Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ROAD CURVE HAVING EASEMENT CURVE, AND FORMING METHOD THEREOF
Document Type and Number:
WIPO Patent Application WO/2014/000197
Kind Code:
A1
Abstract:
A method for forming an easement curve for road curve. The easement curve is used for connecting a transition curve segment DE between a circular curve segment CD with a curvature of 1/R and a straight line segment EF with a curvature of 0. The method comprises: establishing a rectangular coordinate system with an origin of coordinates being at a center of the circular curve CD; in the rectangular coordinate system, enabling the curve segment DE to satisfy (I), n being an integer with a minimum value of 5, ai=fi(H, L, a, R, K), f(x) satisfying that C and D at least have continuous second derivative. The road curve formed by using this method can implement continuous transition of a curvature between the straight line and the circular curve and a curvature change rate.

Inventors:
XU YINZHE (CN)
XU RONGJUN (CN)
Application Number:
PCT/CN2012/077682
Publication Date:
January 03, 2014
Filing Date:
June 28, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
XU YINZHE (CN)
XU RONGJUN (CN)
International Classes:
E01C1/00
Foreign References:
CN1692351A2005-11-02
CN101441672A2009-05-27
GB565873A1944-12-01
US7010412B12006-03-07
RU1838495C1993-08-30
Other References:
LIU, PEIWEN: "Discussion of Standardization Problems on Curve Name of the Road Alignment Design in China", JOURNAL OF TRANSPORTATION MANAGEMENT INSTITUTE OF CHINA, vol. 18, no. 3, September 2008 (2008-09-01), pages 32 - 35
Attorney, Agent or Firm:
SHANGHAI PATENT & TRADEMARK LAW OFFICE, LLC (CN)
上海专利商标事务所有限公司 (CN)
Download PDF:
Claims:
权利要求书

1、 一种用于道路弯道的缓和曲线的形成方法, 所述缓和曲线是用于连 接曲率 = 1/R的圆弧曲线段 CD和曲率 =0的直线段 EF的过渡曲线段 DE, 所 述方法包括:

建立坐标原点位于所述圆弧曲线 CD的圆心的直角坐标系; 以及 在所述直角坐标系内, 使所述曲线段 DE满足方程 y= /(x) = ^ ^, 其 中 n为最小值为 5的整数, ai =fjJi,L, a,R, K), /(x)满足 C、 D两点处至少 二阶导数连续。

2、 如权利要求 1所述的用于道路弯道的缓和曲线的形成方法, 其中, 当 满 足 C 、 D 两 点 处 二 阶 导 数 连 续 时 , 曲 线 方 程 为 :

Υ二 f (Χ) = 。 + + + + 。

3、如权利要求 1或 2所述的用于道路弯道的缓和曲线的形成方法,其中, (χ)满足 D、 E两点处三阶以上导数连续。

4、一种采用权利要求 1所述的方法形成的道路弯道, 用于连接进入方 向直线道路和离开方向直线道路, 所述道路弯道依次包括与所述进入方向 直线道路连接的进入圆弧缓和曲线道路、 与所述进入圆弧缓和曲线道路连 接的圆弧曲线道路以及与所述圆弧曲线道路连接并最终连接于所述离开方 向直线道路的离开圆弧缓和曲线道路, 所述进入圆弧缓和曲线道路和所述 离开圆弧缓和曲线道路符合所述缓和曲线。

5、一种采用权利要求 1所述的方法形成的道路弯道, 用于连接进入方 向直线道路和离开方向直线道路, 所述道路弯道依次包括与所述进入方向 直线道路连接的进入圆弧缓和曲线道路以及与所述进入圆弧缓和曲线道路 直接连接并最终连接于所述离开方向直线道路的离开圆弧缓和曲线道路, 所述进入圆弧缓和曲线道路和所述离开圆弧缓和曲线道路符合所述缓和曲 线。

Description:
具有缓和曲线的道路弯道及其形成方法 技术领域

本发明涉及一种道路弯道缓和曲线的形成方法 , 具体地说, 涉及适用 于公路、 铁路、 城市高架道路、 轨道交通、 特别是高速公路、 高速铁路、 立交桥、 上下匝道的缓和曲线的形成方法。 背景技术

在公路、 铁路、 城市高架道路、 轨道交通, 特别是高速公路、 高速铁 路、 立交桥的建设中由于受到地形的限制, 不可能全部设计成直线道路。

在目前的道路弯道设计中, 广泛采用的缓和曲线 (trans i tion curve ) 是回方 曲线 ( c lothoi d spiral或禾尔 Cornu' s spiral或禾尔 Euler spiral), 该曲线 18世纪由瑞士数学家 Leonhard Paul Euler发现, 由于其曲率连续 变化 , 回旋曲线的曲率半径从∞连续匀变为固定半径 R , 即曲率从 0连 续匀变为 1/R, 其曲率半径具备的匀变几何特征适合以一定速 度运行的车 辆逐渐转向行驶轨迹 ,是线路中设计的基本线型之一。 目前在中国和世界 各国家都作为标准方法使用。

回旋曲线有如下优点:

1、 曲率连续变化, 适应汽车转向操作的行驶轨迹及路线的顺畅, 缓和 行车方向的突变和离心力的突然产生, 便于车辆行驶。 假如是圆弧曲线, 汽车仅仅要在入弯和出弯处打方向盘, 这样会有较猛的操作感, 吃力且危 险。

2、 离心加速度逐渐变化, 乘客感觉舒服。 车辆沿着回旋曲线行驶时具 有较为稳定的横向加速度, 也就是指需要平稳地转动方向盘, 这样可以减 轻驾驶员和乘客的不舒适感。

3、 从视觉效果上看与圆弧曲线配合得当, 增加线形美观。

4、 由于直线与圆弧曲线间存在曲率半径的突变, 圆弧曲线半径越大, 这种突变程度就越小, 则要在圆弧曲线与直线间加设缓和曲线, 实现曲率 半径的逐渐过渡, 减少列车在突变点处的轮轨冲击。

由于回旋曲线有上述优点, 在现代高速公路和高速铁路上, 有时缓和 曲线所占的比例超过了直线和圆弧曲线, 成为平面线形的主要组成部分。 在城市道路上, 缓和曲线也被广泛地使用。

参阅图 1, 该曲线的参数方程为:

x = L(l —+ -·· ·)

40R 2 Jo 3456RZ^

_ J 1 J 8

y ~ 2R 3 168R 2 J + 21120RL "

消去参数 L, 得到笛卡尔坐标式为:

3 ί 2 χ 4 293 X s

y = (1 + ^ -Γ + 2-^- + ...)

6 RL 0 35 R 2 L 2 0 39600 R 4 L 4 0

由上式可以看到: 1、 回旋曲线无论是参数方程式抑或笛卡尔坐标式 均 为复杂无穷多项级数解, 在应用中只有取其近似解, 通常工程应用中取其 一阶近似。 2、 上式中 R为已知圆弧半径, 而 J。为回旋曲线弧长, 回旋曲线 未知, 当然精确的弧长也未知, 只能用弧长在 X轴上的投影长近似代替 J。, 这样导致误差更大; 求出的回旋曲线如和直线相连, 则和圆弧曲线无法相 连, 同样回旋曲线如和圆弧曲线相连则无法和直线 相连。尤其是在角度 大 时弧长 J。和弧长在 X轴上的投影长相差更大, 从而引起更大误差。 3、 回旋 曲线的坐标原点是选在直线段道路与缓和曲线 的交点, 通常工程中弯道总 有一进一出, 即要求圆弧相连有两条回旋曲线, 由于两条回旋曲线各有各 的坐标系, 确定两条曲线的方程变得复杂, 同样圆弧曲线及与两条回旋曲 线相连的直线道路方程也变复杂, 且不易确定它们之间的相互位置关系。 发明内容

本发明的目的在于提供一种道路弯道缓和曲线 的形成方法, 以克服与 现有回旋曲线相关的问题, 其能更方便地用于工程实践。

针对上述目的, 本发明的技术方案如下:

一种用于道路弯道的缓和曲线的形成方法, 所述缓和曲线是用于连接 曲率 =1/R的圆弧曲线段 CD和曲率 =0的直线段 EF的过渡曲线段 DE, 所述 方法包括:

建立坐标原点位于所述圆弧曲线 CD的圆心的直角坐标系; 以及 在所述直角坐标系内, 使曲线段 DE满足方程 y= /(x) = ^ ^, 其中 n 为最小值为 5的整数, ai =fiH, L, a, R, K), /(x)满足 C、 D两点处至少二阶 导数连续。

对于道路中主要设置于直线与圆弧曲线之间的 缓和曲线, 通常有两种 形式:

一、 参阅图 2, AF为从车辆进入方向到车辆离开方向的道路, 其中, AB为车辆进入方向直线道路, 该直线道路 AB在 B点开始通过缓和曲线道 路 BC转弯过渡到 C点而开始圆弧曲线道路 CD, 该圆弧曲线道路 CD 自 D点 开始通过缓和曲线道路 DE转弯过渡到 E点, 该缓和曲线道路 DE 自 E点开 始车辆离开方向直线道路 EF。 缓和曲线道路 BC满足本身曲率连续, 同时 满足和直线道路 AB相连处 B点曲率连续, 且和圆弧曲线道路 CD相连处 C 点曲率连续; 同样, 缓和曲线道路 DE满足本身曲率连续, 同时满足和直线 道路 EF相连处 E点曲率连续,且和圆弧曲线道路 CD相连处 D点曲率连续。

二、 参阅图 3, AF为从车辆进入方向到车辆离开方向的道路, 其中, AB为车辆进入方向直线道路, 该直线道路 AB在 B点开始通过缓和曲线道 路 BC转弯过渡到 C点, 中间无需圆弧过渡曲线, 自 C点开始通过缓和曲线 道路 CD转弯过渡到 D点, 该缓和曲线道路 CD 自 D点开始车辆离开方向直 线道路 DE。 缓和曲线道路 BC满足本身曲率连续, 同时满足和直线道路 AB 相连处 B点曲率连续, 且和缓和曲线道路 CD相连处 C点曲率连续; 同样, 缓和曲线道路 CD满足本身曲率连续, 同时满足和直线道路 DE相连处 D点 曲率连续, 且和缓和曲线道路 BC相连处 C点曲率连续。

无论是进入圆弧曲线道路或离开圆弧曲线道路 的缓和曲线道路, 当其 和圆弧曲线道路的连接点在上半圆 (即第一、 第二象限) 时, 其缓和曲线 的推导方法相同。现以离开圆弧曲线道路的缓 和曲线道路 DE为例, 推导如 下:

参阅图 2, 坐标系中圆方程为:

y = ^R 2 - x 2 .

dy _ x

d VR 2 - x 2

d 2 y _ R 2

~dx^ ~ ~ (R 2 - x 2 †' 2 . 缓和曲线 DE连接圆弧曲线 CD和斜率为 K的直线 EF,为使缓和曲线 DE、 圆弧曲线 CD和直线 EF曲率连续变化 (即数学上的二阶光滑) , 至少要求

D点、 E点的 0阶、 1阶、 2阶导数连续 (相等) , 当然可要求更高阶导数 连续 (相等) 。

下面仅就二阶光滑举例。

缓和曲线 DE的约束条件共有 6个, 即与斜率为 K的直线 EF相连的 E 点的 0阶、 1阶、 2阶导数连续 (相等) , 同时与圆弧曲线 CD相连的 D点 的 0阶、 1阶、 2阶导数连续 (相等) , 为满足恰定方程组要求, 可设曲线

DE的形式为:

y = 0 λ χ + α 2 χ 2 + α 3 χ 3 + α 4 χ 4 5 χ 5 _

― =α λ +2α 2 χ + 3α 3 χ 2 + 4α 4 χ 3 + 5α 5 χ 4

.

对于斜率为 Κ的直线 EF上的 Ε点:

当 x = 时,

= H .

d 2 y

=0

dx 2

即:

H = a 0 + a x L + a 2 L 2 + a 3 L 3 + a 4 L 4 + a 5 I

(1)

K = a x + 2a 2 L + 3a 3 L 2 + 4a 4 L 3 + 5a 5 L 4 ,

(2)

0 = 2a 2 + 6a 3 L + 12a 4 L 2 + 20a 5 L 3 , 对于圆弧曲线 CD上的 D点:

当 x = Rcos(a)时,

= Rsin(a)

Rsm(a) = a 0 +a l (Rcos(a)) + a 2 (Rcos(a)) 2 + 3 (7?cos( )) 3 + 4 (7?cos( )) 4 + 5 (7?cos( )) 5 (4)

- cot(a) = a x + 2a 2 (R cos(a)) + 3α 3 (R cos(a)) 2 + 4a 4 (R cos(a)) 3 + 5a 5 (R cos(a))

(5)

1

■ = 2a 2 + 6a 3 (R cos(a)) + \2a 4 (R cos(a)) 2 + 2 a 5 (R cos(a)) 3 Rsin (a) .

(6)

联立方程(1)一(6), 由于方程组为恰定方程,数学上易求得 α 。、 a α 4、 a s, 且仅与"、 R、 H、 L、 K五个参数有关, 由于"、 R、 H、 L、 K 五个参数数值已知, 则 "。、 "1、 "2、 α "4、 为常数值。

同样的, 无论是进入圆弧曲线道路或离开圆弧曲线道路 的缓和曲线道 路, 当其和圆弧曲线的连接点在下半圆 (即第三、 第四象限) 时, 其缓和 曲线的推导方法相同。现以离开圆弧曲线的缓 和曲线道路 DE为例, 推导如 下:

参阅图 4坐标系中圆方程为:

dy _ x

d R 2 - 2

d 2 y R 2

dx 2 (R -x 2 ) 3 ' 2 . 曲线 DE连接圆弧 CD和斜率为 K的直线 EF, 为使曲线 DE、 圆弧 CD和 直线 EF曲率连续变化 (即数学上的二阶光滑) , 至少要求 D点、 E点的 0 阶、 1阶、 2阶导数连续 (相等) , 当然可要求更高阶导数连续 (相等) 。

下面仅就二阶光滑举例。

缓和曲线 DE的约束条件共有 6个, 即与斜率为 K的直线 EF相连的 E 点的 0阶、 1阶、 2阶导数连续 (相等) , 同时与圆弧曲线 CD相连的 D点 的 0阶、 1阶、 2阶导数连续 (相等) , 为满足恰定方程组要求, 可设缓和 曲线 DE的形式为:

y = 0 + 1 χ + 2 χ 2 + 3 χ 3 4 χ 4 5 χ 5 ·

— -α χ +2 2 χ + 3 3 χ 2 + 4α 4 χ 3 + 5α 5 χ'

2 +6 3 χ + 12 4 χ +20α 5 χ

对于斜率为 K的直线 EF上的 Ε点:

当 χ= 时,

d 2 y

=0

dx 2

即:

H = a 0 + a x L + a 2 L 2 + a 3 L 3 + a 4 L 4 + a 5 I

(7)

K = a x + 2a 2 L + 3a 3 L 2 + 4a 4 L 3 + 5a 5 L 4 ,

(8)

0 = 2a 2 + 6a 3 L + 12a 4 L 2 + 20a 5 L 3 ,

(9)

对于圆弧 CD上的 D点:

当 = Rcos(«)日寸,

y = -R sin(«) .

_

: cot(a)

- R sin(a) = α 0 λ (R cos(a)) + a 2 (R cos(a)) 2 + a 3 (R cos(a)) 3 + a 4 (R cos(a)) 4 + a 5 (R cos(a))

(10)

cot(a) = a x + 2a 2 (R cos(a)) + 3a 3 (R cos(a)) 2 + 4a 4 (R cos(a)) 3 + 5a 5 (R cos(a)) 4 .

(11)

1

= 2a 2 +6a 3 (Rcos(a)) + 12a 4 (Rcos(a)) 2 +20a 5 (Rcos(a))

Rsin (a)

(12)

联立方程(7)—(12), 即可求得 a 。、 a a , 、 、 由于方程组 为恰定方程, 数学上易求得 a 。、 a a a 3、 "4、 a 且仅与"、 R、 H、 L、 K五个参数有关, 由于"、 R、 H、 L、 K五个参数数值已知, 则 a 。、 a a 2 a 3、 "4、 为常数值。

缓和曲线 DE连接圆弧曲线 CD和斜率为 K的直线 EF,为使缓和曲线 DE、 圆弧曲线 CD和直线 EF曲率连续变化,亦可要求其三阶及更高阶导 连续。 当满足 3阶导数连续时, 缓和曲线 DE的约束条件共有 8个, 即与斜率 为 K的直线 EF相连的 E点的 0阶、 1阶、 2阶、 3阶导数连续 (相等) , 同时与圆弧曲线 CD相连的 D点的 0阶、 1阶、 2阶、 3阶导数连续(相等), 则 最 终 的 曲 线 多 项 式 有 8 项 , 其 形 式 为 : y = a 0 + a l x + a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 5 + a 6 x 6 + α Ί χ Ί ; 更高阶时以此类推, 其求角军过 程类似于上述满足 2阶导数连续时的求解方法, 在此省去推导过程。 需指 出的是, 满足更高阶导数连续的缓和曲线, 公式更加复杂, 虽然满足曲率 连续, 但在工程实践中不一定是最佳方案。

与现有技术相比, 本发明除保留原有回旋曲线作为道路弯道缓和 曲线 的一切优点外, 尚有如下优点:

1、 本发明的道路弯道缓和曲线, 在推导过程中, 没有任何前提假设, 具有普遍的适用性, 曲线方程为一精确的解析解, 而不是无穷多项的级数 解。

2、 本发明的道路弯道缓和曲线方程中的 "。、 «1 , 、 Α、 、 仅 与缓和曲线和圆弧的交点处半径与 X轴正向的夹角"、 圆弧半径 1?、 缓和 曲线和直线的交点处纵坐标 H、缓和曲线和直线的交点处横坐标 L、直线道 路的斜率五个参数有关, 由于"、 R、 H、 L、 K五个参数数值已知, 则 α 。、 "!、

"2、 "3、 "4、 为常数值, 从而避免了原有回旋曲线中只能用弧长在 X轴 上的投影长近似代替弧长而导致的较大误差。

3、 本发明的道路弯道缓和曲线, 其弧长和曲线倾角 理论上不受任何 限制。

4、本发明的道路弯道缓和曲线方程, 其坐标原点选取在基本圆弧的圆 心, 仅有一个坐标系, 更符合工程习惯, 有利于圆弧段方程的确定。 同时, 与圆弧相连的两条缓和曲线方程, 与该两条缓和曲线相连的直线道路方程 也在同一坐标系中, 方便确定。 而对于采用两条回旋曲线作为缓和曲线的 情况, 其需要有两个坐标系, 两条缓和曲线包括与其相连的直线道路方程, 以及和圆弧段之间的位置关系不易确定。 附图说明

图 1是现有技术的以回旋曲线作为缓和曲线的示 图; 图 2是缓和曲线与圆弧曲线在上半圆连接的示意 ;

图 3是无圆弧过渡的缓和曲线与缓和曲线连接的 意图;

图 4是缓和曲线与圆弧曲线在下半圆连接的示意 ;

图 5是缓和曲线与圆弧曲线和直线连接的几种实 形式的示意图; 图 6是缓和曲线的方程图;

图 7是缓和曲线的一阶导数变化图;

图 8是缓和曲线的二阶导数变化图;

图 9是缓和曲线的曲率变化图。

文中标号和符号说明

«, 缓和曲线和圆弧的交点处半径与 X轴正向的夹角,

R, 圆弧半径,

L, 缓和曲线和直线的交点的横坐标,

H, 缓和曲线和直线的交点的纵坐标,

K, 直线道路的斜率即 tan

β , 直线道路与 x轴正向的夹角,

。, 缓和曲线的弧长,

, 缓和曲线和圆弧的交点处切线与 X轴正向的夹角。 具体实施方式

为了更好地理解本发明的方法、 特点及效果, 现通过以下较佳实施例 并配合附图进行说明。

参阅图 5, 实施本发明时, 首选按照本发明方法形成道路弯道缓和曲 线, 分别与圆弧段道路和直线段道路相连, 即可实现道路转弯 360度的任 意轨迹改变。

首先确定圆弧方程, 即坐标原点在圆弧的圆心, 及圆弧半径 R ; 再确 定缓和曲线和直线交点处坐标 (L,H ) 及直线斜率为 K = tan 的直线道路与 X 轴正向的夹角 ^, 由数学上的点斜式则可确定直线道路方程; 再确定缓 和曲线和圆弧的交点处半径与 X轴正向的夹角", 缓和曲线和圆弧相连点 的坐标 ( R cos",R sin «)即可确定; 则缓和曲线方程可确定。

参阅图 5, 其中曲线 I为道路进入圆弧的缓和曲线, 曲线 I I、 I I I、 IV、 V、 VI为在圆弧的不同位置离开圆弧的缓和曲线。

实施例一: 参阅附图 5中曲线 I, 其是在第一象限的进入圆弧的缓和曲 线。

L =1.005592750000000e+004,

H =1.664578400000000e+003,

R=10000,

« =30。 ,

β = 109。 ,

Κ = -2.90421087767583,

αο= -1.610277999970065e+006,

a = 9.424571760265145e+002,

a2 = -0.21897898908567,

α4 = -1.466505605396334e-009,

α5 = 3.375495517833180e-014,

J 0 =3.621618551054907e+003。

实施例二: 参阅附图 5中曲线 II, 其是在第一象限的离开圆弧的缓和 曲线, 在曲线 I和 II之间无圆弧段, 该两个缓和曲线直接相连。

L = 6.469530700000000e+003,

H =7.876399500000000e+003,

R=10000,

« =30。 ,

β = 131。 ,

Κ = -1.15036840722101,

αο= 9.789219497546875e+004,

a2 = 0.01615679296782,

α3 = -2.276264187378184e-006,

616646158872672e-010,

α5 =- 4.644481424436472e- 015, L 0 = 3· 621561462599412e+003。

实施例三: 参阅附图 5中曲线 III, 其是在第一象限的离开圆弧的缓和 曲线。

L = 1.664578400000000e+003,

H =1.005592750000000e+004,

R=10000,

«= 60。 ,

β =161。 ,

Κ = -0.34432761328967,

1.065537723646134e+004,

^=-0.39126166549048,

=2.774773800972551e-005,

5· 375663085527373e-009,

-1.273466679849551e-015,

-1.912144609343186e-017,

L 0 = 3· 621695559129405e+003。

实施例四: 参阅附图 5中曲线 IV, 其是在第二象限的离开圆弧的缓和 曲线。

L = -1.005592750000000e+004,

H =1.664578400000000e+003,

R = 10000,

«=150。 ,

β 71。 ,

Κ = 2.90421087767582,

1· 610277999969958e+006,

α】=- 9· 424571760264180e+002,

-0.21897898908563,

-2.537499259922867e-005,

1· 466505605396206e-009,

3.375495517833180e-014, L 0 =3· 621618549978324e+003。

实施例五: 参阅附图 5中曲线 V, 其是在第三象限的离开圆弧的缓和曲 线。

L = -1.664578400000000e+003,

H = -1.005592750000000e+004,

R= 10000,

«= 240° ,

β二 161。 ,

Κ = -0.34432761328967,

αο= -1.065537723646136e+004,

a =-Q.39126166549047,

a2 = -2.774773800971891e-005,

1.273466680204390e-015,

α5 = -1.912144609338042e-017,

L 0 = 3· 621695559129267e+003。

实施例六: 参阅附图 5中曲线 VI, 其是在第四象限的离开圆弧的缓和 曲线。

L = 1.005592750000000e+004,

H = -1.664578400000000e+003,

R= 10000,

« = 330° ,

β 二 Ί\。 ,

Κ = 2.90421087767582,

αο= 1.610277999970109e+006,

a2 = 0.21897898908567,

-2.537499259923063e-005,

1.466505605396418e-009,

α5 = -3.375495517833653e-014, L 0 = 3. 621618550653168e+003。

下面以图 5中第一象限的离开圆弧的缓和曲线 I I I为例,进一步说明本 发明缓和曲线的曲率连续变化, 且与圆弧曲线和直线的相接点处的曲率连 续变化。

参阅图 6, 本发明的缓和曲线曲率连续变化, 且与圆弧曲线和直线的 相接点处曲率连续变化。

参阅图 7, 本发明的 (对应于图 6 中曲线) 缓和曲线一阶导数连续变 化, 且与圆弧曲线和直线的相接点处一阶导数连续 变化。

参阅图 8, 本发明的 (对应于图 6 中曲线) 缓和曲线二阶导数连续变 化, 且与圆弧曲线和直线的相接点处二阶导数连续 变化。

参阅图 9, 本发明的 (对应于图 6中曲线) 缓和曲线的曲率连续变化, 且与圆弧曲线和直线的相接点处的曲率连续变 化, 且曲率在缓和曲线部分 呈线性均匀变化。

图 6-9进一步说明本发明的缓和曲线曲率连续变化 , 且曲率在缓和曲 线部分呈线性均匀变化, 完全满足现有技术的以回旋曲线作为缓和曲线 的 一切优点。

需要注意的是, 以上所述的仅为本发明的较佳实施方式, 并非用以限 定本发明的范围, 即凡是依据本发明申请的权利要求书及说明书 内容所作 的简单、 等效变化与修饰, 皆落入本发明专利的保护范围。