Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ROOF SHINGLE REINFORCING STRAP
Document Type and Number:
WIPO Patent Application WO/2001/031137
Kind Code:
A1
Abstract:
A plurality of shingles and shingle straps are installed in a manner effective for reinforcing and securing a roof to provide controlled separation of parts of the shingles while maintaining an intact roof surface covering. Appropriate placement of the shingle straps results in a roof which is able to withstand extreme forces, e.g. wind speeds up to about 150 MPH, such as those encountered in a strong hurricane. The method and device may be used to retrofit existing buildings, without requiring partial or total removal of the roof.

Inventors:
KARPINIA WALTER R (US)
Application Number:
PCT/US2000/029457
Publication Date:
May 03, 2001
Filing Date:
October 25, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KARPINIA WALTER R (US)
International Classes:
E04D1/26; E04D1/34; (IPC1-7): E04D1/26; E04D1/34
Foreign References:
US4637191A1987-01-20
US1980053A1934-11-06
US5577361A1996-11-26
US5311708A1994-05-17
US2161440A1939-06-06
US5390460A1995-02-21
US5722212A1998-03-03
Attorney, Agent or Firm:
Slavin, Michael A. (P.A. Suite 402 4440 PGA Boulevard Palm Beach Gardens, FL, US)
Download PDF:
Claims:
CLAIMS What is claimed is: Claim
1. A process for reinforcing a shingled covering of an underlying roof structure comprising: removing tabs from an initial course of tab containing shingles ; positioning said initial course of shingles upon a lowermost portion of said underlying roof structure; fastening reinforcing shingle straps along said initial course of shingles leading edge wherein said shingles and straps are affixed to said roof structure; positioning a plurality of additional and successive courses of tab containing shingles upon said underlying roof structure in overlapping relation and progressing in an upward direction culminating along an upper ridge portion of said underlying roof structure; fastening reinforcing shingle straps along a nailing region of each of said additional and successive courses, said overlapping relationship of said successive courses of tab containing shingles being effective to conceal said reinforcing shingle straps below said tabs, wherein said shingles and straps are affixed to said roof structure; removing tabs from a termination course of tab containing shingles; overlapping said upper ridge portion of said roof structure with said termination course of shingles; and fastening reinforcing shingle straps along both edges of said termination course of shingles wherein said shingles and straps are affixed to said roof structure; wherein upon said roof structure being subjected to wind of sufficient magnitude said tabs detach from said shingles along a region demarcated by said reinforcing shingle straps.
2. Claim.
3. The process for reinforcing a shingled roof covering of an underlying roof structure in accordance with claim 1, wherein said reinforcing shingle straps are constructed and arranged to be of a length sufficient to at least span said shingles width, and a width and thickness sufficient to provide a degree of reinforcement effective to cause the shingles to tear along the edge of said straps.
4. Claim.
5. The process for reinforcing a shingled covering of an underlying roof structure in accordance with claim 1 wherein said shingle reinforcement straps are manufactured from a material selected from the group consisting of aluminum, galvanized steel and plastic.
6. Claim.
7. The process for reinforcing a shingled covering of an underlying roof structure in accordance with claim 1 wherein said reinforcing shingle straps are effective to provide a controlled separation of said tabs at wind speeds of up to about 150 mph.
8. Claim.
9. A device for reinforcement of a shingled covering of an underlying roof structure comprising: a reinforcing shingle strap constructed and arranged to be of a length sufficient to span a width of at least one shingle, and a width and thickness sufficient to provide an effective degree of reinforcement to cause the shingled covering to tear along an edge of said strap when said at least one shingle and strap are affixed to said roof structure; and wherein upon said roof being subjected to wind of sufficient magnitude said tabs detach from said shingles along a region demarcated by said reinforcing shingle straps.
10. Claim.
11. The process for reinforcing a shingled covering of an underlying roof structure in accordance with claim 1 wherein said reinforcing shingle straps are fastened along a nailing region of each of said additional and successive courses and include fastening through said nailing region of each overlapped course to said underlying roof structure.
12. Claim.
13. In the combination of a reinforcing strap and shingles covering an underlying roof structure, said roof structure having a lower portion and an upper portion, said shingles each having a nailing region and tabs, said shingles arrayed in a series of overlapping courses beginning with an initial course at the lower portion of said roof structure with successive courses progressing upwardly to said upper portion of said roof structure, said tabs of said shingles in one course overlapping said nailing region of a lower course, the improvement comprising said reinforcing strap connected to said nailing region of said shingles in each course and to said underlying roof structure in such a manner that said reinforcing strap is attached to said shingle nailing region of said shingles of said overlapped course.
Description:
ROOF SHINGLE REINFORCING STRAP FIELD OF THE INVENTION This invention relates to the securement of a shingled roof to withstand the destructive forces of wind and/or rain, and in particular to a reinforcing strap which is installed in overlying relation to the shingles.

BACKGROUND OF THE INVENTION Property damage occurs on a daily basis due to extreme weather conditions such as wind gusts, hurricanes or the like weather systems that produce high winds. Such events cause the loss of personal property when a roof covering is destroyed, exposing both the building interior and its contents to the same elements that caused the loss of the roof. Numerous attempts have been made to eliminate or limit the damage to the roofs due to high winds and/or heavy rains, however, such attempts have largely proven to be unsuccessful or not commercially feasible.

For instance, it has been proposed to partially remove existing roofs to allow installation of mechanical fastening systems to provide roof reinforcement, however, such methods are extremely labor intensive and in view of the associated costs have not met with a great deal of success. Additionally, heavier gauge and/or reinforced shingles have been produced, but are also costly due to required removal and reinstallation.

A problem with conventional shingles is that strong winds are capable of generating strong uplift forces in excess of 100 lbs./sq. ft., resulting in the tearing or shearing of shingles from their underlying support members. The use of mechanical fasteners, such as nails or screws do not provide a broad enough area of resistance to withstand such forces. The heads of the fasteners tear

through the shingle in random fashion resulting in shingle loss and subsequent damage to the structure.

Reinforcement with glues and various adhesives and the inclusion of additional standard mechanical fasteners have helped, but fail to provide viable protection when exposed to high wind speeds including hurricane-force winds. Use of adhesive on older roofs is again costly and the required movement of a shingle for placement of adhesive can cause damage to the shingles in and of itself. During a storm, should one or more of the shingles become torn from the support members, the entire roof covering or a large portion thereof can be easily torn from the structure. The exposed interior of the building, along with its contents, are then subject to water and wind damage, resulting in extensive loss.

DESCRIPTION OF THE PRIOR ART U. S. Patent No. 2,161,440 is drawn to a shingle having a reinforcing strip integral therewith for strengthening and reinforcing the upper ends of the openings between the tabs to provide a reinforced area for nailing and to reduce the tendency of the shingles to tear at the upper ends of the openings between the tabs. This patent fails to teach a device for retrofitting an existing roof to prevent uncontrolled tearing of the shingles due to wind generated uplift.

U. S. Patent No. 5,390,460 teaches a roof securing system utilizing an elongate strap for reinforcing the attachment of underlying sheathing members to the truss structure of the roof. The system can not be retrofit to an existing, intact roof. Furthermore, the patent does not address the problems related to shingle uplift.

U. S. Patent No. 5,722,212 is drawn to the use of retaining clips for roof tiles. This patent focuses on retention of the lower end of a shingle to prevent the

shingle from lifting and being removed by heavy winds.

Such a system suffers from an inability to maintain the shingles in place during exceedingly strong winds. At some point, the force of uplift is greater than that which can be borne by the clips and the entire tile is lost.

The prior art fails to provide a method or device which augments an existing and intact roof's ability to withstand high wind exposure. The instant invention describes an apparatus and a method for its use which facilitates shearing off of a particular portion of a shingle (s) due to high wind exposure while maintaining the remainder of the roof covering in an intact condition thereby mitigating water and wind intrusion and their subsequent damage.

The instantly disclosed invention provides a means for reinforcing and securing the shingles of a building against uplift forces such as those encountered in hurricanes, and particularly describes a method and device useful in the retrofitting of existing building structures so as to provide for a controlled tearing at a predetermined location, thereby satisfying a long felt need in the art.

SUMMARY OF THE INVENTION The invention teaches a method and a device for reinforcing and securing the shingles on a roof by particular placement of straps over individual shingles in a manner effective to provide controlled separation of shingles while maintaining overall roof integrity. The disclosed placement of the shingle straps allows a roof structure to withstand extreme wind forces, such as those encountered in a hurricane. The method and device may be used to retrofit existing buildings, without requiring partial or total removal of the roof.

The present invention relates generally to an

improved roofing system; and more particularly, to the use of shingle straps as an adjunct device overlying existing roofing shingles to provide roof reinforcement which exhibits superior strength and durability characteristics for extended periods of time, e. g., in order to withstand high wind events.

The invention is for use with most every type of shingle now in use. Such shingles are exemplified by, but not limited to, shingles made with a substrate of either organic fiber saturated with asphalt or chopped glass fiber with a urea-formaldehyde binder. For example, a typical shingle consists of a substrate first coated with a mixture of asphalt and fillers such as limestone, sand or stone dust. The coated substrate then is covered with colored granules to give aesthetic appeal to the front of the shingles. In some instances, a parting agent may be applied to the back of the substrate so that the packaged shingles do not stick together. Additionally, an asphalt sealant may be placed on the granulated side of the shingles to enhance adhesion to the back of covering shingles in the final applied configuration. Although shingles manufactured in this manner are affordable and generally perform well in a wide variety of applications, such shingles will not withstand extreme weather conditions and are characteristic of one of the weakest types of shingles. The instant invention operates independently of the particular shingle, despite its own structural strength, providing universal applicability to a wide range of roofing situations. Because the strap is not a part of the shingle, the instant method may strategically position the strap to aid in controlling shearing of the shingle free end at a desired location.

The most recognized tests used by industry to quantify the performance of roof structures, and shingled roofs especially, are those conducted by Underwriters

Laboratories (UL). The UL tests include fire resistance and wind resistance up to 60 mph.

Additionally, the American Society for Testing and Materials (ASTM) has testing requirements for both organic and fiberglass shingles. However, these standards relate mainly to the raw materials used in shingles, or to limited performance characteristics of the finished product. With regard to organic shingles, for example, there are no requirements for physical performance except that events like shingle cracking or sticking together be avoided. See ASTM Standard D-225. With reference to fiberglass-based shingles, the ASTM standards include performance requirements as to fire resistance, wind resistance, fastener pull-through and tear strength. See ASTM Standard D-3462. There is no ASTM requirement as to tensile strength.

The ultimate reliability of shingled roofs when exposed to adverse and extreme weather conditions has come under close scrutiny, with attention being paid to shingle performance during high wind events. Despite manufacturer claims that their products meet the requirements of D-3462, testing and experience in fact showed that many shingles do not pass on a consistent basis, resulting in pressure from insurance companies and municipalities for changes in building code requirements to mitigate the possible destructive nature of severe and catastrophic weather.

In view of the ancillary damage caused by Hurricane Andrew in South Florida, shingle roof coverings are now required to conform to a specific set of product quality standards in Florida. The standards provide the baseline that manufacturers now must follow in order to be able to sell product for use in Florida by requiring roof surface coverings to conform to the design wind speed of the structure to which they are applied.

Adoption of similar requirements will be forthcoming in nearby areas and will include: (1) conformance to ASTM D-3462, which must be certified by UL or another approved independent testing agency; (2) passage of the UL wind test modified to 110 mph winds; and (3) passage of a wind-driven rain test. This invention has been tested in accordance with the new guidelines and has passed at 150 mph in rain.

While many shingle manufacturers have attempted to meet Florida guidelines by modifying the construction of their products, e. g. adding to the basis weight of the chop-strand fiberglass substrate by increasing the amount of filled coating that covers the substrate, using greater amounts of coating materials, or modifying coating materials with additional fillers. These changes fail to maintain the necessary performance characteristics over time, and do not address improving existing roofing structures, short of total replacement, thereby resulting in a costly product.

Accordingly, it is an objective of the instant invention to provide an apparatus and method of reinforcing or retrofitting the shingled roof of a building to withstand the destructive forces of high winds.

It is a further objective of the instant invention to teach a reinforcing shingle strap which may be installed in overlying relation to the shingles and concealed by successive overlapping free ends.

It is yet an additional objective of the instant invention to provide a method and means for controlled tearing of shingles at known locations while maintaining structural integrity.

It is still an additional objective of the instant invention to provide a roof surface covering which remains intact when subjected to wind speeds of up to 150 MPH in driven rain.

These and other objectives and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.

BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a perspective view of a shingled roof incorporating the shingle straps of the instant invention; FIG. 2 is a cross-sectional view showing the intersection of courses of shingles and nominal placement of the shingle straps; FIG. 3 is a perspective view of a roof showing wind- related tearing of the shingles in relation to the shingle straps.

DETAILED DESCRIPTION OF THE INVENTION Figure 1 shows a perspective view of a roof structure 100 having a plurality of tabbed shingles 102 in overlapping relation. The shingles are laid in consecutive overlapping courses. The initial or starter course 104, from which the tabs have been removed, is attached at the lowermost portion of the roof structure, and reinforcing shingle straps 106 are applied along their leading edge. The shingle straps are constructed and arranged to be of a length sufficient to span the shingles width, and of a width and a thickness sufficient to provide the required degree of reinforcement.

Illustrative of a typical shingle reinforcement strap is a device having a length of about 36", a width of about 1" and a thickness effective to provide sufficient stiffness to cause the shingles to tear along the edge of the strap.

In one embodiment a 26 gauge aluminum strap is used. In a particular embodiment, the reinforcement strap may contain a plurality of perforations for ease of application and positioning of fastening devices, for example nails or screws or the like. Typical materials of construction for strap 106 are selected from aluminum, galvanized steel, plastic, and the like materials having physical properties effective to reinforce the shingles in an amount sufficient to provide a strap edge which is sufficiently stiff to cause the shingles to tear along the edge of the strap. Additional shingle courses 108 progress upwardly in overlapping relation culminating along the ridge portion 110. Shingle straps 106 are applied along the nailing region 112 of courses 108, just above the tabs 111. This overlapping relationship conceals the straps 106 below free ends of successive courses. A termination course 114, which has been modified by removal of the tab portions, is applied at the ridge in overlapping relationship to the ridge axis 116. Straps 106 are applied along both the upper and lower edges of the termination course, and cap shingles are applied thereover to conceal the straps. Optionally, the ridge may include an approved standard ridge vent (not shown) which is not a part of the present invention.

Referring to Figure 2, a cross-sectional view of roof structure 100 is illustrated. The overlapping courses of shingles 104,108 and 114 are depicted and placement of shingle straps 106 in relation to each particular course is further illustrated.

Now referring to Figure 3, a perspective view of a roof structure 200 which is sustaining ongoing damage from a high wind event is further illustrated. The wind, whose direction is illustrated via arrow 202, flows over the shingled surface with a velocity sufficient to create an uplifting force. As illustrated at 204, tabs 111 are lifted up to their point of intersection with strap 106.

After repetitive cycles in which the shingle tabs 111 are lifted, they will eventually tear off along a line demarcated by the overlying straps 106. This controlled tearing of the tabs will leave the remainder of the shingles firmly attached to the underlying structure maintaining an intact and weather impervious surface at wind speeds of up to about 150 mph along with wind driven rain.

It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement of parts herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is shown and described in the specification and drawings.