGC

> M. sexia-Relish family protein 2A (MsREL2A); HM363513.1 (SEQ ID

AGTGTGCGTCTACGAATGATTTGAAAATATGCCGCATAAGCCGTTGTTACGGTAGAC CGA GAG G C G G C GAAGAT AT C T T CAT AT T T G T C GAAAAG G T C AAC AAGAAAAAC AT C C AAG T T C GGTTCTTTAGACTGGAAAACGGGGAGCGCACCTGGTCAGCGATGGCGAACTTTCTGCTAA G C GAT G T T C AC CAC C AAT AC GCTATCGCTTT T AGAAC G C C AC C G T AC G T CAAT C AC C AAA TTTCTGAAGACGTGCAAGTTTTTATAGAACTCGTACGCCCTTCAGACGGTAGGACGAGCG C T CCCAT GGAGT T CAC AT AC AAG G C T GAGCAAAT C TAT AAAC AGAAC AAGAAAC G T AAAA CTACTTCGTCGTACTCGTCGCTCGACAGCTCCTCAGGTTCGGCCGGTTCAATTAAAAGCA TCAGCGAACTGCCCGCGCCCGTTGTTTTTGCTGAAAACGTAAGTTTTTTCTATGACACAT TACTCATTCTT CAAC C C AT GAC GAAT C T AT AA

> M. sexfa-Dorsal (MsDor); HM363515.1 (SEQ ID NO: 21)

ATGCTTGTGACGTTATGCGGCGGGAACTATAGTGGATTGTCGTTAACAAAAACTAATCAT TATATGTCACCAAAATCATATGTGCCAGGAAATGGTTATGACGCCGCCGTAATCCTAGGT AC CAC G GAG CAGAAT GAC AG C GAAC C C T C AAAC T T GAAT AT TAGTGATGTTTTT GAAG C C ATCACGCTCGCTGATCCGTCGTTCGGCGCGGGCGTGCCGTCGGTAGAGGAGACGATGGCG CACACGCAGCCCCAGCCGCTGCAAATGCCGTACGTGGTCGTCGTGCAGCAGCCCGCCAGC AAAGCGCTCAGATTTCGATATGAGTGCGAGGGCAGATCAGCCGGTTCGATTCCCGGCGCG TCGAGCACGCCCGAGAACCGAACCTTCCCCGCCATCAAGATAATCGGCTACACCGGCACC GTCTCCATCGTAGTGTCGTGTGTCACCAAAGATGAGCCTTGCAGGCCGCACCCACACAAC CTGGTCGGGCGCGACCACTGCGACCGCGGCGTGTTCTCCGTCCGCATCGAGATCACCGAC GAGAAT AAC GAAT AC C AG T T T C G GAAC C T G G GC AT AC AG T G C G T C AAG C G G C G C GAC AT C GGCGAGGCGCTGCGGATCCGAGAGGACCTGCGCGTCGATCCGTTCAAAACCGGCTTCACC CACCGGAACCACCCGCAAGGCATCGATCTGAATGCAGTGCGGCTCGCGTTCCAAGTGTTC CTGCCGCACTCCAGCGGCAAGATGCGGCGCACGCTCGCGCCCGTCGTGTCCGACGTCATC TACGACAAG

[0212] > M. sexfa-Spatzle (MsSPZIA); GQ249944.1 (SEQ ID NO: 22)

C GAAC AAC C T GAC AGAC G GAT AG C G G GAC G G T C AG C AC AAT AC GAAC AT T T AAGAAC AAA C GAGAG GTCTCTCCCGGTC T AC AG C GAGAC C CAGAG GAT AC AAG C AGAAGAGAGAAGAAG AC AC AG T T C GAGAC T AGAAGAAC C GAGAC AAC G T G C T GAGAAT G G T T C AT AT AAGAT AT T GAAT AAC C C T C C GAAAC C C T G T AT T AC T AAT AG GAGAAG T CAAAT TGATTCGTC GAAT GA

TAGGGTAGTGTTCCCCGGTCCGACTTCAGAAAGGTCGTACGTACCCGAAGTGCCAGA GGA AT G C AAGAAAAT C G G CAT AT G C GAC AG TAT AC C GAAT T AC C C AGAAGAAC AC G TAG C T AA TAT TAT AT C TCGAC T T G GAGAC AAAGGAAAAG TAT T AC AAAT AGAC GAAC T GGACGTAT C AGAC AC T C C AGAT AT C G C C CAGAG GTTGGGTCCG C AG GAG GAC AAC AT G GAAC TAT G TAG C T T T AGAGAAAAGAT T T T T T AC C C C AAG G C AGC G C C AGAC AAAGAT G GAAAT TGGTTCTT

C G T T G T GAAT T CAAAAGAAAAC C C AG T AC AG GG T T AT AAAG T T GAAAT T T G C GAC C G T C A GCAATTACCATGCGCGGAGTTCGCGAGCTTCCAACAGGGATATGAAGCGAGGTGCATCCA GAAATACGTTCGCCGGACCATGTTGGCGTTGGATCCCAAGGGTCAGATGACCGACATGCC CCTTAAAGTGCCCAGCTGTTGCT

[0213] > M. sexta-To\\ receptor (MsTOLL); EF442782.1 (SEQ ID NO: 23)

CAAGTGGTCGTTGTGCACTGCACCGGACTCGCCGAGTTCCCGCGCCTGCCACTAACCACG GACAAGTGGATCCTGCACCTGCCCCACAACAACATATCATACCTCGCCGCGGCCGACGTA T C G C C GAAC AT C G T G GAAC T C GAT C T AAGAAAC AAT T C AAT C AAGAAT AT C GAC G T AC AG GCATCAGCAAAACTAGCCTTCGTCCGGCTGCAATTGGGTGGTAACCCGATCGAGTGTGAC TGCGAGGCGTTGAAGCTGCTGGCGCCGCTGCTCAAACCTGACTCAAAGCTGCTTGACAGA AAGGACGT GAAAT GTGAGAACGACGCGCAGATTACCTTGGCGATGCT GAAAT TATGTACT AAGTCATCCAATGGGCTGATGTACTTGCTGTTCCTGTTGCTGTTACTCGCATTTGTCGTA ACCGGACTGCTCGCACGAACCGCAATTCGCCTGCGCATCAAAATGATCCTCATGAGACTG GGTTGGATGTCGAGACTACTGGAGCCCGCGGACGACGATCGCCCGTACGACGCGTTTGTG TCTTTCGCACACGAGGATGAGGAGCTGGTGATGGAGCAGCTGGCGGCACGGCTCGAGAGC GGCTCGCGGCCGTACCGACTGTGTCTGCACTACCGCGATTGGGCGCCAGGCGAGTGGATC CCGGCGCAAATAGCGGCTTCGGTGCGGGCCTCTCGGCGCACGGTGGCGGTTGTGTCGGCG CACTACTTACAGTCGGGCTGGGCGCTTGCCGAGATCCGGGAGGCGACCGCAGCCTCGCTG CAGGAAGGCATGCCACGTCTCATCATCGTGCTGCTCGACGAGACCGACCGGTTGATGCTC GAT AT AGAC C C T GAG T T G C AC GCCTATGTG C GC AAC AAT AC CTACGTGCG

> M. sexfa-Scolexin A (MsSCAI); AF087004.1 (SEQ ID NO: 24)

T C GAAG C T AAG GG G G C AAAG C AG C C AAT T GAT AC GAG G G C AG T GAAG GAAC G G TAT C CAT ACGCAGTTCGGAGTTTCGGAGGCTTCTGCGGAGGAACCATTATCAGTCCCACCTGGATCC TGACCGCCGGCCACTGCTCGATACTCTATGCGGGGAGCGGCCTACCGGCCGGCACCAACA TTACCGAGGTATCTAGCTTGTACCGCTTCCCCAAGCGGCTCGTCATACACCCGCTCTTCT CCATAGGACCCGTCTGGCTCAACGCTACGGAGTTCAACCTCAAACAGGCGGCTGCACGAT GGGACTTCTTGTTGATAGAACTGGAGGAACCGCTGCCGTTGGACGGCAAGATCCTGGCGG CTGCGAAGCTCGACGACCAGCCCGACCTCCCCGCAGGCCTCGACGTGGGCTATCCGAGCT AC AG C AC C GAC AC C T AC GAG G C T AAGAT AC AAAG C GAGAT G C AC G GAAAGAAG C T T T C G G TTCAATCTAACGAGGTGTGCTCGAAGCTAGAGCAGTTCAAGGCGGAGGACATGTTGTGCG CCAAGGGACGTCCACCGCGATACGACTTCGTCTGCTTCAGCGACAGTGGCAGTGGGCTAG TAGACAACAATGGTCGCCTAGTCGGCGTGGTGTCGTGGGCCGAGAACAACGCTTTCGAGT GCCGCAACGGCAACCTGGCGGTCTTCTCGCGAGTGTCCAGCGTACGCGAGTGGATCCGAC AAGTC

> M. sexfa-Hemolymph proteinase 18 (MsHP18); AY672794.1 (SEQ ID )

GATGGTCAGAAAGCGTGGGACAAATGTCTGGAATACGTTGACAAGCTGTCGTACCCATGC GCTTCAACCTACTCCCACTACCTCAGCTCCGTTTGGGAGAAAGATAAGGAGTGCAGTATG GTTCAGTTTGTTGGCGTGAGGCGATTCGCCTCGTATAACGGACAACCGGCGAAACGGAAC GAGTACCCTCACATGGCTCTGCTCGGCTACGGCGACGACCAGGAGACGGCGCAGTGGCTC TGCGGCGGCTCAGTGATCAGTGATCAATTCATCCTCACGGCTGCACACTGCATCTTTACA AATCTATTGGGTCCAGTACGTTTCGCAGCGCTAGGAATACTGCAGCGATCGGATCCAGTA GAG T T AT G G C AAG T T T AC AAGAT C G G C G G CAT AG T T C C C CAT C C G C AG TAT AAG T C AC C T AT C AAG T AC C AC GAC AT TGCTCTCCT GAAGAC T GAAAAC AAAAT AAAG T T T AAT GAGAAC GTGCTGCCAGCGTGTTTGTTCATAGAGGGCAGAGTGGGTGGGAGTGAGCAGGCTAAAGCG ACCGGTTGGGGCGCGCTTGGACATAAACAGACGGCAGCTGACGTACTGCAAGTGGTTGAC CTTCAAAAGTTCAGTGACGAAGAGTGCGGAAGTACCTACCGTCCTTACCGGCATTTGCCT C AAG G C T AC GACAG C G C C AC G C AGAT G T G C T AC G G C GAC AAG G GAAAAC T GAAT AT G GAC ACCTGTGAGGGCGACAGCGGCGGTCCTCTACAGTTCCAAAACTCCTCGCTCCTCTGC

[0216] > M. sexfa-Transferrin (MsTRN); M62802.1 (SEQ ID NO: 26)

ATGGCTTTGAAACTTTTAACTTTGATAGCCCTGACTTGTGCGGCTGCGAATGCAGCTAAA T C T T C AT AC AAAC TATGCGTGC C AG C AG CAT AC AT GAAG GAC T G C GAG C AGAT G C T T GAA GTACCCACGAAGTCTAAAGTGGCCTTGGAATGTGTACCGGCTAGAGACAGGGTGGAATGC CTCAGCTTTGTTCAGCAGCGACAGGCGGACTTCGTCCCCGTCGACCCTGAGGACATGTAC GTGGCCTCCAAGATCCCCAACCAGGACTTCGTCGTCTTCCAGGAGTACAGGACTGATGAA GAGCCTGATGCGCCATTCCGTTATGAAGCCGTTATTGTGGTTCACAAAGACCTACCCATC AACAACTTGGATCAGCTGAAGGGACTGAGGTCTTGCCACACCGGAGTCAATCGTAACGTC GGGTACAAGATCCCACTAACGATGTTGATGAAACGTGCCGTGTTCCCGAAAATGAACGAC C AC AG C AT T T C GC C GAAAGAGAAC GAAC T GAAAG C G C T AT C GAC G T T C T T C G C AAAG T C G TGCATCGTCGGCAAATGGTCGCCTGACCCCAAAACCAACTCGGCTTGGAAATCACAATAC AGCCATTTGTGTTCAATGTGCGAACACCCGGAGCGTTGTGACTATCCCGACAATTACAGC GGGTACGAGGGCGCGTTGAGATGCCTCGCCCACAACAACGGGGAGGTCGCGTTCACCAAA GTCATATTCACACGTAAATTCTTTGGGCTTCCAGTAGGTACCACTCCAGCGAGTCCATCA AACGAAAATCCCGAAGAGTTCAGATATCTCTGCGTGGACGGATCTAAAGCCCCCATCACT GGCAAGGCTTGTTCATGGGCTGCCAGACCTTGGCAAGGACTGATCGGTCACAATGACGTA CTTGCCAAACTCGCTCCGCTCAGAGAGAAGGTTAAGCAACTTGCTGATTCTGGTGCAGCT GACAAACCGGAGTGGTTCACCAAAGTCCTTGGTCTATCAGAGAAGATCCACCATGTCGCT GAC AAT AT C C C AAT C AAG C C CAT C GAC T AC C T GAAC AAG G C T AAC T AC AC G GAG G T CAT T GAAAGAGGACATGGAGCTCCCGAGCTGGTCGTCAGGCTATGTGTGACGTCAAACGTGGCA TTATCTAAGTGCCGGGCTATGTCCGTGTTCGCATTCAGTAGAGACATCAGGCCGATCCTA GAC T G T G T T C AAG AAAAC AG C GAAG AT GCCTGTCT T AAG AG C G T C C AAG AC AAC G G T T C A

GATCTTGCCT C AG TAGAC GAT AT GAGAG T AG C T G C AG C

[0217] > M. sexia-Arylphorin β subunit (MsARP); M28397.1 (SEQ ID NO: 27)

CTGTCATAATCCTAGCGGGGTTGGTGGCCCTGGCCCTCGGCAGCGAAGTGCCTGTCA AGC ACTCCTTCAAAGTTAAGGATGTTGATGCGGCTTTCGTCGAACGTCAAAAGAAGGTCTTAG ATCTTTTC C AAGAT G T C GAC C AAG T AAAT C C T AAC GAT GAG T AC T AC AAGAT T G GC AAG G AAT AC AAC AT C GAG G C T AAC AT C GAC AAT T AC T C GAAC AAGAAG G C C G T C GAAGAAT T C T T G C AG T TAT AC AG GACAG GTTTCTTGCC T AAG T AC TAT GAAT T T T C AC C C T T C TAT GAC A GACTAAGGGACGAGGCCATTGGTGTTTTCCACCTCTTTTACTACGCTAAAGATTTTGATA CGTTCTACAAATCTGCCGCATGGGCGCGTGTGTACCTCAACGAAGGACAGTTCTTATACG CCTACTACATTGCTGTGATTCAGCGTAAAGATACTCAGGGCTTCGTTGTACCAGCACCGT AT GAAG T C T AC C C T C AAT T C T T C G C AAAC T T GAAC AC T AT G C T C AAAG T C T AC C G T AC C A AAAT G C AG GAT GGAG T T G T TAG T G C C GAT T TAG C T G C AC AAC AC G G CAT C G T AAAG GAGA

AAAAC TAC TACGTATAC TAT GC C AAT T AC T C CAAC T C AT T AG T G T AC AAC AAC GAG GAAC AGAGACTGTCGTACTTCACTGAGGACATCGGCTTGAATTCGTACTACTACTACTTCCACT CTCACTTGCCTTTCTGGTGGAATTCTGAGAGATACGGAGCACTAAAATCGCGCCGTGGTG AAATCTAC TAT TACT TCTATCAGCAATTAATTGCACGT TAT TACT TTGAACGTCTCTCGA ACGGCCTGGGTGACATTCCCGAATTCTCATGGTACTCACCAGTCAAGTCTGGCTACTATC CACTGATGTCTTCTTATTACTACCCCTTCGCTCAAAGGCCCAACTACTGGAACGTGCACA G C GAAGAAAAC TAC GAGAAAG T AC GAT T C T T GGAC AC G T AT GAAAT GTCATTCCTT C AG T T C C T C C AAAAC GGAC AC T T C AAAG C G T T T GAC C AGAAGAT T GAC T T C C AC GAT T T C AAAG CTATCAACTTTGTTGGAAACTACTGGCAAGATAATGCTGACCTGTACGGTGAGGAAGTTA CTAAGGACTACCAACGTTCATATGAAATTATAGCCCGCCAAGTGCTTGGTGCTGCACCTA AAC CAT T C GAC AAG TAC AC AT T CAT G C C C AG C G C T T T AGAC T T C TAC C AGAC GTCTCTGC G T GAC C C AAT G T T C T AC CAAC T T T AC AAC AGAAT T C T GAAG TAC AT AT AT GAG TAC AAG C AGTACCTGCAACCGTACTCTTCAGAAAAACTGGCATTCAAGGGTGTCAAGG [0218] > M. sexia-Chymotrypsinogen-like protein 1 (MsCTLI ); AM419170.1

(SEQ ID NO: 28)

ATGTACGTGAAAGTAGCACTTCTGTTGGTAGCCCTCATTGCTGGGAGCTGGGCCTTCCCA AAGCTCGAAGATGAGCAGGACATGTCCATCTTCTTCACGCAGCTCGATTCGAGCGCGCGT ATCGTGGGTGGTACCCAGGCCCCCAGCGGAAGTCACCCTCACATGGTGGCGATGACCACC GGTACCTTCATCAGGAGCTTCAGCTGTGGAGGCTCAGTTGTCGGTAGACGTTCCGTTCTG ACTGCGGCTCATTGCATCGCTGCTGTTTTCAGTTTCGGTTCCCTCGCCAGTACCCTCCGC TTGACGGTCGGCACCAACTTCTGGAACCAGGGAGGCACCATGTACACCGTCGCTCGCAAC ATAACCCACCCCCACTACGTCTCTGCGACCATCAAGAACGACATCGGTCTGTTCATCACT C AC AAC AAC AT CAT C GAC AC GAC T G T C G T C C GC AG C AT C C C T C T T AAC T T T GAC T AT G T G CCCGGTGGTGTTCTCACTAGAGTCGCCGGATGGGGCAGGATCAGGACCGGCGGTGCCATC TCTCCCTCTCTGCTGGAGATCATTGTGCCTACTATCAGTGGAAGCGCATGCGTAGCCAGT GCAATCCAAGCTGGCATCGATCTGAACATGAGACCACCTCCCGTCGAGCCTCACATCGAG CTGTGCACCTTCCACGGTCCTAACGTAGGCACTTGTAATGGTGACTCCGGCAGCGCTCTT GCCCGCCTAGACAACGGCCAGCAGATCGGTGTGGTATCGTGGGGCTTCCCGTGCGCACGC GGCGGTCCCGACATGTTCGTCAGGGTCAGCGCCTACCAATCCTGGCTGCAG

[0219] > M. sexta- Valine Rich Midgut Protein (MsVMPI); NCBI accession number not assigned as yet (SEQ ID NO: 29)

ATCATTGACGGACCTTCCGTTGGACCNGCCATCATCGGCGCTGGAGACATCGCTGTCGGC CCTGCTATCGTCGACTTCCCTTTCCCCGACGGCGGTGCCGTGTCTGCCCCCGTTGAGCCT TCCCCCATCGCCATCGGACCCGCTATCGTCGGTGAATCCCCTATCTCCGTCGGACCTGCC ATCGTTGAGGCCGGAGACATCGCTGTTGGACCCGCTATCATCGACTTCCCCCTTCCCGAC GGTGGCGCCGTGTCCGCCCCCGTTGAGGTTTCTCCCGTCGACTCCGTCGTCGTCGGCCCT GCCGCCGGCTCTCAGAGCTCTCCCCTCGTCCAGATCATCATCAACGTTAAGGCCCCCGCT GGTGCCGGCCCCGTTGTCGATGCCGTCGCTGACAAGCCCATGGACATCATTGATGTTATG CCCGTCGTCGACCCTGCTGATTTCGTGGACCTCACCCCCGTTGTAGAGCCTGTAGAAGTC GTCGACATTGTCGATGTCATGCCCGTGGTTGACCCCATCAACATCATCGATGTTATGCCT GTTGTTAAGCCCGTAAACCCCCTTGCCCGTT

[0220] > M. esculanta- Catalase 1 (MsCATI) AF170272 (SEQ ID NO: 30)

ATGGATCCTTGCAAGTTCCGTCCATCAAGCTCAAACAATACCCCCTTCTGGACCACCGAT GCTGGTGCTCCAGTATGGAACAACAATTCCTCCATGACTGTTGGAACCAGAGGTCCAATC C T T T T GGAGGAC TAT CAT AT GAT AGAGAAAC T T GC CAAC T T T AC CAGAGAGAGGAT T C CA

GAGCGTGTCGTCCATGCTAGGGGAATGAGTGCAAAGGGCTTCTTTGAAGTCACCCAC GAT GTCTCTCACCTTACTTGTGCTGATTTCCTTCGAGCCCCTGGAGTTCAAACCCCTGTCATC GTCCGTTTCTCCACTGTTATCCACGAGCGTGGCAGCCCTGAAACACTCAGGGATCCTCGA GGTTTTGCGACTAAGTTCTACACCAGAGAGGGCAACTTTGATATTGTGGGAAACAACTTC CCTGTCTTCTTCATCCGTGATGGAATAAAATTCCCAGATGTGATACACGCTTTTAAGCCC AATCC CAAG T C T C AC AT C C AAGAAT AC T G GAGGAT C T T T GAC T T C T T AT C AC AC CAT C C T GAGAGCTTGAGCACCTTCGCCTGGTTCTTCGATGATGTTGGAATTCCCCAAGATTACAGA CACATGGAAGGTTTCGGTGTTCACACCTTTACTTTCATCAACAAGGCTGGAAAAGTAACC TACGTGAAATTTCACTGGAAACCCACTTGCGGGGTCAAGTGTTTGATGGA

[0221] > M. sexfa-IMD (MslMD); Msex2.05477-RA (SEQ ID NO: 31)

AT GAC T T C T T T GAAAAGCAAAT TAGCAGAAT TC T T GAAGGGGT TAAAAT CAGAT GCAACC C CAAG C C C C GAGG C CAT C GAC AGAAC C C AG G G T AAAT C C AC AAAC T GAG C AAT GAAAAT G AC G C AC CCTCGGATAGT GAAC C T GAAGAAAT CAT T AT AGAAGAT AT GAC GAT AC GAAGAA AAAGAAAAAGGCAAGTTACAAGAAACCGTTCTTTAGCTCCAAACCTGGTGCATTCCCCGA AAAGAAAAAAGAC AAGAAT AC CAAAGAC GAT T AC AG C AAC T T T G T GAAT AC T CAAG C C AC TGGTGATGTCATCAATATTGTAGGCTGTAACAATTTCCGCTGGGGTAATAATTATTATTT G G GAAAT AC C AAGAAAC AG GCTCCTCC T AAGAAAT AT T T C C AAGAAGAG GAAGACAG T GA

ACCAGAAGAT GAT AT T CAGAAAT GCAAC T TAAT CAAAC T GC TAT T T GAAGC T GAAAATAA G C C AGAAC AT GAG T AC C T G GAC T AC AT T T C C CAGAAC AT GAAT G AAAAG T G G C ACAGAT T C T T T G T GAAAC TAG G T T T T AC AC C AG GAAG GAT C AAAAC AT C C AT C AT AGAT AAT G C C AG TTATGGTATTTCAGAGGCTCGATACGCATTGCTACTTGAGTGGGTGAATAAAAAACGGGA CTCTAATCTTGGACAGCTATCGAATTTATTGTGGAAACACGGCGAGAGGCGAATTGTCAA AGAAT TAG C CAT TAT GTAC T C T GCAAGCAAGGCCAAAT C T GAT GAT GAAT AG

[0222] > M. sexfa-FADD (MsFADD); Msex2.03129-RB (SEQ ID NO: 32)

AT GAC T C TAT CGGAAT CAAAAT T T AAACAAT TAAAAGAACAAAT TAT T T T ACAT GCAAG T GCAAC T GAAAGAC AT G C T CAAAT T T T GAAC T CAT TAAAGGAT T T GT T TAAAGAAGATAT T

AATTCTGTTC GAAGAT T T GAAC AAAT C AG C AAT AT AG C AC AAT TAT T AAAAG T T T T AGAA ATAAGAGATGTGTTGTCAGAGGATGATGTTGCTCCTTTGAAAGATGTGGCACGCCAACTA C CAAAT AG C T CAGAAAT G C T G C G GAAAAT T G C T GAAT AT GAAGAAAAT C AC AAG T G T G GA GAG T T T AT T T C T G T T C C T AAG T C AC C T C C AAAAC AAAAAGAAC AT AG T C AT T C T GGAT G G GAT AT T AACAGCAT ACAGAAT T C T GAAT AT T C T G T AAAAAAG GAAAG GAT AT T T GAAG T T

AT T T C T GAAGAAAT T GGCACCCAT T GGAGAAAT C TAGCGAGATAT T T GAAAACAAGGGAA T G T AC AAT AAT T GAAAT T GAC AG T AAAAAC AT AC C AC T T T CAAG TAAAG C T AT G GAGAT T T T GAAAT T G CAT T G T AAAAAAG CAAAT C C AC AAAAG T G G T T T T T T GAC T T G T G TAAT G C A T T G GAC AAAG T GC AT AG GAC T GAC AT AG T G T T AT C AC T G C AAGAAAT TATGTCTAT GAAT ATT TAG

[0223] > M. sexfa-Dredd (MsDRD); Msex2.04297-RC (SEQ ID NO: 33)

ATGTTGTCTTCCGATGCCAGAAGTTCCCTAAATTCCAAGAGTGATAATGAAACGTTTATA T TAAAC TTGGATTCGATTT CAAAGAT T GAAAAAC AAT T AC AAGAT AAT C C T T AT GAT AT G ATCTCTTTAGTGTTCCTGTTGTACGACGTGCCGGATACGGCGCTGCAGAGATTGATGGTG TAT C AAC GAG T GAC GAG T GAC G T C AG T G GAACAAAT AT TAATTTGTTG C AAGAAT G G T AC T G T C AC G C C AG CAG T C G C C C T GAC T G G C AAC AT GAAT TAT T AGAAG CAT TAAT GAT AT G C C AAT T GAAC T C CAT T G T GAAGAG CCTTGGTTTCCATATACC C AC TAT GAGAG T AT T T T AC C AAT C AAAT GAT C C C T T C AG C AG CAAG T AC AT AAAT C C C G T AAAGAAAG TCCTTTATCAT G C C T G T GAAAAT AT AAAC T C AAC T AAT C T T T T GAAAT T AAAAAAAT C AC T T C T T T C AT AT GAT AT AAAT G T AAT G GAAT AT AC AAC T T G T GAG CTTATATTTT T AGAG CTCCTGTC C AAT AAAT T TAT T AC TAT T AAT AAT AT T GGC CAAAAGAT T AAAACAAAC CAGAAC T GCAT AT G T AAT G T AGAAAACC T T G T GAAGAT C T T AGACAAC T T AAAT GGAT T GAAAAAAG T GGC TAT G

AAT T T GAGAT AT T T T C AAAG T AAAT T C AAT GAT GAAGAG G T G GAT T C AT T C G C G T C T G T C AATGGAAGCAGCTCACCATCACTTCCAGTGCCTCCTCTTGATGGTACAAAATTAAAGCAA GAT GACAAGAAT TAT GGAGC T GAAGAT T T C T CAGAGC TAT T CGAC AT AAT AAAT AAT AT G C CAGAAC C G C T T GAAAAC AAT T T T AAAT C T GAT AC AAT G T C AAC T AAAC AGAAT AGAT AT GAGAT AAAAAAT C C G GAAC AAC TAG G T G T T T GCAT AG T TAT AAAC C AAGAGAAT T T T T AT

C CAT C CAAAAATAG TAT T GAAGAC CAC CAAAT T G T T C CAT T AGAAGAGAGAAAAGGAT C T AG T G T G GAT AAAAG GAC T T T G GAAAGAAC CAT GAC AT CAT TAAAAT T T CAAG T T CAC AG T T GC T C T GAT T TAGAT CAT GAT GAAAT GAT AGAAT T CAT CAAAAAGAAAAT TAATAAACAT G T T AC AT CAAAT GAC AG TATTTTTATGTTGTGTATACTGT CAC AT G G T G TAAG G GAC CAT GTGTATGCTGCTGACTCTGTGAAAATTAAAGTAGAGTCTATACAAAATCTGTTGGATTCA GAT GAAAT GAG C CAC T T GAGAG G CAT AC C GAAG GTGTTTAT T AT AC AAG C T T G C CAAG T T GAG GAT AC AC C T CAT C C T AC AT TTGCTGCT GAC AAT G T C C AAAC AAAT T AC T AC T T G G GA AAAT T AGAC TTCCTTATT T AC T G G G C CAC T G CAC C T GAAT AT GAAG C C T T C AGACAT GAG CAGACGGGGTCATTATTCATTCAAGCTCTTTGTAAACTGTTGCGTCAAAGAGCTAAACAT GAT CAC T T AC AT GAAAT C T T T AC AC AAG T AAAT AAC AAT G T T AC C AAT C T G T G CAC TAAG

T T GCAGCGT GCACAAGTACC T C T C T T C AAAAG T AC T C T GAG GAAAAAT T TAT AT T TACAA G T G C C AGAAT AA > M. sexfa-Relish F (MsRelF); Msex2.08004-RE (SEQ ID NO: 34)

ATGTCCTCTTGTCCAAGCGACTATGATCCCAGTGAATCGTCCAAATCTCCACAAAGT ATT TGGGAGTCAGGAGGATACAGTTCTCCGTCGCAACAAGTTCCTCAATTGACTTCTAACTTA AC AGAAT TGTCTGTTGAT CAC AG C TAT AGAT AC AAT G GAAAT G GAC CAT AT C T ACAGAT C AC AGAG C AAC C AC AGAAAT AC TTTCGGTTCCGTTATGT TAG C GAGAT G G T G G GAAC AC AT G GAT GTTTGCTTGG CAAAT C T TAT AC AAC AAAC AAAG T T AAAAC T CAT C C GAC AG T T GAA C TCGT GAAT TACACCGGTCGAGCCCTGATAAAGTGCC AAC TGTCGC AAAAC AAGAGCGAA

GAC GAAC AC C C GC AC AAAC T G C T C GAT GAAC AAGAC AGAGAC AT GAG C CAC CAC G T T C C C GAGCACGGCAGTTATAGAGTGGTATTTGCCGGTATGGGTATAATTCATACTGCCAAAAAG GAAG T T G C AG GGTGGCTC T AT AGAAAAT AT AT AC AG CAGAAC AAGAAT GAAAAG T T T AAT AAGAAAGAG C T C GAAG C G CAT T G T GAGAG GAT G T C C AAAGAGAT C GAT T T AAAC AT AG T T AGACTGAAGTTTAGCGCTCACGATATTGACACTGGCATTGAAATTTGCCGGCCAGTGTTC T C T GAAC C CAT T TAT AAT T T GAAG T G T G C G T C T AC GAAT GAT T T GAAAAT AT G C C G CAT A AGCCGTTGTTACGGTAGGCCGAGAGGCGGCGAAGATATCTTCATATTTGTCGAAAAGGTC AACAAGAAAAACATCCAAGTTCGGTTCTTTAGACTGGAAAACGGGGAGCGCACCTGGTCA GCGATGGCGAACTTTCTGCTAAGCGATGTTCACCACCAATACGCTATCGCTTTTAGAACG C C AC C G T AC G T CAAT C AC C AAAT T T C T GAAGAC G T G C AAG T T T T T AT AGAAC T C G T AC G C C C T T C AGAC G G TAG GAC GAG C G C T C C CAT G GAG T T C AC AT AC AAG G C T GAG C AAAT C T AT AAAC AGAAC AAGAAAC G T AAAAC T AC T T C G T C G T AC T C G T C G C T C GAC AG C T C C T C AG G T TCGGCCGGTTCAATTAAAAGCATCAGCGAACTGCCCGCACCCGTTGTTTTTGCTGAAAAC T T AC C T GAAAACAAT GAG C G T AT T AT AGAT AT AC C C G T AC AAC AGAAT AT G C T G T AC C AG GTTCTGCCAAGTCAATGTGATTTAGCCGACGCGTTCATGGAGGTGGACAGCAAGGGAAGT CCGGCCAGCGTCGTGGACCCGATGTGGGCCGGCGCCGACGTCGGGCTGCAGATGGCGTCG AGCCTGCCCGCCATCAAACTCGGCTCCACCGAACTAGAGAGCTTGGCGCACCGCAGCCGG GACGGAGTGCCCATGGACAAAGAATTCCTTGACAATTATCTCAGCTCTCTCAACTCGCTT G G T GAAC T T AAC GAC GAT GAT GAGAT CAAT CAT AT G CAAT AT GTGCGCTCGT T ACAGAT G GTCCACGCCGACTCGGCACGACGAAAGGCTGAACCGCAACCCAAAGACACTGTAACCAAA CCGACTCAATCTTCCCCGAAGGACACAGACTATGGCGCCCAGTCGGGACGCCCCACTGAA TATTCTGCTTATTATAAAATGGAAGACGGCGTGGAAGTCAAAAAACTGGTGAAAGAATTG T G TAG TAT CAT AC AGAAC AAAG C G G GAT AT AAAAAAC AAGAAG T GAGAAACAAAT TGGAG

AGGCTGTTCACCTACCGTCTGTCCAACGGAGATACATTCCTTCATATGACATTGTGC AGC AAT C AAAG T AG T T T T GAAT AC AT C G T C AAAAT CAT AC AT AG C G T GAAAAT GAC ACAT C T A T T G GAC T AT T G T AAT AAT AAAC AG C AAAC CAT AT T AC AC AT GGCTATTG T AAAC GAC C T G CCTCGAATGGTCTCTTTACTTATTGCAAAAGGTTGCAATCCAATGAATAAAGACAGCGAG GGCGACAATGCGGTGCACTACGCTGTGAGGAGCGAATGTTGTTTAGAAGCATTATTGGAC G C CAT C AAAAAT AAC AAT GTTCGGTGC GAT T T GAAC GAC T G CAAT AAC GAGAAG CAGAC G GCGCTGCACCTGTCGACGAGCGGCGCGAGCGCGCGGCAGCTGGCGGCGCGCGGCGCCGAC CCGCGCGTGCGCGACGCGCAGGGCCGCACGCCGCTGCACCTCGCCGCCTACGACGACAAC TGCGACGTCGTCAGGGCGCTGCTCGAGTTCGTGTCGCCCTCGGAAATAGACGTTGTGGAC GGCTGTGGCAACACTGCGTTACAGATCGTCTGCGGCGGCTCCGTTAAGAAGAACACTTTG GAAATAGTAAAACTGTTGCTCCAAAAAAAGGCTGATCCGTTGAAGCAAGATGGGCACAAC ATATCGGCGTGGAAGATGGCGCGCGAACACTCCGAAATACGGGACGCGATGAAGGACTAT GTCCCCGCCGCCGCGTACGAGGAGGACACCAAGTCGGAAATGGACGATGAGTTCGAATCC GCTGATGAGGAGGACTACCGGATGGGT TCCGGATCGGGCGCTGTGAGTCTGCCGGAGCTG GGCGCATACGTGGAGGCGCTGAGCGCGGCGCTGGAGGCGCGCGGCGCGTGGCGCGCGCTC GCGCACCGCCTCGGCCTCGCCGCCGCGCTCGACTGGTGCGCGCGACAGCACGCGCCCGCG CGCACGCTGCTGCTGCACCTCAAGGAATGCAGAAACGACATATCCTCGAAAACGTTGGCT GTAAT T C TAGAAGATAT GGGAGAAT TAGAGGCT GC T T CAAT TATAAGGAGACACATAGAG TGA

> M. sexfa-Cdc42 (MsCdc42); Msex2.04668-RA (SEQ ID NO: 35)

ATGCAGGCGATCAAGTGTGTCGTCGTCGGAGACGGTGCCGTCGGTAAAACATGTCTGCTC AT C AG C T AC AC GAC AAAT GCCT TCCCCG GAGAAT AC AT AC C T AC AG T AT T C GAC AAT TAT TCAGCGAATGTGATGGTGGACGGGAAGCCGATCAACCTGGGCCTGTGGGATACGGCGGGG CAGGAGGACTACGACCGGCTGCGGCCGCTGTCCTACCCACAGACCGACGTGT TCCT TATA TGCT TCTCGCTCGTCAACCCGGCT TCGT TCGAGAACGT TCGGGCTAAGTGGTACCCAGAA GTGCGGCATCACTGCCCGTCGACGCCCATCATCCTCGTCGGTACCAAGCTGGACTTGCGC GAAGACAAAGACAC CAT AGAGAAAC T T AAG GAC AAGAAG C T C GC GC C TAT CAC T TACACA CAGGGTCTGGGCATGTCGAAGGAGATCAACGCGGTGAAGTACCTCGAGTGCTCTGCGCTG ACGCAGAAGGGTCTGAAGACGGTGT TCGACGAGGCCATCCGCGCCGTGCTGTGTCCCGTG CCGCCCCCCAAACAGAGCCGGAAGTGCACGCTGCTGTAA

> M. sexfa-DSor1 (MsDSorl ); Msex2.00725-RB (SEQ ID NO: 36)

AT GAG T AAGAT G T C AAAGAAT AAAT T AAAC T T GAC C C T G C CAC C AG G G T CAAT AGAC AC A G CAC C AG C CAT CAC AC CAT C CAAT AT GAC AC CAC AG C T GAAG T C C G C AAC AG C T AC G GAG CGTCAGGGCT TGGCTGGTAAATCGAAAACCAGCATCGAAGCCCTGACAGAGAGGTTGGAG C AAAT C GAGAT GGAC GAC AC AC AGAGAC G GAGAAT AGAAG TGT T TCTGTGT CAGAAG GAG AAGAT CGGGGAGC T TAGT GAT GAT GAT T T T GAAAAGC T T GGAGAGT TAGGCCAAGGCAAC GGTGGCGT TGTAATGAAAGTCCGTCACAAGTCAACCGGTCTGATAATGGCGCGAAAGT TA AT C CAT C T G GAAG T C AAG C C G G C AAT AAAGAAG C AAAT CAT C AG G GAG T T GAAAG T C T T A CACGAATGTAACT T TGCGCATATCGTCGGCT TCTACGGGGCCT T T TATAGCGACGGCGAG ATCTCGAT T TGTATGGAGTACATGGACGGTGGGTCCT TAGACCT TATACTGAAGAAGGCC GGCAAGAT TCCTGAATCTAT TCTAGGAACAATAACATCCGCCGTGCTGAAAGGTCTGAGC TACCTCCGGGACAAGCACGCCATCATGCATCGCGACGTGAAACCATCAAACAT TCTGGTG AACAGCAACGGCGAGATCAAGATATGCGAT T TCGGCGTGTCCGGTCAGCTGATCGAT TCC ATGGCCAACTCTT T TGTCGGCACTAGGAGT TATATGTCTCCCGAACGTCTCCAAGGCACG CACTATTCAGTCCAATCTGACATATGGTCGCTCGGGCTGTCGTTGGTAGAGATGGCAATC GGAATGTATCCCATACCGCCGCCGGACGCGAAGACCCTGGCTGCCATCTTCGGTGGACAG AATGAAGATCATTCTCCTGGTCAGGCGCCGAACTCGCCCCGTCCGATGGCCATATTCGAG TTGCTGGACTACATCGTGAACGAGCCGCCGCCGAAGCTGCCCGCCGGAATATTCTCCGAC GAG T T CAAG GAC T T C G T C GAC CGCTGCTT GAAGAAGAAT C CAGAC GAAC GAG C C GAC T T G

AAGAC T T T GAT GAAT C AC GAAT G GAT AC G C AAAG C G GAC G C AGAAAAG G T G GAC AT AG C G GGGTGGGTGTGCAAGACAATGGACCTCATGCCTTCCACTCCAAACTCTAACGTGTCTCCT TTTTCTTCATAA > M. sexta-FOS (MsFOS); Msex2.09858-RA (SEQ ID NO: 37)

ATGCAGAACATCGATCCTCTGGAGATCGCCAACTTCCTCGCCACGGAGCTGTGGTGCCAG CAGTTGGCGAACCTCGAGGGCCTCCAGTCGGGGGTCCCGACTCGCACAACGGCCACCATC ACGCCGACGCAACTGCGCAACTTCGAGCAGACTTACATCGAGCTGACCAACTGCCGCAGC GAGCCCACCACGCACGCCGGCTTCGTGCCGCCGTCAGTCACGCACGCCAACAACTACGGC ATCCTGAATCCGACGGCGTATTGTGATTCGGGCCCGACGACGGCGCTGCACGTGTCGCCG GGCCCGCTCTCCGCCAGCGGCGACAGCAGCAGCAGCCCCGGCCTGCCCACGCCCAAGCGG CGCAACATGGGCGGCCGCCGGCCCAACAAGGCGCCGCAAGAACTCACGCCCGAGGAAGAA GAGCGCAGGAAGATCCGCCGCGAGCGAAACAAAATGGCCGCCGCCCGTTGTCGCAAGCGC AGAC T C GAC C ACAC C AAC GAG C T G C AAGAG GAAAC C GAC AAAT T AGAG GAAAAGAAG CAT GCGCTCCAGGAGGAAATCCGCAAACTGAACGCTGACCGGGAGCAGCTGCAAGTGATCCTT C AGAAC CAT AT GG T AT CAT G C C G G C T C AAC AAGAGAT C CAT C AG C C C G C C C GAT G T GAAG CCCTTCCAGGACCCGTACGCCTACCCTGAGATACCCGAGGATGGCGTCCGTGTCAAGGTG GAAGTGGTCGACCCCTCAGTAGACACGGTCTTAGTGTTGGACAATATTTACTCAACGCCG CCGACTGACAAAAAAATTATGCTGTCGTCGGCCAACCCAGCCGTGGTGACGAGTGGGTCG CCCGCCGCCCTGGAGACCCCGCCGGCGATAGTGCGTCCCAACAGACCCAACTCCCTCCAG GTGCCGCT C AG C C T C AC AC C AG C AC AG T T AC AC AAC AAC AAG G C G C T G G GAAAC AAC AAA AT AG C C G G C AT AGAGAT AAG C AC G C C GAG C AAC G G CAT C C C G T T C AAC T T C GAGAG C C T G ATGGAGGGCGGCACGGGGCTGACGCCGGTGCACGGCCACGCGCTGCCGCTGCCGCACCCG TGCGCGCAGCAGCAGCGCGCCGCGCCCGACGCCTCGCCCGCCGAGCCGGCGCCGAGCTCG CTGGTGAGCCTCTGA > M. sexta-Jra (MsJra); Msex2.12422-RB (SEQ ID NO: 38)

ATGGT TCGGCACTCCGGCCACGGCATGGAGACCACT T TCTATGACGAGCAGTATCCCATC AGCGGCCCCGTGGAGAACCTGAAGCGGCCCCTCACGT TAGACGTGGGGCGCGGCGTGAAG CGCGCCAGGCTCGGCGGGGCACCCGTACTCTCATCTCCAGACCTACAGATGCTGAAGCTC GGCTCGCCAGAGCTCGAGAAACTGATCATCCAGAACGGCT TGGTGACGACGGCCACCCCC ACTCCAGGTGCGCCGGTGCTGT TCCCCGCGGTCGCGCCTACCGAAGAGCAAGAGATGTAC GCGCGGCCAT TCGTCGAGGCGCTAGACAAGCTGCACCACGGCGAGGTGACCCCGATCGGG CGGCGAGTGTACGCCGACCTGGACCGGCCGCTCGAGCGGTACCCCACGCCCGTGGTGAAG GACGAGCCGCAGACGGTGCCCAGCGCCGCCAGCTCGCCTCCACT T TCCCCTAT TGACATG G AC AC G C AG GAG C G GAT C AAAC T G GAG C G C AAG C G AC AG AG G AAT C GAG TGGCCGCT TCC AAATGCAGGCGGCGCAAGCTCGAACGCATCTCCAAGCTGGAGGACAAGGTGAAGATCCTG AAGGGCGAGAACGCGGAGCTGGCGCAAATGGTGGTGAAGCTAAAAGAGCACGTACACCGA CTGAAGGAGCAAGTGCTGGAGCACGCCAACGGCGGCTGCCACATCGAGTCGCACTTCTGA

> M. sexfa-Caudal (MsCADI ); Msex2.04570-RA (SEQ ID NO: 39)

ATGGTGAAT TACGT TAATCCCCTCGCCATGTACCAAGGCAAGGGCGGGCAATACGGCGGC GGGTGGTACGGCTGGCAGCATCAGAACT T TGAAGAACAACAATGGTGTGCT TGGAACGGT GCGCCGGCGGGTGGCGAGTGGGCGCCAGATCCACATCAT T T TCCCAAAAGAGAACCTGGA GAGAGAGAAAT AG C AGAC AT G C CAT C AC C G G CAC GAG GAGAC T T G G C AAG T C C AGC AGAA GGT TCGCCGAGCTCGGGGTCGAGGCCGTCGCAGCCGCCAGCACCGCCGCGT TCCCCATAC GAAT G GAT GAAAAAAC C C AAC T AC C AGAC AC AAC C T AAC C C AG G TAAAAC G C G C AC AAAA GAC AAAT AC AG GG T G G T G T AC AG T GAT CAT C AGAG G C T G GAG T T AGAGAAG GAG T T C CAC TACAGCAGGTACATCACTAT TCGTCGCAAGGCAGAACTCGCCGTCAGCCT TGGCCT T TCC GAAC GAC AG G T CAAAAT T T G G T T T C AAAAT AGAC GAG C C AAG GAAAG GAAAC AG G T GAAG AAAC G C GAAGAAG T G G T GAT GAAAGAGAAAG GC GAC CAT G CAT C T C T AC AG C AC GC G C AG C T G CAC CAT G C CAC CAT G C T G CAT CAC C AG C AGAT GAT GAAC G G CAT GAT G CAC CAC CAC CACTACCACCAAGGCGTGT TGCAAGGCGTGCCGGAGCCGCTGGTGCCGGGCGTGCCGCCC GTGCCGCTGCTGTGA

> M. sexfa-Atg8 (MsAtg8); Msex2.12227-RA (SEQ ID NO: 40)

AT GAAAT T C C AAT AC AAAGAAGAAC AT T C T T T C GAAAAGAG GAAGAC T GAAG G C GAAAAG AT TCGCAGGAAATACCCGGATCGCGT TCCAGTAAT TGTAGAGAAAGCCCCGAAGGCTAGA T TGGGAGACCTCGATAAGAAGAAGTAT T TGGTGCCGTCTGAT T TGACTGTCGGACAAT T T TATTTCCTAATTAGGAAACGCATCCATCTTCGGCCTGAGGACGCATTGTTCTTTTTCGTG AAC AAT G T T AT T C C AC C AACAT C C G C C AC CAT GGGCTCTCTG T AC C AG GAAC AT CAT GAC GAAGATTTCTTCCTCTACATTGCATTTTCTGATGAAAATGTTTATGGATTTTAA [0231] > M. sexfa-Atg13 (MsAtg13); Msex2.06273-RA (SEQ ID NO: 41)

AT GGCAC C C GAAG TGGCTTTTTC T AACAT AAAT GACAAGAAT GAAT T T AC T AAAT T CACA AAAT TCT TAG CTTATAAAGGCGTTCAAGTTATTGTAGAATCGAG GAAG GGTGTAAAAATA GAT C C T AAT AG TAAAC CAAGAT CAT C AGAC AC TGATTGGTT C AAT C T T C AAAT AC CAGAC T C T C C AGAG G T T AAC C AG G C AAC T AAGAAT G CAT T G C C T T C AGAC AAG G T G T T AGAGAT T AT C AAAG C C C AAC T G C AC G T G GAAAT AT C AG T AC AAAC C GAG GAT G G C GAT GAAAT G G T T

TTGGAGTTGTGGACCCTTGAACTTGACGAAACTCAGTTTGACACTTCTGTTAAAGCC ACG AAC AC AG T T T AC T T CAGAAT G G GAAT AT T AC T T AAG T C G C T TAT AAC TAT AAC AAGAAT T AC T C C AG C G T AC C AC T T G T C GAG GAAG C AAAGAAC AGAG T C G T T C AC AAT AT T C T AC AGA G TAT AC AAT G G C GAAC C GAAAG T AAAAG C G C T T G GAGAAT C AG T GAAGAAAAT T CAAG C T GGAATGCTCAAAACTCCACTTGGAGGGATAATATTCTCCGTGGCCTACCGCACAAACTTC TCCATTTCGC C AAAC AGAT C G GAGAAG GAC AAAAC AT T G C T T T T GAAGAG T GAT CAT T T C GAAC T GAG T C C AAAAC AT GTGATATTT GAAT C C AAGAAAAAGAAAGAC GAGAAAAAAGAA TACAAGCCTCTGAAACCTGTTGATTTGAATAAGCCACTTCGATTAGCCGCATTTGTAGAC GAG GAT G T T G T AAAAAAG G C C T T T GAT GAC T T CAT G GAGAAGAT G C C GAT T C C C AAAT AC C GAG T GAT AC G TAG G GAGAGAAG T C C AGAGAGC GAC AAG C C TAT AG T AT C C AAAAG T AC T

CAGGATTTGGACGCTTCTGTGACGTCAAAGAGTCCGACGTCAATGGAAATGCCACCT AAA AAGTTCACAGGCTTTCGCAATGAGAACGAACCTCCATTAAAACTTCTCCATTTCCCATTC G C T GAT AAC C AT C C GAT AAGAGAAC T G G C C GAG T T T T AC AAAGAG T T C T T C AAC GC C C C C CATTTGAAGTTAGCTGATGACGTTAGCCTGAAATCGGGCAGTGCTGAATCGGTAAAAGAG G T GAT AGAGAT T AC AAC T GAAGAT T T G T C GAAAGAT C T C GAAT T G T AT GAGAAC T C G G T G

TTGGAGTTTGATGAGCTCTTGGCAGATATGTGCCGATCGGCTGAGTGGAGTGGGAAC TAG

[0232] > M. sexfa-IAP1 (MslAPI); Msex2.05607-RA (SEQ ID NO: 42)

ATGGCATCAGCTGGCGCCGTACCGAATATTCTAGTGTCGTCGTCGCTTTTCAAGACCACT CCTCGGGATCCTAAAATTCGTCGAAAAACAAGCCCTTTGAAGTTACCACCTTGTGACACA CATATAGGCTCGCCTCCACCATCATCCTCTCCGACCTCCTCGTCAACTGATAAAACCGAT AATCATGATACTTTTGGTTTCCTTCCTGACATGCGtgatatgcgCCGCGAAGAAGAACGA CTGAAAACTTTCGATAAGTGGCCTAGCACGTACGTGACACCTGAAGAGTTAGCTCGTAAT GGTTTCTACTACCTTGGGCGCGGTGATGAAGTTCGCTGTGCATTCTGTAAAGTAGAAATT ATGCGATGGGCGGAAGGAGACGACCCTGCGAAAGATCACAAACGATGGGCGCCCCAATGT CCGTTTTTACGTAATCTTTCGAACGGTACTAATGGCAGCGGAGAAGGTAGTTCGGAAGGT CGCGACGAGTGTGGTGCGCGAGCAGCGACGCGGGAGCCTGTGCGTATGCCCGGACCTGTG CATCCCCGCTATGCAACAGAGTTATCGCGTCTCGCCAGTTTCAAGGATTGGCCGCGTTGC ATGCGCCAAAAACCAGAGGAACTCGCGGAAGCAGGATTTTTCTACACCGGCCAAGGGGAT AAAACGAAATGTTTCTATTGCGATGGAGGTCTCAAAGATTGGGAAAACGACGATGTTCCA TGGGAACAGCATGCCCGTTGGTTCGATCGTTGTGCGTATGTGCAACTTGTTAAAGGCCGT GATTATGTCCAGAGGGTATTATCGGAAGCGTGTGTTATACGTGCCACCGACGAAAAGCCT GCGCCTGCACCTCAACCGTCCCAACCAAATGTCTCAGTTGTATCAGAAGAAAAACCTGTC GAAGAG G C T AAGAT AT G C AAAAT AT GTTATTCC GAAGAAC GAAAC AT AT GCTTTGTGCCG TGCGGTCATGTGGTCGCTTGTGCAAAGTGTGCCTTATCTACTGATAAATGCCCAATGTGC CGGAGGGCTTTCACAACTGCACTGCGACTCTATTTTTCGTGA > M.sexfa-Chitin synthase 2 (MSCHS2); AY821560.1 (SEQ ID NO: 43)

AT G G C C G C AAC T AC AC C AG G T T T T AAGAAG T TAG C AGAC GAT T C T GAG GAT T C AGAT AC A GAAT AC AC CCCGCTGTATGAT GAC G G T GAT GAAAT AGAT C AAAGAAC T G C AC AAGAAAC A AAAG GAT G GAAT C T AT T T C GAGAGAT T C C G G T GAAAAAG GAGAG T G GAT C T AT G GC C AC A AAAAAT T GGATAGAAACAAGCGTAAAAAT CATAAAAGT GC T T GCC TACATAT T GGT T T T T TGTGCTGTACTGGGTTCCGCAGTCATAGCTAAAGGAACTCTTCTATTTATTACGTCACAA C T GAAGAAAGACAGAC AAAT T AC T C AC T G C AAT AGAC GAC T T G C T T T AGAC CAACAG T T C AT AAC G G T AC ACAG T T T AGAAGAAAGAAT AACAT GGCTATGGG C AG C AC TTATTGTATTC GGTGTGCCGGAGTTAGGGGTGTTTTTGAGATCCGTCAGGATATGCTTCTTCAAAACTGCC AAGAAAC C AAC CAAAAC AC AG TTTATTATTGCTTT C AT AAC AGAGAC AC T AC AAGC AAT A G GAAT AG C AG C AC T T G T AT T AAT AAT T C T AC CAGAAT T AGAC G C T G T GAAAG GAGC C AT G

TTGATGAACGCCACGTGCGCTATCCCTGCATTGCTAAACATTTTCACGAGAGACCGA ATG GAT T C T AAG T T T T C TAT AAAAT T GAT AT T G GAT GTATTGGC GAT AT C G G C AC AAGC C AC G GCGTTTGTTGTTTGGCCTCTTATGGAAAGAACGCCAGTTCTATGGACCATACCAGTTGCA TGTGTGTTAGTGTCTCTAGGCTTCTGGGAGAATTTTGTTGACACCTACAATAAAAGTTAT G T T T T T AC G G T GC T G C AG GAAC T AC G C GAC AAC C T C AAGAG GAC T C G G T AC T AC AC T C AG

CGGGTGCTATCTGTTTGGAAGATTATAGTGTTTATGGCATGCATTTTAATATCGCTG CAT ATGCAAAATGACAATCCGTTTACCTTTTTCACTCACGCCAGCAAAGCCTTTGGAGAGAGA C AG TATGTCGT T AAC GAG GTTCTAATAGTAGTCC GAGAT GAC GAAAC CAT AG G C TAT GAC GTCACCGGAGGTATATTCGAATTGGACGCGATATGGACCTCAGCATTGTGGGTCGCATTA ATTCAAGTGGGAGCAGCCTACTTCTGTTTCGGAAGTGGCAAGTTTGCTTGCAAAATTCTT ATACAAAATTTTAGTTTCACTTTAGCATTGACTCTCGTCGGGCCCGTGGCAATCAACCTC CTTATTGCTTTCTGCGGAATGAGAAATGCAGACCCTTGCGCTTTCCATAGAACTATACCT GACAATTTGTTTTACGAGATACCACCTGTGTACTTCTTGCGGGAGTACGTGGGCCACGAG ATGGCGTGGGTGTGGTTATTGTGGCTCATATCTCAAGCGTGGATCGTGTTTCACACGTGG CAGCCGCGATGCGAGCGCCTCTCCGCAACTGACAAACTGTTTGCCAAACCGTGGTACATC GGACCGCTAATCGACCAATCGTTGCTGCTAAACAGGACTAAGGATTTGGATAATGATTGC CAGGTTGAGGATTTGAAGGGTCTTGGCGACGATTCGTCGGTTGGAAGCGATCTTGCCATC G T AAAAGAT AT CAAAC CGTTCGATTC GAT AAC C AGAAT AC AAG T G T G T G C GACAAT G T G G

C AC GAGAC CAAT GAG GAGAT GAT C GAG T T C T T GAAG TCGATATTCCGCCTC GAC GAG GAC CAGAGCGCGCGCCGCGTGGCGCAGAAGTACCTCGGCATCGTCGACCCCGACTACTACGAA CTCGAGTGTCATATTTTCATGGATGACGCTTTTGAAATATCCGATCACAGTGCCGAAGAC TCGCAGGTGAATCGCTTCGTGAAGTGCCTAGTGGATGCGGTGGACGAAGCGGCTTCCGAA GTGCATCTGACTAACGTGAGGTTAAGGCCCCCCAAGAAATACCCCACCCCGTACGGCGGA AAAC T AAT T T G GAC CAT G C C AG G GAAAAAT AAG T T GAT T T G C CAT T T GAAAGAT AAAT C C AAGAT T C G G C ACAGAAAGAGAT G G T C G C AG G T T AT G T AC AT G T AC TATTTCCTGGGG CAT CGCTTGATGGACCTGCCAATATCCGTGGATCGTAAGGAAGTGATTGCCGAGAACACGTAC CTATTAGCTTTGGATGGAGACATCGACTTCAAGCCGAGCGCTGTGACGTTGCTGGTCGAT CTTATGAAGAAGGATAAGAACTTGGGCGCCGCTTGCGGTCGCATTCATCCTGTCGGCTCT GGTTTCATGGCCTGGTACCAGATGTTCGAGTATGCTATTGGTCATTGGCTGCAAAAGGCG ACTGAACACATGATCGGCTGCGTACTCTGTAGTCCGGGATGCTTCTCCCTCTTCAGAGGA AAG GCGCTTAT GGAC GAC AAC G T C AT GAAGAAAT AC AC AC T C AC T T C T AAC GAG GC T C GA CATTACGTGCAATACGATCAAGGCGAGGACCGTTGGCTGTGTACGTTGCTGCTGCAGCGC GGGTACCGCGTGGAGTACTCGGCGGCGTCGGACGCCTACACGCACTGCCCCGAGCGGTTC GACGAGTTCTTCAACCAGCGCCGCCGCTGGGTGCCCTCCACCATGGCCAACATATTCGAT CTGCTCGCGGACTCCAAACGCACCGTGCAAGTCAACGACAACATTTCCACTCTGTATATC GTCTATCAGTGCATGCTTATGATGGGTACGATTTTGGGTCCGGGAACAATCTTCCTGATG AT GAT T G G C G CAAT AAAC G C TAT AAC AG G CAT GAG CAAT AT G C AC G C AC T T C T C T T T AAC CTGGTGCCCGTGCTTACGTTTTTGGTTGTCTGTATGACATGCAAGTCCGAGACTCAGTTG ATGCTCGCGAACCTCATTACCTGCTTTTATGCGATGGTAATGATGTTTGTGATCGTCAGT ATCGTCCTACAAATATCACAAGATGGTTGGCTAGCGCCATCTAGTATGTTCACTGCGGCA ACATTTGGAATATTCTTCGTAACAGCGGCTTTGCATCCACAAGAAATAATATGTTTGTTG T ACAT T T C CAT AT AT T ACAT CACAAT T C C GAGCAT G TAT AT G T T G T T GAT TAT C TAC T C C CTATGCAATTTGAACAACGTCTCGTGGGGAACTCGAGAGGTGGCTCAGAAGAAGACTGCA AAGGAAAT GGAAAT GGATAAGAAAGCAGCGGAAGAAGCAAAGAAGAAGAT GGATAAT CAA AGCATAATGAAATGGTTCGGCAAGTCGGACGAGACGAGCGGCTCGCTGGAGTTCAGCGTG GCGGGACTGTTCCGCTGCATGTGCTGCACCAACCCTAAGGACCACAAGGACGACTTGCAT CTCTTGCAGATCGCCAACTCCATCGAGAAGATCGAAAAGAGATTGTCGGCACTTGGCGCG GAGGAGTCCGAGCCGGCGCAGGCGCAGACGCGGCGCCGCTCGTCGCTGGGGCTGCGGCGC GACTCGCTCGCCACCATGCCCGAGTACGCCGACAGCGAGCTGTCCGGAGACATTCCTCGC GAAGAAAGAGAC GAT C T T AT AAAC CCCTATTGGGTG GAG GAT C C C AAT C T G C AGAAAG G T GAAGTAGACTTCTTGACGACGGCTGAAATCGAATTCTGGAAGGACTTGATTGATGTTTAT T T GAG G C C T AT C GAT GAAAAC AAG GAAGAG C AG GAAC G T AT C AAAAC C GAT C T AAAGAAC TTGCGTGACACGATGGTGTTCGCGTTCGCCATGTTGAACTCGTTATTCGTGTTGGTGATA TTCCTGCTGCAGTTCAACCAGGACCAGTTGCACATAAAGTGGCCGTTCGGGCAGGATGTC GCGCTTTCTTATGACAAGGAAAGGAATGTTGTATTGGTGGAGCAGGAATTCCTTATGTTG GAGCCTATAGGTTCCCTGTTCCTCGTGTTCTTCGGGTTTGTAATGTTGATACAGTTCGTG GCGATGTTGTCCCATCGTTCGTATACTATTACGCATTTGCTCTCCACAACAGAGCTTCAC TGGTATTTCAGCAGACGTCCGGACCAGATGTCAGATGAAAACCTCTTGGAAAGGAAGGTG G T AGAAAT AG C GAGAGAG T T G C AGAAG T T AAAC AC G GAC GAC C T AGAC CGCCGCGCGGTC GAAAC T AAC GAC GTGTCGCGGC GAAAGAC T C T AC AC AAC C T AGAGAAG G C G C GAGAC AC C AAG C AC AG C G T GAT GAAC C T T GAC G C T AAC T T C AAGAG G C GAC T GAC TAT AC T ACAGAG C

GGTGATCCTAACGTGATATCTCGGCTGTCATCGTTGGGCGGCGATGAGGTTACTCGT CGC GCCACGATACGCGCATTAAAGACGAGGAGGGACTCACTGCTCGCTGAAAAACGACGCTCC CAGCTGCAAGCGGCGGGCGACGCTACAGGCTACATGTATAACCTGTCAGGCACTGCGGTG AAC GAC AT GAG C G G C C GAG C T T C GAC G G C C AGC G C C TAC AT T AAT AAAG GAT AC GAAC C C GCTTTCGATAGCGACGACGACGAACCACCGCGTCCGCGCAGGAGCACTGTACGCTTCAGA GAAAAC TAC AC G T AA > M.sexia-Beta-fructofuranosidase 1 (MsSud ); GQ293363.1 (SEQ ID )

ATGTACATTAAAACAGCAACATTTTTGCTGTGCGTTTTCCTTGGTAGTGTATCGTCA TGT TGCGTTAATGGGCGGTACTACCCGAGGTACCATTTGTCGCCACCGCATGGCTGGATGAAC GAC C C C AAC G GAT TCTGCTACTT C AAAG G T GAAT AC CAT AT G T T T TAC C AG TAC AAT C C C ATGTCAAGTTTGGAGGCTGGCATAGCTCATTGGGGTCATGCGAAAAGTAAAGATTTGTGC C AT T G GAAAC AC T T AGAC CTCGCCATCTATCCTGAT C AG T G G T AC GAT C AAAC G GGAG T A TTTTCTGGAAGTGCGCTAGTAGAGAATGACGTCATGTACCTTTATTATACTGGAAATGTA AAT C T T AC T GAT GAAAT G C CAT T T GAG G GAC AAT T C C AAG CTCTTGGTAT C AG T AC T GAC G G T G T C C AC G T AGAAAAG T AT AAAGAC AAT C CAAT AAT G T AC AC G C C AAAC CAT CAAC C T C AC AT C C GAGAC C C AAAAG T T T G G GAAC AC GAC GGCTCTTATTATATGGTCT T AGGAAAC

GCAT AT GAT GAT T AT ACAAAGGGC CAAAT AG T TAT G T AC GAAT CAT CAGACAAGAT CAAC T G G C AAGAAG T AAC TAT AC T AT AT AAAT C AAAT G GAT CTTTCGGT T AC AT G T G G GAG T G T CCAGATTTATTCGAAATAGACGGCAAGTTTGTACTTCTGTTCTCTCCTCAAGGCGTGAAG TCTGTGGGC GAT AT G T AC C AGAAT C T G T AT C AAG C AG GAT AC AT C G T C G GAGAAT T C GAT T AC GAT AC T CAT T CAT T C AC AAT AC T AAC C GAAT T C AGAGAAT T G GAT C AC G G T CAT GAT

T T T T AC G C T AC AC AAAC AAT GAAAGAT C C TAG T G GAAGAAGAAT AG TCGTTGCTTGGG C A AGTACTTGGGAGTATGCTTATCCTGAACGAGCAGATGGTTGGGCTGGCATGCTCACACTA C C T AGAAC T T T AAC T T T GAC AAAAGAT T TAAGAC T AAT C C AAAC T C CAAT T AGAGAGAT C GAT CAAGT T T T TAGAAGAAGAC TATAT T CAGGAAAAGCC T CAGCAGGCAAAAC T GT CGC T T T AC C AGAC AAAG C AG G GAAAG T AGAAC T GAAAT G G GAT AC AC C AAGAAAT AT AAAG G T A

G T TAT AGAAT C T CAAAAT GAG T G C CAAAAC G TAG T AAT C AG T TAT GAT C AC GAG GAT G G T ACTATTACTTTGGACAGAGGAGGCGATGACGCAATCCGCCGCACTCACTGGGATCCTCGA GGTCACCTCAAATGGACCATTTTTATTGACGCAAGCTCCATAGAACTCTCTTGTGGTGAT GGAGAAGTATGGTTTACAAGCAGATTTTTCCCTGAAGGAGTCGTATCTGTTCGCCTTGGA GAAGATACTTGTGTTGATAAGTTTACCGTGCATTCTATTCGCCGTACTACTCCAGACCCC GAG GCTCATTGTCGTTGT GAAT C AGAAGAAT AA

[0235] > M. sexfa-Hemolin (MsHEM); M64346.1-UTRs

5'UTR (SEQID NO: 45)

T G T T AC AT T AAT T AT AAAAAAAAAT AC AAAAAAGAAAT AT AT AAG T AAG T AC T AAT AAT A

TGGTCTAGTTTAT TAT AAG T C T TAGAGAC T AAC GAT AAAT AAT AAAT T T C T C AT GAAC C A CCTATTTATTTATTT G AAAAG C AT T T T AAAT AT AT T AT AGAT T T AAAC G T AAC GAAG T C T T T AAAC T C G C G GG T AAAAAC G CAT AC T T AC T T GAC T C T AC AT C G G C GAC AC AC GAAAAAC TTATTCGTACTGTTTTTTCATT GAAT AT G T T AT GAAAAAGAAAAC TAT AT G T AAT C G C AG T C AC AT AT AT AAAAC T T T AT AAAAAAG T TAACAGAGAT AAAT AAC TTGTTTGGTGTTCGT

CAT AG C AAT AGAG TAG CCGCGGCGCC T AAG G C T AC GAAAT AAG C T CAT T GAAC T G T AAT G GAGTGTGCCTAGTTGTTTCTCTTCTTACCAAGACTCAAGAGGGATTTGGAGCTTCATCTA C GAT TAT TAT AC C T AC C T AC G T AT AGAC TATAAT GGATAG T AAAAAT AGAAAG T AAT T T C TTTTATAT C AAC TTTTGTATTCATATG TAAG T AC TTACTTATAATTATTTATTTTTTTAG GTGAAA 3'UTR (SEQ ID NO: 46)

G T T AAC AAT AAAC AAT AC T G T T AAC C G T AC G TAG T G T T AAAT AAT AC AAAT AT AT G T AT T T T AC AAT AAGAT T T C C T G T T T T T AAAT T AT C C T C AC G T AAC G T AT T G G G T AT C T AAG C G G T T GAG C AG T GAGAT AAG T C T AC C C CAAAG TAGTCCGTTCAT C AAAC GAC AT AAC CAT C T C G T C AT T T AG T T AAAAC AAAAAAAGAAT AAT GAT AAAAGAT AT AAAAT T C T G TAT AAGAAC C AAT AC C T AG C AC C T T T C T C AC AT T G C C AAACAT AC AT T AAAAAAC AG TATTATGCTTTT

TTCGCTCTTTTATTCTATATTTTATAT T AAAAAAT AC C TAT AG T AAAT AC TGTTTTCATC G T C G C C G G T AT T C AT AC AC G T AG T AT AC G T AC C T AAC T C T GAAAC T AC T G G T T T GAAT T G AAAAA [0236] > M. sexta- Serine Proteinase homolog 3 (MsSPH-3); AF413067.1

5'UTR (SEQ ID NO: 47)

AGCGCTTTGGGAACGTTCCGTGGCACGATA

3'UTR (SEQ ID NO: 48)

GATGGTGGAATGTTTAAAAATACAAGAGTGTGAGGCAGTGATTAATGGTCTGTAATATCC GATTCTTGCTGGCTTCTGTTTCGTAATTAACGTAAAATCTAATTATCATTAGAATATTTT GGAAAACCTTAGAGTTACCTTCGGAAAACTTCACCGTTTGCCGCTGGTGTGAAGATCTGT TCCCCCCATAAACTGATGGGAAATTGTATGTAGGTACTCGAGT TATAAT TTCTTTT TATA CCTGCGTT TAAG T T C C AT T AC AAC TTTCTAATTTTAT GAAT AAAT AT C T AAT AAAC GAT T AACAAAAT T AAAAAAAAAAAAAAAAAA

[0237] > M. sexta- Peptidoglycan recognition protein 2 (MsPGRP2);

GQ293365.1

5'UTR (SEQ ID NO: 49)

ACGGCATAAATTGTTAGGTCGTCTGAGAGGCGAGTGTTGTATTTTTAATTGCCAAAGAGG C T G C GAAG T T C GC AAT AAT CAT TAGAAAA 3'UTR (SEQ ID NO: 50)

AATGACCAAAGATAATACGACTGTTTTATAATTTTTGTTAATAAATGTTGTTGCATTATG GAAAAAAA [0238] > M. sexta- Beta-1, 3-glucan-recognition protein 2 (MspGRP2);

AY135522.1

3'UTR (SEQ ID NO: 51 )

ATTAAAACTAACGAAAAGACTCGTTTCCATAGTGGTATATTTTCAACTCGTCAATTTCAG GTACAAGCATGTTTGGTGGAAGGATATTATCGGCCCGAATAGGCACTGTACACCAAGTAC AACCATGACTCATCAAAGGTGTCGCGTTCTGGAATCACCTGTATTTCCAACAGGCCGGCA TAATTGTGTCGTCTAGCGAGGGATAACTCAATAGTCTATTTGAACGCCATTCTACTTACC ATTAGGTGTAGTGAAGATATTTGGGGCTAGACAAAATGGAAGGAAATTTATGAGTTGCAT CGAATGATTATCACTAAGTATTCGAATGATTCATTTCGTTGTTGGTGCAATAGGATGTCA AGGGTCAAATGGACATTAAAAGAGAGTTTAAGGTGTTTTTTTACAATTAACGTTGATCTA TCACTTTACTTGCCTATTAAGTAAAGTATTATTTTGAAAAATACAAAATACTTGAGTTTA TAGTATCTCTTGCGTTTATGGTACTGTCAAAAATATCAGTATTATTCATTTACAAAATTA AAATTTAATAATCTAAATTATTCTTCATGTAAATGATCATTTATACCTCTGCCTTGATTA TG

[0239] > M. sexfa-Relish family protein 2A (MsREL2A); HM363513.1

5'UTR (SEQ ID NO: 52)

AGAGTACGTTCGATGGCAGTCTGTCGAACATTGGTAGTTTCCCGTTTGAGTGTTGTTTAC TCCCTTTGAGGGATTAGTTTATTCTCCACGAATATAAACATCGGAAAATCAAAAACTAAG TTGATAAAAAGTTGTGTGCTCCGGTATAATTTTTTGGTATCAGTGACGGACAAAGGTGAT ATAAAA

3'UTR (SEQ ID NO: 53)

TATATTCATGAGAAGGGGACAACTAAGGATTGAATATCAGCAGAACTTGAGTTATGTTAA TGAGGTATTTATATTAGCTTAATACTTAAAGGGGAAAATTCGATTAGCTTTTCAAATATA CTTAAATTTTAGTTTTTGTCAAATATCGGTGTTTCCCATTTTGATATTTTTTTATCCATA TTTTAATAATAAATATCTTGTCTTAGCAATTTTAATGGGTAATTATAAAGAAACTCACGC ACCATAGTTGCACTAAACTACAAAATTACACAAAAAAAAAAAAAAAAAAAAAAAAAA [0240] >M.sexta-Dorsa\ (MsDor); HM363515.1

5'UTR (SEQ ID NO: 54)

AT AC AAC GAT AT C AC AG GCGTCCGGG GAC G GAC C AG T T T AAAC AAAC AT T AC AG T GAAT A G C GAT G T GAT TAT T T T C T T G C T T G TAT AGAG T T AAAT T T T T AAAT T AGAT T T AAAT AT T A AAAT AT T T GC GAAT AAAA

3'UTR (SEQ ID NO: 55)

ACTTAACAATTACATCTATAAATCTCTCCTCTATCAACCTAGTGGGCGTCCTCTACAACT AC C AC G T C T G G TAT AC AAAT AG T GAC AAC C T GAAAT T G T GAGAT T T AAAT T G T G TAG T T A T GAT AAAT AAACAAT AAAT C C AAAAAAAAAAAAAAAAAAAAAAAAAAA

[0241] >M. sexta-Toti receptor (MsTOLL); EF442782.1

5'UTR (SEQ ID NO: 56)

GAAAAGTTATTCACAATATGACCCGAAGTGTCAGCGCCGCACATGCGCGGGAGCACTCGT ACTTATACCAGACATTGTGACTAAATACCTAATTTTATGTTTTGCTCATCGCCCATTGCG C GAC AT TAAG C AG T AT C C AG T AG T C AG T GAT CAG T G T T AC T AC AC TATTTTGCTTCT C AG C GAT TAG T C AACAC GCGCATATCGTTTACTT CAAC AAACAAT T AT T AC G C AAAT C G T GAT AT T T GAAT G T AGAGAC AC GAAT C AAAGAT T AT T C G T T T AAC G T T AT T T T C G C G G GAT G T T TCTCTGTTGGGGGGTACTGTTGCGTGGTGTGCAGTCAAAGGTTTATTTTATCGGGTATTG TGCTCTTTAAGTGTTGACGCGGCGGATTATCGTCGGTTAGACTAATAAATCGTGTCGATT TATGTGTGACCCACTACGGTGTCGTGCGACGTG

3'UTR (SEQ ID NO: 57)

ATCCAGAACTTGCGTGTACCCTTCGATATACAGGGCTATTTTGACATCGTGTTACTAAAT GAAAC C AC AT T C T C G T C T T C AC C T T T G C T GACAT T G T G C C AAAAAT C AT C C AT T AAT AAC GAAT AT T T C CACCAAAAAAAAAAAAAAAAA [0242] >M. sexfa-Scolexin A (MsSCAI ); AF087004.1

3'UTR (SEQ ID NO: 58)

T AGAC CAT AC C G T T G T CAT TTTGGGCTG TAG T G T AT AGAT AAT AAAT AT AGAC G C G T G T A CTGGTGTGACGTACGGAAGTGGAGAGTTGGGAGCGACAGCTCACCGCTCACTCCACTCCC GGCCGCCGCGCGAGTAGCAGTGTCAGTGATTGCAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAA

[0243] >M. sexfa-Hemolymph proteinase 18 (MsHP18); AY672794.1

5'UTR (SEQ ID NO: 59)

GCCAGACGTTTCAGTTTGTTTCGAACT

3'UTR (SEQ ID NO: 60)

T TAT GAATAAATACAAT T TAATAAGCAT TAT T TAT TAAAAAAAAAAAAAAAAAAAAAAAA [0244] > M. sexia-Chymotrypsinogen-like protein 1 (MsCTLI ); AM419170.1

5'UTR (SEQ ID NO: 61 )

T AC T T C G G G C T AC AC AAT G T AC G T GAAAG T A

3'UTR (SEQ ID NO: 62)

T C T C C GAAC C GAAC C T GAT C T T AAC T G T AAAT AAAAT AAG C GAT AC C C AAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

[0245] > M. sexia-Dredd (MsDRD); Msex2.04297-RC; Currently annotated as

Manduca sexta Caspase-6; HM234679.1 in NCBI 5'UTR (SEQ ID NO: 63)

TTGGTAACCCTGTGGGAAGTCCCAAAGTCGAAGCTCGAGAACAGTT TTAAGCAGAGGTT TTAAGTCTAATTTATTGGTCTCTGGTTTTAAGTTAGTGTCATGTGTCAACAATAATAAA GC T T TAT TTTTGGCTC TAT T TATAAGTAAGGTAT CAT CC T T T CAGC GT TAAAACAAAGG G C G T AG C T C AT G T T C AT G T AG T T C T T T T AAAT AAG T G T GAAC T AAG T G T AT AT G T AC AT T T AT T AC T G G T GAC A 3'UTR (SEQ ID NO: 64)

CATAATATTTTTATT T AGAT AT AT T G TAAG T AC TAAGAAT GAAG TGGTGATAGCTTAGTT G G GAG T G GAAT GGAC AG C C AAGAC AAAT G T C AG C AAG T T C AAAT C C AAAG G CAT AC AC C T CTGACTTTTAAAAAAAAATATGTGTGTATTCTTTGTAAATTATCACTTGCTTTACGGTGA AG GAAAAC AT CAT GAG GAAAC T C T C AAT AG T AAAG G T AT C C CAT T G C C C AG C AG T G G GAC

AG TAT AT TATACAGGGT T GAT AT TAT TAT TAT TAT AT AC TAT GC T T T GC T CAT GCGC T CA TTCACTCCAGCATTAATGACCTTTCCTGGTATTGAAGTTCTGCTAAGTATTTTATGGGAT AAAAAT AC C C T GAAT G T T AAT C C AC AC AC AT T C AG T AT G T C AAAT T T C AT C T AAAT C C AT T T AG G T G T G T T C T AT T T GAT AC T AAG T T C C AAC AAAAAT C T T C AT AAAC G T C AG GAC C C C T CAGGAGCAACAT TAT TAATAAGAT TAATAATAAAT T T T C AAT G CAT AAT AAT T T TAATA

T AAT T TAT AT T AC T T AAT G T T GAAG T T GAT AT AC T T AA

[0246] > M. sexfa-Relish F (MsRelF); HM363513.1

5'UTR (SEQ ID NO: 65)

AGAGTACGTTCGATGGCAGTCTGTCGAACATTGGTAGTTTCCCGTTTGAGTGTTGTTTAC T C C C T T T GAG GGATTAGTTTATTCTC C AC GAAT AT AAAC AT C G GAAAAT CAAAAAC TAAG TTGATAAAAAGTTGTGTGCTCCGGTATAATTTTTTGGTATCAGTGACGGACAAAGGTGAT ATAAAA 3'UTR (SEQ ID NO: 66)

TAT AT T CAT GAGAAGGGGACAAC TAAG GAT T GAAT AT CAGCAGAAC T T GAG T T AT G T T AA T GAGGTAT T TATAT TAGCT TAATAC T TAAAGGGGAAAAT TCGAT TAGCT T T T CAAATATA CTTAAATTTTAGTTTTTGTCAAATATCGGTGTTTCCCATTTTGATATTTTTTTATCCATA T T T TAATAATAAAT AT C T T G T C T TAG C AAT T T T AAT GGG T AAT T AT AAAGAAAC T CAC GC AC CAT AG T T G CAC T AAAC T AC AAAAT T AC AC AAAAAAAAAAAAAAAAAAAAAAAAAA

[0247] > M.sexfa-Chitin synthase 2 (MSCHS2); AY821560.1

5'UTR (SEQ ID NO: 67)

ATTACGCTTTGAGCAGCCACTTTGTAAACACTAGCCTATTAACTCCGTCACTGCTTCGGC GATAACACTTCTGTATATCTGTTATTGTTTGTTAATTTTTGGCGCAAGGATATATTTAAT ATGTGCTAAGTTTGTGGCTAATT TATAT TATGTTTCTACATTAAAGGTATGTATTAGTGA T T T T T T G T AAC TTATTTAAT T AC AAAC AT TAT AAC AT AT T T T AT T AGAAAAG GGTTTTGT ATCCTATGTAGCGCCTGTTTCACGATGCCTCTTGAAGTATACTGAAATGGGTACCCGTCG AT AG T G T T T G C T T T AAT AG G C AAC G C AT AG T GAAAAC T T T G T AC T T T AAC C T T T T C AAAA G C AT GAAT AAT T AAAAAAAAAT AT T AGAAT AAT G T GAAAAAG G T G T AC AG T G T GAT AAAT AT G GAG TAT AC AAT AT TCTTGTTC C AG T T AT AAGAT AAG G C AC A

3'UTR (SEQ ID NO: 68)

TATTTGGC CAAAAT T G T GAAC T G T AAAC AT G CAAT AAAAT GAT GAAC G

[0248] > M.sexia-Beta-fructofuranosidase 1 (MsSud ); GQ293363.1

5'UTR (SEQ ID NO: 69)

T GAGAAC AAAAAC AT TAGCTCCGCGTT T AAAA

3'UTR (SEQ ID NO: 70)

TTATCGTGC TAAAG TAATAGTTATTGTTT C ACAT T AT G T T C AAAT AAAAAAG T AAT T AT T T AT G T T C AAAT AAAAAAG T AAT TAT T T AAG T G T C T T G T AAAT C T G C GAAT AAAT AT AC T T AAT G T AT AAAAAAAAAAAAA

[0249] > M. sexfa-Sickie (MsSck); Msex2.03324RA (SEQ ID NO: 71)

ATGACGACGTTGACTGCAAATAGGCAAGTGTCGGTGTTGCAGACGTCGATCCCGCTGCCG GCGTCGGCGGCGGCGGTGCGGCGCGCTCCGCCCGACAAACGACCGCTGCCCGCCACACCA GTACATGCAGGTGGCAAGAGTGGTCTTTCTGCGAGTTCCAGCCGCTCCACCAGTCCATTA GGACAGGGTGCAGTCAGTTTTATACCACGTGCGCCTAATTCATCATCTGGATCCCGGCCG AACTCGTCCCTCCTTGCGCCCAGTAGCAAAATACCCTCCACCGCAACACAAGGGCAACAG C AT T C AC AAAC AC C C AC AG C C CAAAAT G GAACAC C C AC AAAG C AG TCTATGCTT GAC AAG T TAAAGC TAT T CAATAAAGACAAAAT TAG CAAT G AAAAAC AAAAC AG CAAAAGC AC TGCA G T AT C AAAAC G CAC C AG T T C T T C C AG TGGTTTCTCATCGG CAAAGAG T GAGAGAT CAGAC T C GAG T T T AAG C C T T AAT GAG T C T T C T AAC AT AC C C AAC AC AC AT AT C AAAT C G T C T AAT T T AAT AG GAC C T AAAAC AAT AC G G C AAC AAAGC GAT AC T T T AT C AAAAGAC AAAT C T G G T AAAAAT T T AAAAC C T AAG TTAGTTAATTC T AAAT C T C C T AGAGAT T C T AC AAC T AAC T T G AAT AG G G C TAG TAG C AAAAC AAC T AAT AAT GAT AAAT C GAG GAAT AG T C C AAAAC T T C C T G C T AG G GAT AAGGAAT C GAAAC T AG C CAC AC C T AAAAC CAT GAG T AAC AC AAAAC T AAAC CAAGTTGAAGATCAACCGAGGGGTTCCAAAACTAAAGTGGAATCGAAAATGGTAAAGCTT TCCGGTAGC C AAG T T AAG C T GAG T GAAC AAAGAT C C GAT AC T C C AC AAGAC T G TAAAGAA AAT G T AAC T C C T AAT G C GAAAAAT CAT C AGAG T C AC T C T C AAAC AC C AT G T G GAGGAC AG G GAT T T G GAAC T C C AAAC CAT AC AG GAAT AC C T AAAC C GAC TGCCGCTGT C AAG GGAAC T T T T AAAAT AT C AAAAGAC GAT AGAC AT G T T AT AC AGAAAAG T AC AAAT AG T CAAT T AAG T C C T AT AC AAAG CAAT T C T AG T T T AAAT T C T ACAAAT AAC AT AAG T G C AC T TCCATTCTGT

AGAGAAC AAT C T AAT T T AAG T AAG GAT AT AAC T C AAAAG C AGAC AC TAGCCGTATCCCCG ATGCCGGT TAT GAG C AC AG G GAAT C AAAAT CAT AG T T C G C AAAT G T C T GAAAG T T C AC AC T C CAAT T C T AC GC AC AG T AC T AC AG G C C AAC AT T C GAAC T C TAG C GAT AG C AG C G T T AT A TACCGTCCT TCTAGCGAATCAGGT TCTGAAATGTCGAAGACTGCTAGTCACAGTGTGGCA T C AAAT AAAC G GC T AGAC AT GAAT AC T AC T TAT AT AAAT GAC G T TAT AAAC GAAGCG GAG

AT AT C AGAAAAGGAG G C AG C AC AAAGAC G T C AC GTCGATAAT T CAAT C C C C AAG CAAT C G T T T GAT C C C AAT AAAAC G T T AAC C GAAAT AAG TAG GAG G C T C GAAAG T GAT AG T AGAT C T AG C AC AC CGTCGCAT TGTCGTGATAAT TCT T TAG G C G AAGAC GAGAAT C CAAT GAT GAAT G T T T T AC CAAT GAGAC CGT TACT TCGCG GAT AC AAC AG T C AT T T AAC C T T G C C CAT GAGA AC T T C AG G T T T GG C AC AGAAAAAT AT AAG CGTT TATC C AC AC C AC G C AAAT AC T G T AAAA

GCAAACT T TGGACGGGAAAACATAGGTCT TCGCGATCGTATAAACTATGGGCCTGGT T T T TCGAATCCTGATTAT TGTGATCTGGAAAT TGCT TCGGGATACATGTCTGATGGTGAT TGT T T GAGAAGAAT T AAT AT C G G T GAGAT G GAAT GC G G GAG GAAC AAC GAC AT GAT G GAC G G C TATATGTCCGAGGGTGGTGCT TCACTCTACGGTCGTCGGATGAACTACCAGCAACCACAA T T T C AAC AAAT GGAC GAAAGAC GAAG TGGTGGTCG CAAT AGAG G CAT G GAG G G T GG T AG T

G G T G TAG T C T ACAGAG TAG T G G G T C G C AC AC GC AG C AAAG C C GAC T C C G GAC AG CAGAC C GAGCGCCAGCCTCAGCCT TCCCGGCAGGACACCACGTGGAAGAAGTACACTGACTCGCCC GGGAATCAGCCAGCACCCGCGCCTCCTAGTCCATCTCACTCGCGCAAGGGTGAGAGACGA AC T G G C CAT CAT T C AC C G C AG C AC C AC AAAC GAGAAAAAC T C AC T G C AG C T C AG CAG C T T GGGATCGCACCTCATCCTCAGTATGCCGCTCCAGCTCAAGCAGCTAACCCTGCTGGTCAG CAT TCCTCTAGAAACCCAGGCCCACAGCTCCAGTCTCCGAGTGGAGGGTCGCGTCCCTCC AGCGTCTCTAGCGGTGGTAATGGCAGTGCCTGCTCGTCGAAGGCTAAAGT TCCTCAAAAT T T TGGATATGTGAAAAGACAAAACGGTGTACAGCAGCCGGCACCTCAGGCCAACGGTCCA CCGCCGCAACATGGAGGCCACACTGGAAGAACCGCCCAGGTGTCTGCAGTGCCAAGAACT AAAG T C AAAG T T T C G G GAG GAAC C CAGAC AT GC AC AC AG GAT T T AC AGAT T C AC AAAAAT

GGTATCGGACCTAAATCGTAT TCTCTGGGCGGCACCGCGGCTGCCCAACTGTCAGCGTCA G T G C GAGAGAGAC TGCTCGGGT C AC AAT C AC T AC C AAAAC C T G GAAC AC AC GAAT T C G C A GCGT TAT TC CAT C AC C AC AGAAT T G C AC C C AGAG G C G G CAT GAAGAT CAG C GAT GG C AG C C T T T C T GAC AC AC AGAC AT AC T C T GAAG T GAAAT CAGAC TATGGGATACCCTACGCGCCC TGGCTCAGGCATAGCAACACATACTCGGCGAGCGGGCGGTTGTCAGAGGGAGAGTCGATG GAGTCGCTCACGTCGCTGCACTCGGCGCAGGCGCAGGCGCACAACCACACCTCCTCCCCT AAC T C C C AC C G CAG C T C AC T C AC AC AC AAT AAG C T CAT CAT G C AC C GAGAT G C ACAG G G C T C CAG G C T T AACAG GAG C AAC AG CAT T AGAT C GAC T AAG T C AGAAAAAT TATATCCGTCG

ATGCTTCAAAGGTCTTCAGAGAGCGATTATGAACCGTATTATTGTTTACCTGTGCAG TAT GGACCAACAGGTCAAGGTCTAAACTATGGTGTGTCGGAGCCGCCGTCGCCGTCGCCGCGC TCGGCGCTGAGCCCGACGCACGCGCCCGGCAACGTCATGCACACGCCGCGCCACTCACAC CACTACCCGAAAAAGAACGACGATGTGCACGGTTCGACGGCGTCGCTAGTGTCGACCGCC TCCTCGCTGGCTGCCGGCGCAGGCGCAGAAGAGAGGCACGCCCATGAGGTGCGAAAGCTG AGAAGAGAAC TGGCCGATGC GAAAGAAAAAG T T C AC AC T T T AAC AAC G CAG T T AAC AAC C AACGCGCACGTGGTGTCCGCATTCGAGCAGAGTCTGTCGAATATGACGCAGCGCCTGCAG CAGCTCACCG C AAC C G C C G AG AG AAAG GAT T C G G AAC T GAC G GAG C T T C G T C AAAC GAT T GAGTTGCTGCGGAAACAGTCGATTCAAGCTGGTCTGACTACTGCTCACATGCAGTCCATG GGAATCCGTGCCGATGGCGTCAACGTCACTGGACAGCAGGACCCAACAACCCAAACGCAG CAG T CAT C AC C AC AAC G T AAC G C AC AAAC G G GC AAC G G T G C GAT C AC G C G G CAT C T AT C G ACCGACAGCGTGTCGAGCATCAACAGCCTGAGCAGCGGCTCCTCAGCGCCTCACGACAAA AAACACAAGAAAAAAGGATGGCTACGCTCATCGTTCACGAAGGCATTCTCACGGAACGCG AAGATATCTAAAACAGCGAAGCACTCGTCCCTCGGGCAGCTGTCGTCACAGGACAGCTCG TCGGGCTCG CAT C AC T AC GAC GAC C C G C AC AC GAT AC GAGAG G G CAG T AAT GAGAAC AG T

CTAGAACATTCCCACGAGGCTCTTCCTGATACTAAGGAGAAGCCGGCGCCTGTCAAG CCT GAAGAAC AAAC CAAAGAT AAC AAAGAG GAAT CTGTCTTGGTG GAT GAG C T GAAG C G G C AA CTGCGCGAGAAGGATCTCGTGTTGACCGACATCAGACTGGAGGCGCTCAGCTCCGCGCAT CAG T T G GAGAG T C T C AAAGAC AC C G T T AT AAAAAT GAGAAAC GAGAT G T T GAAC C T GAAG CAAAACAACGAGCGTTTGCAGCGGCTGGTGACGTCACGCTCGCTCGCCGGCAGCCAGAGC TCGCTCGGCACCGGCGGCTCCGCCGTCGAGGACCCGAGGCGGTTCAGCCTCGCGGACCAG GCCACCATGCACCAGGCGGCGATCGACATTCACGCCCAGCCTCTCGACCTCGACTTCAAC TGCATGTCAGCCACACCAACCATCGACTTCTCGAAGAAAGGTTCACCCAAGTCCGGCATG G T G GAG C C CAT AT AT G G GAAT AAG G C T G C C T GC GAAC T GAAC GAGAAC AAT GAGAC G C T G CTAGGAGCGTTGAATGGGGCCAGCGATTTGTTCTCCAACGGACTCAATGCTGGAGAGCGG CTGAGTGGAGATTACGATATAAACAGCGTGTTACCGCCGCCTAAAACACGCGAGCTTGCT AT T G G T GAAAG C T AC T C T GAT AT T G G T G TAG CAGAC AG C CAG G GAGAC AC GAC T GAT G GA AAGAAAAT AG CGATAGCTGTATATTTAGGT C AAC C C GAAAC AT T C CAAAGAT AT T T C GAA GAG G T C C AAGACAC AT T GAC G GAG T C C GAG T GC AGAT T C T AC G C GAAG C AAT C G GC AAG C G C G T AC AAT C AT T T C GAGAAAC AAG C C AG T T T C GAAT C G C C GAGAAT G T C C AC GAAT C AC AG T C CAGAAG T GGAGAC AC AAGAC T AC C C G C AAAT AAAT AAG T C GAAC AC GAAT AG C C T T AAAAG C AAC AAAT C T AC G C AC AG T AG C T C G TAT AAGAAT GTTTATAATAGTGATTC GAC A AT AAAC T G C AAC GAG T AC AC TAT AG C G T AC AC TTATATATCTGG C AAGAC GAC T T G G C AG

AAT T T AGAT TAT AT AG T TAG GAAG T C C T T T AAG GAC T AC T T G T C TAG GAT AGAT T T G G G C ACGAATCTCGGTCTGAACACTGATTCTATAACGTCGTACCATTTGGGTGAAGCGACGCGT GGGCCGGAGATCGGCTTCCCGGAGCTGTTGCCATGCGGGTACATCATAGGGACCGTGAAC ACGCTGTACATCTGCTTGCAAGGAGTCGGCAGTCTGGCGTTCGATAGCCTTATACCAAAA AAT AT T G TAT AT AGAT AC GTTTCTCTGCTATCG GAAC AC AG G C GAG T GAT AC TCTGTGGT

CCCAGCGGCACCGGCAAGTCATACTTAGCGGCGAAACTCGCTGAATTTTACGTCCAG AAA ACACAAAGGCGCGGCAATCCCGCCGAAGCTGTAGCTACATTCAACGTGGACAGAAAGTCG TGCAACGAGCTGCGCGCGTACCTGGCGAACATCGCGGAGCAGTGCGGCGCGGCGGCCGCG GGCGAGGAGGCGCCGCTGCCGTCCGTCGTGGTGCTCGACAACCTGCAGCACGCCTCCGCG CTCGGCGACGCCTTCGCGGGGCTGCTGCCGCCCGACAACAGGAACATGCCCGTTATTATC G G T AC CAT G T C C C AAG C GAC G T G C AAC AC C AC GAAT C T C C AAC T AC AT C AC AAC T T C AGA TGGCTCCTCACCGCTAACCACATGGAACCCGTCAAAGGATTCTTAGCTAGGTATCTCCGA AGAAAGTTATTCTCGCTGGAGCTGCGGCTGGGTCGGCGCGAGCCGGCGCTGGCGGCGGTG CTGGAGTGGCTGCCGGGCGTGTGGGCCGCGCTCAACGCCTTCCTCGAGGCGCACTCCTCC AGCGACGTCACCGTCGGGCCGCGGCTCTTCCTCGCCTGCCCCATGGACTTGGAGGCCAGC CAGGCATGGTTCGCAGACGTGTGGAACTACAGCATAGTGCCGTACGCTTCGGAGGCGGTG CGCGAGGGCATCGCGCTGTACGGCAGGCGACGACACGCCGCCGTCGACCCGCTGCAGCAC AT C AAG T C T AC AT AC C C C T G GAGAGAAC C C AAT C AC TCGCATACTTT GAGAC C CAT AAC A GTTGATGATGTTGGCATC GAAGAG T C AAG C C AAGAC TCCGCCGT GAAC AAC AAT CAAGAT CCTCTGTTGAACATGCTGATGCGGCTACAAGAAGCGGCGAACTACAGCGGAAACCAAAGC C AG GAC T C T GACAAC G C C AG CAT G GAC T C GAAC C T C AC AC AC GAC AG C T C T G T AGG GAAC GAGCTTTAA > M. sexfa-Akirin (MsAki); Msex2.12479-RA (SEQ ID NO: 72)

ATGGCGTGTGCTACACTTAAAAGAAATTTGGATTGGGAATCCATGGCGCAATTGCCT GCT AAAAGGCGAAGATGTTCGCCATTTGCTGCAAGTTCTAGCACAAGTCCTGGATTTAAAGTG TCTGAAACCAAGCCATCTACATTCGGAGAGGCCGTTAGTGCACCTGTGAAAATGACCCCA GAGCGCATGGCTCAAGAGATCTGCGACGAGATCAAGCGGCTGCAGCGGCGCCGGCAACTG CGGCTGGCTGGCAGCTCCGCCGCTTCGTGCTCATCGTCGAGCGGCAGCGAGGGCGACTGC TCGCCGCCACATCGCTCCTCGCACACTTCGCACAAGATGCACAACCGTGCGCTCTTCACT TTCAAACAGGTGCGCATGATCTGCGAGCGGATGCTGCGCGAGCAGGAGGTGGCTCTGCGC GCGGAGTACGAGTCGGCGCTCAGCACCAAGCTCGCCGAGCAGTACGAGGCGTTCGTGCGG TTCAACCTTGATCAGGTGCAGCGCAGACCCCCGCCCAGCACGTGCATGCCCCTCGGCATG GACGCCGAGCATCACATGCACCAGGACCTCGTACCTAGCTATCTGTCCTAA

[0251] > M. sexfa-Cactus (MsCac); Msex2.02793-RA (SEQ ID NO: 73)

AT GAG T G C C AAAAAAG GAT AT GAAAC GAAGAT T G T C GAG GAAGAAAAC AT G GAT T C C G GA ATTGTGTCTGGTGAATTGGAATCTTATGAGATTTCGGGTGAAGTGGATTCGGGCGTGATT GATTGTGATAAGAAATACGAAGGGGTTCCAAGTGAGGTGTTGGAATTGACGGACAAGTTC AAAAGTGTAAATGTGAGAGAGAAGAGCTGTCCTGATGTTCCACCACTGGCGGACCTGTTC C AC C C T GAC AAC GAC G GAGAT AC AC AAC T AC AC AT T G CAT C G G T AC AC G G C T G C GAGAAA TCAGTGAGCACGATCATCAGGGTGTGCCCTGACAAGGAGTGGCTGGACCTGCCCAACGAC TACGGCCACACGCCCCTCCACCTCGCGGTGATGAGCGGCAATGCCGTGGTGACAAGGATG CTGGTGATAGCCGGCGCTTCGCTCGCTATTCGCGACTTCATGGGAGAGACGCCCTTACAC AAGGCGACCGCAGCGCGAAACCAGGAGTGTCTCAAAGCCCTGCTTGCCCCTGTACCGGAA C AG C C C AAT AG GAAAT T G T C T T C AAT AC T C GAC C AGAG GAAC TAT AAC G G T CAAT G T T G T GTCCACCTGGCGGCGTCAATTGGAAGCGTAGAGACGCTACAGACCCTGGTCTACTACGGA GCCGATATCAATGCCAGGGAGAACCTGGCGGGCTGGACGGCGCTGCACATCGCGGCGCGG CGCGGCGACGTGCGCGTGGTGCAGTTCCTGCGGTCGCGCTGCGCCGGCGCGGCGACGCGG CCGCGGGACTACGCCGGCCGCACGCCGCGCCGCCTCGCGCGCCGCACCAAGGCCGCCGCC G C C T T C GAC GACAAG GAC GAC AG C GAC T C C GAC T C C GAC T C G GAC GAT GAT GAT AT G T AC GAC AG T GAT AG C GAG AC G T T G T T C G AAAAAC T C C G C GAG AG C C T GAG C AC G T C GAT C AAC GTCGCCTGA

[0252] > M. sexfa-Gloverin (MsGLV); GI110649240 (SEQ ID NO: 74)

CCACGACAACCACTGATGAAGTTATTTTTTATAGCAATTCTTTTCGCTGCCATCGTCGCT TGCGCGTGCGCTCAAGTGTCGATGCCCCCGCAATACGCTCAGATATATCCAGAATATTAC AAG T AC T C C AAAC AAG TCCGCCATCC C AG AG AC G T GAC C T G G GACAAG C AAG T C G G C AAC

AATGGGAAGGTCTTCGGAACTCTGGGACAGAATGACCAGGGTCTTTTCGGTAAAGGA GGC TAT C AAC AC CAAT T C T T C GAT GAT C AC C G C G GC AAAC T GAC AG GAC AG G G T T AC GG G T C C AGGGTCCTCGGACCTTACGGAGACAGCACCAACTTCGGCGGCCGGCTTGACTGGGCCAAC AAGAATGCTAACGCTGCTCT TGATGTGACCAAGAGCAT TGGCGGTAGGACTGGGCTGACT GCCAGTGGATCAGGCGTGTGGCAACT TGGGAAGAACACGGAT T TATCTGCGGGAGGCACT CTGTCTCAGACGCT TGGACATGGGAAGCCTGATGTCGGCT TCCAAGGTCTCT TCCAGCAT AGATGGTGA

> M. sexta- Beta-1 tubulin (MspTub); AF030547 (SEQ ID NO: 75)

ATGAGGGAAATCGTGCACATCCAGGCTGGCCAATGCGGCAACCAGATCGGAGCTAAGT TC TGGGAGATCATCTCTGACGAGCATGGCATCGACCCCACCGGCGCT TACCATGGCGACTCG GACCTGCAGCTGGAGCGCATCAACGTGTACTACAATGAGGCCTCCGGCGGCAAGTACGTG CCGCGCGCCATCCTCGTGGACCTCGAGCCCGGCACCATGGACTCTGTCCGCTCCGGACCT T TCGGACAGATCT TCCGCCCGGACAACT TCGTCT TCGGACAGTCCGGCGCCGGTAACAAC TGGGCCAAGGGACACTACACAGAGGGCGCCGAGCT TGTCGACTCGGTCT TAGACGTCGTA CGTAAGGAAGCAGAATCATGCGACTGCCTCCAGGGAT TCCAACTCACACACTCGCTCGGC GGCGGTACCGGTTCCGGAATGGGCACCCTCCTTATCTCCAAAATCAGGGAAGAATACCCC GAC AGAAT TAT GAAC AC AT AT T C AG T T G T AC CAT C AC C C AAAG T G T C T GAT AC AG T AG T A GAAC C T T AC AAT G C AAC AC T G T C AG T C C AC C AAC T C G T AGAAAAC AC C GAC GAAAC C T AC TGTATCGACAATGAGGCTCTCTATGACATCTGCT TCCGCACGCTCAAACT T TCCACACCC ACATATGGCGACCT TAACCACCTGGTGTCGCTCACAATGTCCGGCGTGACCACCTGCCTC AGGT TCCCCGGTCAGCTGAATGCGGATCTCCGCAAGCTGGCGGTGAACATGGTGCCCT TC CCGCGTCTGCACT TCT TCATGCCGGGCT TCGCTCCGCTCACGTCGCGCGGCAGCCAGCAG TACCGCGCCCTCACCGTGCCCGAACTCACCCAGCAGATGT TCGACGCTAAGAACATGATG GCGGCGTGCGACCCGCGTCACGGCCGCTACCTCACCGTCGCCGCCATCT TCCGTGGTCGC AT G T C C AT GAAGGAG G T C GAC GAG C AGAT G C T C AAC AT C C AGAAC AAGAAC TCGTCGTAC T TCGT TGAATGGATCCCCAACAACGTGAAGACCGCCGTGTGCGACATCCCGCCCCGTGGT CTCAAGATGTCGGCCACT T TCATCGGCAACTCCACCGCTATCCAGGAGCTGT TCAAGCGC ATCTCTGAACAGT TCACCGCTATGT TCAGGCGCAAGGCT T TCT TGCAT TGGTACACCGGC GAG G G CAT G GAC GAGAT G GAG T T C AC C GAG G C C GAGAG C AAC AT GAAC GAC CTGGTGTCC GAG T AC C AAC AG T AC C AG GAG G C C AC C G C C GAC GAG GAC G C C GAG T T C GAC GAG GAG C AA GAGCAGGAGAT CGAGGACAAC TAG [0254] > P. xylostella- Peptidoglycan recognition protein 2 (PxPGRP2);

ACB32179.1 (SEQ ID NO: 76)

ATGACGTTGTCTTTTGGCGTGTTTCTGCTGATATCTTCAGTGTTTTGTTGTTGTGCTCAT GCAGGGTGTGGCGTGGTGACCAGACAGCAGTGGGATGGGCTGGACCCGATACAGTTGGAG TACCTGCCCCGGCCCCTGGGGCTGGTGGTGGTCCAGCACACCGCCACCCCCGCGTGTGAC ACTGACGCCGCGTGTGTGGAGCTGGTGCAGAACATACAGACCAATCATATGGATGTGCTG AAGTTTTGGGATATTGGACCGAACTTCCTGATTGGTGGGAACGGCAAGGTGTACGAGGGC CCTGGTTGGCTGCACGTCGGCGCCCACACTTACGGCTACAACAGGAAGTCTATCGGGATC TCTTTCATTAGGAATTTTAATGCTAAGACCCCAACAAAAGCAGCGTTGAATGCGGCTGAA GCATTGCTGAAGTGTGGAGTGAGAGAAGGACACCTGTCTCACTCATACGCAGTGGTCGGC C AT AGAC AAC T GAT C G C AAC AGAGAG C C C AG GC AG GAAAC T G T AC C AAAT CAT C AG G C G C T GGCCAAAC T AC C T C GAG GAT AT T GATAAGAT T AAAAAC AAC AAG TAG

[0255] > P. xylostella- Immune Deficiency Protein (PxIMD); Px003008 (SEQ ID NO: 77)

AT G T C TAT C C T AAAAT C AAAG T TAT T C GAAAC TAT T G C AAAAAG T T T C AAG T C T GAT G C A G T C C C GAAG C C AC C T AGAGAAC C G G TAGAGAC T AC AGAGAC AT C AC AAAAT AAT AC C GAA AAT C AAC C T T ACAAT G T C GAAGAAGAG GAAAT AC C C GAAC C AGAAAAG C C T AAGAAAGAA AAAAAGAAT C C CAAG C C T AC C AAAAAAAC TTTCTTTAATCGT GACAAAAC T AAC AAAC AC GAC GAT AC C C G CAAAC AT AC AAAAT C C G GAAAG GAC C AGAC AT C AAT T AAT AC T CAAG G T

AACTTGAAAATTATACTTCCTGTAACTTAAACGGCCCGTTGACCCCAGTTTACCTTT CGC CTTTCTTGATATATTTTTGTAATCCAGCCTTACTTTGGTAATACATACTTGCCCCACTTG T AT T TAG T T AAT G G T G G C AC TAG C T AGAT AG T AAT G T T AAAT GAT GAT AAG C AG TAG T GA TTCATCATTCAAATGTATCATTGTCCTTTAATGTTAAGCGCAAATAGATTTTCATTGTTC TCCCATGTGCTTCATGTTTTATGTATTTATAGGTAGGTACTTAATGTTTTATAAATATTT TTTTGTTAATTGGGAATCCCCAGTCCCCATTGTCTGGACCAGTTTATATATAATTGAACT AAC AAGAG T G T GC T T T AAAT AC TATTCTCTG CAAT TAT GAT AAT T AAAC AAC AT GAAT T T C T C T T CAC TTCCCTTCTCT TAT T T AAAT AAT AT T G T AGGAAAC T G T AAT AAC T AAT ACAA GAT TAT AAAT T T C AT T C T AG C AAC TGGTGATGTAATCCATGTGG T AAAT T C CAAAGAT G T G C AG G T C G G C CAT C AG T AT G T G T AC AAC AT G GGAAC T C C C G GAG C T AAC T C AC AGAAGAA

T AAC C C AT T T GAT GAT GAAGAAAC AG T AGAAAAGAC AAAT C T AAT AAC TCTGGTCATGGA AGCAAAAAT TATGGTAATAACACAT T T T TAACTAGGCATAAGGT CATAAT T TAGCCAGAA TCATCAGCTTGTCCTGTGGCTCTTGTTGAGCTGGTGGAAAGAATACATAGGTAATGAATA T T T T GAT CAATAC Τ CAT Τ GCAAAAAT CACAATAAT GC CAT Τ GAAAAT C Τ AT AACAT GTTC C Τ TAAG Τ AT C AC Τ TAT CAT CAAT C CAAT TAAG T C AT C AC AC AGAT CAAT CGGTTAGTTCT GTT TAT T TACT TCTTTCAGCTGGAACATGAATACATGGACTATGTCTCGAAGAACCTCGG CAGGAACTGGCACAGCTTCTTCAGAACGCTCGGCTTCACGCGGGGGCGCATCGAGACTGT G GAAC T G GAT GAG G G C AGAAAT G G T G T T G C AGAG G T AT GAAAAAAAC AT AC AT G T T AAT T

TGTGTTGTTTGGCTGATGTGGCAACTAAGTTCGTAACTGCTATGATCAACTGTTTGT GTC ATAGGTATTTTTTTTGCCCTTCCACACATCTGAGGTAACAAGGACACCTCCTGCACTCAA AACACAACTGCTATGTCCTACTGATGAGTCCTAGGAAACTCAGAAACCATCTGTTTCCCC CAT T C T CAAT T CCAT AAAGC T AAAAAG T GG T AG T T ACACAAT T CACAAT T CAT AAACAT G C T T T G T CAT AG T T AGAAAAG C AG C T C AG C T AT GAG G CAT C C AC T C C AC AG T C C AC T C AC G

AAAG C C C T C T T T AAAAAC AT AAAAT C AT C AT CAT C AG C C C T C AAT T G C C C AC T G T T G C AT ATAGGCCTTCTTTTGATTATGCCAAGTTTTTCGTTTCTCTAGTCCACAGACTTGACATAG TTGTCACAAATTTATTCTACGTACTTGTATTTCCAGGTGCGCTACAAGTTGCTCCTGGAG TGGGCCCGCACCGACGAGGACCCCACGCTGGGGCGGCTCGCCACGCGGCTGTGGGACGAG G GAGAG C G G C AGAC C G T C AAG GAAC T C G C CAT C T T G TAT AAT AAT AAT T T C AAG CAAC AA

TGTTGA > P. xylostella- Relish (PxRel); Px002858 (SEQ ID NO:78)

ATGGTAGTGGTGAAAAGCCAATTAAAAATGCAAAGTGACCAGGACACGGACTCGTCCACT GCCGGTGCTTCGCCGCGCAGCTTCTACATCGAGTCGCCGCACAGCTCGCCGGGACAACAA GTGCCTTATT T AAC T AAT T AC AT GAC AG TACTGTCCTGTG C AGAT AAT AAC T T AAT G GAT AC AG GAAG CAAT G GAC CAT T C C T GAG CAT C AC G GAG C AG C CAT G T GAC C AC T T C AG GTTC CGCTACAAGAGCGAGATGGTCGGCACCCACGGCTGCATCGTCGGCAAGACCAGCGCCAGC AACCGCACCAAGACATACCCTTCTGTTGTTCTGCTCAACTACAAAGGCCGCGCCACCATC AAGTGCAGCCTCGCGCAGCACAACAACCGCAAGCAGCACCCGCACCAGCTGGTCGAGGAT GACCAGGAGCGCGACCTGAGCGCCGAGGTCAACCCCGAGAAGGGCTATGAAGTTGGATTT C G T G G CAT G G G CAT AAT AC AT AC AG C GAAGAAAGAT G T T C C G G C AC T C C T AT AC AAGAAA T T GAG T GAG AG AC TGCCACATTT CAAT G C C C G T GAG C T GAAG GCCCAGTGT GAG AAC GAG GCGCGCAGTATAAACCTCAACATCGTGCGCCTCAAGTTCAGTGCGCACAATGTCGACACG GACGAGGAGATATGCGCTCCGGTGTTCTCGGAACCTATCCACAACATGAAAAGCGCCGCG ACGAACGACCTGAAGATCTGCCGCATGAGCCGCACGTCGGGGCGCCCGCGCGGCGGCGAC GAC GTCTACCTACT C AC C GAGAAG G T T AAC AAAAAGAAC AT C GAC AT TCGCTTCGTG C AA CTGGAGCGCGGCGAGGTGTGCTGGACCGGCAAGGCCAGGTTCCTCATGAGCGACGTGCAC C AC C AG T AC G C T AT T G T GAT C AGAAC AC C AG CAT AC AAGAAC C C C GAGAT T AC G T C T GAC GTAAAAGTGTACGTAGAACTATTCCGCCCGTCCGATGGCCGCTCCAGCGAACGCATAGAG T T C AC G T AC AAGG C AGAAGAAG T C T AC AAG C AAAG C AAGAAAC G GAAG G C CAAC T C T T AC TCCTCTATCGGAAGTTCATCTAGCGGTAATTCTATCAAAAGCGTCAGTGATCTTCCAGCA ACTGTTATTATGGC C AAT GAAAT GAAT G C G G C T AAC AAC AAC T T T AG T AAAAT C T C T T C A

AT G C T GAG C C C AAAC AAT AT AC C AGAAAT AC C GAC AC AAAC GAC TGTGGGTCTAT C AGAC GCTCTCTAC GACAT AAC AG T GAC AGAAGAC C AC CAAAT G C AC AT C AG TCCCATGCTATGC CAAC C AG T G GAAGAG T AT C C C C T AAAG C T T AAC T C G C AG GAT AT CAT AC AAG T GAAT T T G AAC T C T AAG GACAT C GAC CAAC T G C T C AAAG T CAAC AG TGTGCCTGATACC GAT AAAGAC T T T GC T GAC T T CAAT T T TAGT GAC TAC TACAAGGCAC T C GAT AG CAAC T T T T TAGC T GAT

GGTGGTGGTGATAGCTTCAGTCAGTGTATCTTCAACTCTATGCAACTGAGGCCTGAC TCT G G GAG AG G C AC G > P. xylostella- Toll receptor (PxToll2); Px006338 (SEQ ID NO: 79) ATGCCTAAAGTAATAATCGCCAGTTTTGCTTATATAGTAGGTGTGTTTGTCCTGTGTGCT GGGCTAGAAACAAGTCCAACCTGTTCCAGCATCGAAGGACC TAC TCCAGGT GAAT TCATA AT AC AAAGAG G TAT C G TAC C G GAC AAT GAT T CAG C C AC C AC AG T AAG C T T C C GAGG C T G C C GAAT AT C T GACAT T C AG C C GAGAG CAT T C CAT G G G C TAC CTTCCCTG CAAT AC AT AGAC T TAT CAAGAAATAGCAT TAAAAAC C T GAAAC T TGGCAT T C T T AAT GAC G T CAC T AGAC T C AC T CAT C T GAAC T T G T C T TAT AAC T T CAT CAGC GAT T T AGAAGAGAG T T T G T T CAAC CAA

TCGTCAAGGTTGGAGGTGTTGGATCTCCGGTGGAATAAGATTGAAGTTATGAAAGTG GGC GTTTTCAGTCCATTGAAGAGATTGAAGTATTTGGATCTGTCCGACAACGAAATAGTTGGG GCCAGCCTGAGCCCCGCTATGTTTGATTCCTGTAAAGCTCTATCCACTATCAATTTTTCA AGAAATGATATGTCTGGTGCTCCCACTGATTTGCTTCGAGCTGTGGAGGTACTGGACACA CTGAAACTGGATGGGTGCTTTTTGAAACAAGTTCCGGAATTTGCTACGAGGAGCAATACC G G CAC AAT G AAGAAAC T TAT T T TAT CAT C GAAC C AAG T GAG CAC T G T GAAAC T TAC TAC G T T C AT CAG T T T AAC AAAC C T G GAG GAAC T AGAT T T GAG T T CAAAT G T AAT T T CAGAAT T G CAT GAAGAC G T AT T C AAG C C AT T AAAAAAC T T G AAAAT TATTATTTTACGCTC GAAC C GA C T G GAAAAAAT T C C T GAT AAG T T G T T T TAT AAT AT G T TAC GAT T AAG GAAG G T AGAT T T A TCTTTTAATTCTTTGATGATAATACCTGTGAATGCCTTTCGTTTTACGACGATAGAAATG T T GAAT AT AT C GC AT AAT AAG T T CAC AT AT T TAG T C GAC AAC TTTTGTTTG GAAC T T AGA AACTCGGGAGTGAAACTGAAAAAGTTTTACTTCAACAGTAATCCCTGGCAGTGTCCTTGC T T GAGGGAT T TAT T AAAG GAAAT GAAGAC G T AT AGAAT AT C G T ACAAT AAT GC T AAAT AC GAT G G TAAAAAT G C AG TTTGTATTT C AG GAGAC AT TAT TAATAC T T GC T T GAGACAAC C T GAT G T CAAT GAAC AC T T CAAT GATTTGTACTATTCT GAC T AA

[0258] > P. xylostella- Cactus (PxCac); Px016665 (SEQ ID NO: 80)

AT GAG T T T CAAGAAG GAT T T C GAC AC C T C AAAGAAGAT C C AG GAG GAT GAAAAC AC AGAC

TCTGGGTTCCTATCTGGGCCGATAAGTGAGCAGCTGACCTCGGAAGATTGTGATTTA GCG GAGGAAAGTGAGCGTGCTCGCAGCAGGCTTAGTGAGGAAGATCCTGAGCCTGAGCTGCAG TTGGACAGTGGGCTGGACCTCTCGGAGTGTCTGTCGAGTGTTAAGCTTAGTGATAGTGCA G T G T AC AC AC C CAC C T C G C AGAC C AC C C C CACAG T C AC TAT AG G T GAT GAGAAAAC T C AT GAC AT C C CAC C C C T C G C CAT C C T G T T C C AG C AG GAT GAC GAT G GAGAC AC AC AAC T AC AC

AT T G C AG C G G T AC AT G G G T G C GAAAAAT C AG TAG GAAC AT TAG T AAGAG TTTGCCCT GAC AAAGAT T G G C T AAAT G T AC C AAAT GAC T T T G GAC AGAC C G C C T T AC AC T TAG C AGC C AT G AGTGGGCATGCAGTAGTCACACGCATGCTGGTGATGGCCGGTGCATCTCTTGGCATTCGA GACCTTGTTGGCAACACACCTTTACATGTGGCAGCCGCAGCGGGCTACGTCGGCTGTCTC C AAG C T T T AC TGGCTCCTGCTC C AGAAC AAC AG C AGAGAAG G C TAG CAT C CAC G T T GAAC

CAGAAAAATTACAATGGTCAAACGTGCGTCCATGTGGCTGCGATGGCCGGCCACGTC GAC GCGCTGCAGACATTGGTCTATTACGGAGCTAACATCAATGCTGCGGAGGGTCTATGCGGG TGGACACCTCTACACGTAGCGGCGGCGCGAGGCGACGTCGACACGGCTCGCTACTTGCTC GAGAAGTGCGCTGGCGTCGATCCCTCTGCCCTGGACTACGCCGGTCGTACGGCCAGGAAA CTGGCGTTGAAGAATAAAGCGGCCGCCCTGTTTGACGGCAGTGAGGGCAGCGAGGAGGAG GAT AG T GAC AG T GAG GAT GAGAT G C T T C T G GAAAG C GAC C AGAG T C T G T T C GAC C G GAT C CGTGACGGTATGAACGCCATCAACGTCGCCTGA

[0259] > P. xylostella- Dorsal (PxDor); PxOOOHO (SEQ ID NO: 81 )

ATGAACGCGCCCGCCGACTCCGCCGTGGTGACGTTCACCAACCTGGGCATCCAGTGCGTG AAG C G GAG AG AC AT C GAG GAC GCCCTGGCTGT GAG AG AG GAGAT G C GAG T T GAC C C C T T C AAGACCGGATTCAGCCACAAGAACTCCCCGCAAAGCATCGACCTGAACGCCGTCCGACTC TGCTTCCAAGTGTTCCTGCCGGACGAGCGATCCGGCAAGATCCGCCACGCGCTGCCGCCG GTCGTGTCCGATGTCATCTATGACAAGAAGGCCATGAGTGACCTGGTTATCACGAGGCTG AGTCATTGTTCTGCGCCCGCGCAGGGCGGCAAGCAAGTTATATTGCTGTGTGAGAAGGTG GCCCGCGAAGACATAACCGTAACCTTCTTCGAGAAGTCCGGCGAGCGCGTGACGTGGCAG GCGGACGCGGCGGACGTGTTCGTGCACAAGCAGGTGGCCATCTGCTTCACCACGCCGCCT TACCGCGACCCGCATGTGCAGGACCATGTGCAGGCGTACATCCAGCTGCGTCGTCCGACG GACAACGCGACGAGCGAGCCGCTCCCCTTCGAGCTGCTCCCGTCCAGCGCAGATCCGAAT T AT C T GAAG C GAAAG C GAC AGAAAC C GAT AC AGAAC T T C AG T C G G T AC T T AC AG C C GAT C GAT AG C GAC AT GAAG C AG C AG C T G C C G GAC TAT T T C C AG GAC AAC AT GGCGCTGTC C AG C ATCCCCTCCGTGAAGCTGGAGCCCCGAGATAAGACTCCTCCTCACAACATGAGCAGCCCG CCGCTGCTGTTCCCCCCCGCGCACGCCGCGCCCGCACACCATGACCCCTACGCGTGGAAC ATGCAACTAGACAACATGCAGTCGGGTCTGACGGCGCCCGGGCCGAGCCGCCTGCCGCAG TACAGCCAGGACATGGCCTGGACCAACCAGATGGGCCACGTGTCCCCTATGCACCAGGCC ATGTCCCCTAACATGGGTCACGTCTCCCCCATGCATCAAGCCATGTCCCCAAATATGGGC CATGTCTCTCCCATGCACCAAGCTATGTCTCCAAATATGGTCCAGTCACCTATGGGTCAT GTGTCCCCTAACATGGGCCATGTATCCCCTAATATGGGTCATGTGTCCCCTAATTTGGGT CATGTGTCACCTAACCTGTGCCAGCAACCAATGGCTCCTATGGCGCAGCAGCTGATGGAC CCGTCCCCCAGCGACCCACCCTCCATCACGGGGCTGCTGATGGATCGCCCGGACCAGCCC TACTCCGGGGAGCTGTCTGGACTCTCCGCCCTGCTGGCTGAGGCAGCCCCCGCAGAGATG C T C AG C GAT AG C C T C AAC AGAC T G T C T AC G G GG GAC T T G T T GAGAC AAG T T GAT AT G T GA > P. xylostella- Hemolin (PxHem); ACN69054.1 (SEQ ID NO: 82)

ATGACTTTAATTTTCAAGAGTGTTTTATTTTTGGGCTTAATATTGACTACTTTTATTGTT TCCGCTCAGCCTGTGAAACAAGATGGCGGCTCAGCACACGAAGAAATATTGTTCCGTGAG CACGGCCAGCCGGTGGTGTTGACCTGCGCGCGCGCAGACGACCCCAACCAAGGTGGCATT AGAACGTGGTTGAGAAACGGGACGCCATTAGAAGACGGCAAAATGTCTCCCGAAATAAAA TTCCTCGACGACAAATCACTCTGGTGTTGCAGCCCTCACCAGCCGTGGAAGGGGTCTACC AATGCTTCACCGAAACCCATAAGGGCATTGCAACCTCCCCGAAATTCAGCGTGAAACAGA C T T AT C T CAAAGC T C CAGAGAC T AC G C C T T C AG T C AAT AT CAAAC C AG CAAAAGGCC T T C CCTTTAGCTTGGACTGTGACGTCCCTGAAGGATATCCGAAGCCTGAAGTGCAATGGTTCC T AC AAC AC G G GAAAGAT CACACCC T GAT T GAGGCAAT TAT CAATAAACGGAT CACACAGG

CTCCGAACGGAGCTCTTTACTTCTCAAATGCTACAACCGAAGATGTGAATGTGGGAG ACT TTAGATACGTCTGTATGGCGAGGAATGATGCGGTAGACTTACCAGTGGTGGTGTCGGAAG CTGTCATCACAGGTCTGAGCAGCGAGGGTGGTAAGGGTAGATTGGTGGAGCAGTACGTCA GTAAAGAAGTTAGGGCGGTTGCGGGGGAGACCACAGCGCTATTTTGCATTTTCGGTGGCA CCCCACTAGCCCACCCAGACTGGACGAAAGACGGCAAGAATGTGAACGGGGCGCCCGGCG AC C GAG T GAC C C GAC AC AAC AG GAG C T C AG GAAGAC GAC T CAT CAT C AAGAAC AC C AC T C TAGAAGATGCTGGAACTTACCAGTGCGCCGTTGACAACGGCGTTGGGACTGAAATGCGTT C T G T C AAG G T T AC T G T T GAAG C GAAAC C T T C AAT AAC GAT T G T GAAT GAAG TAG CAG C GA AG C T T G G AG AAGAAG T C AAG AT T T G C G AAG C GAC C G GAG T C C C AAC G C C AAAAC T AAC G A T AAC T C AC AAC GC TAAAC CGTTGGTTGCGT C AAAT AAC G T T G T TAT AAC C AAC GAT G GAG TTGTTATAAAGAATATTCAGGCTATTGATCGAGGGTATTATGGGTGTGATGCTGTCAACG AG C T AG GAAG C GAAT T T C G T GAAAC T T AT C T AAG T AT T G C C T GA

[0261] > P. xylostella- Sph-3 (PxSph3); XP_004922188.1 (SEQ ID NO: 83)

ATGCAGCTTAATTTCTGTATCAATGTGATCGCGACCATATTGTTGATTGTGACTGGC GGG GAT T C C CAAAAAC GAG T G G G T GAC AT T T G C AT T GAT CAAT AC AC GAAC AC G T AC GGAAG G TGTGTTTTCTCGGATCGATGTCCATCAGCTTTACGTAATTATCAACAGAACGGCATTCGG CCATCAATATGCACTTACAACTTCGACAATGCACTGGTGTGTTGTACTGAACGCGGAAAT ATTCTTCAAACGGCGAGGCCCCCGCCACCGCCTGATCAGGAAGACAGATTTCAGTCCTCT G C T G GAAAC AACAAC AAC AAC AATAAAC C T AAC AT T AGAG T TAG C GAAAGAAAAT G C C G C GAGTACAGCAAATCAGTAACGTTCACGGTGAGCTTCAGCTCGCTGCTGCCGGAGCCCGAG TTGCAGTCCATCTCGCGGCCGCGCTGCAGCCGGAGCGGCGTGGGGCTCGTGCTCGGCGGC CGGGACGCCGCGCCGGAGGAGTTCCCGCACATGGCAGCGATCGGCTTCGCATCAGCGGAA GGCTACGACTTCAAGTGCGGGGGGTCCCTCATCAGCGCGCGCTGGCCGCTGACCGCGCCC TGCGCGCGCGCCCGCGCCTCCAGCCGGCCCGTGGTGGCGCGCTTAGGAGATAGGAATATC AACCCGAAAGCGCAGGACGACGCCACGCCTGTCGACGTGCCAATCCGGAACATCATCGTG GACGTGGACCTCAGCAACAGCATCCGCCCCGCGTGCCTGTGGCCCGGCGGACCCTTCCAC GAGGATAAGGCTATAGCTACGGGCTGGGGGGTGGTGAACCAACGCACGCAAGAGAAAGCG GACCTCCTCCAGAAGGTCTCGCTCACTCTGCTCGAGAACTCATACTGCGACCGTCTGCTG AGGAACAACCGCAACCGACACTGGCAGGGCTTCCGCGACTCGCAGTTGTGCGCCGGCGAG GTGCGCGGCGGCATGGACACGTGTCAGGGCGACTCCGGCGCACCGCTCCAGATCGTGTCC AAGGAGAACCAGTGCATCTACCACCTCATCGGCCTGACCTCCTTCGGCTACAAGTGCGCG GAGCAGAACAAGCCGTCGGTCTACACCAGGGTGTCGACTTACGTGGACTGGATAGAGTCT GTGGTGTGGCCGGAGGAGTATGCGGCTTGGGCGGCGGGGAGGAGTAAATAA

[0262] > P. xylostella- Transferrin (PxTrs); BAF36848.1 (SEQ ID NO: 84)

AT GAT AG T GAAAAT AG CCATTTTGGTGATAG CAAT AAC G T T C AAC GATGTGTCT GC GAAA ACTTCGTACAAGATCTGCGTACCGTCTCAGTTCATGAAGGCATGTGAACAAATGCTTGAA GTGGAAACGAAGAGCAAAGCGATACTGGAATGTTTGCCGGCCAGAGATCGAGTGGAATGC CTGACCCTGGTGCAGCAACGGCAGGCGGACCTCGTCCCAGTGGACCCTGAAGACATGTAC GTGGCGAGTAAGCTGCCCAACCAGGACTTTGTGCTTTTCCAGGAGTTCCGGACCGATGAA GAGCCGGATGCGGAGTTCCGTTACGAGGCCGTCATAGTTGTTCACAAGGACCTTCCAGTT AC C AAC T T G GAC C AG C T T AAG G G C T T GAAG T CAT G C CAT AC T G GAAT C AAT AGAAAT G T G GGGTACAAGATACCACTAACGATGCTGATGAAGCGCTCCGTGTTCCCTGCGATGACAGAC CGCAGCATCTCTCCTAAAGAGAACGAGCTGAAGGCTCTCTCGACGTTCTTCAGCAAGTCC TGCATCGTCGGCCAGTGGTCGCCTGACCCGAAGACCAACACTTTCTGGAAGTCCCAATCC AGCAAGCTATGCTCCATGTGCGAGGACCCTGCCAAGTGCGACTACCCCGACAACTACAGC GGCTACGAGGGCGCGCTGCGCTGCCTGGCGCACAACGGCGGCGACGTGGCCTTCACTAAG GTCATCTATGTGCGGAAGTTCTTTGGGCTCCCAGTAGGCACAAGCCCGGCGACTCCTTCT TCTGAGAACCCGGACAACTTCGCGTACCTTTGCGCGGACGGGTCCAAGGTCCCTATCAGA GGAAAGGCATGTTCTTGGGCCGCAAGACCGTGGCAGGGGTTGTTGGGACATCAGGACGTT CTGGCCAAATTGTCGCCTTTGAGGGAGAAGATTAAGCAGCTGTCTAGAGCTGGAGCAGAA TCGAAGCCGGAGTGGTTCACCAACGTTCTAGGCCTCTCTGAAAAGATCCACTTGGTCGCC GACAACATTCCCATTCGTCCCGTCGACTATCTGCAGAAGGCCAACTACACTGAGGTCATC GAGAGAGGGCACGGCCCGCCTGAACCTGTTGTGAGACTCTGCGTGACGAGCTCGGTGGCG CTGGCGAAATGCCGCGCCATGTCCGTGTTCGCCTTCAGTAGAGACATCCGCCCCCGGCTG GACTGTGTGCAAGAGGCTTCGGAAAGCGATTGCTTGAAAAGTGTCCAAGACAATGGCTCA GAC C T G G C G T C AG T AGAC GAC AT G C G G G TAG C G T C AG CAT C C AAC AAG T AC AAC C T AC AT CCAGTATTCCACGAGGTATATGGAGTCAGCAAGACCCCTAACTATGCGGTAGCTGTCGTC AAGAAGAAT AC T C AG T AT G GAAAGAT T GAG GAT T T GAG G G GAAAC GGTCCTGT C AC AAT C CTTTATGGAAGCTTCAGTGGCTTTGATGCCCCTCTGTACTACCTTATTAATAAGAAAATC ATAGGCACTGAACAGTGCCTGAAAAAGCTTGGAGAATTTTTCGCAGCCGGATCTTGCTTA C C T G GAG T AG G CAAAT T AGAGAAC AAC C C TACAG GAGAT AAT GTCGATAATCT GAAGAAA CAATGTT C T G GAGAC AAC AG C C C AAT AAAAT GC T T AC AAGAAGAC AAAG GAGAC AT AG C A TTTGTGTCAAGTGCTGACCTGAAAAACCTGGATGCCTCTCAATATGAGCTGCTCTGTCTA AAC AGAGAGAAC G G T G G G C GAGAC T C AAT AAC C AAC T AC G C T AC AT G C AAC AT T GC C AT G

GCCCCATCCCGAACCTGGCTCTCAGCTAAAGACTTCCTGTCCGATGTGTCCATAGCA CAC AC T C C G C T GAG C T TAG C AC AAC T AC T G GAT AC C AGAAAG GAT C T G T T T AAC AT T T AC G GA GAGTT T T T GAAGAAT AAT AAT G T T AT T T T T AAT AAT G C T G C C AC TGGAC T G G C C AC AAC A GAAAAGATGGACTTTGAAAAGTTCAAGGCAATCCATGATGTTATCTCATCTTGTGGTGTC GCATAA [0263] > P. xylostella- Transferrin (PxTrs); BAF36848.1 (SEQ ID NO: 85)

ATGCTGCTTAGGACGATACATTTGTTGTTAATTGTTTGTTGTGCGTGGTGCTATGAA GTG CCTCCGGCTAAATTGGAAGCTATTTATCCAGCTGGCTTGCGAGTGTCAATACCCGACGAT GGCTTCTCGCTATTCGCCTTCCACGGCAAGTTGAACGAGGAGATGGAGGGCCTGGAGGCG G G C C AC T G G T C CAGAGAC AT C AC C AGAC C C AAGAAC AAC CGCTGGGTCTT C AG C GAT AAA

CAGGCCAGGCTCAAGATAGGGGACAAAGTGTTCTTCTGGACGTATGTTATCAAGAAC GGA CTCGGGTACCGACAGGATGACGGGGTGTGGACTGTTGAAGGATTCGTCGACGTCGAAGGC AACCCGGTTGACCCCGCGAATGGACAACCCATCTCAGCGCCGACCAGACCTCCAACCCAA CCAGGCCGGGTGCCAAATGTCCCCATGCCGTGTGACATCTCAGTCACCACGGCATCAGTG CCAGGGTACATCTGCAAGGGACAGCTGCTCTTTGAAGACAACTTCAATGGGGCTCTGGAG AAAG GAAAGAT AT G GAC G C C G GAGAT TAT GAT G C C T GAT GAAC C G GAT T AC C C G T T C AAC ATCTACCTGAACGACAGGAACCTGCGCGTGAGGGACGGCCGGCTGTCTATCAAGCCCGTC ACGCTCGAGTCCAAGTACGGGGAGGAGTTCCTGGCCAAACTAGACTTGTCTGCCAGGTGT AC T G G T AAC G T GG G T AC T AC C C AAT G C AG C AGAGAG T C CAT T G G G G C C C AGAT CAT AC C T C C GAT AAT C AC AG C C AAG G T T AC C AC C AAGAAC AAG T T C AG C T T C AAG T AT G GAAG GAT T

GAAGTGAGCGCCAGAATGCCGCGCGGTGATTGGTTGATTCCAGATATTCTGCTGGAG CCG AAAGAAAAC C T T T AC G GAG T AC G C AAT T AC G C G T C AG G T C T AC T C AG CAT AG C C T C AG T C AGAG GAAAC AC T G C T T AC T C GAAGAC C C T C AAAG GAG G C C C CAT AC T G T G T GAC AAG GAA C C G C AGAGAAG T G C C AAG T T GAG C GAAAAAG T T G GAT AT GAC CAT T G GAAT AAAGC C T T C CAT AAC T AC AC CAT GAT T T G G G C AC C AAG T G GC AT C AC CAT G C T G G T G GAC G G C GAG C AG

TACGGGGACATCCGTCCCGGCGACGGCTTCAGCCAGGACCCGGCGGTGAGCAGCGTG GTG GCCGCGCCGCAGTGGCTGAAGGGCACCAGCATGGCGCCCTTTGATGTTATGTTCTACATA TCCCTTGGTCTCCGCGTGGGCGGAGTGAACGACTTCCCCGACACTCCTGAGAAGCCGTGG AAGAACAAGGCCACTAAAGCCATGCTGAATTTCTGGAACGCCCGGGAACAGTGGCAGAGC AGCTGGTTTGAGGACACCACTGCACTCCTCATAGACTATGTCAGGGTTTATGCGCTGTGA

[0264] > P. xylostella- Gloverin (PxGlv); ACM69342.1 (SEQ ID NO: 86)

ATGTACCGATTTGCAGTTATTTTATCTGTAGTCGCCGCGTGTGCCGTGGCTCAAGTTTCT CTACCTCCTG GAT AT AAT GAT AAAT AC C C AG GC T T C T AC AAAT AC T C C AAG CTAGCCCGG CATCCGCGACAAGTGACGTGGGACAAGAATGTCGGCCGTGGGAAGGTGTTCGGCACCCTC GGCGGCACTGACGATAGTCTCTATGGTAAGGCGGGCTACCGTCAGGACATCTTCAACGAC CACCGCGGCCACCTGCAGGGTGAGGCTTCTGGCACCAGGGTACTCAGTCCCTACGGAGAC AG C AG T C AC CTGGGCGG T AGAC T C GAC T AT AGC AAC AAG C AC G C C AAC G C C AAC C T G GAT GTCAGCAAGCGGATCGGAGGCGTCACTAGTTGGCAAGCAGAAGGCAAGGCTAGATGGCCG AT T G G C AAGAACAG T GAG C T AT C AG C C G G C G GAAT GAT C AGAC AAGAC C AC T T C GG C C AC GGGAGACCAGACTACGGAGTCGTCGGTGGGTTTAAATCTAGGTTTTAA 65] > P. xylostella- Chitin synthase 1 (PxCHSI ); KX420688.1 (SEQ ID NO:)

ATGGCGACGTCGGGGGGAGTGCGGGGGCGGCGGGAGGAGGGCAGCGACAACTCGGACGAC GAG C T GAC C C C GC T C C AG C AG GAGAT C T AC G GC G G C AG C C AAC G C AC AG T AC AAGAAAC A AAAGGATGGGATGTGTTCCGAGAGATCCCGCCGAAGCAGGACAGCGGGTCGATGGAGAGC CAGCGCTGCCTGGAGATCACCGTGCGCATCATGAAGATCCTGGCCTACCTGGTGACCTTC GTCGTGGTGCTGGGTTCAGGGGTGCTGGCCAAGGGGTCTGTGCTCTTCATGACCTCGCAG C T GAAGAAAGAT AGAAGAC TGGCGTATTG T AAT AAGAAT T T AG G T AGAGAT AAG CAG T T T ATAGTGACGTTGCCGGACGAGGAGCGGGTGGCGTGGATGTGGGCGCTGTTCATCGCATTT ATGGTCCCCGAGATCGGGACCCTTATCAGATCTGTCCGGATATGCTTCTTCAAGTCCTCC AGAACTCCAAGCAGCGCTCAATTTATTGTGATTTTTGTATCGGAATCTCTCCACACCATC GGATTGGCGCTTTTGATGTTCAAAGTGTTGCCAGAAATCGACGTGGTCAAAGGAGCTATG ATAACGAATTGCCTCTGCATCATTCCAGCCATTCTGGGGCTATTGTCTAGAAACTCAAGG GAC T C GAAAAG G T T CAT GAAAG T TAT AG T AGAC AT G G C T G C GAT T G G G G C T C AAG T C AC A GGATTCATATTATGGCCACTGCTGGAGAATAAGCCGGTCTTATGGCTGATACCGATCTCG TCAATCTGCATATCACTAGGCTGGTGGGAGAACTATGTCACTCGGCAGAGTCCAATCGGT ATAATCAAGAGCCTCGGCCGCCTCAAGGAGGAGCTGAACCACACGCGCTACTACACGTAC CGCTTCATCTCCGTGTGGAAGATCCTGCTGTTCCTCATGTGCATCCTCACCAGCATCTGG CTGGACGGCGACGAGCCCGGCATGTTCTTCCAGCTCTTCAGCGAGGGGTTCGGACCGCAT AAC AT T G T T G T C GAAGAGAT C C AAC T C C AGAC G G GAG G C AC AAT GAT C C C G GAC T TAG C C AACGCCACACTAACCGGAGACTCAGTGGAGGTGGCAGCGGCCTACAACTCTGCCGTCTAC GTCATCCTCATACAAGTGTTTGCCGCTTACTTCTGCTACATATTCGGGAAGTTCGCCAGC AAGATCCTGATCCAAGGGTTCAGTTACGCCTTCCCGATCAACTTGGTCATACCGCTGGTC GTGAACTTCTTGATTGCTGCTTGCGGTATCCGGAATGGTGATACGTGCTGGTTCCATGGG ACTATTCCGGATTATCTGTTCTTTGAGAGCCCACCAGTGTACTCACTAAGCGACTTCATA TCCCGCCAAATGGCATGGGTTTGGCTGCTATGGCTTCTGTCTCAGACGTGGATCACCATC CACATCTGGACGCCCAAGGCCGAGCGTCTGGCGTCCACGGAGAAACTGTTCGTACTGCCC AT G TAT AAC G GAC T G C T CAT C GAC C AAAG CAT G G C G C T AAAT C G T AAGAGAGAT GAC CAG AAG GAT G T T AAGAC T GAG GAT C T G G C C GAAAT C GAAAAG GAGAAG G G C GAC GAG T AC T AC GAAACTATTTCTGTGCACACCGACAACACTGGGTCCTCTCCCAGAGCCGTAAAATCTTCC GAT C AGAT C AC AAGAAT C T AC G CAT G C G C GAC GAT G T G G C AC GAGAC GAAG GAC GAGAT G ATGGAGTTCCTCAAGTCCATCCTGCGGCCGGACGAGGACCAGTGCGCGCGCCGCGTCGCG CAGAAG T AC C T CAGAG T C G T G GAC C C C GAC T AC T AC GAG T T T GAAAC C C AC AT AT T C T T G GACGACGCTTTCGAAATATCGGACCACAGTGACGACGATTCCCAGGTGAATCGATTCGTG AAACTGTTGGTGGACACGATTGACGAGGCTGCGTCAGAGGTGCACCAGACTAATATTCGT ATGAGGCCGCCGAAGAAATTACCTGCCCCGTACGGGGGACGGCTGACCTGGGTGCTGCCT G G GAAGAC C AAGAT GAT C T G C C AC T T GAAG GAC AAG G C C AAGAT T C GAC AC AG GAAG C GA TGGTCTCAGGTGATGTACATGTACTACCTGCTCGGCCACCGTCTCATGGAGCTGCCCATC TCCGTGGACCGCAAGGAGGTGATGGCTGAGAACACGTACCTCCTGACACTGGACGGAGAC AT C GAC T T C C AAC C G C AC G C T G T C AG G C T G C T GAT T GAT T T GAT GAAGAAGAAC AAGAAC CTGGGCGCTGCTTGCGGACGCATCCATCCTGTTGGCTCTGGGCCAATGGTGTGGTACCAG ATGTTCGAGTACGCGATCGGTCATTGGCTGCAGAAGGCGACGGAACACATGATTGGCTGC GTGCTGTGTAGCCCCGGATGCTTCTCGCTCTTCAGAGGGAAGGCTCTCATGGACGACAAC G T CAT GAAGAAAT AC AC G C T G C GAT C C GAC GAG G C TAG G CAT T AC G T G C AG T AC GAT C AA

G G G GAG GAT CGTTGGTTATG C AC AT T G C T G T T AC AAC GAG GAT AC C GAG T AGAG T AC T C A GCCGCCTCCGACGCCTACACGCACTGCCCTGAAGGTTTCAGCGAGTTCTATAACCAGCGT CGTCGCTGGGTACCCTCCACTATCGCCAACATCATGGACTTGCTTGCCGACTACAAACAT AC CAT CAAAAT CAAC GAC AAT AT C T C C AC AC C G T AC AT C G C T T AC C AGAT GAT G T T GAT T GGCGGTACGATCTTGGGCCCCGGAACTATATTCCTTATGTTGGTGGGAGCCTTCGTGGCT G C G T T TAGAAT C GAC AAC T G GAC T T C AT T C GAAT AC AAC CTCTACCCGATATT GAT C T T C ATGTTCGTTTGTTTCACGATGAAATCTGAGATACAGTTACTGGTGGCACAAATACTCTCT ACGGCATATGCAATGATAATGATGGCGGTAATCGTGGGTACAGCTTTACAATTGGGCGAG GACGGAATAGGTTCGCCATCGGCTATCTTCTTGATATCACTGTCAAGTTCATTCTTCATA GCCGCTTGTTTGCATCCTCAAGAGTTTTGGTGTATCGTCCCCGGTATCATTTACCTTCTG TCTATTCCTTCTATGTATCTCCTGTTGATTTTGTATTCGACTATAAATCTTAACGTCGTA TCTTGGGG T AC C C GAGAG G T G C AG G T T AAGAAAAC T AAGAAG GAAAT C GAG C AAGAAAAG AAAG AAG C G GAAGAC G C AAAG AAG AG T G C GAAAC AG AAG TCTTTACTCGGGTTCTTG C AA G GAG C AAAC C AGAAT GAG GAT GAAG G G T C AAT AGAG T T C T CAT TCGCGGGTCTATT C AAG TGCATGTTGTGCACACACCCTAAAGGCAACGAGGAAAAGGTGCAACTGTTGCATATCGCA T C T AC AC T T GACAAG C T C GAGAAGAAAC T G GAAAC T G T T GAAAAGAC C C T C GAC C C T C AC GGCCTCCACAGAGGTAGGAAGCTGTCGATAGGCCACCGCGGCAGTACCAACGGAGACCAC GGGCTGGACGCCCTGGCTGAAGACAATGAGGACCACAACCTCGACTCTGACACCGACACT C T AT C C AC G G C AC C T AGAGAAC AAAGAGAC GAAT TAATAAAT C C AT AC T G GAT T GAG GAC C CAGAAT T AAAGAAG G GAGAG G TAGAC T T C T T GAG T C AG T C C GAGAT T C AC T T C T G GAAG GAT C T GAT T GAT AAG T AT C T G T AC C C GAT C GAT G C C AAT AAG GAG GAG C AG GCCCGTATC TCGCACGACCTGAAAGAGCTGCGAAACTCATCCGTCTTTTCCTTCTTTATGATCAATGCC CTCTTTGTTCTCATCGTATTCTTGCTGCAACTGAACAAGGACAACCTCCACATAAAGTGG CCCTTCGGAGTCAAAACTAACATTACGTATGATGAGGTGACGCAAGAGGTGCTGATCTCC AAGGATACCTGCAACTAGAGCCTATTGGTCTGGTGTTCGTGTTCTTTTTCGCATTGATTT TAGTCATCCAGTTCACTGCCATGTTGTTCCATCGATTCGGAACTTTGTCGCATATATTAT CGTCTACGGAACTGAACTGGTTCTGCAATAAGAAGGCGGAAGACTTATCTCAAGACGCAC T G C T AGAT AAGAAT G C GAT AG C AAT AG T GAAGGAT C T C C AGAAAC T AAAC G G G C T C GAT G ACGGGTATGACAATGACTCGGGGTCGGGCCCGCACAATGTGGGAAGGAGAAAGACGATAC AC AAC C T G GAGAAAG C GAGAC AGAAGAAGAG GAAC AT AG GAAC G C T C GAC GTCGCTTT C A AGAAG C GAT T C T T C AAC AT GAAC G C T AAT GAAG GAC C AG GAAC AC C AG T T C T GAAC C G C A AGAT GAC G T T G C GAAG AG AG AC G T T GAAG G C G T T G G AAAC GAG GAG GAAT T C T G T GAT G G C C GAAC GAAG GAAG T C G C AAAT G C AAAC AC T T G GAG C T AAC AAC GAAT AT G GAG T C AC T G GAATCTTAAACAACAACCCAGCGGTGATGCCGCGCCACCGGCCGTCGACAGCCAACATTT CGGTCAAGGACGTCTTCGCGGAACCCAACGGGGGACAAGTGAACCGAGGGTACGAGACCA C G C AC G G C GAC GAG G GAGAC G G C AAC T C CAT CAGAC T G C AG C C GAGAAC C AAC C AG G T C T C C T T C C AG G G GAGAT AC C AAT AA

> P. xylostella- Beta tubulin (PxpTUB); KX420688.1 (SEQ ID NO: 88)

GCGGCAGCCAGCAGTACCGCGCGCTGACCGTGCCCGAGCTCACACAGCAGATGTTCG ACG CCAAGAACATGATGGCGGCTTGCGACCCGCGCCACGGCCGCTACCTCACCGTGGCCGCCA TCTTCCGCGGACGCATGTCCATGAAGGAGGTCGACGAGCAAATGTTGAACATCCAGAACA AGAACAGCAGCTACTTCGTCGAATGGATCCCGAACAACGTCAAAACGGCCGTGTGCGACA TACCGCCTCGTGGACTGAAGATGTCTGCCACCTTTATCGGGAACACGACAGCAATCCAAG AGCTCTTCAAGAGGATTTCTGAGCAGTTCACTGCTATGTTCAGGAGGGAAGCGTTCCTCC AC T G G TAT AC T GG T GAAG G CAT G GAC GAGAT GGAG T T C AC AGAG G C G GAGAG C AAC AT GA AC GAC CTGGTCTCC GAG T AC C AG C AG T AC C AGGAC G C C AC G G C T GAAGAC GAG G GAGAAT T C GAC GAG GAT AT T GAAGAC GAG T GA [0267] > S. rug/per/a-Peptidoglycan recognition protein 1 (SfPGRPI); rep_c7951 (SEQ ID NO: 89)

G C AT T AAC AT C T C AG GAT T T GAT T C GAAAG TAAG G T C T GAAT T T AG T C C T T AC AT T T AC T TAAAATTAGGTCCTTTTTGGTTTGTACTGAAATGAAAGTTTTTCTGTTCTTGGTCTTAAT TGTGAAGATAATGGCTGAGGCAAAAGGAGATTGTGATGTGATCCCGATTACGCAGTGGGG AGATTCACCTCTTAAAAGGGAGGATYCTCTTCCAAATCCAGTGAATATTGTTGTCGTCCA AYAC RC T G T G G T AC C G GAG T G T AAC AAT GAT GAAGAG T G T GAGAAAG C AG C CAM T G GAAT C AG GAG C T AC C AC AT T AAC AAAC G T G GAT T C AC T GAT AT AG GAC AAT C G T T C C T GAT T G G TGGAAACGGGAGAGTTTATGAAGGAGCCGGCTGGCATCACGTTGGGGCCCATACTTTGGG AT AC AAT G C AAGAT C T G T G G G GAT C T C C T T CAT T G G C GAT T T T AGAAC AAAAT T AC C AAC

ACCCGAAGCACTGAAAGCCTTCAACAGTCTCCTGGAATGTGGAGTCACGAACAATTA TCT GTCAAAGGACTATCACCTGGTGGCCCATAGTCAGCTCTCTATGACTGACAGTCCYGGAGA CATGYTGAGGAAGCAGGTGGAATCGTGGCCTCMTTGGCTGGATAATGCCAAAGACATACT TAAG T AGAARAAGAC T AAAC GCCGTACTTT GAG CCATTTAATGGTTACT T AAC C CAG T C C T TAG C AAT T T GAT AC AAG G C C AAT G T C T C TAAG G G C G G CAG T AAAG G T C AAAAC AC AT T T

AATGAGTGTGTTTAAGATTTTGCTAGTGAAAATTGTTTTGAAGTACGTATTTGATGT AAG T GAT GAT AT CAG TACCCTTAGTAT GAG TTTGCTTTACGTTC C AC GAGAT G GAAAC GAGAG CGCGTTCGGCGCTCTGATTGGTTCGTTCATTCATGCCGGCCAATCATAGCGCCGAATGGG CTCTCATTTCGTTTTCGTTCAACGTAAAGTAAATTCGTACTAAGGGTACTGACTTTAAAA TAAG T T AC C AAAAAGAG TATTACCTATT T AC AT TAT T T TAT T TAT T T TAGGTGTAT TGTA

ATT CAAG TAT TAAAT T AAT T AG T G T AGAT T AAT KS CAT GCAT T T TAT AT T T GAT T T CAT T GAATAA

[0268] S. frugiperda-Attacin (SfAtta); rep_c9395 (SEQ ID NO: 90)

ATCATTC C AGAT C C T C T C T CAT AC AT C C AAC AC T T GAAG C AAAC C AAT C C AC AT AC AT T A

TAGCAACATGTTCGCTCTCAAGTTGGTACTAGCTGCAGTGCTGGTGGTCGCAAGCGC CAG AC AT C T AC C AC AG GAC C AC T C AAC G T AC GAC CAAG T AC AAC TCCTCGGGTTC GAC GAAGA T G GAC GAC CAG T G T T T GAG C AC GAAGAC T T AC T C C C AGAAC T AGAG GAG T C C T AC CAG C C AGAGCACCTGGCGAGGACTCGCAGACAGGCGCAGGGCAGCGTCACCCTCAACTCCGACGG CGGCATAGGCCTGGGCGCTAAGATCCCGCTCGCACACAACGACAAGAATGTGGTGAGCGC CATCGGCTCCATGGACTTCAACAACAAGTTGCAGCCTGCTTCCAAGGGCTTCGGTCTGGC TCTGGACAACGTCAACGGGCACGGACTGACGGTGATGAAGGAAAGTATCCCCGGGTTCGG GGACAGGCTGTCGGGCGCTGGCAAGCTGAACGTGTTCCACAACGACAACCACAACGTGGC CGTGACCGGCTCTCTCGCCAGGAACATGCCCAGCATCCCGAACGTGCCCAACTTCAACAC GTACGGCGGGGGCGTCGACTACATGTACAAGAACAAGGTGGGAGCGTCTCTGGGCATGGC CAGTACTCCGTTCTTGGACCGCAAGGACTACTCCGCGATGGGCAACCTGAACCTGTTCCG CAGCCCGACCACTACCGTGGACTTCAGCGGCGGCTTTAAGAAGTTCGAATCTCCCTTCAT GAGCAGCGGCTGGAAGCCTAACTTCGGCCTTACTTTCGGCAGATCTTTCTAGATATATTT TGTAATCTAAATTTAACTTTAACTTTGTTGTATAATATTTTGTCGAATTAAGATCAGTAT TGTTCATACTAATATTATATTATCAGTGTTTCTTATAAATTAA

S. frug/per /a-Ctypel_ectin15 (SfCTL15); Joint2_rep_c488 (SEQ ID NO:

AGTTTTCGTGCTTAGCACACAGAGCGCCGAACGCGCTCTCGTTTCAATTACTTTAAA CGT AAAGCAAACTCGCACTAAGGTTACTGTGACCTTTGTAAACATGTACAATGCAATACTATG TTGTTATTTTCGATACAATCATATAAAAGACAACGTTTAAAAAAAAAGCATAGCACAGAC CACAGTACAAGTATCGAGACCAAACTTTTGTTAAAACTTATTTCGTTCTGTGCAGCAACT CTAATGCGAATAATGTGCAAATTATAATAAATATGTTTTGTATATAAACATGTGTTATCT CAAGTTCAAGACATTCCGGCTCCTACAGTCAACAGATACAGTGCACAAAAATGTTAAAAA TATATTTAATTTGTTTGTCTTACTTGTTCATGTTAAACTTAGACAGGGCACAATGCACCC CCCAGTATTGGTTCAACATGGATGCGAATGGTTGGCTGAAAGTGCACACGATACCCGCCA CGTGGGAGGAAGCATTCCTTCGGTGTCACTATGAAGGTGCGGTACTTGCGTCCCCCTTGA CGCAACAACTGAGTAAGGCTCTTMAAAACAAGTTTGCAGKCWTCGGTAACCCATCAATCC ACTTGGGGACACATGATTTGTACTCCASTGGTTACTACTTTTCTGTAGAAGGAGTACCAA TGGACAGCTTGGTGCTGAAATGGAGTAATATCAGAGGTACGGGCGAYTGCCTGGCGATGT CACGCGACGGGGAAGCATTTTTCACGAAATGCGAGCAACCTCGACCCTACATCTGCTACA AGAAGCTGGACAATCTGACGATGAACATCTGTGGAACATTYGATGACGCKTATCAATTCT ACGATAAGACTGGCAGCTGCTATAAGAGACACAACGYCTATCAGACATGGCCTGACGCGT TCAAGATATGCGCTGCCGAGGGAGGSTACCTGGTGATCCTGAACGATGACACAGAGGCCG CCATCATCAAGGATATGTTCCCCGTACGGCCAGGAAAGCCCAACGAATGGGAGAACTTCC ACGTGGGKCTGCGGGCATGGGGACCGGAACGTACTTGGATCACTATTCATGGAGAAAAAA TTGATGATGTATTCCATAATTGGAACCCGGGACAGCCGGACAACTACAAGGGAGTCCAGG ACACTGGCGCTTTCCTTAGARMAGGCACTTTAGACGATCATGCCGCTGGTGACAAATGTA TGTTTGTCTGTGAGAAGGATCCTAAAGTAAAACGCTTCGAAGAGYTACCCGAAGGATTGG CMGAAGTTTTAGGACAATAGGCCGCTAGTCAAATATTGTTCATATACCTWAGTTTTAATT AT G T AAAAAT AAT ART C GAT T GCAGAAT T T AAT AAAAT T TAAAC T AAAAAAAAAAAAAAA AAAAAG G TMAAAAC AT G T C

S.†rugiperda-Ga\ect\n4 (SfGlc4); rep_c2653 (SEQ ID NO: 92)

GCCTTGTAGTTCGACAGTCAAATCCAACGGGTGTCAGAAACAATTTCCGTTTTTCCGGCT ATTGATCGT CAT AT AAAT AAC T C C GAAG GAAAAAT GAC T AC AAT C GAC AAT C C GAC AG T A CCGTTCACGAGACCCATTCCTGGGCATCYGCTCCCCGGCCGCAAAATGGTCGTTAAGGGT G C AAT C T C T C C CAGAT C AGAT AG G T T C T C AAT AAAC T T GAAAT G T G G TAG C GAG GAC AT C GCTTTCCACTTCAACCCTCGCTTCAGTGAGCAGAAAATAGTTCGCAACTCTTATATTTCT GGCAAGTGGGGTCATGAGGAGATCAGTGGAGGCATGCCGTTGGTAAGGGGAGAGCATTTT GAAGCGCAATTTGAATGCAATGAAGATAATTTTTCGGTGGAGTTGAACGGGAAACATTTC T G C AAT T AC T C T T AT C G C AT C C C AAT C C AT AAGAT C AC C C AC G T C AAC G T G GAC GG T GAC GTCACGATAAGTCAGATCACCTTCGTGGACGCCTGAGCCATCGCCCGATCTTACAATGGT ACTTTTTTTTTACTTATGAACTAATGCTGGAAACCAAACTTCTTTATTCAAATATTTTTC TTTTGTCTTTATGACTATCAGTGTTTTTATTGCAATAAAAAG

S. frugiperda-Lysozyme (SfLys); rep_c18992 (SEQ ID NO: 93)

ATCAGTGTGGTGTCTTCAACCCAAGTGCATTGTATTGCTTGGTAAATAATAACTGASAAC AAAAATCTTGGTTATTGCTTGAACAGGTTTCGCCTATCAATTAGCCGAATATTGTTACCC T T GAC AC G C AAT AAT TGGTTACTCGAT TAAAGC T T GAAGAG G T AAAG T G C C GAAAT GAC G CGCGCCATTCTGTTTGTTGTTGTTTTATGCTTTATTGCAAAATGCTATGGAAAAACATTC ACKGAAT GT GAAT TAGT T CAGGAGC TAAGAAGGCAAGGAT T T CC T GAACAT GAGCT TAAA GATTGGGTRTGYCTGATCGAAGCGGAGAGTTCCAAACGAACCAACGCCATTGGTAACGGC AATTCAGATGGCTCTCTCGACTATGGCTTATTCCAAATCAAATAACCGCTACTGGTGCAG CGAYGGTGACCATCCAGGCAAGGGATGCAACGATACCGCTAGTAAAGATCTGTTGCTGGA TGACATCACAATAGCGTCTCAGTGCGCTAAGACCATTTTCGGTGTCCACGGATTTAACGC CTGGGTCGCATGGGTGAACAAATGCAAAGGAAGGACCTTACCYAACCTTCACTGTTAGTT AT T T AT T GAGAAAAT G T AAC TAAG GTATATGGTTACTTTGTACC T AAAT AT AG G TAT TAG GCATATATTGTC C AC T C T C AT C AAAT TTTTACTTTTATAT C AG T [0272] S. frug/per/a-Hemolymph proteinase 10 (SfHPIO); c12881 (SEQ ID

NO: 94)

ATTCGCTGTACGCACCTCGGATTGTGCGGTCAACTWTACAAGGCTCGTACCTTGCAGTTG AAC C GAC AAT C T AT T C C T AAAG C C T T T T T AAGG T C AG GAAAAAT AG T T C C T AC AT C T AAA TGCAGTAGAATTTGCGAAACGAATTTAAATAAAAATGGCGTCGATTGTGTTTGTGATTTT GTGTGTTACCGTCGCTGCGGTGAAAAGCGCGATTTTAAACCCGTGGAGTAAAGTTGAGGC CAACAAATGTGGTGTAGAAGCCAGTACTAACTTGGTCCATCACAATCCATGGTTGGTCTA CATCGAGTATTGGCGTGGAAACTCAGATACTGAGATCCGATGCGCCGGTACTTTAATCGA CAGCAAACATGTCGTCACAGCTGCCCACTGCGTTAGGACTCTGAAGTTTAGTCATTTGAT CGCCCGTCTTGGCGAATACGACGTAAATTCTAAGGAGGACTGCGTTCAGGGCGTGTGTGC CGATCCCATCGTCAGAATCAAGGTGGCTGAGATCATCGTGCATCCTAACTACAGCAACCG G GAAC AT GAC AT T G C AAT C T T AAG G C T G GAG GAG GAAG C T C C T TAT AC C GAT T T CAC T C C GGCCCATCTGTCTGCCTTCTGGTGATCTCGCGGAAGACACCCAGTTCTTAGCAGCCGGCT GGGGTGARATCCCCACGAAAGGCTTCTTCAGCCACGTGAAGAAAATCGTCCCCTACGTAC T G GAAT C GAGAGAGAT G C C AAAAG G T G T AC C AG T AC AAT TATATCCCG GAGAAC G T GAT C

TGTGCCGGT

[0273] S. frugiperda- Trypsin like serine protease (SfTSP); rep_c48453 (SEQ

ID NO: 95)

CAAGTAGCAACAAAATGCGTGTCCTCGCTTGCTTGGCCCTTCTCTTAGCTGTGGTAGCAG CCGTCCCCTCCAATCCCCAGAGGATTGTGGGTGGTTCGGTCACCACCATTGACCGGTACC CCACCATTGCATCCCTGCTGTACTCGTGGAACTTGAGTTCCTACTGGCAGGCGTGCGGTG GTTCCATCTTGAACAACCGTGCCATCCTTACTGCTGCCCACTGCACAGTTGGTGACGCCG CCAACAGATGGAGAATCCGTCTTGGCTCCACCTGGGCCAACAGCGGTGGTGTCGTTCACA AC G T C AAC AC T AAC AT C G T C CAC C C C T CAT ACAAC T C T G C AAC T T T GAAC AAC GAC AT C G

CTATCCTCCGCTCCGCCACCACCTTCTCCTTCAACAACAATGTTCAGGCTGCCTCCA TTG CTGGTGCCAACTACTTGCCCGGTGACAACACCGCCGCCTGGGCCGCTGGATGGGGAACTA CCTCCGCTGGTGGCTCTAGCTCTGAGCAGCTCCATCACGTTGAGCTGCGCATCATCAACC AG G C T AC T T G C AAAAAC AAT T AC G C T AC CCGCGGTAT CAC CAT CAC C T AC AAC AT G T T G T GCTCTGGCTGGCCCACCGGTGGTCGCGACCAGTGCCAGGGTGACTCTGGTGGTCCTCTCT ACCACAACGGCATCGTTGTTGGTGTCTGCTCTTTCGGTATTGGCTGTGCTCAGGCTGCCT TCCCCGGTGTCAACGCTCGTGTATCCCGCTACACTGCCTGGATCTCTTCCAACGCATAAG ATGTTACTTGGTGCTAATAATATTTTTTTGTAATAAAATGTTACTTTTATCCTCC [0274] S. frugiperda- C Type Lectin 6 (SfCTL6); Joint2_ rep_c448 (SEQ ID

NO: 96)

AAC AG TTTTCTATTGG C AG T CAAAGAC T T C AG T C GAAAAAT AAT C C T C AT C AGAG T C G T G AAG CAAG G T G C C C AAAAT AT AAT G T AAC C T AGAT AC C T AT T AAT AAAT T AT T T G T C AAC C

AAAAC G T T AC G T T C AAAG T C C T T AAAAT C AAAAT AT C T TAT GAT TAG T T T T GAT T T AAAA AT AGAG G T T C GAAAT C G C C AAC C C AAAT AG GTTTAGTTTACGATT C AG GAAAAAT C C T AA C G TAG G GAAAC AT TAT T T TACAAGAC T T T T GGC T TAAAAAC T T T GAGAAC C AAT G T C AAA T T T GAT AAT AAC T AAT GAGG T AT AAAAGC T T GAT C C TAT TAGGAC T TAT T T T CATAACAC C AT C GAG TTTGTATTTAAT RRAGAC G T GKG T T AAC T AAC AAC AT GAAGAC C G G T G T AAAA

TATTCTGTTMTTTGGATATTCTCTCTATTYTGCTATATAGAGGCAACATTTCGTTGT GAC T AC AC G T AC AG CAAG GAAG C GAAG GGCTGGTT C AAAC AT G T G G T GAT AC C AG C T AC T T G G GCTGACGCACGWCTGCACTGCACGTTGGAAGGTGCAACGCTGGCTTCTCCACTCAACCAG GCTATMAGTAATGAGATGCAGTCCMTCCTGGCRAACCTCTCGGCGCTGCAATCAGAAGTC T T C AC T G GAAT T C AC RC GAC T K T T T C AC GRMRC AAC T TAT AT CAT AC YAT Y GAAGG T AT A

C C T C T TAG T AAAAT T C CAT T AGAT T G G G C AACAAAT GAG C C AAAT G G T G G GAGAGAT GAA AAC T G T AT C AC G T T T AAC T C C GAT GGC CAAG C G G C AGAC AGAT C C T G T AARGAGAC T C GA C C T T AC AT C T G C T AC C GAC AC AC WAC T AAAG T GAC T G T GKC C AAT GAAT G T G G GAC T G T A GAT C C T GAAT ACAAT T T G GAT AAAAGAAC GGGCKCYTGC TAT AAG T T C C AC AC RG T AC C T CGCACGTTCGAGCGTGCCAACTTCGCGTGTTCTGCTGAAGGTGGMCACCTTGCCATAATC AACRGTGATRTCGAAGCTGCAGTACTGAAGGAACTCTTCGAAAGGAATCCACCTGCAAAG ATGTTCGGTACTTTCTGGAAAGACGTTGCTTTCATTGGTTTCCATGACTGGGGTGAATAT G G T GAC T G GAG GAC AAT T C AC G G T C AAAC G C TAG T AGAG G C AG GAT AC AG CAAG T T T T C A TCTGGAGAGCCAAATAATTCCTCGACGGGAGAATTCTGTGGTTCCATCTATCGGAATGGT ATGCTCAACGACCTTTGGTGTGGGCATCCTAAACCATTCATCTGTGAGAAGGACCCGAAA T AT C C AG CCGTATGTTGTGT T AC AGAAT C AGAAC CAGAAT T G GAC C C T AC T C AC T T C T T A GAG T AAT T C AAAT TGGATCTTTTTTTATAATTC T AC AT CAT T AGAAAT AT GAT G T T T AG T TGAATCTGCTTTTGAAGATTGATT [0275] S. frugiperda- Serine protease homolog 13 (SfSph13); rep_c1904

(SEQ ID NO: 97)

GAAKAG T G T C AAT TTATTTAATTGT C AAAAT C G C G T T GAAT G TAAGAT T G C TAT AGAAAT T AT T T G TAAAAAC T T T C T CAAAAAT T T AAT T C T AAAAT G T AAAG GAAC C T AAAAT C AGAT ACCGATAACACATTTTGTAAATGGTTTAATATTGAAACGAAACTTCTAAACATTTTTGGT GAAATACACATAATAATATAACTTCTTCGAAAACTAGGTAGATAGACTTCAACTCAGTTT TTATTAGCGAGCTAGAAGATACAGAGATTATCTAAGATGGTGTGTGATGGTCCGGATCCT CCAGAGAACAATCCTCACGAAATTGTTCCACCTCCTAGGAATGAATTGATAATGAATGGT AATCAAGGGGATGACAGTGATGAAGAACATGAATATTTTGGCTATGAACCTTTGGCGCAA

GGTCCAGAACTAGCAGTCTCAGATCACGATAGTGATGATGACCCAGAGAGTGCTGAA ACA CCTCCAGCTGATGTTCCAAATATAGAGCCAATGGAAAATGTACTAAGCCGGGAAGTTTGG AGTGCCCCGAGRCATACAGATGCTATACAAATGGATAATGAACGGGCTCAACAGGTGATG AGAGCTATGGCAAATTTTGCTCTACCCCAGGCCTCAWTTCCAGAATGGGCTCAGAGCATC TCTGAAGAACAATGGAAGCAAACTCTGAATGAACAAATAGAAAGATTGAAAAATAAAAGA

TAAACTAATTATATGTAGTATAATAATAATTAAGATTTAAGTGATAAAAATAACAAT TAT AACTTATATGTTTAAAAAATGTATATAAACTGTAAACTTTAAGCTTATTCACATTACTTT AAATATAGAAAAAATATGTGTACCTATTTATTGTTTGGCTACATAATCCAATATAGATTA AATTGCAAATGTTTAATGTAATTATTTAGTTGGATCAAAAATAACAGCACTAAAGGTCAC TAGTTTAGTTCTTTCATTTCGAATGAAAAAGTAAAATGGAGAATCTGCATAGAAATTTTC AGCTGACCGTGTTAATGTTCCACTTGTTGCGGCTACTGCTTCTGTTCCAAACTCATTAAT TGTTAACTTTACATCATGAATTATGGAATCCACATGTATTCCAGGGTTGGGTAGACTGTC CAAAATGTTTGTCCCATTTCCTTCGTTTTCTGAGTATCTGTCTGATTCTCCTTCAGATTT ATTCACAAACTGATTGGTGTTATTTACCATAAGTGCGAAGTTTGCTTGGCCTGGTATAAA CATACTTTGTATCCCAATAGATTGCAAGGTGCTCTCTAGCTTTGTGGTGCTTTTAATTTT CATCTTAGGGAAACGAATAACACAATTTTTCACATGCATTTCATTGATGGTATCATCAAT AACTTTGTTGTTAATATTTTCCATGAGTTCCAATAATGTTAATCGYTTATGAGATAATGG TTTTAAAGCGTACATAAAAGTTTCACTGTCGTTATATGGCAATGCTATCATGTGGAAATC ATGTTCCTCAGAAACCTTGTAACGAAACTCCCCAAAATTCAACATCATGTCAGCCATAAC TTCATCTGTGGCCCTTTTGAATTCCATCTTTCTTGTGAATTGCGGTGCAAAAGGCTGTTT CCATGTGCCACTAAAGTACAATGCAGTTAAAAGTACTACTTTAGTATGGGGAGGCAGAGA ATCTTTCAAAAAATCGTCTATATTTCCTTCTGTGTGCTTGCTCACCCACTCATTGATGCT GTTTTTAGATCCTTCGGTTTCTTGAAAATCAGTACGTAACACATCGCCTCCGTAAACACC ATGCAGATAACTTCTGTACAACTCTCGCAATTCTACTTGGTTGTCTACAAATATCGCGTC AGCGTACAAAGTTTTTGAAAACTCGTTCATATTTAAACTCTGTAGTAGTTCGCCGAACTG TTCGTGGTTCTTGCGGTTTCGTAGAATATCTTGGGAAAATCCGAGTGTCTCTGCGATTTC ATCATGTGTCATCCCAACACTTCCGAGTAATGTCATGGCAAGCAGACCAGCGACACCTAT TGGTGATATCACGATGTTTTCGTTTTTCTTTTCGTTCATCATTTTGACTAGTAAATTATA TCCAAAATTATTTATAGCTTTTGGTATCGAGTTATCTTTCGTATTTGTTGTTTCTAAGTT ATCATTTTCAGCAGTTGTGGTTGGTATTATCGTGCTTGAAATCTGACTGTCCTCTTCATT TTGTCCAGAATATTGAAAATATAATGTTGTTATAATTAAAAATAACAATGACTTGCTATC CATGTTGTGGTGCTTAAATAAGGTATTAAACGTAAACTTCACACTAACAGGAACAGGTTC CTATTATTTCCCACTTAAATCGTGAACTTACGGCATAGACACTATACACGTCTACTCGTT TGACCAACTCTGAGAGCAACTCAAAAACAACCTTGTGTGTGTATGAATAACGAACTAAAA T

S. frugiperda- Cecropin (SfCec); rep_c42380 (SEQ ID NO: 98)

TTCGTGTCGTATCACTAGAGTTCGAAATACAAAATAATAATACATTTATTATTTTGCCAT AATTAATAATAAAGTTATTTTATTTCATAATAATAATGAATTTCACAAAGATATTTTGTT TGTTTTTGTCTTGCTTTGTTTTGATGGCGACCGTGTCAGGAGCTCCTGAACCGAGGTGGA AATTCTTCAAGAAAGTGGAGAAGTTGGGCCAAAACATCCGCKATGGTATCATAAAGGCAG GACCCGCAGTGGCCGTGGTGGGATCAGCRGCAGCCATWGGAAAGTGAKCCCTACGACCTG AGACATGAAGACTAATATCCAYTAAAATAASAATATTGAGGCKTATAATATTAATTTATT RTRTTTGTAAATTAAATTATTTGTAAGATAA

S. frugiperda- Relish (SfRel); c13122 (SEQ ID NO: 99)

ATAATATGAAGAGTGCTGCGACTAACGATTTAAGAATCTGTCGTATAAGTCGGTCGTCCG GAATTGCTTCTGGCGGCGAAGATGTCTTCATTCTGGTGGAAAAAGTTAATAAGAAAAACA TAATGATTCGATTCTTCGAGTTGGATGAAAACGGAGAAAAGAGGTTGGACCAATGTTGGG CGATTTGTGCAAAGCGATGTTCATCACCAATACGCAATCGTCTTTCGTACTCCTCCATAC AAAAACCCTGAGACGCCAGTCGATGTGGAAGTGTATATCGAACTGGTTCGTCCATCGGAC GGCCGTACCAGTGAACCGAAGCAATTCAAGTACAGAGCCAACCAAGCGTACAAACAGATC AAGAAGAGGAAGACTGGATCTTCCTACTGTTCTATTGGCAGCTCATCTAGTGGATCGTTG AAAAGTGGTTGCGACATTCCCATATCTGTTGTCAATCATCAACCAGAAGAAGTTCCCATG GATCGCGAGCCACCGGTGCCGTCGTCGATGTATGTTTTACCCCAGGTGCATGATTCGACG ACACCAAACCAATGCGATCTGGCCAGTGCTCTGTACTCTGCTCCTGGTTCGGAGACCAGC CAGTCTCCTATATCGAGTCCGATGTGGAGTGAGCCTCACAGCGTGATGCTGCCGATGTCG CCCATTGCCAACCTTCAGCTCAACTCCGCAGACTTCGAACAGATCACAGTACCCACT S. frugiperda- Toll (SfToll);joint2_ c3284 (SEQ ID NO: 100)

AAAAC C GAAT AAC CGGTATACCG GAT AAC T T C T T C AAG GAT T T GAAGAAT AT AGAG C AT T T AGAT T T GAG C T T C AAT AAGAT AAC TAAAT T GAC C AG T G GAG T G T T G T C AC C AAT GAAAC AATTGAAGTATTTGAACCTGAATCGAAAYCATTTGGAAGTTTTRCCTGAATTCCTCTTCG CTGGCCT C AGRAAAC T AGARAAW G T RW C AATMAAC GAAAAT C T AC T C AC T T C CAT AGAT T

C T T TAG CAT T C CAAG GRG C WAC G G C W T T G CAT AC AAT AT C T T TAT AC G G C AAC AGAT T AA C AT T GAAG T C C AAT GAAC AC AT C CAAGAC TAT AT G GAC T T AGAT C T C T AC T C AC C C T T YA AC AC T T T GAG C GAAT T AAAAAAT T T GAAC C T TAG T AAGAAYAAYAT AAG CTCTATATTCG ATGATTGGMGGATWGTGYTRCTCAATYTGGAGTTGCTGGATCTATCTTATAAYCATATTG GAGAG TTATTGCCG GAC AC C T G Y C AAT T C C T AAG C AAC AARR T YAC AG T G GAC C T G C AG C

AC AAT GAC AT AAG TACTGTTATTTTATATCC T AC GTCTCATATG GAC T T C AC AGAAC C C A G C AT G C C AT C AAAC AAT GTGTTTCTCT T AGACAAC AAC C C AT T T AAC T G T GAT T GC C AC A TAT AT AAC C T AGC TATGCGTC T AC AAG G C AAAAAG C T G C C C T AC GAAC C T AC T T T C AAC G TAGGCAAGGCCGAATGCAAATCCCCACGCCACTTAAGTGGGGATTTGTTGTCACATGTAT CCCCACTCGACTTATACTGCGAAGAAATGTCGCCTGATGTTCGTTTTAATTGTAGTTCGG TTAAAATGAGGCCTGCGTACAATGATTTGGCGTACGACTGTGATGATGTACCACCTTACT T C T C T GAT GAC AT TAAAAAC T AC T C T T T GAAAT T AC GAC AC C C AC C AAAAGAC T T AC G C A AC C T AAC AC T AAG T C T AC T AAAC C T AAC C G G CAT AG GAT T AC AAGAAAT C C CM T T T AC RC C G T CAGAAT C G G TAAAAG T AAT C GAT T T AT C GAAC AAC AAT C T C AC AGAGAT AC CKATMM GATTCTTAGAATCGAATACGACRTTGTWTTTATCGAATAATCCATTTGTTTGCGATTGTT C T T CRAAAGAT GAT AT T T TAGCT T TAMGRGCRAGT TAYAAT GT GAAT GAT T TG GAT AT AG T YAG C T G T T C AAAC GGCGTTTTGG T AAC AGAT T T AGAAAT AT CAT CGCTATGC T AT AC AA GAAC T T T AAT AGC AGAAAT AG G T G G TAT AY T AAT AT T C T T AY T AAT AAT C T TAG T R T T T A TAATAACATTYATATTTCCTAGACAAATGGTACTRTATTGTGGTCATAGGCTMTTTCCKT GCTGGTATATC GAC GAT C C AGAAAC T AC G G C AAAAGAAT AT GAC AT AT T CAT AT C T T AT G

C T C AT AAAGAC CAAAAAT AT AG T GAAT AAG C T AC T C C C G T AAAC T AGAAAAT GAT T T C AA GTTAAAAGTCTGCGTTCATTACCGAGATTGGGAAGTCGGTGATTTCATTCCGGATCAGAT C AAT C GAT C AG T AT C GAAT T C GAGAAAAAC GAT T AT T C T T T T AT C GAAT AG C T T T C T C GA TTCGACTTTCGCGAATTTGGAATTTCGTACCGCGCATAATT TAGCT TTGAAAGAGGGAAG AGAGAG GGTCATTTTAATACTTT T AGAG GAC G T T AG T AAAC AT GAGAAG T T AT C T GAAGA

AT T AAAG TAT CAT AT GAAT AT GAAT AC G T AT C T T AC AT G G GAT GAT AT T AGAT T T GAT GA AAAG T T AAAAC GAAG GAC GAT AC C AC AGAAAT AT AAT AGAAAGAAAT TCGTAGCGCCGGC CAT T T T AAAAC C TAT AT T CAGACAGGC TAC T GAGAATAAT T T G AAAAAG G C AC T CGAT GT ACAC T T T GAATAGT GCAGGCCAAT T GGT GAAT T TAGC T CAAAATAAGAAGAATAT T GATA TGGTATAGCTTTTCCCAAATAAGGCTCTTTTAAACATGTTAAGCCCTCTCTCACCCGACC TCTCTGACTACCGCACTCAGAGACATTTTAATGTATWTTTTTTTTTTAATTGGGTACAAG C C C G C C AC AAC AT C C CAGAC C G C T

[0279] S. frugiperda- Beta 1, 3 glucanase recognition protein (SfpGRP2);

EF641300 (SEQ ID NO: 101)

ATGTGGTCGGTGTTAGCCGGAGTATTGGCGATCGCGTCGCTAGGCGCGGCTTGCACCCCC AGTTTGACCACCGTCAGTGGTACCCACGCACCGGTCACCGTCTGCTCTGGTGCTCTGATC TTCGCTGATGGCTTCGACACTTTTGACCTCGAGAAATGGCAGCACGAGAATACTTTAGCT GGTGGCGGTAACTGGGAGTTCCAATACTACGGCAACAATCGCACCAACTCTTTCGTGCGC AGTGGAAGTTTGTTCATCCGTCCCTCTCTAACATCAGACGAGTTCGGAGAAGCTTTCCTC TCATCTGGACACTGGAACGTCGAGGGTGGTGCTCCTGCTGATAGATGCACAAATCCACAA TGGTGGGGTTGC GAG AG AAC AG G C AC G C C G AC C AAC AT T T T G AAC C C AAT C AAG AG T G C T CGTGTCCGTACCGTCAATTCCTTCAGCTTCCGTTACGGACGCCTCGAAGTCCGCGCTAAA ATGCCCGCCGGAGATTGGATTTGGCCAGCTATCTGGTTGATGCCTGCGTACAACACTTAC GGTACTTGGCCCGCATCAGGAGAGATTGACTTAGTTGAGTCCCGAGGCAACCGTAACATG TTCCACAATGGTGTCCATATCGGTACACAGGAAGCAGGCTCGACCTTGCACTACGGACCT TACCCAGCGATGAACGGTTGGGAGCGCGCCCATTGGGTCAGAAGGAACCCTGCTGGCTAC AAC AG C AAC T T C C AC C G T T AC C AAC T T GAAT GGAC AC C AAC TTACTTGCGATT C AG T AT C

GACGACATGGAGCTTGGACGTGTAACCCCTGGCAATGGCGGCTTCTGGGAATACGGT GGT T T C AAC AG C AAC C C T AAC AT T GAGAAC C CAT GGAGAT T C G GAAG C AGAAT GGCGCCTTTC GATGAGAAGTTCTACCTTATCATGAATGTGGCTGTCGGTGGTACCAACGGATTCTTCCCT GATGGCGTCAGCAACCCATCACCCAAACCCTGGTGGAACGGATCACCAACCGCCCCAAGA GACTTCTGGAACGCGAGATCAGCTTGGTTGAACACCTGGAACCTGAATGTCAACGATGGA CAGGACGCATCCATGCAAGTCGACTACGTCCGCATCTGGGCTTTGTAA

[0280] S. frugiperda- c20042 (Sfc20042); Un-annotated (SEQ ID NO: 102)

AT C AG TCGTCCCTCG T AC AT C C AAC AC T T C AAAC C AAAT AT C T C CAT AT AC AT AG T AAC A ACATGTTCGCCCTAAAGTTGGTACTAGCTGCAGTGCTGGTGGTCGCAAGCGCCAGACATC T AC C AC AG GAC CAC T C AAC G T AC C GAAC AT G T AC AG CTGCTCGGGTTC GAC GAAGAT G GA C G G C C AG T G T T T GAG C AC GAAGAC C T G C T C G CAGAAC C AGAG GAG T T C T AT C AG C C AGAG CACCTGGCGAGGACTCGCAGACAGGCACAGGGCAGCGTCACCCTCAACTCCGACGGCGGC ATGGGCCTGGGCGCTAAGATCCCGCTCGCACACAACGACAAGAATGTGGTGAGCGCTATC GGCTCCATGGACTTCAACAACAAGCTGCAGCCTGCTTCCAAGGGCTTCGGTCTGGCTCTG GACAACGTCAACGGGCACGGACTGACGGTGATGAAGGAAAGTATCCCCGGGTTCGGGGAC AGGCTGTCGGGCGCTGGCAAGCTGAACGTGTTCCACAACGACAACCACAACGTGGCCCTG ACCGGCTCTCTTGCCAGGAACATGCCCAGCATCCCGAACGTGCCCAACTTCAACACGTAC GGCGGGGGCGTCGACTACATGTACAAGAACAAGGTGGGAGCGACTCTGGGCATGGCCAGT ACTCCGTTCTTGGACCGCAAGGACTACTCCGCGATGGGCAACCTGAACCTGTTCCGCAGC CCGACCACTACCGTGGACTTCAGCGGCGGCTTCAAGAAGTTCGAATCTCCCTTCATGAGC AGCGGCTGGAAGCCTAACTTCTCCTTTAATCTTGGCAGGTCATTCTAGAAATATTTTTAA ACTCTTATTTAAAAATTAAATGTAAAAAATCCWGTTTGTTCATGATAATAAGAATAAATR ACAGTATTGTTCGTACTATTTACTATGTAATCTATAAATTGTATTAATAAATGAAAATTA A

S. frugiperda- rc16438 (Sfrc16438); Un-annotated (SEQ ID NO: 103)

ATCAGTCGTCCCTCGTACATCCAACACTTCAAACCAAATATCTCCATATACATAGTA ACA ACATGTTCGCCCTAAAGTTGGTACTAGCTGCAGTGCTGGTGGTCGCAAGCGCCAGACATC TACCACAGGACCACTCAACGTACCGAACATGTACAGCTGCTCGGGTTCGACGAAGATGGA CGGCCAGTGTTTGAGCACGAAGACCTGCTCGCAGAACCAGAGGAGTTCTATCAGCCAGAG CACCTGGCGAGGACTCGCAGACAGGCACAGGGCAGCGTCACCCTCAACTCCGACGGCGGC ATGGGCCTGGGCGCTAAGATCCCGCTCGCACACAACGACAAGAATGTGGTGAGCGCTATC GGCTCCATGGACTTCAACAACAAGCTGCAGCCTGCTTCCAAGGGCTTCGGTCTGGCTCTG GACAACGTCAACGGGCACGGACTGACGGTGATGAAGGAAAGTATCCCCGGGTTCGGGGAC AGGCTGTCGGGCGCTGGCAAGCTGAACGTGTTCCACAACGACAACCACAACGTGGCCCTG ACCGGCTCTCTTGCCAGGAACATGCCCAGCATCCCGAACGTGCCCAACTTCAACACGTAC GGCGGGGGCGTCGACTACATGTACAAGAACAAGGTGGGAGCGACTCTGGGCATGGCCAGT ACTCCGTTCTTGGACCGCAAGGACTACTCCGCGATGGGCAACCTGAACCTGTTCCGCAGC CCGACCACTACCGTGGACTTCAGCGGCGGCTTCAAGAAGTTCGAATCTCCCTTCATGAGC AGCGGCTGGAAGCCTAACTTCTCCTTTAATCTTGGCAGGTCATTCTAGAAATATTTTTAA ACTCTTATTTAAAAATTAAATGTAAAAAATCCWGTTTGTTCATGATAATAAGAATAAATR ACAGTATTGTTCGTACTATTTACTATGTAATCTATAAATTGTATTAATAAATGAAAATTA ACTATMTAAMWAAAAAAAAAAAAAAAAAAAAAAAAAACATGTC [0282] S. frugiperda- j2rc2367 (Sfrc2367); Un-annotated (SEQ ID NO: 104)

AT C AG TCGTCCCTCG T AC AT C C AAC AC T T C AAAC C AAAT AT C T C CAT AT AC AT AG T AAC A ACATGTTCGCCCTAAAGTTGGTACTAGCTGCAGTGCTGGTGGTCGCAAGCGCCAGACATC T AC C AC AG GAC CAC T C AAC G T AC C GAAC AT G T AC AG CTGCTCGGGTTC GAC GAAGAT G GA C G G C C AG T G T T T GAG CAC GAAGAC C T G C T C G CAGAAC C AGAG GAG T T C T AT C AG C C AGAG

CACCTGGCGAGGACTCGCAGACAGGCACAGGGCAGCGTCACCCTCAACTCCGACGGC GGC ATGGGCCTGGGCGCTAAGATCCCGCTCGCACACAACGACAAGAATGTGGTGAGCGCTATC GGCTCCATGGACTTCAACAACAAGCTGCAGCCTGCTTCCAAGGGCTTCGGTCTGGCTCTG GACAACGTCAACGGGCACGGACTGACGGTGATGAAGGAAAGTATCCCCGGGTTCGGGGAC AGGCTGTCGGGCGCTGGCAAGCTGAACGTGTTCCACAACGACAACCACAACGTGGCCCTG ACCGGCTCTCTTGCCAGGAACATGCCCAGCATCCCGAACGTGCCCAACTTCAACACGTAC GGCGGGGGCGTCGACTACATGTACAAGAACAAGGTGGGAGCGACTCTGGGCATGGCCAGT ACTCCGTTCTTGGACCGCAAGGACTACTCCGCGATGGGCAACCTGAACCTGTTCCGCAGC CCGACCACTACCGTGGACTTCAGCGGCGGCTTCAAGAAGTTCGAATCTCCCTTCATGAGC AGCGGCTGGAAGCCTAACTTCTCCTTTAATCTTGGCAGGTCATTCTAGAAA

[0283] S. frugiperda- Chitin synthase B (SfChsB);AY52599) (SEQ ID NO: 105)

AT G G C GAGAC C AAGAC CTTATGGTTT TAG G G C T T T AGAT GAG GAGAG T GAT GAC AAT T C G GAG T T GAC T C C G T T G CAC GAT GAT AAT GAT GAC C TAG GAC AAAGAAC AG C T C AAGAG G C A AAAGGATGGAATCTGTTTCGAGAGATTCCGGTGAAGAAGGAGAGTGGGTCTATGGCCTCA ACTGCCGGGATAGACTTCAGTGTAAAGATCCTTAAAGTCCTGGCGTATATTTTTATATTT GGCATAGTGCTCGGATCTGCGGTTGTGTCTAAGGGTACGCTGCTTTTTATCACATCACAA C T GAAAAAG G G CAAAG C AAT C G T T CAC T G T AAT AGAC AG T T AGAAC T G GAC AAG CAG T T T ATAACAATCCATTCGTTGCAAGAGCGTGTGACGTGGCTATGGGCAGCCTTCATAGCATTC AGTATTCCAGAAGTTGGCGTTTTCTTGAGATCAGTCAGAATATGCTTCTTCAAAACAGCA CCGAAGCCTTCTGTTTTACAGTTTTTGACGGCCTTCGTAGTAGACACCCTTCATACAATA GGCATTGGATTACTGGTGCTTTTCATCCTGCCAGAATTAGACGTGGTTAAAGGAACAATG CTAATGAATGCTATGTGCTTCATGCCTGGAATACTAAACGCTGTGACCAGAGACCGCACG GACTCTCGATACATGTTGAAAATGGCACTAGATGTACTAGCTATCTCCGCTCAAGCCACC GCGTTCGTCGTCTGGCCTCTGCTAAAAGGCGTTAGTATGCTCTGGACGATTCCTGTCGCA TGCGTATTCATCTCACTCGGATGGTGGGAAAATTTCGTCGGCGATATCGGAAAACAATGG C CAG T C C T G GAAC C T G T AC AAGAAC T T C G T GAC AAT T T AAAGAAGAC T C G T T AC T AC AC A CAGAGGGTGTTGTCTTTGTGGAAGATATTCATATTCATGTGTTGCATCCTGATATCTTTG GCGGCACAAGATGACAGCCCGCTTTCTTTCTTCACGGAGTTTGCTACTGGATTTGGTGAG CGCTTCTACAAAGTTCATGAGGTTCGAGCGATACAGGACGAATTTGAAGGTTTTCTGGGC T AC AAAAT TAT GGAC T TAT AC T T C GAT C AAAT G C C AG C G G CAT G G G C C AC C C C AC T G T G G GTGGTGCTGATCCAGGTCCTGGCTTCTTTAGTCTGTTTTATGGCAAGTTTGTCTGCCTGC AAGATTCTGATACAAAACTTCAGCTTTACATTTGCGTTGAGTCTTGTTGGACCTGTCACC ATCAACTTGTTGATTTGGCTTTGCGGCGAGAGGAACGCAGATCCCTGCGCATATAGTAAT ACGATACCAGATTATCTGTTCTTCGACATACCACCGGTGTATTTCCTGAAGGAGTTTGTG GTGAAAGAGATGTCGTGGATTTGGTTGCTGTGGCTGGTGTCGCAGGCGTGGGTGACGGCC CACAACTGGCGCTCCCGGGCCGAGCGTCTCGCCGCCAGCGACAAGCTCTTCAACAGGCCT TGGTACTGCAGCCCCGTCCTCGACGTCTCCATGCTGTTGAACAGAACCAAGAATGAAGAA G C G GAAAT AAC GAT AGAG GAT C T AAAAGAAACAGAGAG T GAG GGTGGGTCTAT GAT GAG C G GAT T T GAAG C AAAGAAAGAC AT AAAG C C T T C T GAC AAC AT T AC GAG GAT AT AT G T C T G C G C GAC T AT G T G GC AC GAAAC GAAAGAAGAAAT GAT G GAC T T C T T GAAG T C T AT C C T G C G T TTCGATGAGGATCAGAGCGCGCGTCGCGTCGCACAGAAGTACTTGGGCATTGTAGATCCT GAT T AC TAT GAAC T C GAAG T AC AC AT C T T C AT G GAC GATGCTTTC GAAG T G T C G GAC C AC

AGCGCGGACGACTCGAAAGTGAATCCCTTCGTGACGTGTCTCGTGGAGACTGTCGAC GAG GCTGCTTCAGAGGTCCATCTCACCAACGTGAGGTTGAGGCCACCGAAGAAATTCCCCACA CCGTACGGCGGCCGACTGGTCTGGACTCTCCCAGGAAAGAACAAAATGATATGCCACCTC AAAGAC AAG T C CAAAAT AC GAC AC AG GAAAAGAT G G T C T CAAG T GAT G T AC AT G T AC T AC CTATTGGGCCACCGCCTGATGGACGTGCCGATCTCAGTGGACCGCAAGGAAGTCATCGCA G G GAAC AC CTACTTACTGGCTTTG GAC G G C GAC AT T GAC T T C AAAC C GAC AG CAGTCACG T T AC T AAT C GAT T T GAT GAAGAAG GAT AAGAAT T TAG GAG C AG CGTGCGGGCG CAT C CAT CCTGTGGGCTCAGGCTTCATGGCATGGTATCAAATGTTCGAGTACGCTATTGGTCATTGG CTGCAAAAGGCGACTGAACACATGATTGGCTGTGTACTCTGTAGCCCTGGATGCTTCTCC C T C T T C AGAG GAAAG G C T T T GAT G GAC GAC AAC G T T AT GAAGAAAT AT AC C T T AAC T T C C

C AC GAG G C AC GAC AC T AT G T G C AAT AC GAT CAAG G C GAG GAC CGTTGGTG C AC G C T AC T G CTGCAGCGCGGGTACCGCGTGGAGTACAGCGCGGTGTCGGACGCGTACACGCACTGCCCC GAGCACTTCGACGAGTTCTTCAACCAGCGCCGCCGCTGGGTGCCCTCCACGCTCGCCAAC ATCTTCGACCTGCTCGGCAGCGCCAAGCTCACCGTCAAGTCCAACGACAACATCTCCACC CTCTATATAGTCTATCAGTTCATGTTGATAGTGGGTACGGTGTTGGGTCCCGGCACGATC TTCCTGATGATGGGGGGAGCCATGAACGCCATCATTCAGATCAGCAACGCGTACGCGATG ATGTTGAACCTCGTACCACTCGTCATCTTCCTTATAGTCTGTATGACTTGTCAGTCAAAG ACGCAGCTCTTCCTCGCTAACCTCATAACATGCGCATACGCAATGGTGATGATGATCGTG ATAGTGGGGATAGTTCTGCAGATAGTGGAGGATGGATGGCTGGCTCCGTCCAGTATGTTC AC AG C T T T AAT AT T C G G T AC AT T C T T C G T C AC C G C G G C AC T AC AC C C G C AAGAGAT C AAA TGTTTGTTGTTCATAGCAGTGTACTATGTAACCATCCCTAGTATGTACATGTTGTTGATC AT AT AC T C CAT C T G T AAT C T C AAC AAC GTATCCTGGGG T AC C AG G GAGAC AC C G CAGAAG AAAAC T G C T AAGGAAAT G GAAAT G GAAC AGAAG GAAG C AGAAGAAG C GAAGAAAAAAAT G

GAG AG TCAGGGTTT G AAG AAG TTGTTTGC C AAG G GAG AAGAG AAGAG TGGTTCGT TAG AG TTCAGTGTGGCGGGCCTGTTGCGATGTATGTGCTGCACCAATCCAGAGGATCATAAGGAC GAT C T CAACAT GAT GCAGAT C T CACAC GC G T T GGAGAAGAT AAAT AAGAGAT TGGAT CAA CTCGATGTCCCTCCTGAGCCGACCCACCAGCCCTCGCATCCGCACACACACGTGGAGACG GTCGGTGTTCGTGATTACGAAGACAGCGAGATTTCCACT GAAAT TCCTAAGGAAGAACGA

GAC GAC C T GAT T AAC C C C T AC T G GAT C GAG GAC G T G GAAC T C CAGAAG G G C GAG G T AGAC TTCCTCACCACCGCTGAGACCAACTTCTGGAAGGATGTCATCGATGAATACTTACTGCCT AT T GAT GAG GAC AAG C G T GAAAT T GAAC G T ATAAGAAAAGAT T T GAAGAAC T T GCGAGAT AAGATGGTGTTTGCGTTCGTGATGTTGAACTCTCTGTTCGTGCTCGTCATCTTCCTGCTG CAGCTCAGCCAG GAC CAGCTGCACTT C AAG TGGCCATTCG GAC AG AAG TCCAGCATG GAG

T AC GAT AAT GATAT GAAT AT G T T CAT CAT AAC C C AAGAC T AC T T AAC GC T GGAACC T AT C GGTTTCGTGTTCCTCCTGTTCTTCGGCTCCATCATCATGATCCAGTTCACCGCCATGTTG TTCCATCGCCTGGACACGCTGGCCCATCTGCTGTCCACCACCAAGCTGGATTGGTATTTC AG T AAGAZ G C C GGAC GAC C T AT C AGAC GAT G C G C T AAT AGAC TCTTGGGCGTT GAC AAT A G C GAAG GAT C T T C AAC G T C T GAAC AC C GAC GAC T T G GAT AAAC GAAAT AAC AAC GAAC AC

G T G T C C AG GAG GAAGAC CAT AT AT AAC T T G GAGAAAG G GAAG GAAAC C AAAC CGGCTGTT AT C AAC C T C GAT G C C AAC G C C AAGAG GAGAT T GAC T AT C C T G C AGAAT GAAGAC T C AGAA TTGATCTCCCGCCTGCCATCTCTGGGACCTAATTTGGCAACTCGTCGTGCCACGGTGCGT GCAATAAACACTCGACGCGCATCTGTCATGGCGGAGCGACGCAGGTCTCAGTTCCAAGCG C GAC C T T C C G G GG GAT CAT AC AT G TAT AAT AAC C C T C AAAAC AC GAT T C AG C T G GAC GAT

ATGGTCGGGGGGCCGTCGACGTCGGGAGTGTACGTGAACCGAGGGTACGAGCCCGCC CTG GAC AG C GAC AT C GAG GAC AC GCCCGTGCC C AC C AGAC GAT C C G T T G T AC AC T T C AC C GAC CATTTCGCGT GAT AAC C AC CAAAAT C T GAC T AAC AT C T C C AT AT T AC AT TTTCTACTCTG T T AC GAAAC GAT AAAG T T TAAAG T G T AT T AAAT AAAT T G GAC AGAT T T GAG T AG G T T T C A CGTTTGTGTTTAAATAATTTATGAAAATAACATACCTATTGCTTTATGACCGCTTTAATA T T AAAAGAAAC T CAAT AT AT GCAT T AA [0284] T. castaneum- Peptidoglycan recognition protein LC (TcPGRPLC);

DT786101.1 (SEQ ID NO:106)

ATATAAAAAAAAAAAAATAT TAG GC AAT T TAT T T AC AC AAAT AG C AC AAT T TAT CAAT T C AC AAG TTGTGTATTTTAT TAT AAAT AC T AAAT C AAC AAT AG C GAC T AAC AAT T AAC AC AA TTTTATTTCACTTCCTGTCACTATCGCGAGTAATAAATTCCCGCATCAAAATGCGGCCAA TTTTTGATCTCTTTGTAAACATTTGGCCCCGGACTTTCCGTTCTAAACGTCTGATTGTGA GCTACCAGTTTATAATCCCTGGCCAATTTTCCACTCTTTACCCCCTCATCTAGCAATTTC T T C G C C AC G C T GAT C AT C T C C G T C G T C AAAT GAT C AT GAAAAAAAT T C C C AAT AAAAC T A ATCCCGATCGAATCATCCATGTGAAAATTCCTGATATCCCAGCCTCGTCCAACATACGCA TTCCCATCTCCACCAATTACGAAATTGTACCCAATATCGGGACTTTTCAAATTGCCCACA TGGTAGTCCTGCATGGACTGCACCCTTTGCGAACATGCAGGAAAGTCGCTACAAGTCGGG G T AAC AG T G T G T GAAAC GAT GAC AAAAT GAG T G G GAT G T G G C AG T G G T T T AGAGAAG T T T AAGGTGGCACGGCCTCCCCAAATTTTTTTCTCGATGATGGCACCGGGGCCCAAAGGAAGT CTTGGAGTCGCAGTGTTAGTGTCGGGAGTTTCGGGAGACTTTTCAGTTTTCCGTGGGAGT AT T AC AAC G C AAG T T G T G G T GAC GAG GAT T AC GAT T AC GAC T AGAGAAAT G C C C AAAT AT

TTCACAGGTTTGGAGTATAAAAAGGAGTTTTTTTGGTTTTTCAGCGGGGGGGAGAGT CGG AAACAGGGGC T T T T CAGAC T T GACGAAGT T T AC CAAT GGAAT CAGTT GAAT TAACAAAT C CTTTTCCCTAAAGTCCTCTAAAAACAGATGATGGGGCCCCAT [0285] T. castaneum- Peptidoglycan recognition protein 2 (TcPGRP2);

XM_965754.3 (SEQ ID NO:107)

AT GAG T G G C AG T GAC C C T T TAACAAAT AC C C AAC AAT C C GAT C AAGAT T AT T AC CAT C C A CTCTGTTATTCAATTCAAGTGGACGACGAAAATGAACAATCAGCTCTCCTGCCCGCATTT C AT CAAAG GAAAAG T T T G C GAG T T C AG GAT AAAAT C T T TAT T G TAT T T T TAT T T T CAAT T CTAATTACCGGACTAGCCATTGGCCTCTATCTCCTTGCAACTGAGGGACACGAATGGAAA GCTGCAGGAGTCTATAATATTACAGTTCGGGAACAGTGGCAAGCTCACGTCCCTTCATCA AC AAT G C C AAAG T T G GAAC T T C C C G T AAGAAGAG T T T T AT T T C T T C C T G C AAAT AC C AC T AGCTGCGGCAGCAAATCCCACTGTGCCAAAGTCCTCCAGGAACTACAATTACAGCATATG C T GCAGTGG AAAG AAC CT GACAT C TCCTACAAT T T CAT AAT GAC T GCAGAT GGCAGAAT T TTCGAGGGGAGAGGATGGGACTTTGAAACTTCTGTTCAAAATTGTACGGTTAATGATACT G T GAC AG TTGCTTTTTTG GAC GAAT T AGAT G C GAAAG C AC C GAC G T T T AGAC AAGC T GAA GCGGCAAAAATGTTCCTGGAAGTGGCAGTAACAGAGGGAAAATTAGAACGGTGTTTTAAT ACCGCGGTCTGGGGAGGAAATAAATTCTTCATTGATTTGGCTCGAAATGTTCAAGACGTC T T AT C G GAAT G C GAG G GAAT T AC T T AA

[0286] T. castaneum- Beta 1 -3 glucan binding protein (TcPGRP2); XM_966587.4 (SEQ ID NO: 108)

ATGTGCGTTTGCAAGACTGTGCTATTAATCGTTGGGCTGGGGGGTTGTTTTGCGGGTCCG GTCCGTAATTATGGGCCATTGAGACATTACAACGTTCCGCGACCCTCAATCCAAGCATTC AGGCCCCGTGGCTTCAAAGTGAGCATCCCTCATACTGAAGGCATCCAATTATTCGCCTTT CATGGAAATATTAATAAACCCCTGCACGGTCTCGAGGCCGGACAATTTTCCCAAGACGTC CTCCAAAGGGAGGGAGACGAGTGGGTGTTCCAAGACTCCAGTGCCAAATTAAACGTGGGA GATAAAAT C TAT TAT TGGCTCTT TAT CAT T AAAGAAGAC C T G G G C T AC AGAT AC GAT CAC GGCGAGTACGAAGTGAAAGTTTTAGCCACCCGTGACTTCGATTCTCCTCAAACAACCTCT GTGACGCCGAATCTTGCCCCCAATCTCGGCATTTGCGAAAAGGTGATGGTAAATCTCACG CGGAAGCTGCTCGATTTGCAGCAAGAAATTGAGTCCCTTAGGGAGACGAACGATATTTTG GAG GAT AT G G T T C AGAAG CAC AC T GAT AC G G C GAC T AC T C T CAC T T T G GAC G G C T T GAT G

AT AAAG GAT GAC GAC GAAC TTGTTTCGGT GAT T C AAG C AAT TAT T AAAGAT AAAC T T G GA C T AAAAAG C AG GAT T C AAAAT G T GAC GAG G C AG GAGAAT G GAAT G G T C AAG T T T CAAG T G GCGAGTTTGAGAGAAAAGTTG GAG GTTGTC AAAG CGGCCAAAAGAAAACTCAAGTCGTCG AG C T T T AC GAT CAC G T AT T AA

[0287] T. castaneum- midgut protein (TcMDGP); XM_971351 (SEQ ID NO:

109)

AT G TAT C C G T T GAAGAG GAT G C C C AG T GAAGAAAT C AG TAT C AG T GAT C T G C C TAG C GAA AT GAAAGAAG T T T T AC T AGAAAT T AG C C C GAAC T T T GAT GAAAAT C T GAAAC G G GC T T T C AGGAACGAAGGAGT GAGGC T GCAGAGAGT GCAGAACAAT GGACGAT T TAT T CAT CAGC T G

GAC GAC GTTCTCTTATC C AT AGAC GAT AC C AAAAT C GAG T T AC G C AAC C T GAAAT T C C C C TGGATCCCCGACTTCCGCATCGTGGACTTGTCCAGCGACCTGCCCATGTCATGCCTCGAC C T AAAC C T AAAC C T G G G C AAT T T G C GAAT T GAG G G C GAG T AC GAAG C C AAC AAC AC CAC A CTCAGGCGATGGCTCCCGGTATCTCACATTGGTCGAATCGTGATCGGTTTTAACAACGTC CGAGCGAACGGAAAAGTCGGACTCGTGCTCGAGCAGGATTCTTTCGTTCCGCAGAATTAT GAT AT T AGAT AT GAG C C GAC G GAT GTTGTTAT TAG G G T TAG C T AT CAC G T G GAT GG C GAG AAT GAG G T G C AAAAT GAGAT TAG C AAT T C AGAT AT T GAG G C CAC G C TAG G C AAGAC C G T G TGGGTGCAGTTGACTGAGATATTGTCCAACCTGTTGCATAGGCAATTGGGCGAGGTTGTA GTGGAGTTTTCCGTGACGGAACTCCTCGTCGATAGGGACGAGGAATACAGGGAATACGCC AAGGGACAAGCAGCGCGCGCCAATAAACTCCTGGACTCGCTTTTGTGCTCAGCCAAGGAC T AT T AG T C G C GAAG GAG T T GAG GAG G G T C AAAA.C G C C AC C C T T C GAG GTCGTCTT C AAA G G G AAAG T C T C G G G G G T G C AG C AG G G G AC C T T C AG C AC G G G G G AAG GGTTCCTC C AAG AC C T C G C C AC T T T GAC G C G G AGAC AC AG C T T T AG T T T G T AC GAAGAC AAAC AC AAAC T C AC G

AT T AT G G G G G GAT C AG G C T GAG G GAG T T T AAC T C G G G TAT G G G G G C AC C AG G G C C AG T AC GAG GAAAC GG C C G T C C AG G C AG CAT C AAAG GCTCGCTC TAG AAGAAC GAGAT T T T C G T C AAGAT C AC T G T GAAAAAAGAAG G C GAG CGGTGCTC GAC T C AG T T AGAT T C C G T C C AA GTTGTTGTTG T AAAG T AA 8] T. castaneum- Chitin synthase 2 (TcCHS2); EFA 10719.1 (SEQ ID NO:)

ATGGCGGCGCGTCATCGCTTTGCCACAGGGAGCCCTGAGGAAACAGAGCCCCTGTATTCG TCGACGCAAATGCCCGAAAAAGTCCGGGAAAAATGGAACGTCTTCGACGACCCCCCAAGA GAGCCCACTTCGGTTCCGAAGTCAAAAGAACCTACATCGAGTGGGGGGTGAAGTTTTTGA AAGTTGTGACAATCATAACTGTGTTTTTTGTGGTCCTTGGTGCTGCAGTGGTTTCGAAAG G GAC AAC CTTGTTCAT GAC G T C AC AAAT AAAAAAGAAT G T GAC AAG GGCTTATT GC AAC A AAAAGATAGACCGCAACCTCCAATTCGTCGTCTCCCTCCCCGAAGTGGAGCGCGTGCAAT GGATCTGGCTCCTCATTTTCGCTTACTTGATCCCCGAAGTGGGTACCTGGATCCGCGCCG TCCGCAAATGCCTCTACAAGCTCTGGAAAATGCCCTCCCTCTCCGAATTCCTCTCCCTCT TCGGCACGGAAACGTGCCCCGCCATCGGAAGCGCAATTTTGATATTCGTCGTCCTCCCCG AGCTGGACGTCGTCAAAGGGGCGATGCTCACAAACGCGGTTTGTTTCGTGCCCGGAGTTG TGGCAATGTTCTCGCGCAAACCGTGCTCCATAAACGAGAACCTGAAAATGGGGCTGGACA TCGCCAGCATAACTGCACAGGCGTCAAGCTTCGTGGTGTGGCCCTTGGTTGAAAATAACC CGACCTTGTACCTAATCCCCGTTTCCGTGATTTTGATTTCGGTGGGTTGGTGGGAGAATT TCGTGTCGGAAACGTCCTACTTACCGTTTATCCGGGCTCTGGGCAAGAGCAAAAAGGAGT TTAAGACAAGGACGTACTTCATTTACGCGTTCGTGGCCCCGGTTAAATGCCTGGCGTTTT TTTGCACCGCTTTGGTCATTTTTTACTGCCAGGAGGGCAGTGTTGACTTTTTATTTGATA ATTTTTCAGCCGCGTTTCAGGATCATAACATTGAAATTACCGAAGTCGCGCCCGTCTTGC CGGGGAATTACGCAAATGCAGTTCGGTCGGGAGCCGAAACCCCATCCACACAAGCAGTTA CATGACGGGGATTTGGGTTTGGTTGATTAACATTTCGGCGACTTATATTTGCTACGCGTT TGGGAAATTCTCCTGCAAAGTCATGATCCAGAGCGTTAGCTTCGCTTTTCCGATCAATTT GTCGGTCCCTGTCCTCTTATCCGGACTGATCGCAATGTGTGGCATGTACTACAGGGATGA GTGTTCTTTCGCTGAGTCAATTCCTCCATATTTGTTTTTCGTTCCTCCACCTCTCATGTT CCTACAAGATTTTCTCTCGCACCAACACGCCTGGATTTGGCTGGTTTGGTTGCTGTCACA AGCCTGGATTTCGGTGCACATTTGGTCCCCAAACTGTGACAAACTTTCAAGCACCGAACA GTTGTTTATTCGGCCCATGTATGACGCGTTTTTGATCGATCAAAGCCTGGCGTTAAACCG GAGAC G T GAC GAAAAT C C C AGAAAT T AC AGAAG C GAC GAAG G G C C T C AAAT T AC AGAG C T

CGAGCCGGAAACGATCGAGAGTCAGGACGCCATAACCCGGATTTACGCCTGCGGGAC AAT GTGGCACGAAACTCCCGAAGAAATGATGGAATTTTTGAAATCGGTGTTCCGCTTGGACCA AGAC C AG T G T T C C C AC AG GAT T G T GAG G GAG CAT T T G G GAC T C AAG CAT GAC AAT T AC T A C GAAT T G GAGAC TCATATATTTTTCGATGATGCGTTTATTCG GAC C AG T GAAGAC GAT AA TGATCCCCACGTCAACGAATACGTTGAGTCACTTGCGTCCATTATCGACGAGGCTGCGAC TAAGGTTCACGGTACCACGGTGAGGGTGCGTCCGCCCAAAGTGTACCCCACGCCTTACGG CGGACGCCTGGTCTGGACGCTCCCAGGGAAAACAAAAATGATCGCCCACTTGAAGGACAA GAAGAAGATTAGGGCGAAAAAGCGCTGGTCTCAGTGCATGTACATGTACTTTTTGCTCGG ATTCAGATTGCAAGCCAACGACGAACTCTCCGCCCACAGCAAGGAAATCCGCGGCGAAAA CACCTACATCCTCGCCCTGGACGGCGACATCGATTTCCAACCCGAAGCCCTGCACCTCTT GGTGGACTACATGAAGAAGAACAAAACGTTGGGGGCGGCCTGCGGCCGCATCCACCCCAT CGGCAGCGGCGGCATGGTCTGGTACCAAATGTTCGAATACGCCGTCGGTCACTGGATGCA AAAAGCCACCGAGCACGTCATAGGCTGCGTCCTCTGCAGCCCCGGCTGTTTCTCCCTGTT CCGGGGAAAAGCCCTCATGGACAAAAGCGTCATGAAGAAGTACACCACTCGATCGACCCA AGCCAAGCACTACGTGCAGTACGATCAAGGGGAGGACCGGTGGTTGTGCACTTTGTTACT CCAGAGGGGCTACCGTGTGGAATACTCCGCAGCCTCGGACGCTTTCACGCACTGTCCGGA AGGCTTCAACGAGTTTTACAACCAGCGGAGGCGCTGGATGCCGTCCACTATGGCCAACAT T T T G GAC C T T T T GAT G GAT T AC GAG C AC AC G G T C AAAAT C AAC GAAAAT AT T T C CAT G C T GTACATCGGGTACCAAATTATTTTAATGATCGGTACGGTCATTGGCCCCGGTACTATTTT CCTCATGTTGGTCGGCGCCTTCGTGGCTGCCTTTGGGCTCGACCAATGGAGCAGTTTCTA CTGGAATTTACTACCAATCGCAGTTTTTATCCTAGTATGTGCCACTTGTAGCTCCGATAT CCAATTATTTTTCGCCGGCCTTATCAGCGCCATTTACGGCCTGATAATGATGGCTGTTTT CGTCGGTGTGATGCTCCAAATCAGCCAAGACGGCCCACTTGCGCCTTCCTCCCTTTTCTT CTTCTGCATGGCTGCTGAATTTATAATCGCAGCACTGCTGCATCCGCAAGAATTCAACTG TTTGAAATACGGGGTCATTTACTACGTCACGGTCCCCAGCATGTACCTCCTCCTAGTCAT CTACTCGGTCTTCAATATGAACAACGTGTCCTGGGGGACGCGCGAAGTGACAGTCGTGCC C AAG C C T GAC C C C AAC G C C G T C C AGAAAAT C GAAGAGAAAAAAC C G GAGAAGAAAGAC AA AGTTTTGACGTTTCTGGGCGCGAATGCCCAGGACGACGAAGGCGGGCTTGAATTTTCGGT C AAC AAAC T T T T C AAAT G CAT GAT T T G T AC G T AC AAG G C C GAT AAC AAG GAAAAC GAG C A G T T GAG GAAAAT AC AAGAG T C G T T GAGAGAC T T GAAT AG GAAAAT C GAG T C G C T GGAAAA AATGCAATATCCGGATTTGAGGTCTCCTGCCGTTAGCAACGTTACAACGTTCATGGAGGG C T C AAAG G C GAC G G T T AAGAAC AAC G T G GAG GAT AAC T AC AT G GAG G C T C C G C AAGAC AA TGTTTCGCAACCGTCGGATGAGGTCATGGAGAATAGTTGGTTCTACGATGGGCCTTTGAT TAG G G G G GAAG T G CAT T AC T T GAAT AG GAAT GAG GAAAC G T T T T G GAAT GAAC T GAT AGA G C AG T AT T T AC AC C C GAT T GAG GAT GAC AAGAAGAAG GTTTCGGCT GAAT T GAAAGAT T T GAGGGACAAAATGGTGTTTACTTTCCTGATGTTGAATTCGCTCTACGTTATTGTGATTTT TTTGCTCACTTTGAAGAAGGATTTGCTCCATCTGGACTGGCCGTTTGACCCCAAAGTGAA C T T C AC G T AT T T C GAG GAC AAAAAT GAGAT T GG C G T T T AC AT AAC AT AC C T C CAGC T G GA

GCCCATCGGTTTCGTGTTCCTCATATTTTTCGCCCTGCTTATGGTGATCCAGTTCTT CGC AAT GAT GAT C C AC CGCTTCGG C AC C T T C T C C CAAAT CAT C AC AAAAAC AC AAT TAGAC T T CGATCTGTGCAGCAAACCAATCGACGAAATGACTGTGGACGAACTCAGGTCCCGCGACCC TAT AAAAAT AG T C G C AGAT T T AC AAAAAC TAAAAG G TAT AAAC AAC GAAT AC GAGGAC C A AACGGAAGTTCCGGTCGAAATGCGAAAAACAGTAAGTAATTTGGCGCAAACGAGCGGTGG TGGTGAGAACAAGCCCATATTTTATTTGGATGAAGCGTTCCAAAGGCGAGTCACTCAAAT AG G GAG C AC T T C AAG C AAC AAC C C GAG CAT TAG CGCCTTTAG G AAG AAAAG CCTTGCTTA CGTCCAACAAAGAATGAGCATAGCCCCAAATCGGGTGTCACAAGCCCGGCCTAGTGTGCA GTTACGGTACCCCAATGGAAAAGCCAACGAAAATTTCGTTTTTGACGAAAACGGGTCAGA CGTGGAGGCATAA

[0289] > M. sexia-Peptidoglycan recognition protein 2 (MsPGRP2);

GQ293365.1 (SEQ ID NO: 111 )

TAATCATTAGAAAAATGGCGAGCTTCGCTTTAATAGTTATCCTTAGCGTAATTGGCTTTA TATCGGCCTATCCTAGTCCTGAAGGTTACAGTTCTGCCTTCAACTTTCCATTCGTAACCA AGGAGCAGTGGGGCGGCAGGGAGGCACGCACGTCGACGCCACTCAACCACCCAGTGCAGT TCGTGGTGATCCACCACAGTTACATTCCCGGCGTGTGCCTCAGCCGGGACGAGTGCGCGC G C AG CAT G C G C T C CAT G C AGAAC T T C C AC AT GAAC AG T AAC G G G T G GAG T GAT AT T G GAT ACAACTTCGCTGTCGGCGGTGAAGGGTCGGTGTACGAGGGCCGCGGCTGGGACGCGGTCG GCGCACACGCAGCTGGCTATAACAGTAACAGTATCGGCATCGTGCTCATCGGCGATTTTG TTTCAAACCTCCCGCCGGCGGTGCAAATGCAAACCACACAAGAATTGATCGCAGCGGGCG TGCGACTCGGTTACATCAGGCCCAACTACATGCTCATCGGGCATCGTCAGGTCTCCGCCA C T GAG T G C C C AGGAAC CAGAC T C T T C AAC GAAAT C AC C AAC T G GAAC AAC T T C G T GAG G [0290] > M. sexia-Beta-1, 3-glucan-recognition protein 2 (MspGRP2);

AY135522.1 (SEQ ID NO: 112)

GAGCGTCTGTTTGTTCGCAACCATTGCGGGCTGCTTGGGCCAGCGAGGGGGTCCATACAA GGTGCCTGATGCGAAACTCGAAGCTATCTACCCCAAAGGCTTGAGAGTCTCTGTGCCAGA TGATGGCTACTCCCTATTTGCCTTCCACGGCAAGCTCAATGAGGAGATGGAAGGTTTAGA G G C T G G C CAT T GG T C C AGAGAC AT C AC C AAAGC GAAG C AG G G C AGAT G GAT AT T CAGAGA TAGGAAT GC T GAGC T GAAGC T T GGAGACAAAAT T TAC T T C T GGAC T TACGT TAT TAAGGA T G GAT T G G GAT AC AG G C AG GAC AAT G GAGAAT G GAC T G T T AC AGAAT T C G T C AAT GAGAA CGGTACAGTGGTGGACACTAGTACAGCGCCGCCACCAGTAGCACCCGCCGTTTCAGAGGA AGATCAATCGCCAGGTCCTCAGTGGAGACCTTGCGAAAGATCCCTGACTGAGTCCTTGGC CCGCGAACGCGTTTGCAAAGGCAGCCTTGTCTTTAGCGAGGACTTTGATGGTTCCAGTTT GGCCGACTTGGGCAATTGGACCGCTGAAGTCAGATTCCCTGGCGAACCGGACTACCCGTA CAACTTGTACACTACGGACGGCACTGTGGGATTCGAAAGTGGGTCTCTGGTGGTGAGACC C G T C AT GAC C GAG T C C AAAT AC C AC GAG G G CAT CAT AT AC GAC C G C C T C GAC C T T GAGAG ATGTACAGGACAGCTGGGTACGCTGGAATGCAGGCGAGAGAGCAGCGGCGGTCAGATTGT ACCACCTGTGATGACAGCTAAACTGGCCACTCGACGCAGCTTCGCGTTCAAGTTCGGCAG GATCGATATAAAGGCGAAGATGCCGCGCGGGGACTGGTTGATACCAGAACTCAACCTCGA ACCTTTAGATAACATATACGGCAACCAGCGATACGCTTCGGGTCTCATGCGGGTCGCGTT CGT GAGAG GAAACGATGTATACGCCAAGAAGCTCTACG GAG GTCCGATAATGTCCGACGC GGACCCGTTCAGGTCCATGCTGTTGAAGGACAAGCAAGGGTTGGCCAACTGGAATAATGA TTACCACGTCTACTCGCTGCTGTGGAAGCCTAACGGTTTAGAGCTGATGGTGGACGGTGA AGTGTACGGCACCATCGACGCTGGCGATGGCTTCTACCAGATTGCGAAGAACAACCTCGT GAGCCACGCCTCGCAGTGGCTCAAGGGCACCGTCATGGCGCCGTTTGATGAAAAGTTCTT CATCACTCTGGGTCTTCGCGTGGCGGGTATCCACGACTTCACGGACGGTCCGGGCAAACC TTGGGAGAACAAGGG

[0291] > M. sexfa-Relish family protein 2A (MsREL2A); HM363513.1 (SEQ ID

NO: 113)

ATGTCCTCTTGTCCAAGCGACTATGATCCCAGTGAATCGTCCAAATCTCCACAAAGTATT TGGGAGTCAGGAGGATACAGTTCTCCGTCGCAACAAGTTCCTCAATTGACTTCTAACTTA AC AGAAT TGTCTGTTGAT C AC AG C TAT AGAT AC AAT G GAAAT G GAC CAT AT C T ACAGAT C AC AGAG C AAC C AC AGAAAT AC TTTCGGTTCCGTTATGT TAG C GAGAT G G T G G GAAC AC AT G GAT GTTTGCTTGG C AAAT C T TAT AC AAC AAAC AAAG T T AAAAC T CAT C C GAC AG T T GAA CTCGTGAATTACACCGGTCGAGCCCTGATAAAGTGCCAACTATCGCAAAACAAGAGCGAA GAC GAAC AC C C GC AC AAAC T G C T C GAT GAAC AAGAC AGAGAC AT GAG C C AC C AC G T T C C C GAGCACGGCAGTTATAGAGTGGTATTTGCTGGTATGGGTATAATTCATGCTGCCAAAAAG GAAG TTGCGGGGTGGCTC T AT AGAAAAT AT AT AC AG C AGAAC AAGAAT GAAAAG T T T AAT

AAGAAAGAG C T C GAAG C G CAT T G T GAGAG GAT G T C C AAAGAGAT C GAT T T AAAT AT AG T T AGACTGAAGTTTAGCGCTCACGATATTGACACTGGCATTGAAATTTGCCGGCCAGTGTTC T C T GAAC C C AT T T AT AAT T T GAAG T G T G C G T C T AC GAAT GAT T T GAAAAT AT G C C G C AT A AGCCGTTGTTACGGTAGACCGAGAGGCGGCGAAGATATCTTCATATTTGTCGAAAAGGTC AACAAGAAAAACATCCAAGTTCGGTTCTTTAGACTGGAAAACGGGGAGCGCACCTGGTCA GCGATGGCGAACTTTCTGCTAAGCGATGTTCACCACCAATACGCTATCGCTTTTAGAACG C C AC C G T AC G T CAAT C AC C AAAT T T C T GAAGAC G T G C AAG T T T T T AT AGAAC T C G T AC G C C C T T C AGAC G G TAG GAC GAG C G C T C C CAT G GAG T T C AC AT AC AAG G C T GAG C AAAT C T AT AAAC AGAAC AAGAAAC G T AAAAC T AC T T C G T C G T AC T C G T C G C T C GAC AG C T C C T C AG G T TCGGCCGGTTCAATTAAAAGCATCAGCGAACTGCCCGCGCCCGTTGTTTTTGCTGAAAAC G T AAG TTTTTTCTAT GAC AC AT TACTCATTCTT C AAC C C AT GAC GAAT C T AT AA > M. sexfa-Spatzle (MsSPZI A); GQ249944.1 (SEQ ID NO: 114)

AC GAAC AAC C T GAC AGAC G GAT AG C G G GAC G G T C AG C AC AAT AC GAAC AT T T AAGAAC AA AC GAGAG GTCTCTCCCGGTC T AC AG C GAGAC C C AGAG GAT AC AAG C AGAAGAGAGAAGAA

GAC AC AG T T C GAGAC T AGAAGAAC C GAGAC AAC G T G C T GAGAAT G G T T C AT AT AAGAT AT T GAAT AAC C C T C C GAAAC CCTGTATTAC T AAT AG GAGAAG T C AAAT TGATTCGTC GAAT G ATAGGGTAGTGTTCCCCGGTCCGACTTCAGAAAGGTCGTACGTACCCGAAGTGCCAGAGG AAT G C AAGAAAAT C G G CAT AT G C GAC AG TAT AC C GAAT T AC C C AGAAGAAC AC G TAG C T A AT AT TAT AT C TCGAC T T G GAGAC AAAG GAAAAG TAT T AC AAAT AGAC GAAC T GGACGTAT

C AGAC AC T C C AGAT AT C G C C C AGAG GTTGGGTCCG C AG GAG GAC AAC AT G GAAC TAT G T A G C T T T AGAGAAAAGAT T T T T T AC C C C AAG G C AG C G C C AGAC AAAGAT G GAAAT T GG T T C T T C G T T G T GAAT T C AAAAGAAAAC C C AG T AC AGG G T T AT AAAG T T GAAAT T T G C GAC C G T C AGCAATTACCATGCGCGGAGTTCGCGAGCTTCCAACAGGGATATGAAGCGAGGTGCATCC AGAAATACGTTCGCCGGACCATGTTGGCGTTGGATCCCAAGGGTCAGATGACCGACATGC CCCTTAAAGTGCCCAGCTGTTGCTCATGCGTGGCCAAATTGAC [0293] > M. sexta-To\\ receptor (MsTOLL); EF442782.1 (SEQ ID NO: 115)

ATGCAGGCTCGGCGGTGGTGCGCGGCACTGCTATTAATGCAGATGCTGAGCTGGCTC GGA GTCAGTGGACACTTACCGCGTCCCGAGTGCGCGCCAGCCGCAGATTGCCAACTTATACGA GAC AAC AT AAT C GAT G GAT AT G C AC AAT T C TAC T T CAACGTAT CAGGACAT GAAGT GAAA T T T GAAC AT T ACAT C G GAAAC GAC TTCGATGTC GAAT T G T C AT G C AAT TAC AT C GC C AT G GACAACGCAATGCTGCCGCGGTTCTCAACGACCTTTTCAGTCAACGTAATAGTGGTTAAA GAATGTGCTTTGCCAAGAAGTGGGTCAATCGATGCCGCTGTCGCTGCACTTAATATCAAC GTTTTGACGGAGCTGACTCTGGACAAATTCCTAGAGCCGGCGGTGATCACGCGCGCACAT C T TAC C AG T T TAC AAC GAC T AGAGAG G C T G GAG C TAC AC G G T AAC T C AAAC AC AAG C C T C GCCCCCGGCGCACTGGCCGCGCTCTCCGCCGCGTCCGCACTGAAATGTCTTGTATTGCAT GCAGTACGCGTGCCCGCCGCTGACCTGGCGCGCTTGCCGTCGTCACTGCAAGAACTAGCG TTGTTGGATGTGGGCGCTGCGAGTATGCATTTAGATTCATCGGTTAATTTGACGTCACTC TTCGTAATCGATACACATTATCCTGTCGTCGTGAATGTGAGCAACGCCGTTGCGCTCAGA GACTTGCACATAAATACCCCAAGTACTGTGTTGACCGAAGACGTGCTCCCGTCGTCACTC AACTCACTTGAACTAGAGGGGTGGAACGAAACGCATCCGGTGCCTAAGACACGTTGTGTA CTACTTAAGGAACTTAATGTAATCGGCACCGACAATGATGCCTATCCGGTGACTCT

[0294] > M. sexia-Valine Rich Midgut Protein (MsVMPI); NCBI accession number not assigned as yet (SEQ ID NO: 116)

ACGGACCTTCCGTTGGACCNGCCATCATCGGCGCTGGAGACATCGCTGTCGGCCCTGCTA TCGTCGACTTCCCTTTCCCCGACGGCGGTGCCGTGTCTGCCCCCGTTGAGCCTTCCCCCA TCGCCATCGGACCCGCTATCGTCGGTGAATCCCCTATCTCCGTCGGACCTGCCATCGTTG AGGCCGGAGACATCGCTGTTGGACCCGCTATCATCGACTTCCCCCTTCCCGACGGTGGCG CCGTGTCCGCCCCCGTTGAGGTTTCTCCCGTCGACTCCGTCGTCGTCGGCCCTGCCGCCG GCTCTCAGAGCTCTCCCCTCGTCCAGATCATCATCAACGTTAAGGCCCCCGCTGGTGCCG GCCCCGTTGTCGATGCCGTCGCTGACAAGCCCATGGACATCATTGATGTTATGCCCGTCG TCGACCCTGCTGATTTCGTGGACCTCACCCCCGTTGTAGAGCCTGTAGAAGTCGTCGACA TTGTCGATGTCATGCCCGTGGTTGACCCCATCAACATCATCGATGTTATGCCTGTTGTTA AGCCCGTAAACCCCCTTGCCCGTTCTT

[0295] > M.sexfa-Chitin synthase 2 (MSCHS2); AY821560.1 (SEQ ID NO: 117)

AT G G C C G C AAC TAC AC C AG G T T T T AAGAAG T TAG C AGAC GAT T C T GAG GAT T C AGAT AC A GAAT AC AC CCCGCTGTATGAT GAC G G T GAT GAAAT AGAT C AAAGAAC T G C AC AAGAAAC A AAAG GAT G GAAT C T AT T T C GAGAGAT T C C G G T GAAAAAG GAGAG T G GAT C T AT G GC C AC A AAAAAT T GGATAGAAACAAGCGTAAAAAT CATAAAAGT GC T T GCC TACATAT T GGT T T T T TGTGCTGTACTGGGTTCCGCAGTCATAGCTAAAGGAACTCTTCTATTTATTACGTCACAA C T GAAGAAAGACAGAC AAAT T AC T C AC T G C AAT AGAC GAC T T G C T T TAGAC CAACAG T T C AT AAC G G T AC ACAG T T T AGAAGAAAGAAT AACAT GGCTATGGG C AG C AC TTATTGTATTC

GGTGTGCCGGAGTTAGGGGTGTTTTTGAGATCCGTCAGGATATGCTTCTTCAAAACT GCC AAGAAAC C AAC CAAAAC AC AG TTTATTATTGCTTT CAT AAC AGAGAC AC T AC AAGC AAT A G GAAT AG C AG C AC T T G T AT T AAT AAT T C T AC CAGAAT TAGAC G C T G T GAAAG GAGC C AT G TTGATGAACGCCACGTGCGCTATCCCTGCATTGCTAAACATTTTCACGAGAGACCGAATG GAT T C T AAG T T T T C T AT AAAAT T GAT AT T G GAT GTATTGGC GAT AT C G G C AC AAGC C AC G

GCGTTTGTTGTTTGGCCTCTTATGGAAAGAACGCCAGTTCTATGGACCATACCAGTT GCA TGTGTGTTAGTGTCTCTAGGCTTCTGGGAGAATTTTGTTGACACCTACAATAAAAGTTAT G T T T T T AC G G T GC T G C AG GAAC T AC G C GAC AAC C T C AAGAG GAC T C G G T AC T AC AC T C AG CGGGTGCTATCTGTTTGGAAGATTATAGTGTTTATGGCATGCATTTTAATATCGCTGCAT ATGCAAAATGACAATCCGTTTACCTTTTTCACTCACGCCAGCAAAGCCTTTGGAGAGAGA C AG TATGTCGT T AAC GAG GTTCTAATAGTAGTCC GAGAT GAC GAAAC CAT AG G C TAT GAC GTCACCGGAGGTATATTCGAATTGGACGCGATATGGACCTCAGCATTGTGGGTCGCATTA ATTCAAGTGGGAGCAGCCTACTTCTGTTTCGGAAGTGGCAAGTTTGCTTGCAAAATTCTT ATACAAAATTTTAGTTTCACTTTAGCATTGACTCTCGTCGGGCCCGTGGCAATCAACCTC CTTATTGCTTTCTGCGGAATGAGAAATGCAGACCCTTGCGCTTTCCATAGAACTATACCT GAC AAT TTGTTTTAC GAGAT AC C AC C T G T G > M.sexia-Beta-fructofuranosidase 1 (MsSud ); GQ293363.1 (SEQ ID8)

TTGCTGTGCGTTTTCCTTGGTAGTGTATCGTCATGTTGCGTTAATGGGCGGTACTAC CCG AGGTACCATTTGTCGCCACCGCATGGCTGGATGAACGACCCCAACGGATTCTGCTACTTC AAAG G T GAAT AC CAT AT G T T T T AC C AG T AC AAT C C CAT G T C AAG T T T G GAG G C T GG C AT A GCTCATTGGGGTCATGCGAAAAGTAAAGATTTGTGCCATTGGAAACACTTAGACCCGCCA TCTATCCTGATCAGTGGTACGATCAAACGGGAGTATTTTCTGGAAGTGCGCTAGTAGAGA ATGACGTCATGTACCTTTATTATACTGGAAATGTAAATCTTACTGATGAAATGCCATTTG AG G GAC AAT T C CAAG CTCTTGGTAT C AG T AC T GAC G G T G T C C AC G T AGAAAAG TAT AAAG AC AAT C C AAT AAT G T AC AC G C CAAAC CAT C AAC C T C AC AT C C GAGAC C CAAAAG T T T G G G AAC AC GAC GGCTCTTATTATATGGTCT TAG GAAAC G CAT AT GAT GAT TAT AC AAAG G G C C AAAT AG T T AT G T AC GAAT CAT CAGAC AAGAT CAAC T G G C AAGAAG T AAC TATACTATATA AATCAAATGGATCTTTCGGTTACATGTGGGAGTGTCCAGATTTATTCGAAATAGACGGCA AGTTTGTACTTCTGTTCTCTCCTCAAGGCGTGAAGTCTGTGGGCGATATGTACCAGAATC T G T AT C AAG C AGGAT AC AT C G T C G GAGAAT T C GAT T AC GAT AC T C AT T C AT T C ACAAT AC T AAC C GAAT T C AGAGAAT T G GAT C AC GGTCATGATTTTTACGC T AC AC AAAC AAT GAAAG ATCCTAGTGGAAGAAGAATAGTCGTTGCTTGGGCAAGT

> M. sexta- Beta-1 tubulin (MspTub); AF030547 (SEQ ID NO: 119)

ATGAGGGAAATCGTGCACATCCAGGCTGGCCAATGCGGCAACCAGATCGGAGCTAAG TTC TGGGAGATCATCTCTGACGAGCATGGCATCGACCCCACCGGCGCTTACCATGGCGACTCG GACCTGCAGCTGGAGCGCATCAACGTGTACTACAATGAGGCCTCCGGCGGCAAGTACGTG CCGCGCGCCATCCTCGTGGACCTCGAGCCCGGCACCATGGACTCTGTCCGCTCCGGACCT TTCGGACAGATCTTCCGCCCGGACAACTTCGTCTTCGGACAGTCCGGCGCCGGTAACAAC TGGGCCAAGGGACACTACACAGAGGGCGCCGAGCTTGTCGACTCGGTCTTAGACGTCGTA CGTAAGGAAGCAGAATCATGCGACTGCCTCCAGGGATTCCAACTCACACACTCGCTCGGC GGCGGTACCGGTTCCGGAATGGGCACCCTCCTTATCTCCAAAATCAGGGAAGAATACCCC GACAGAAT TAT GAAC AC AT AT T C AG T T G T AC CAT C AC C CAAAG T G T C T GAT AC AG T AG T A GAAC C T T AC AAT G CAAC AC T G T C AG T C C AC CAAC T C G T AGAAAAC AC C GAC GAAAC C T AC TGTATCGACAATGAGGCTCTCTATGACATCTGCTTCCGCACGCTCAAACTTTCCACACCC ACATATGGCGACCTTAACCACCTGGTGTCGCTCACAATGTCCGGCGTGACCACCTGCCTC AGGTTCCCCGGTCAGCTGAATGCGGATCTCCGCAAGCTGGCGGTGAACATGGTGCCCTTC CCGCGTCTGCACTTCTTCATGCCGGGCTTCGCTCCGCTCACGTCGCGCGGCAGCCAGCAG TACCGCGCCCTCACCGTGCCCGAACTCACCCAGCAGATGTTCGACGCTAAGAACATGATG GCGGCGTGCGACCCGCGTCACGGCCGCTACCTCACCGTCGCCGCCATCTTCCGTGGTCGC AT G T C C AT GAAGGAG G T C GAC GAG C AGAT G C T CAAC AT C C AGAAC AAGAAC TCGTCGTAC TTCGTTGAATGGATCCCCAACAACGTGAAGACCGCCGTGTGCGACATCCCGCCCCGTGGT CTCAAGATGTCGGCCACTTTCATCGGCAACTCCACCGCTATCCAGGAGCTGTTCAAGCGC ATCTCTGAACAGTTCACCGCTATGTTCAGGCGCAAGGCTTTCTTGCATTGGTACACCGGC GAG G G CAT G GAC GAGAT G GAG T T C AC C GAG G C C GAGAG CAAC AT GAAC GAC CTGGTGTCC GAG T AC CAAC AG T AC C AG GAG G C C AC C G C C GAC GAG GAC G C C GAG T T C GAC GAG GAG C AA GAG C AG GAGAT C G [0298] > P. xylostella- Peptidoglycan recognition protein 2 (PxPGRP2);

ACB32179.1( SEQ ID NO: 120)

CCCGATACAGTTGGAGTACCTGCCCCGGCCCCTGGGGCTGGTGGTGGTCCAGCACACCGC CACCCCCGCGTGTGACACTGACGCCGCGTGTGTGGAGCTGGTGCAGAACATACAGACCAA TCATATGGATGTGCTGAAGTTTTGGGATATTGGACCGAACTTCCTGATTGGTGGGAACGG CAAGGTGTACGAGGGCCCTGGTTGGCTGCACGTCGGCGCCCACACTTACGGCTACAACAG GAAG T C T AT C G GGAT C T C T T T CAT TAG GAAT T T T AAT G C T AAGAC C C C AAC AAAAG C AG C GTTGAATGCGGCTGAAGCATTGCTGAAGTGTGGAGTGAGAGAAGGACACCTGTCTCACTC AT AC G C AG TGGTCGGC CAT AGAC AAC T GAT C GC AAC AGAGAG C C C AG G C AG GAAAC T G T A CCAAATCATCAGGCGCTGG

[0299] > P. xylostella- Immune Deficiency Protein (PxIMD); Px003008 (SEQ

ID NO: 121)

T C C C GAAG C C AC C T AGAGAAC C G G TAGAGAC T AC AGAGAC AT C AC AAAAT AAT AC C GAAA AT C AAC C T T AC AAT G T C GAAGAAGAG GAAAT AC C C GAAC C AGAAAAG C C T AAGAAAGAAA

AAAAGAAT C C C AAG C C T AC C AAAAAAAC TTTCTTTAATCGT GACAAAAC T AAC AAAC AC G AC GAT AC C C G C AAAC AT AC AAAAT C C G GAAAGGAC C AGAC AT C AAT T AAT AC T C AAG G T A ACTTGAAAATTATACTTCCTGTAACTTAAACGGCCCGTTGACCCCAGTTTACCTTTCGCC TTTCTTGATATATTTTTGTAATCCAGCCTTACTTTGGTAATACATACTTGCCCCACTTGT ATTTAGTTAATGGTGG C AC T AG C T AGAT AG T AAT G T T AAAT GAT GAT AAG C AG T AG T GAT

TCATCATTCAAATGTATCATTGTCCTTTAATGTTAAGCGCAAATAGATTTTCATTGT TCT CCCATGTGCTTCATGTTTTATGTATTTATAGGTAGGTACTTAATGTTTTATAAATATTTT TTTGTTAATTGGGAATCCCCAGTCCCCATTGTCTGGACCAGTTTATATATAATTGAACTA AC AAGAG T G T G C T T T AAAT AC TATTCTCTG C AAT TAT GAT AAT T AAAC AAC AT GAAT T T C T C T T C AC TTCCCTTCTCTTATT T AAAT AAT AT T G T AG GAAAC T G T AAT AAC T AAT AC AAG

AT TAT AAAT T T CAT T C TAG C AAC T G G T GAT G T AAT C CAT G T G G T AAAT T C CAAAGAT G T G C AG G T C G G C CAT C AG T AT G T G T AC AAC AT G G GAAC T C C C G GAG C T AAC T C AC AGAAGAAT AAC C CAT T T GAT GAT GAAGAAAC AG T AGAAAAGAC AAAT C T AAT AAC T C T G G T CAT G GAA GCAAAAAT TAT GG T AAT AACACAT T T T TAAC TAG G CAT AAG G T CAT AAT T TAGCCAGAAT CATCAGCTTGT [0300] > P. xylostella- Cactus (PxCac); Px016665 (SEQ ID NO: 122)

CAATGCTGCGGAGGGTCTATGCGGGTGGACACCTCTACACGTAGCGGCGGCGCGAGGCGA CGTCGACACGGCTCGCTACTTGCTCGAGAAGTGCGCTGGCGTCGATCCCTCTGCCCTGGA CTACGCCGGTCGTACGGCCAGGAAACTGGCGTTGAAGAATAAAGCGGCCGCCCTGTTTGA C G G C AG T GAG G GC AG C GAG GAG GAG GAT AG T GAC AG T GAG GAT GAGAT G C T T C T GGAAAG

CGACCAGAGTCTGTTCGACCGGATCCGTGACGGTATGAACGCCATCAACGTCGCCTG A

[0301] > P. xylostella- Dorsal (PxDor); Px000110 (SEQ ID NO: 123)

TAACCTGTGCCAGCAACCAATGGCTCCTATGGCGCAGCAGCTGATGGACCCGTCCCCCAG CGACCCACCCTCCATCACGGGGCTGCTGATGGATCGCCCGGACCAGCCCTACTCCGGGGA GCTGTCTGGACTCTCCGCCCTGCTGGCTGAGGCAGCCCCCGCAGAGATGCTCAGCGATAG CCTCAACAGACTGTCTACGGGGGACTTGTTGAGACAAGTTGATATGTGA

[0302] > P. xylostella- Beta 1-3 glucan recognition protein 2 (Px GRP2); Q8MU95.1 (SEQ ID NO: 124)

GAAGGATTGAAGTGAGCGCCAGAATGCCGCGCGGTGATTGGTTGATTCCAGATATTCTGC T G GAG C C GAAAGAAAAC C T T T AC G GAG T AC G CAAT T AC G C G T C AG G T C T AC T C AGC AT AG CCTCAGTCAGAGGAAACACTGCTTACTCGAAGACCCTCAAAGGAGGCCCCATACTGTGTG AC AAG GAAC C G CAGAGAAG T G C C AAG T T GAG C GAAAAAG T T G GAT AT GAC CAT T GGAAT A AAGCCTTCCATAACTACACCATGATTTGGGCACCAAGTGGCATCACCATGCTGGTGGACG GCGAGCAGTACGGGGACATCCGTCCCGGCGACGGCTTCAGCCAGGACCCGGCGGTGAGCA GCGTGGTGGCCGCGCCGCAGTGGCTGAAGGGCACCAGCATGGCGCCCTTTGATGTTATGT TCTACATATCCCTTGGTCTCCGCGTGGGCGGAGTGAACGACTTCCCCGACACTCCTGAGA AGCCGTGGAAGAACAAGGCCACTAAAGCCATGCTGAATTTCTGGAACGCCCGGGAACAGT G G C AGAG C AG C T G G T T T GAG GAC AC C AC T G C AC T C C T C AT AGAC T AT G T C AG GGTTTATG

CGCTGTGA

[0303] > P. xylostella- Chitin synthase 1 (PxCHSI ); KX420688.1 (SEQ ID NO:

125)

CGTATCTCGCACGACCTGAAAGAGCTGCGAAACTCATCCGTCTTTTCCTTCTTTATGATC AATGCCCTCTTTGTTCTCATCGTATTCTTGCTGCAACTGAACAAGGACAACCTCCACATA AAGTGGCCCTTCGGAGTCAAAACTAACATTACGTATGATGAGGTGACGCAAGAGGTGCTG ATCTCCAAGGATACCTGCAACTAGAGCCTATTGGTCTGGTGTTCGTGTTCTTTTTCGCAT TGATTTTAGTCATCCAGTTCACTGCCATGTTGTTCCATCGATTCGGAACTTTGTCGCATA TATTATCGTCTACGGAACTGAACTGGTTCTGCAATAAGAAGGCGGAAGACTTATCTCAAG AC G C AC T G C T AGAT AAGAAT G C GAT AG C AAT AG T GAAG GAT C T C C AGAAAC T AAAC G G G C TCGATGACGGGTATGACAATGACTCGGGGTCGGGCCCGCACAATGTGGGAAGGAGAAAGA C GAT AC AC AAC C T G GAGAAAG C GAGAC AGAAGAAGAG GAAC AT AG GAAC G C T C GAC G T C G

C T T T C AAGAAG C GAT T C T T CAACAT GAACGC TAAT GAAG GAC C AG GAAC AC C AG T T C T GA AC C G C AAG AT GAC G T T G C GAAG AG AG AC G T T GAAG G C G T T G G AAAC GAG GAG G AAT T C T G T GAT G G C C GAAC GAAG GAAG T C G C AAAT G C AAAC AC T T G GAG C T AAC AAC GAAT AT G GAG TCACTGGAATCTTAAACAACAACCCAGCGGTGATGCCGCGCCACCGGCCGTCGACAGCCA ACATTTCGGTCAAGGACGTCTTCGCGGAACCCAACGGGGGACAAGTGAACCGAGGGTACG AGAC CACGCACGGC GAC GAG G GAGAC G G C AAC T C C AT C AG AC T G C AG C C GAG AAC C AAC C AGGTCTCCTTCCAGGGGAGATACCAATAA

[0304] > P. xylostella- Beta tubulin (ΡχβΤΙΙΒ); KX420688.1 (SEQ ID NO: 126) GAAG GAG G T C GAC GAG C AAAT G T T GAAC AT C CAGAAC AAGAAC AG C AG C T AC T T C G T C GA

ATGGATCCCGAACAACGTCAAAACGGCCGTGTGCGACATACCGCCTCGTGGACTGAA GAT GTCTGCCACCTTTATCGGGAACACGACAGCAATCCAAGAGCTCTTCAAGAGGATTTCTGA GCAGTTCACTGCTATGTTCAGGAGGGAAGCGTTCCTCCACTGGTATACTGGTGAAGGCAT G GAC GAGAT G GAG T T C AC AGAG G C G GAGAG CAACAT GAAC GAC CTGGTCTCC GAG T AC C A G C AG T AC C AG GAC G C C AC G G C T GAAGAC GAG GGAGAAT T C GAC GAG GAT AT T GAAGAC GA

GTGA

[0305] > S. rug/per /a-Peptidoglycan recognition protein 1 (SfPGRPI ); rep_c7951 (SEQ ID NO: 127)

CCTGATTGGTGGAAACGGGAGAGTTTATGAAGGAGCCGGCTGGCATCACGTTGGGGCCCA TACTTTGGGATACAATGCAAGATCTGTGGGGATCTCCTTCATTGGCGATTTTAGAACAAA ATTACCAACACCCGAAGCACTGAAAGCCTTCAACAGTCTCCTGGAATGTGGAGTCACGAA CAATTATCTGTCAAAGGACTATCACCTGGTGGCCCATAGTCAGCTCTCTATGACTGACAG TCCYGGAGACATGYTGAGGAAGCAGGTGGAATCGTGGCCTCMTTGGCTGGATAATGCCAA AGAC AT AC T T AAG T AGAARAAGAC T AAAC GCCGTACTTT GAG CCATTTAATGGT T AC T T A

ACCCAGTCCTTAGCAATTTGATACAAGGCCAATGTCTCTAAGGGCGGCAGTAAAGGT CAA AAC AC AT T T AAT GAG T G T G T T T AAGAT T T T G C T AG T GAAAAT T G T T T T GAAG T AC G T AT T T GAT G TAAG T GAT GAT AT C AG T AC C C T T AG T AT GAG TTTGCTTTACGTTC C AC GAGAT G G AAACGAGAGCGCGTTCGGCGCTCTGATTGGTTCGTTCATTCATGCCGGCC

> S. frugiperda-Mtacin (SfAtta); rep_c9395 (SEQ ID NO: 128)

G C C AGAC AT C T AC C AC AG GAC C AC T C AAC G T AC GAC CAAG T AC AAC TCCTCGGGTTC GAC GAAGAT G GAC GAC C AG T G T T T GAG C AC GAAGAC T T AC T C C C AGAAC T AGAG GAG T C C T AC CAGCCAGAGCACCTGGCGAGGACTCGCAGACAGGCGCAGGGCAGCGTCACCCTCAACTCC GACGGCGGCATAGGCCTGGGCGCTAAGATCCCGCTCGCACACAACGACAAGAATGTGGTG AGCGCCATCGGCTCCATGGACTTCAACAACAAGTTGCAGCCTGCTTCCAAGGGCTTCGGT CTGGCTCTGGACAACGTCAACGGGCACGGACTGACGGTGATGAAGGAAAGTATCCCCGGG TTCGGGGACAGGCTGTCGGGCGCTGGCAAGCTGAACGTGTTCCACAACGACAACCACAAC GTGGCCGTGACCGGCTCTCTCGCCAGGAACATGCCCAGCATCCCGAACGTGCCCAACTTC AACACGTACGGCGGGGGCGTCGACTACATGTACAAGAACAAGGTGGGAGCGTCTCTGGGC ATGGCCAGTACTCCGTTCTTGGACCGCAAGGACTACTCCGCGATGGGCAACCTGAACCTG TTCCGCAGCCCGACCACTACCGTGGACTTCAGCGGCGGCTTTAAGAAGTTCGAATCTCCC TTCATGAGCAGCGGCTGGAAGCCTAACTTCGGCCTTACTTTCGGCAGATCTTTCTAGATA T AT T T T G T AAT C T AAAT T T AAC T T T AAC T T T G T T G T AT AAT AT T T T G T C GAAT T AAGAT C AGTATTGTT CAT AC T AAT AT TAT AT TAT C AG T G T T T C T TAT AAAT T AA > S. rug/per/a-Hemolymph proteinase 10 (SfHPIO); c12881 (SEQ ID9)

CAAGGCTCGTACCTTGCAGTTGAACCGACAATCTATTCCTAAAGCCTTTTTAAGGTCAGG AAAAAT AG T T C C T AC AT C T AAAT G C AG T AGAAT T T G C GAAAC GAAT T T AAAT AAAAAT G G CGTCGATTGTGTTTGTGATTTTGTGTGTTACCGTCGCTGCGGTGAAAAGCGCGATTTTAA ACCCGTGGAGTAAAGTTGAGGCCAACAAATGTGGTGTAGAAGCCAGTACTAACTTGGTCC AT CACAATCCATGGTTGGTCTACATCGAGTATTGGCGTGGAAACTCAGATACT GAGAT CC GATGCGCCGGTACTTTAATCGACAGCAAACATGTCGTCACAGCTGCCCACTGCGTTAGGA CTCTGAAGTTTAGTCATTTGATCGCCCGTCTTGGCGAATACGACGTAAATTCTAAGGAGG ACTGCGTTCAGGGCGTGTGTGCCGATCCCATCGTCAGAATCAAGGTGGCTGAGATCATCG T G CAT C C T AAC T AC AG C AAC C G G GAAC A [0308] > S. frugiperda-Ttypsin like serine protease (SfTSP); rep_c48453

(SEQ ID NO: 130)

AGCAACAAAATGCGTGTCCTCGCTTGCTTGGCCCTTCTCTTAGCTGTGGTAGCAGCCGTC CCCTCCAATCCCCAGAGGATTGTGGGTGGTTCGGTCACCACCATTGACCGGTACCCCACC ATTGCATCCCTGCTGTACTCGTGGAACTTGAGTTCCTACTGGCAGGCGTGCGGTGGTTCC ATCTTGAACAACCGTGCCATCCTTACTGCTGCCCACTGCACAGTTGGTGACGCCGCCAAC AGATGGAGAATCCGTCTTGGCTCCACCTGGGCCAACAGCGGTGGTGTCGTTCACAACGTC AACACTAACATCGTCCACCCCTCATACAACTCTGCAACTTTGAACAACGACATCGCTATC CTCCGCTCCGCCACCACCTTCTCCTTCAACAACAATGTTCAGGCTGCCTCCATTGCTGGT GCCAACTACTTGCCCGGTGACAACACCGCCGCCTGGGCCGCTGGATGGGGAACTACCTCC GCTGGTGGCTCTAGCTCTGAGCAGCTCCATCACGTTGAGCTGCGCATCATCAACCAGGCT ACTTGCAAAAACAATTACGCTACCCGCGGTATCACCATCACCTACAACATGTTGTGCTCT GGCTGGCCCACCGGTGGTCGCGACCAGTGCCAGGGTGACTCTGGTGGTCCTCTCTACCAC AACGGCATCGTTGTTGGTGTCTGCTCTTTCGGTATTGGCTGTGCTCAG

[0309] >S. frugiperda- C Type Lectin 6 (SfCTL6); Joint2_ rep_c448 (SEQ ID

NO: 131 )

AACAGTTTTCTATTGGCAGTCAAAGACTTCAGTCGAAAAATAATCCTCATCAGAGTCGTG AAGCAAGGTGCCCAAAATATAATGTAACCTAGATACCTATTAATAAATTATTTGTCAACC AAAACGTTACGTTCAAAGTCCTTAAAATCAAAATATCTTATGATTAGTTTTGATTTAAAA ATAGAGGTTCGAAATCGCCAACCCAAATAGGTTTAGTTTACGATTCAGGAAAAATCCTAA CGTAGGGAAACATTATTTTACAAGACTTTTGGCTTAAAAACTTTGAGAACCAATGTCAAA TTTGATAATAACTAATGAGGTATAAAAGCTTGATCCTATTAGGACTTATTTTCATAACAC CATCGAGTTTGTATTTAATRRAGACGTGKGTTAACTAACAACATGAAGACCGGTGTAAAA TATTCTGTTMTTTGGATATTCTCTCTATTYTGCTATATAGAGGCAACATTTCGTTGTGAC TACACGTACAGCAAGGAAGCGAAGGGCTGGTTCAAACATGTGGTGATACCAGCTACTTGG GCTGACGCACGWCTGCACTGCACGTTGGAAGGTGCAACGCTGGCTTCTCCACTCAACCAG GCTATMAGTAATGAGATGCAGTCCMTCCTGGCRAACCTCTCGGCGCTGCAATCAGAAGTC TTCACTGGAATTCACRCGACTKTTTCACGRMRCAACTTATATCATACYATYGAAGGTATA CCTCTTAGTAAAATTCCATTAGATTGGGCAACAAATGAGCCAAATGGTGGGAGAGATGAA AACTGTATCACGTTTAACTCCGATGGCCAAGCGGCAGACAGATCCTGTAARGAGACTCGA CCTTACATCTGCTACCGACACACWACTAAAGTGACTGTGKCCAATGAATGTGGGACTGTA GATCCTGAATACAATTTGGATAAAAGAACGGGCKCYTGCTATAAGTTCCACACRGTACCT CGCACGTTCGAGCGTGCCAACTTCGCGTGTTCTGCTGAAGGTG

[0310] > S. frugiperda- Cecropin (SfCec); rep_c42380 (SEQ ID NO: 132)

TTCGTGTCGTATCACTAGAGTTCGAAATACAAAATAATAATACATTTATTATTTTGCCAT

AATTAATAATAAAGTTATTTTATTTCATAATAATAATGAATTTCACAAAGATATTTT GTT TGTTTTTGTCTTGCTTTGTTTTGATGGCGACCGTGTCAGGAGCTCCTGAACCGAGGTGGA AATTCTTCAAGAAAGTGGAGAAGTTGGGCCAAAACATCCGCKATGGTATCATAAAGGCAG GACCCGCAGTGGCCGTGGTGGGATCAGCRGCAGCCATWGGAAAGTGAKCCCTACGACCTG AGACATGAAGACTAATATCCAYTAAAATAASAATATTGAGGCKTATAATATTAATTTATT

RTRTTTGTAAATTAAATTATTTGTAAGATAA

[0311] > S. frugiperda- Beta 1 , 3 glucanase recognition protein (SfpGRP2); EF641300 (SEQ ID NO: 133)

GCAACAATCGCACCAACTCTTTCGTGCGCAGTGGAAGTTTGTTCATCCGTCCCTCTCTAA CATCAGACGAGTTCGGAGAAGCTTTCCTCTCATCTGGACACTGGAACGTCGAGGGTGGTG CTCCTGCTGATAGATGCACAAATCCACAATGGTGGGGTTGCGAGAGAACAGGCACGCCGA CCAACATTTTGAACCCAATCAAGAGTGCTCGTGTCCGTACCGTCAATTCCTTCAGCTTCC GTTACGGACGCCTCGAAGTCCGCGCTAAAATGCCCGCCGGAGATTGGATTTGGCCAGCTA TCTGGTTGATGCCTGCGTACAACACTTACGGTACTTGGCCCGCATCAGGAGAGATTGACT TAGTTGAGTCCCGAGGCAACCGTAACATGTTCCACAATGGTGTCCATATCGGTACACAGG AAGCAGGCTCGACCTTGCACTACGGACCTTACCCAGCGATGAACGGTTGGGAGCGCGCCC ATTGGGTCAGAAGGAACCCT [0312] > S. firug/per /a- joint2_rep_d 6438 (Sfrd 6438); Un-annotated (SEQ ID

NO: 134)

TCGTTCTCCTCGTCGCTTTCTTGGGGACCTCATGGTTTACGGGAGATGTTTCTGCGAGTC CGCGGCCGCAAGAGCCGCGTGTGGATCAAAATCCGAATCAGGTGTCACCTTATGGAGGGT CCGGGTACCACGCACCTCCGCAGTACCAACCGCAGTACCAACCACAGCCGTACTACCCAC AGCCGCAGTACTACCCACAGCCGTACTACCCACCTCCTCAGTATTACCCACCGCAGCCAC

AAACACCTGAGAATGCTCCACTCATAAACACATGGAATGGTTTCCACGACTGGGCTC AGA ATATCGTTCAAAGTGCTTTGGGGCAGAAATTCCCGAAAGGTAGACAGTAACTTTTTAATT GTCAATTGAAGATAAGGCCCATTTCACCAACTGCTGTTTAATTTTAAGGAGCTCCTAAAC T AAC AT AG G T GAC AC TTAGCGATATTCTGGATTTTTTGT GAAC G T AT AAAT AAT AT C C AA AT G T AAAAGAT AAGAG G C C AAGAA

[0313] > S. frugiperda- Chitin synthase B (SfChsB);AY52599) (SEQ ID NO: 135)

GAATTTAGGAGCAGCGTGCGGGCGCATCCATCCTGTGGGCTCAGGCTTCATGGCATGGTA TCAAATGTTCGAGTACGCTATTGGTCATTGGCTGCAAAAGGCGACTGAACACATGATTGG CTGTGTACTCTGTAGCCCTGGATGCTTCTCCCTCTTCAGAGGAAAGGCTTTGATGGACGA C AAC G T T AT GAAGAAAT AT AC C T T AAC T T C C CAC GAG G C AC GAC AC T AT G T G C AAT AC GA TCAAGGCGAGGACCGTTGGTGCACGCTACTGCTGCAGCGCGGGTACCGCGTGGAGTACAG CGCGGTGTCGGACGCGTACACGCACTGCCCCGAGCACTTCGACGAGTTCTTCAACCAGCG CCGCCGCTGGGTGCCCTCCACGCTCGCCAACATCTTCGACCTGCTCGGCAGCGCCAAGCT CAC C G T CAAG T C C AAC GAC AAC AT C T C CAC C C T C TAT AT AG T C T AT C AG TTCATGTTGAT AGTGGGTACGGTGTTGGGTCCCGGCACGATCTTCCTGATGATGGGGGGAGCCATGAACGC CATCATTCAGATCAGCAACGCGTACGCGATGATGTTGAACCTCGTACCACTCGTCATCTT CCTTATAGTCTGTATGACTTGTCAGTCAAAGACGCAGCTCTTCCTCGCTAACCTCATAAC ATGCGCATACGCAATGGTGATGATGATCGTGATAGTGGGGATAGTTCTGCAGATAGTGGA GGATGGATGGCTGGCTCCGTCCAGTATGTTCACAGCTTTAATATTCGGTACATTCTTCGT CAC C G C G G CAC T AC AC C C G C AAGAGAT C AAAT GTTTGTTGTT CAT AG C AG T G T AC T AT G T AAC CATCCCTAGTATG T AC AT GTTGTTGAT CAT AT AC TCCATCTGTAATCT C AACAAC G T

ATCCTGGGG T AC C AG G GAGAC AC C G C AGAAGAAAAC T G C T AAG GAAAT G

[0314] > T. castaneum- Peptidoglycan recognition protein 2 (TcPGRP2);

XM_965754.3 (SEQ ID NO:136)

AT GAG T G G C AG T GAC C C T T T AAC AAAT AC C C AAC AAT C C GAT C AAGAT T AT T AC CAT C C A

CTCTGTTATT C AAT T CAAG T G GAC GAC GAAAAT GAAC AAT C AG CTCTCCTGCC C GC AT T T CAT CAAAG GAAAAG T T T G C GAG T T C AG G AT ΑΑΆΑΤ C T T T AT T G T AT T T T T AT T T T C AAT T C T AAT T AC C G GAC T AG C CAT T G G C C T C T C C C T T G C AAC GAG G GAC C GAAT G G AAA G C T G C AG GAG T C TAT AAT A T T AC AG T T C G G GAAC AG T G G C AAG C T CAC G T C C C T T CAT C A AC AAT G C CAAAG T T G GAAC T T C C C G T AAGAAGAG T T T T AT T T C T T C C T G C AAAT AC CAC T

AG C T G C G G C AG CAAA C C CAC T G T G C CAAAG T C C T C C AG GAAC T AC AAT T AC AG CAT AT G C T GC GT G GAAAGAAC C GACAT C T C C AC AA T T CAT A GAC T GC GAT GGCAGAAT T T T C GAG G G GAGAG GAT G G GAC T T T G AAAC TTCTGTTC AAAAT T G T AC G G T T AT GA T AC T GTGAGAGTTGCTTTTTTGGAGGAATTAGATGCGAAAGCACCGAGGTTTAGACAAGCTGAA GCGGCAAAAATGTTCCTGGAAGT

[0315] > T. castaneum- Beta 1-3 glucan binding protein (TcpGRP2);

XM_966587.4 (SEQ ID NO:137)

ACATTACAACGTTCCGCGAGCCTGAATCCAAGCATTCAGGCCCCGTGGCTTCAAAGTGAG CATCCC CATACTGAAGGCATCCAATTATTCGCCTTTCATGGAAATATTAATAAACCCCT GCACGGTCTCGAGGCCGGACAATTTTCCCAAGACGTCCTCCAAAGGGAGGGAGACGAGTG GGTGTTCCAAGACTCCAGTGCCAAA TAAACGTGGGAGATAAAA CTATTATTGGCTCTT TATCATTAAAGAAGACCTGGGCTACAGATACGATCACGGCGAGTACG AGTGAAAGTTTT AGCCACCCGTGACTTCGATTCTCCTCAAACAACCTCTGTGACGCCGAA CTTGCCCCCAA TCTCGGCATTTGCGAAAAGGTGATGGTAAATCTCACGCGGAAGCTGCTCGATTTGCAGCA AGAAATTGAGTCCCTTAGGGAGACGAACGATATTTTGGAGGATATGGTTCAGAAGCACAC TGATACGGCGACTAGTCTCACTTTGGACGGCTTGATGATAAAGGATGACGACGAACTTGT TTCGGTGATTCAAGCAATTATTAAAGATAA C TGGACTAAAAAGCAGGATTCAAAATGT GACGAGGCAGGAGAATGGAATGGTCAAGTTTCAAGTGGCGAGTTTGAGAGAAAAGTTGGA GGTTGTCAAAGCGGCCAAAAGAAAACTCAAGTCGTCGAGCTTTAGGATCACGTATTAA

[0316] > T. castaneum- midgut protein (TcMDGP); XM_971351 (SEQ ID NO: 138)

CCGTTGAAGAGGATGCCCAGTGAAGAAATCAGTATCAGTGATCTGCCTAGCGAAATGAAA GAAGTTTTAGTAGAAATTAGCCCGAACTTTGATGAAAATCTGAAACGGGCTTTCAGGAAC GAAGGAGTGAGGCTGCAGAGAGTGCAGAACAATGGACGATTTATTCATCAGCTGGACGAC GTTCTCTTATCCATAGACGATACCAAAATCGAGTTACGCAACCTGAAATTCCCCTGGATC CCCGACTTCCGCATCGTGGACTTGTCCAGCGACCTGCCCATGTCATGCCTCGACCT AAC

CTAAACCTGGGCAATTTGCGAATTGAGGGCGAGTAGGAAGCCAACAACACCACACTC AGG CGATGGCTCCCGGTATCTCACATTGGTCGAATCGTGATCGGTTTTAACAACGTCCGAGCG AACGGAAAAGTCGGACTCGTGCTCGAGCAGGATTCTTTCGTTCCGCAGAATTATGATATT AGATATGAGCCGACGGATGTTGTTATTAGGGTTAGCTATCACGTGGATGGCGAGAATG G GTGCAAAATGAGATTAGCAATTCAGATATTGAGGCCACGCTAGGCAAGACCGTGTGGGTG

CAGTTGACTGAGATATTGTCCAACCTGTTGCATAGGCAATTGGGCGAGGTTGTAGTG GAG T [0317] > T. castaneum- Chitin synthase 2 (TcCHS2); EFA 10719.1 (SEQ ID

NO: 139)

ATGGCGGCGCGTCATCGCTTTGCCACAGGGAGCCCTGAGGAAACAGAGCCCCTGTATTCG TCGACGCAAATGCCCGAAAAAGTCCGGGAAAAATGGAACGTCTTCGACGACCCCCCAAGA GAGCCCACTTCGGTTCCGAAGTCAAAAGAACCTACATCGAGTGGGGGGTGAAGTTTTTGA AAGTTGTGACAATCATAACTGTGTTTTTTGTGGTCCTTGGTGCTGCAGTGGTTTCGAAAG G GAC AAC CTTGTTCAT GAC G T C AC AAAT AAAAAAGAAT G T GACAAG GGCTTATT GC AAC A AAAAGATAGACCGCAACCTCCAATTCGTCGTCTCCCTCCCCGAAGTGGAGCGCGTGCAAT GGATCTGGCTCCTCATTTTCGCTTACTTGATCCCCGAAGTGGGTACCTGGATCCGCGCCG TCCGCAAATGCCTCTACAAGCTCTGGAAAATGCCCTCCCTCTCCGAATTCCTCTCCCTCT TCGGCACGGAAACGTGCCCCGCCATCGGAAGCGCAATTTTGATATTCGTCGTCCTCCCCG AGCTGGACGTCGTCAAAGGGGCGATGCTCACAAACGCGGTTTGTTTCGTGCCCGGAGTTG TGGCAATGTTCTCGCGCAAACCGTGCTCCATAAACGAGAACCTGAAAATGGGGCTGGACA TCGCCAGCATAACTGCACAGGCGTCAAGCTTCGTGGTGTGGCCCTTGGTTGAAAATAACC CGACCTTGTACCTAATCCCCGTTTCCGTGATTTTGATTTCGGTGGGT

[0318] The breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

References

1. http World Wide Web internet site "fao.org/3/a-av013e.pdf '.

2. Polaszek A. (1998). African Cereal Stem Borers: Economic Importance, Taxonomy Natural Enemies and Control. Wallingford, UK: CABI. 530 pp.

3. http World Wide Web internet site "cnbc.com/2015/05/08/insects-feast-on-plants- endangering-crops-and-costing-billions.html".

4. Khan ZR. et al. (2014). Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Philosophical Transactions of the Royal Society B: Biological Sciences, 369 (1639), 20120284.

5. Tabashnik BE. et al. (2013). Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotech. 31, 510-521.

6. Campagne et al. (2013). Dominant inheritance of field-evolved resistance to Bt corn in Busseola fusca. PLoS ONE 8(7):e69675.

7. http World Wide Web internet site "dtnpf.com/agriculture/web/ag/news/article/2016/08/10/rootwo rm-resistance- pyramided- bt".

8. Terenius O. et al. (2011). RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology 57, 231-245.

9. Gayatri Priya N. et al. (2012). Host Plant Induced Variation in Gut Bacteria of Helicoverpa armigera. PLoS ONE. 7(l):e30768.

10. Penuelas J and Terradas J (2014). The foliar microbiome. Trends Plant Sci. Volume 19, Issue 5, 278 - 280.

11. Casanova-Torres and Goodrich-Blair (2013). Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera. Insects. 4, 320-338.

12. Tang X. et al. (2012). Complexity and Variability of Gut Commensal Microbiota in Polyphagous Lepidopteran Larvae. PLoS ONE. 7(7):e36978.

13. Ryu JH. et al. (2008). Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science. 319, 777-82.

14. Shrestha S. et al. (2009). An inhibitor of NF-kB encoded in Cotesia plutella bracovirus inhibits expression of antimicrobial peptides and enhances pathogenicity of Bacillus thuringiensis. Journal of Asia-Pacific Entomology . 12, 277-283. 15. Buchon N. et al. (2013). Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat. Rev. Microbiol. 11, 615-626.

16. Karlin S and Altschul SF (1990). Method for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA. 87, 2264-2268.

17. Watson JM. et al. (2005) RNA silencing platforms in plants. FEBS Letters. 579, 5982- 8987.

18. Zhong X. et al. (2012). A Toll-Spatzle Pathway in the Tobacco Hornworm, Manduca sexta. 42(7), 514-524.

19. Zhang X. et al. (2015). Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in

Manduca sexta. Insect Biochem. Mol. Biol. 62, 38-50.

20. Cao X. et al. (2015). The immune signaling pathways of Manduca sexta. Insect Biochem.

Mol. Biol. 62, 64-74.

21. Wang et al. (2006). Interaction of β-Ι -3-Gl can with Its Recognition Protein Activates Flemolymph Proteinase 14, an Initiation Enzyme of the Prophenol oxidase Activation System in Manduca sexta J. Biol. Chem. 281(14), 9271-9278. 22. Ward N and Moreno-Hagelsieb G (2014). Quickly Finding Orthologs as Reciprocal Best Hits with BLAT, LAST, and UBLAST: How Much Do We Miss? PLoS ONE 9(7), el01850.

23. Timmons L. et al. (2001). Ingestion of bacterially expressed ds RNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103-112.

24. Kanost MR. et al. (2016). Multifaceted Biological Insights From a Draft Genome Sequence of the Tobacco Hornworm Moth, Manduca Sexta. Insect Biochem. Mol. Biol. 76, 118-147.

25. Odman-Naresh J. et al. (2013). A lepidopteran- specific gene family encoding valine-rich midgut proteins. PLoS ONE 8:e82015.

26. Engel P and Moran NA (2013). The gut microbiota of insects - diversity in structure and function. FEMS microbiology reviews. 37(5), 699-735.

27. Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes Genome Res. 15, 1034-1050. 28. Pauchet Y. et al. (2010). Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence. Insect Mol Biol. 19, 61-75. Kim SH and Lee WJ (2014). Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Front. Cell. Infect. Microbiol. 3, 116.

Lee WJ and Hase K (2014). Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416-424.

Brummett et al. (2017). The immune properties of Manduca sexta transferrin. Insect Biochem MolBiol. 81, 1-9.

Xia Xu et al. (2012). Manduca sexta Gloverin Binds Microbial Components and is Active against Bacteria and Fungi. Dev Comp Immunol. 38(2), 275-284.

Gunaratna RT and Jiang H (2013). A comprehensive analysis of the Manduca sexta immunotranscriptome. Dev. Comp. Immunol. 39, 388-398,

Broderick NA. et al. (2009). Contributions of gut bacteria to Bacilllus thuringiensis- induced mortality vary across a range of Lepidoptera. BMC Biol. 7: 11.

Gregory R. Richards (2008). Xenorhabdus nematophila lrhA is necessary for motility, lipase activity, toxin expression, and virulence in Manduca sexta insects. Journal of Bacteriology, ~ 190, 4870-4879.

Timmons and Fire (1998). A. Specific interference by ingested dsRNA. Nature. 395, 854.

Kamath RS. et al. (2000). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, 1-10.

Cao et al. (2018). A systematic study of RNAi effects and dsRNA stability in Tribolium castaneum and Acyrthosiphon pisum, following injection and ingestion of analogous dsRNAs. Int. J. Mol. Sci.19, 1079.

Rajkumar AP et al. (2015). Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genomics. 16(1), 548.

Zhang et al . (2015). Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science. 347, 991.

Kim SR, Yao R, Han Q, Christensen BM and Li J (2005). Identification and molecular characterization of a prophenol oxidase involved in Aedes aegypti chorion melanization. Insect molecular biology. 2005; 14(2): 185-194.

Packey CD and Sartor RB (2009). Commensal Bacteria, Traditional and Opportunistic Pathogens, Dysbiosis and Bacterial Killing in Inflammatory Bowel Diseases. Current opinion in infectious diseases. 2009;22(3):292-301.

Arakane et al. (2005). The Tribolium chitin synthase genes TcCHSl and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Molecular Biology 14(5), 453-463. Morris et al. (2009). Tribolium castaneum larval gut transcriptome and proteome: A resource for the study of the coleopteran gut J. Proteome Res. 8(8):3889-98.