Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ROLLING BEARING-TYPE REVOLVING JOINT
Document Type and Number:
WIPO Patent Application WO/2007/125007
Kind Code:
A3
Abstract:
The invention relates to a rolling bearing-type revolving joint (1) comprising two races (2, 6) which are concentrically disposed inside each other and between which rolling bodies (13) roll on 5 associated tracks (12, 10), one of the races (2, 6) being embodied in a resilient manner. The inventive rolling bearing-type revolving joint (1) is characterized in that the resilient race (6) is configured in a weakened fashion from the perspective of a longitudinal cross-section such that the rolling bearing-type revolving joint (1) can be elastically deformed in a radial direction to such an extent that the rolling bodies (13) are preloaded in the stressed state in the entire circumferential zone.

Inventors:
MEIER PETER (DE)
NEUBERT FRANK (DE)
STOELZLE JUERGEN (DE)
Application Number:
PCT/EP2007/053318
Publication Date:
January 10, 2008
Filing Date:
April 04, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SCHAEFFLER KG (DE)
MEIER PETER (DE)
NEUBERT FRANK (DE)
STOELZLE JUERGEN (DE)
International Classes:
F16C19/16; F16C27/04; F16C33/58
Domestic Patent References:
WO2002077469A22002-10-03
Foreign References:
DE2348986A11974-10-10
DE102004035387A12006-03-16
DE1228465B1966-11-10
Other References:
See also references of EP 2016300A2
Attorney, Agent or Firm:
SCHAEFFLER KG (Herzogenaurach, DE)
Download PDF:
Claims:

Patentansprüche

1. Wälzlager-Drehverbindung (1 ), bestehend aus zwei konzentrisch ineinander angeordneten Laufringen (2, 6) , zwischen denen auf zugehörigen Laufbahnen (12, 10) Wälzkörper (13) abrollen, wobei wenigstens einer der Laufringe (2, 6) nachgiebig ausgebildet ist, dadurch gekennzeichnet, dass der einstückige nachgiebige Laufring (6) im Längsschnitt betrachtet geschwächt ausgebildet ist, so dass eine radiale elastische Verformung möglich ist, die so groß ist, dass die Wälzkörper (13) im gesamten Umfangsbereich im belasteten Zustand vorgespannt sind.

2. Wälzlager-Drehverbindung (1) nach Anspruch 1 , dadurch gekennzeichnet, dass der Laufring (6) aus einem mit einer Anschlußkonstruktion verbundenenen ersten Basisteil (7) und einem zweiten von diesem in axialer Richtung abzweigenden, die Laufbahn (10) tragenden Teil (11 ) besteht, wobei die radiale Stärke des Basisteils (7) größer als die radiale Stärke des die Laufbahn (10) tragenden Teils (11 ) ist.

3. Wälzlager-Drehverbindung (1) nach Anspruch 2, dadurch gekennzeichnet, dass der die Laufbahn (10) tragende Teil (11) in axialer Richtung gesehen einen gleichbleibende radiale Stärke aufweist.

4. Wälzlager-Drehverbindung (1) nach Anspruch 2, dadurch gekennzeichnet, dass der die Laufbahn (10) tragende Teil (11) in axialer Richtung eine abnehmende radiale Stärke in Richtung der Laufbahn (10) aufweist.

5. Wälzlager-Drehverbindung (1) nach Anspruch 2, dadurch gekennzeichnet, dass die radiale Stärke B1 des die Laufbahn (10) tragenden Teils (11 ) im Anschluß an das Basisteil (7) und die radiale Stärke B2 im Bereich der Laufbahn (10) in folgendem Verhältnis stehen:

B1 : B2 > 1 ,5 :1

6. Wälzlager-Drehverbindung (1) nach Anspruch 2, dadurch gekennzeichnet, dass die radiale Stärke B1 des die Laufbahn (10) tragenden Teils (11 ) im Anschluß an das Basisteil (7) und die axiale Länge H des die Laufbahn (10) tragenden Teils (11 ) in folgendem Verhältnis stehen:

B1 : H < 1 : 2

7. Wälzlager-Drehverbindung (1) nach Anspruch 1 , dadurch gekennzeichnet, dass die Laufringe (2, 6) zur Verbesserung ihrer mechanischen Eigenschaften einer Härtung unterworfen sind.

8. Wälzlager-Drehverbindung (1) nach Anspruch 1 , dadurch gekennzeichnet, dass sie als ein Vierpunkt-Kugellager ausgebildet ist.

9. Wälzlager-Drehverbindung (1) nach Anspruch 1 , dadurch gekennzeichnet, dass das Verhältnis von einem Teilkreisdurchmesser zu einem druchmesser jedes einzelnen Wälzkörpers (13) größer als 30 : 1 ist.

10. Wälzlager-Drehverbindung (1) nach Anspruch 1 , dadurch gekennzeichnet, dass die Wälzkörper (13) aus Keramik bestehen.

Description:

Bezeichnung der Erfindung

Wälzlager-Drehverbindung

Beschreibung

Gebiet der Erfindung

Die Erfindung betrifft eine Wälzlager-Drehverbindung, bestehend aus zwei konzentrisch ineinander angeordneten Laufringen, zwischen denen auf zugehörigen Laufbahnen Wälzkörper abrollen, wobei wenigstens einer der Laufringe nachgiebig ausgebildet ist.

Hintergrund der Erfindung

Wälzlager-Drehverbindungen sind bereits seit langem bekannt. Laut dem Fachbuch „Die Wälzlagerpraxis", vereinigte Fachverlage GmbH, Mainz, 1995 werden solche Wälzlager-Drehverbindungen als Schwenklager für die Abstützung von Baggern, Kränen oder im Fahrzeugbau für Gelenkbusse oder Straßenbahnen eingesetzt, d.h., in Einsatzgebieten, bei denen bei begrenzten Bauraum hohe Belastungen auftreten und die eine hohe Betriebssicherheit verlangen. Die Hauptanwendungsgebiete von derartigen Drehverbindungen sind demnach charakterisiert durch eine niedrige Umfangsgeschwindigkeit bei jedoch zum Teil sehr hohen Kippmomenten und hohen axialen und radialen Kräften. Derartige Drehverbindungen sind zum Teil nur sehr gering vorgespannt und werden üblicherweise über einen Füllstopfen mit Wälzkörpern befüllt. Solche Wälzlager- Drehverbindungen gehen beispielsweise aus der DE 37 25 972 A1 , DE 195 10 182 A1 , DE 196 34 877 A1 und aus der DE 197 28 606 A1 hervor.

Im Bereich der Medizintechnik werden ebenfalls Wälzlager-Drehverbindungen eingesetzt, beispielsweise in Computertomographen. Weiterhin findet man die Wälzlager-Drehverbindung in ähnlichen röntgenographischen Geräten zur Un-

tersuchung von Gepäckstücken im Sicherheitsbereich, z.B. auf Flughäfen. Im Gegensatz zu den vorstehend beschriebenen Anwendungen werden im Medizinbereich und auch bei Gepäckscannern völlig andere Anforderungen an die Drehverbindung gestellt:

Die aufzunehmenden Lasten sind im Vergleich zum Lagerdurchmesser sehr gering, d.h. geringe Kippmomente, geringe Radial- und Axialkräfte.

Die Umfangsgeschwindigkeiten sind sehr hoch, beispielsweise sind Drehzahlen von 150 U/min bei einem Wälzlger-Teilkreis von 1 Meter durchaus keine Seltenheit.

Die Anforderung an eine niedrige Geräuschentwicklung ist ebenfalls sehr hoch. So ist es durchaus üblich, dass ein messbares Laufgeräusch, wo- bei das Laufgeräusch als Luftschall gemessen wird, Summenschall- druckpegel von maximal 65 dB(A), gemesse in 1 Meter Abstand bezogen auf die Wälzlagerachse, aufweisen darf.

- Darüber hinaus wird eine lange Lebensdauer bis zur Dauerfestigkeit ver- langt.

Aus den vorstehenden Ausführungen geht hervor, dass die bisher bekannten Wälzlager-Drehverbindungen diesen erhöhten Anforderungen im medizinischen Bereich und im Sicherheitsbereich nicht genügen. Dies betrifft insbesondere die erforderliche Laufruhe bei hohen Umfangsgeschwindigkeiten und ein geringes Anlaufdrehmoment.

In diesem Zusammenhang ist dem Fachmann zwar aus der DE-AS 1 228 465 eine Wälzlager-Drehverbindung für einen Bagger oder einen Kran bekannt ge- worden, die mit der beanspruchten Lösung jedoch bestenfalls in einem indirekten Verhältnis steht. Nach dieser Vorveröffentlichung ist der eine Laufring mit einem die Schaufel tragenden Oberwagen und der andere Laufring mit dem Unterwagen verbunden. Beim Schwenken des Oberwagens mit voller Schaufel

verändert sich die Last pro Kugel um ein Vielfaches. Bei der Grabarbeit treten so hohe Lasten auf, dass der Oberwagen kippt, wobei die Kipplasten dann nur an der zum Ausleger hin und der zum Gegengewicht hin liegenden Seite der Laufbahnen aufgefangen werden und nur durch die Verformung von Kugeln und Laufbahnen auf mehrere Kugeln übertragen werden können. Diese Verformung lässt sich rechnerisch aber schlecht erfassen und bleibt nicht immer im elastischen Bereich. Das führt, wenn nicht zur Zerstörung der Laufbahn, zumindest zur Vergrößerung des Spiels zwischen Kugel und Laufbahn und zum Abheben der Laufbahnen, wodurch die Einzellasten pro Kugel noch mehr anstei- gen. Dann ist aber eine Zerstörung unausbleiblich, und damit ist die Lebensdauer des Lagers begrenzt. Nach der Erfindung ist der dem Oberwagen zugeordnete und mit dem Oberwagen verbundene Laufring so befestigt, dass die Befestigung eine radiale Verformung des Laufringes in seiner Gesamtheit zu- lässt. Einerseits erfolgt das dadurch, dass für den dem Oberwagen zugeordne- ten Laufring an seiner Innen- und Außenseite liegende Zentrierleisten am O- berwagen vorhanden sind, deren Anordnung die Verformung des Laufringes zulässt, das Maß seiner Verformung aber begrenzt. Eine zweite Möglichkeit ist andererseits dadurch gegeben, dass der dem Oberwagen zugeordnete Laufring waagerechte, nutartige Einfräsungen aufweist, die tiefer in den Laufring eindrin- gen als die Kugellaufbahn.

Abgesehen davon, dass diese radiale Verformung des dem Oberwagen zugeordneten Laufringes wegen einer gleichmäßigen Lastverteilung, also aus völlig anderen Gründen im Gegensatz zur Erfindung erfolgt, ist die Fertigung der nut- artigen Einfräsungen aufwendig und damit teuer. Darüber hinaus entstehen am Nutgrund hohe Spannungsspitzen, so dass eine Bruchgefahr des Laufringes besteht. Auch entsteht durch diese Einfräsung kein gleichmäßiger Biegemo- mentenverlauf, da es sich nicht um eine umlaufende Nut, sondern um partielle Einstiche von 90° oder mehr handelt.

Zusammenfassung der Erfindung

Ausgehend von den Nachteilen des bekannten Standes der Technik liegt der Erfindung daher die Aufgabe zugrunde, eine Wälzlager-Drehverbindung zu schaffen, die den zuvor genannten Anforderungen genügt.

Erfindungsgemäß wird diese Aufgaben nach dem kennzeichnenden Teil von Anspruch 1 in Verbindung mit dessen Oberbegriff dadurch gelöst, dass der einstündige nachgiebige Laufring im Längsschnitt betrachtet geschwächt ausgebildet ist, so dass eine radiale elastische Verformung möglich ist, die so groß ist, dass die Wälzkörper im gesamten Umfangsbereich im belastetem Zustand vorgespannt sind.

Im Gegensatz zu starren Lagerringen, bei denen hohe Vorspannungen zu hohen Hertzschen Pressungen führen, welche die Lagerlebensdauer reduzieren, führt die Schwächung des Laufringes in der erfindungsgemäßen Weise dazu, dass dieser im Laufbahnbereich eine federnde Wirkung bekommt, die einen Teil der Vorspannung aufnimmt. Dadurch wird erreicht, dass neben dem besonders niedrigen Laufgeräusch bei hohen Umdrehungen auch eine lange Lebensdauer der Wälzlager-Drehverbindung möglich ist.

Dabei hat es sich nach Anspruch 2 als zweckmäßig erwiesen, wenn der Laufring aus einem mit einer Anschlusskonstruktion verbundenen ersten Basisteil und einem zweiten von diesem in axialer Richtung abzweigenden, die Laufbahn tragenden Teil besteht, wobei die radiale Stärke des Basisteils größer als die radiale Stärke des die Laufbahn tragenden Teils ist. Nach den Ansprüchen 3 und 4 kann dabei der die Laufbahn tragende Teil in axialer Richtung gesehen eine gleichbleibende radiale Stärke oder eine abnehmende radiale Stärke in Richtung der Laufbahn aufweisen.

Um nun für die in der Größenordnung unterschiedlich dimensionierte Wälzlager-Drehverbindungen die jeweils unterschiedlichen elastischen Verformungen und damit die unterschiedlichen Vorspannungen einstellen zu können, hat es

sich als zweckmäßig erwiesen, dies über die in den Ansprüchen 5 und 6 aufgeführten Größenverhältnisse vorzunehmen.

Durch das Verhältnis B1 : B2 > 1 ,5 : 1 ist sichergestellt, dass eine gleichmäßige Verteilung der Spannung innerhalb des die Laufbahn tragenden Teils gegeben ist. Es wird eine in etwa gleichförmige Federcharakteristik realisiert, so dass der die Laufbahn tragende Teil des Laufringes über seine gesamte axiale Länge elastisch verformt wird und nicht nur in dem Bereich, wo er vom Basisteil abzweigt. Die Größe der aufgebrachten Vorspannung wird auch über das Verhält- nis B1 : H < 1 : 2 eingestellt, wobei mit einer größer werdenden axialen Länge H des die Laufbahn tragenden Teils die Vorspannung abnimmt.

Eine weitere Möglichkeit zur Beeinflussung der Vorspannung des nachgiebigen Laufringes ist dessen Härtebehandlung nach Anspruch 7. Bei gleichen geomet- rischen Verhältnissen wird ein gehärteter Laufring einen größeren elastischen Bereich als ein ungehärteter Laufring aufweisen. Es liegt auf der Hand, dass durch die Verbesserung der Härtewerte beider Laufringe eine hohe Lebensdauer, bis zur Dauerstandsfestigkeit erreicht wird.

Nach einem weiteren Merkmal der Erfindung gemäß Anspruch 8 ist vorgesehen, dass die Wälzlager-Drehverbindung als ein Vierpunkt-Kugellager ausgebildet ist. Vierpunkt-Kugellager haben am inneren und am äußeren Laufring je zwei kreisbogenförmige Laufbahnen, deren Krümmungsmittelpunkte so gegeneinander versetzt sind, dass die Kugeln die Laufringe bei radialer Belastung in vier Punkten berühren. Der Vorteil des Vierpunkt-Lagers liegt darin, dass es aufgrund beiderseitig wirkenden Druckwinkel auch axiale Kräfte in beiden Richtungen und Kippmomente aufnehmen kann.

In Weiterbildung der Erfindung ist nach Anspruch 9 vorgesehen, dass das Ver- hältnis von einem Teilkreisdurchmesser zu einem Durchmesser jedes einzelnen Wälzkörpers größer als 30 : 1 ist. Unter Teilkreis ist der gedachte Kreis zu verstehen, der konzentrisch zur Rotationsachse der Drehverbindung angeordnet ist und der die parallel zur Rotationsachse ausgerichteten Mittelachsen der

Wälzkörper schneidet. Die Mittelachsen sind bei zylindrischen Wälzkörpern die Rotations- bzw. Symmetrieachsen und bei Kugeln gedachte, durch das Kugelzentrum und parallel zur Rotationsachse der Drehverbindung verlangende Achsen. Ein solches Lager ist dem Fachmann als sog. Dünnringlager bekannt und unterstützt mit seiner geringen Eigen- und Formstabilität den Einbau in Umgebungsbauteile, d.h. in die vorgegebne Anschlusskonstruktion.

Schließlich ist nach einem letzten Merkmal der Erfindung gemäß Anspruch 10 vorgesehen, dass die Wälzkörper aus Keramik bestehen. Hierbei eignet sich insbesondere heißgepresstes Siliziumnitrid, das im Vergleich zu metallischen Werkstoffen niedrige Trocken-Reibungskoeffizienten aufweist, so dass die Drehverbindung auch Schmierstoff betrieben werden kann. Darüberhinaus ergeben Wälzkörper aus Keramik zudem eine geringere Fliehkraftbeanspruchung. Ein weiterer Vorteil liegt darin, dass Keramikwälzkörper die Laufbahnen frei von kleineren Verunreinigungen machen, die sie Dank ihrer Härte zermah- len. Auch haben Versuche gezeigt, dass sich Keramikwälzkörper auf die Laufruhe einer Drehverbindung positiv auswirken. Auf weitere Ausführungen kann an dieser Stelle verzichtet werden, da Keramiklager an sich bereits bekannt sind. Ausführungen dazu sind den nachstehend beispielhaft aufgeführten Vor- Veröffentlichungen zu entnehmen: DE 25 11 120 A1 , DE 39 26 577 A1 , DE 73 17 997 U1 , DE 196 12 571 A1 , DE 197 29 450 A1 , EP 0 258 845 A2, EP O 320 951 A1 , EP 0 446 723 B1

Kurze Beschreibung der Zeichnungen

Weitere Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung und aus den Zeichnungen, in denen ein Ausführungsbeispiel der Erfindung vereinfacht dargestellt ist.

Es zeigen:

Figur 1 einen Längsschnitt durch eine erfindungsgemäß ausgebildete

Wälzlager-Drehverbindung,

Figur 2 unterschiedliche elastische Verformungsbereiche bei dem die

Laufbahn tragenden Teil des Laufringes und

Figur 3 die auf die Lagerkugeln einwirkende Kraft in Abhängigkeit von der

Winkelposition bei unterschiedlichen Vorspannungen

Ausführliche Beschreibung der Zeichnungen

Die in Figur 1 gezeigte Wälzlager-Drehverbindung 1 besteht aus dem äußeren Laufring 2, der mit Befestigungsbohrungen 3, 4 zur Verbindung mit einer nicht dargestellten Anschlusskonstruktion versehen ist. Im äußeren Laufring 2 ist die Dichtung 5 angeordnet, die im Ausführungsbeispiel als eine schleifende Dichtung ausgebildet ist, deren nicht näher bezeichnete Dichtlippe am inneren Lauf- ring 6 anliegt. Dieser ist einstückig ausgebildet und besteht aus dem Basisteil 7, das zur Verbindung mit einer ebenfalls nicht gezeigten Anschlusskonstruktion wenigstens eine Befestigungsbohrung 8 aufweist. Vom Basisteil 7 zweigt parallel zur Lagerachse 9 der die Laufbahn 10 tragende Teil 11 des inneren Laufringes ab. Die zugehörige zweite Laufbahn 12 wird vom äußeren Laufring 2 ge- stellt. Auf den Laufbahnen 10, 12 wälzen Lagerkugeln 13 ab, die in einem Käfig 14 geführt sind. Die Lagerkugeln 13 weisen sowohl am äußeren Laufring 2 als auch am inneren Laufring 6 je zwei nicht bezeichnete Berührungspunkte auf, d.h., die Wälzlager-Drehverbindung 1 ist als ein Vierpunkt-Kugellager ausgebildet. Zur Verbesserung des Laufverhaltens ist der innere Laufring 6 im Bereich seiner Laufbahn 10 mit einem Schmiernippel 15 ausgestattet, so dass in radialer Richtung von innen nach außen Schmiermittel in den die Lagerkugeln 13 aufnehmenden Raum gelangen kann. Der äußere Laufring 2 weist an seinem linksseitigen Ende den radial nach innen gerichteten Vorsprung 16 auf, der den inneren Laufring 6 teilweise überdeckt. Auf die Weise ist zwischen beiden Lauf- ringen 2, 6 ein radial verlaufender Spalt 17 gebildet, der die Wälzlager- Drehverbindung 1 abdichtet, d.h., als Spaltdichtung wirkt.

Wie aus Figur 1 weiter erkennbar, weist der die Laufbahn 10 tragende Teil 11 des inneren Lagerringes 6 im Abzweigbereich vom Basisteil 7 eine radiale Stärke auf, die mit B1 bezeichnet ist. Diese verringert sich in axialer Richtung stetig, bis sie im Bereich der Laufbahn 10 den mit B2 bezeichneten Wert annimmt. Im Ausführungsbeispiel beträgt das geometrisch ausgemessene Verhältnis B1 : B2 etwa 2,15 : 1. Dabei ist davon auszugehen, dass mit einem größer werdenden Verhältnis zwischen B1 und B2 bei gleich bleibender axialer Länge H die Vorspannung ansteigt. Wie auch erkennbar, ist das Verhältnis von axialer Länge H des die Laufbahn 10 tragenden Teils 11 zu seiner radialen Stärke B1 im Aus- führungsbeispiel mit etwa 1 : 2,35 ausgemessen. Daraus leitet sich ab, dass aufgrund der Hebelwirkung mit zunehmender axialer Länge H die auf die Lagerkugeln 13 wirkende Vorspannung geringer wird.

Die in Figur 2 dargestellten verschiedenen Spannungszustände einzelner TeN- bereiche, die mit a bis k bezeichnet sind, lassen erkennen, dass gegenüber einem unverspannten Zustand im Teilbereich a mit 5,67 μm die größte elastische Verformung realisiert. Diese verringert sich ausgehend vom Teilbereich a, der in axialer Richtung am weitesteten vom Basisteil 7 entfernt liegt, kontinuierlich. Der Teilbereich k, der am nächsten am Basisteil 7 liegt, weist naturgemäß mit 0,89 μm die geringste elastische Verformung auf. Die jeweiligen Spannungszustände und damit die jeweiligen elastischen Verformungen gehen aus nachstehender Tabelle hervor:

Aus der graphischen Darstellung in Figur 3, die die in Abhängigkeit von der jeweiligen Winkelposition auf die Lagerkugeln wirkende Kraft zeigt, lässt sich folgendes ableiten:

Die untere Kurve, welche eine Wälzlager-Drehverbindung repräsentiert, die mit 10 μm vorgespannt ist, zeigt, dass die Lagerkugeln bei einer vollständigen Umdrehung nur in einem Winkelbereich zwischen 90° und 270° vorgespannt sind. In der anderen Hälfte der Umdrehung liegt keine Vorspannung an, so dass die Lagerkugeln bei einem Lastwechsel einem Schlupf unterliegen, der zu Lagergeräuschen führt. Die obere Kurve, die für die gleiche Wälzlager-Drehverbindung eine Vorspannung von 30 μm realisiert, lässt erkennen, dass in diesem Fall die Lagerkugeln im gesamten Winkeibreich von 0° bis 360° vorgespannt sind und so kein Schlupf im Lastwechselbereich auftreten kann.

Bezugszahlenliste

1 Wälzlager-Drehverbindung

2 äußerer Laufring

3 Befestigungsbohrung

4 Befestigungsbohrung

5 Dichtung

6 innerer Laufring

7 Basisteil

8 Befestigungsbohrung

9 Lagerachse

10 Laufbahn

11 Teil

12 Laufbahn

13 Lagerkugel

14 Käfig

15 Schmiernippel

16 Vorsprung

17 Spalt

a, b, c, d, e, f, g, h, i, j, k Teilbereich

B1 radiale Stärke

B2 radiale Stärke

H axiale Länge