Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ROTOR POSITION ENCODER FOR AN ELECTRONICALLY COMUTATED ELECTRIC MACHINE HAVING A REFERENCE ENCODER
Document Type and Number:
WIPO Patent Application WO/2014/131408
Kind Code:
A2
Abstract:
The invention relates to a rotor position encoder (01) for an electronically commutated electric machine (02) having a stator and a rotor (03) and comprising a rotor position sensor (05) which is mounted on the stator so as to rotate therewith and has the purpose of detecting the rotational position of the rotor (03) with respect to the magnetic field of the stator, and a signal encoder (07) which is mounted on the rotor (03) so as to rotate therewith. The rotor position encoder according to the invention is defined in that it has a reference encoder (08) for detecting reference values of the magnetic flux density of the rotor field, wherein the reference values (09) serve to determine an angular offset (11) between the signal encoder (07) and the position of the rotor (03). Furthermore, the invention also relates to a method for determining an angular offset (11) between a signal encoder (07) of a rotor position encoder (01) and a rotor position of an electronically commutated electric machine (02).

Inventors:
KAUFNER BENJAMIN (DE)
Application Number:
PCT/DE2014/200032
Publication Date:
September 04, 2014
Filing Date:
January 29, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SCHAEFFLER TECHNOLOGIES GMBH (DE)
International Classes:
H02K29/08
Domestic Patent References:
WO2011092320A22011-08-04
Foreign References:
DE102009001353A12010-09-09
DE102008042829A12010-04-15
DE10253388B42005-05-12
DE102012204147A12012-10-11
DE102011105502A12012-01-12
Download PDF:
Claims:
Patentansprüche

1 . Rotorlagegeber für eine einen Stator und einen Rotor (03) aufweisende elektronisch kommutierte elektrische Maschine (02), umfassend einen am Stator drehfest gelagerten Rotorlagesensor (05) zur Erfassung der Drehlage des Rotors (03) gegenüber dem Magnetfeld des Stators und einen am Rotor (03) befestigten, mitdrehenden Signalgeber (07), dadurch gekennzeichnet, dass er weiterhin einen Referenzgeber (08) zum Erfassen von Referenzwerten (09) der magnetischen Flussdichte des Rotorfeldes aufweist, wobei die Referenzwerte (09) zur Ermittlung eines Winkeloffsets (1 1 ) zwischen Signalgeber (07) und der Lage des Rotors (03) dienen.

2. Rotorlagegeber nach Anspruch 1 , dadurch gekennzeichnet, dass der Referenzgeber (08) zum Erfassen des Nulldurchgangs und/oder der Maxima und/oder der Minima der Flussdichte dient. 3. Rotorlagegeber nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Referenzgeber (08) und / oder Rotorlagesensor (05) Hall-Sensoren sind.

4. Rotorlagegeber nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die elektrische Maschine (02) ein permanenterregter Elekt- romotor ist.

5. Rotorlagegeber nach Anspruch 4, dadurch gekennzeichnet, dass der Referenzgeber (08) am Stator angeordnet ist, gegenüberliegend zu Permanentmagneten (04) des Rotors (03).

6. Verfahren zur Ermittlung eines Winkeloffsets (1 1 ) zwischen einem Signalgeber (07) eines Rotorlagegebers und der wahren Lage eines Rotors (03) gegenüber dem Magnetfeld eines Stators einer elektronisch kommutierten elektrischen Maschine (02), bei welchem unabhängig vom Signalgeber (07) von einem Referenzgeber (08) Referenzwerte der magnetischen Flussdichte des Rotorfeldes erfasst werden und ein Vergleich der Referenzwerte (09) mit den vom Signalgeber (07) zeitgleich erfassten Signal- werten zur Ermittlung des Winkeloffsets (1 1 ) erfolgt.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Referenzwerte (09) mit einem als Magnetfeldsensor ausgeführten Referenzgeber (08) erfasst werden.

8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass es während des normalen Betriebs der elektrischen Maschine (02) abläuft.

9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der ermittelte Winkeloffset (1 1 ) an ein Steuergerät übermittelt wird.

10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass vom Referenzgeber (08) der Nulldurchgang der Flussdichte des Rotorfeldes als Referenzwert erfasst wird.

Description:
Rotorlagegeber für eine elektronisch kommutierte elektrische Maschine mit einem Referenzgeber

Die vorliegende Erfindung betrifft einen Rotorlagegeber für eine einen Stator und einen Rotor aufweisende elektronisch kommutierte elektrische Maschine. Der Rotorlagegeber umfasst in herkömmlicher Weise zunächst einen am Stator drehfest gelagerten Rotorlagesensor zur Erfassung der Drehlage des Rotors gegenüber dem Magnetfeld des Stators und einen am Rotor drehfest gelagerten Signalgeber. Die elektrische Maschine ist vorzugsweise als Motor, insbesondere Antriebsmotor für Fahrzeuge ausgebildet.

Darüber hinaus betrifft die Erfindung auch ein Verfahren zur Ermittlung eines Winkeloffsets zwischen einem Signalgeber eines Rotorlagegebers und der Lage eines Rotors gegenüber dem Magnetfeld eines Stators einer elektronisch kommutierten elektrischen Maschine.

Für die Regelung elektronisch kommutierter elektrischer Maschinen werden abhängig von der Winkelposition des Rotors elektrische Ansteuergrößen an Statorwicklungen der Maschine angelegt, um diese anzutreiben. Die Rotorlage wird in der Regel mit Hilfe eines Rotorlagegebers erfasst und einem Steuerge- rät zur Generierung der für die Kommutierung der elektrischen Maschine benötigten Ansteuersignale zugeführt. Rotorlagegeber liefern entweder eine von der Lage des Rotors abhängige analoge elektrische Größe, z. B. eine Spannung, Signalpulse oder eine digitalisierte Angabe über die absolute Rotorlage. Aus dem Stand der Technik sind Rotorlagegeber bekannt, bei denen ein am Rotor drehfest gelagerter Signalgeber (magnetisches Target) mittels eines am Stator drehfest gelagerten Magnetfeldsensors ausgelesen wird. Die DE 10 2009 001 353 A1 zeigt eine Elektromaschine, umfassend einen Rotor mit einer Rotornabe, einen in einem Statorgehäuse angeordneten Stator, eine Abdeckung, welche an das Statorgehäuse angebunden ist und sich bis zum Innendurchmesser der Rotornabe erstreckt und über welche der Rotor mittels einer Rotorlagerung gelagert ist. Die Elektromaschine weist einen Rotorlagesensor zur Erfassung der Drehlage des Rotors gegenüber dem Magnetfeld des Stators auf. Der Rotorlagesensor ist derart auf der Abdeckung in der Nähe der Rotorlagerung angeordnet, dass als Geberspur des Rotorlagesensors die Rotornabe oder ein mit der Rotornabe drehfest verbundenes Bauteil dient.

Die WO 201 1/092320 A1 befasst sich mit einer Sensoreinheit für eine elektrische Maschine mit einem Lagesensor zum Bereitstellen einer Angabe zur Rotorlage, einer Motor-Kennfeldeinheit mit einer Motor-Kennfeldeinrichtung, um betriebspunktabhängig die Angabe zur Rotorlage gemäß einem vorgegebenen Motor-Kennfeld zu modifizieren, und einer Schnittstelleneinheit, um die modifizierte Angabe zur Motorlage einem Steuergerät bereitzustellen.

Damit die Nulllage des Signalgebers des Rotorlagegebers mit der definierten Nulllage des Rotors übereinstimmt, muss im Steuergerät ein entsprechender Winkeloffset abgespeichert werden. Der Winkeloffset wird in der Regel für einen konkreten Einbaufall ermittelt und im Steuergerät hinterlegt. Um diesen zu ermitteln, sind Messverfahren bekannt, die in die Steuerungssoftware des Steuergeräts implementiert werden müssen und bestimmte Betriebszustände der elektrischen Maschine erfordern bzw. nur in einer Servicewerkstatt ausgeführt werden können. Bei vorbekannten Verfahren wird der Motor auf eine Mindestgeschwindigkeit angetrieben, welche es wiederum ermöglicht, während einem ausreichend langen Zeitraum im antriebslosen Zustand das Rotorlage- gebersensorsignal mit der Gegen-EMK zu vergleichen und so den Phasenver- satz zwischen Sensorsignal und realer Rotorlage zu bestimmen. Verändert sich die Position des vom Rotorlagesensor erfassten Signalgebers (magnetisches Target) zum Rotor, beispielsweise beim Austausch im Servicefall, stimmt der hinterlegte Offsetwert nicht mehr und muss folglich neu vermessen werden. Die DE 10 2008 042 829 A1 beschreibt ein Verfahren und eine Vorrichtung zum Ausgleich des Offsets eines Rotorlagegebers einer elektrischen Maschine, bei dem die Schnittpunkte der Phasenspannungssignale der elektrischen Ma- schine unter Verwendung von Komparatoren ermittelt werden. Die von den Komparatoren bereitgestellten Signale werden mittels einer Logikeinheit in ein einkanaliges Signal umgewandelt, welches einem Mikrocomputer zugeführt wird. Bei dem Verfahren wird der Rotor der elektrischen Maschine mittels eines eingeprägten Drehfeldes auf eine vorgegebene Drehzahl beschleunigt. Sobald der Rotor die vorgegebene Drehzahl erreicht hat, wird die elektrische Maschine in den Freilauf geschaltet, wobei sich ein sinusförmiger Verlauf der an den Maschinenklemmen messbaren Phasenspannungen einstellt. Durch einen Vergleich der Phasenspannungen und der durch den Rotorlagegeber bereitgestellten Pulsfolgen kann der Offset des Rotorlagegebers ermittelt werden.

Die DE 102 53 388 B4 zeigt ein Verfahren zum Justieren einer Sensorvorrichtung zur Bestimmung der Drehlage eines Rotors eines elektronisch kommutier- ten Motors, bei dem die Sensorvorrichtung in einer bestimmten Lage relativ zu dem Rotor montiert wird. Die von der Sensorvorrichtung während einer Umdre- hung des Rotors erzeugten Inkremente werden erfasst. Der Motor wird angetrieben und die von dem Motor induzierten Spannungen werden erfasst, wobei von den induzierten Spannungen die Winkellage des Rotors und ein gesuchter Kommutierungswinkel abgeleitet werden. Die erfasste Winkellage wird mit den Inkrementen der Sensorvorrichtung korreliert. Die Korrelation von Winkellage und Inkrementen der Sensorvorrichtung wird gespeichert. Ein Nachteil des beschriebenen Verfahrens ist, dass dieses ebenfalls nicht während des Betriebs durchgeführt werden kann, sondern einer spezielle Justiervorrichtung benötigt und somit das Aufsuchen einer Servicewerkstatt erfordert. Die DE 10 2012 204 147 A1 zeigt ein Verfahren zur Steuerung eines elektronisch kommutierten Elektromotors mit mehreren Phasen in einem Antriebssystem eines Kraftfahrzeugs mit einem Rotor und einem dessen Drehwinkel überwachenden absolut messenden Rotorlagesensor und einer Elektronik zur Kommutierung des Elektromotors anhand von erfassten Daten des Drehwinkels des Rotorlagesensors. Über die Lebensdauer des Elektromotors erfolgt regelmäßig eine Plausibilisierung durch Einstellung einer vorgegebenen Istposition der Rotorlage bei stehendem Elektromotor. Hierzu werden an die ortsfest im Stator angeordneten Stromspulen gleichzeitig die Phasen u, v, w angelegt, so dass sich ein stationäres Magnetfeld einstellt, an dem sich das Polpaar ausrichtet und dadurch den Rotor exakt auf die vorgegebene Istposition positioniert. Diese Istposition wird mit einer durch den Rotorlagesensor erfassten Prüfposition verglichen. Unter Berücksichtigung eines ggf. bereits werkseitig ermittelten Winkeloffsets werden Istposition und Prüfposition miteinander verglichen und auf Überschreitung eines Grenzwerts überprüft. Die Plausibilisierung kann beispielsweise beim Start des Kraftfahrzeugs durchgeführt werden.

Aus der DE 10 201 1 105 502 A1 ist ein Verfahren zum Abgleich eines Phasen- Versatzes zwischen einem Rotorlagesensor und einer Rotorlage eines elektronisch kommutierten Motors bekannt, welches sowohl während der Inbetriebnahme als auch bei Betrieb des Motors durchgeführt werden kann. Die Position des Rotors wird mit einem Absolutwert-Rotorlagesensor gemessen, welche mit einem Motorparameter ins Verhältnis gesetzt wird, der die erwartete Position des Rotors charakterisiert. Hierdurch kann der Versatz, der beispielsweise im Zusammenbau des Motors mit dem Rotorlagesensor auftritt, automatisch auch während des Betriebes korrigiert werden. Während des Betriebs des Motors wird der Motor mit einer Blockkommutierung angesteuert, bei welcher immer eine Phase stromfrei ist. Die Phasenspannung an der stromfreien Phase wird gemessen. An der Stelle, wo der Nulldurchgang der Phasenspannung liegt, wird dies mit der Position, welche der Absolutwert-Rotorlagesensor misst, abgeglichen. Über die Phasenspannung wird eine Information über die Position des Rotors hergestellt. Um festzustellen, ob ein Phasenversatz vorhanden ist, wird die tatsächlich festgestellte Position mit einem erwarteten Wert der Rotor- position verglichen. Das beschriebene Verfahren erfordert das Vorhalten entsprechender Softwarefunktionen im Steuergerät zur Ermittlung des Winkeloff- sets. Die Aufgabe der vorliegenden Erfindung besteht darin, einen Rotorlagegeber für eine elektronisch kommutierte elektrische Maschine bereit zu stellen, dessen Winkeloffset im laufenden Betrieb der elektrischen Maschine stets aktualisiert zur Verfügung steht, wobei kein zusätzlicher softwaremäßiger Aufwand im Steuergerät zur Ermittlung des Winkeloffsets erforderlich ist. Weiterhin soll auch ein Verfahren zur Ermittlung eines Winkeloffsets zwischen einem Signalgeber eines Rotorlagegebers und der Lage eines Rotors gegenüber dem Magnetfeld eines Stators einer elektronisch kommutierten elektrischen Maschine zur Verfügung gestellt werden.

Zur Lösung der erfindungsgemäßen Aufgabe dient ein Rotorlagegeber gemäß dem beigefügten Anspruch 1 . Der erfindungsgemäße Rotorlagegeber beinhaltet außer dem bekannten Rotorlagesensor mit zugehörigem Signalgeber noch einen Referenzgeber zum Erfassen von Referenzwerten der magnetischen Flussdichte des Rotorfeldes, wobei die Referenzwerte zur Ermittlung eines Winkeloffsets zwischen dem Signalgeber des Rotorlagegebers und der Lage des Rotors dienen.

Ein großer Vorteil der erfindungsgemäßen Lösung ist darin zu sehen, dass während des Betriebs der elektrischen Maschine fortlaufend Referenzwerte zur Verfügung stehen, welche mit den vom Rotorlagegeber erfassten Signalwerten verglichen werden können, um einen aktuellen Winkeloffset bestimmen zu können. Auf diese Weise steht stets ein aktueller Winkeloffset zur Verfügung, welcher bei der Kommutierung berücksichtigt werden kann. Im Vergleich zu den vorbekannten Lösungen ist es somit nicht mehr erforderlich, den Winkeloffset, durch in die Steuerungssoftware zusätzlich zu implementierende Verfahren aufwendig zu bestimmen. Ein in diesem Zusammenhang bislang häufig erforderliches Tätigwerden einer Servicewerkstatt entfällt, was nicht zu letzt auch zu Zeit- und Kostenersparnissen führt.

Nach einer bevorzugten Ausführungsform dient der Referenzgeber zum Erfassen des Nulldurchgangs der Flussdichte, bei welchem der Absolutwert des Rotorfeldes Null ist. Bei alternativen Ausführungsformen können mittels des Referenzgebers auch die Maxima oder Minima der Flussdichte bestimmt werden. Hierzu wird das vom Referenzgeber gelieferte Sensorsignal auf charakteristische Flussdichteänderungen im Zeitbereich getriggert. Bei einer vorteilhaften Ausführungsform ist der Referenzgeber ein Hallsensor. Der Rotorlagesensor kann ebenfalls als Hallsensor ausgeführt sein. Hallsensoren werden schon seit langem für Magnetfeldmessungen eingesetzt und bedürfen in Bezug auf ihre Verwendung hier keiner näheren Erläuterung. Zur Lösung der erfindungsgemäßen Aufgabe dient auch ein Verfahren zur Ermittlung eines Winkeloffsets zwischen einem Signalgeber eines Rotorlagegebers und der tatsächlichen Lage eines Rotors gegenüber dem Magnetfeld eines Stators einer elektronisch kommutierten elektrischen Maschine gemäß dem beigefügten Anspruch 6.

Bei dem erfindungsgemäßen Verfahren werden Referenzwerte der magnetischen Flussdichte des Rotorfeldes erfasst und mit den vom Rotorlagegeber zeitgleich erfassten Signalwerten verglichen. Im Ergebnis dieses Vergleichs kann ein Winkeloffset zwischen dem Signalgeber des Rotorlagegebers und dem Rotor ermittelt werden, der dann bei der Kommutierung berücksichtigt werden kann.

Die Ermittlung des Winkeloffsets erfolgt vorzugsweise während des normalen Betriebs der elektrischen Maschine. Im Vergleich zu den heute gängigen Ver- fahren müssen keine speziellen Betriebszustände des Motors zur Ermittlung des Winkeloffsets hergestellt werden.

Der ermittelte Winkeloffset wird an ein Steuergerät übermittelt, welches ihn dann entsprechend weiter verarbeitet, um den aktuellen Winkeloffset bei der Generierung der für die Kommutierung der elektrischen Maschine benötigten Ansteuersignale einfließen zu lassen. Eine bevorzugte Ausführungsform der Erfindung wird nachfolgend anhand der einzigen Figur näher erläutert.

Die Fig. zeigt den prinzipiellen Aufbau eines erfindungsgemäßen Rotorlagege- bers, welcher in eine elektronisch kommutierte elektrische Maschine 02 eingebaut ist. Die elektrische Maschine 02 ist vorzugsweise als permanenterregter Elektromotor ausgeführt und umfasst einen Rotor 03 und einen Stator, wobei in der Fig. nur der Rotor 03 dargestellt ist. Der Rotor 03 weist eine Vielzahl von Permanentmagneten 04 auf.

Der erfindungsgemäße Rotorlagegeber umfasst einen Rotorlagesensor 05, der drehest am Statorgehäuse (nicht dargestellt) gelagert ist. Bei Elektromotoren kann die Lagerung des Rotors über eine an das Statorgehäuse angebundene Abdeckung erfolgen, die radial an den Permanentmagneten 04 des Rotors 03 bis auf den Innendurchmesser der Rotornabe vorbei führt. Der Rotorlagesensor 05 kann beispielsweise drehfest an dieser an das Statorgehäuse angebundenen Abdeckung gelagert sein. Mittels Rotorlagesensor 05 kann die rotarische Lage des Rotors 03 gegenüber dem Magnetfeld des Stators erfasst werden. Bei dem verwendeten Rotorlagesensor 05 handelt es sich um einen Magnet- feldsensor, wobei vorzugsweise ein Hall-Sensor zum Einsatz kommt.

Der erfindungsgemäße Rotorlagegeber weist weiterhin einen Signalgeber 07 auf, der am Rotor 03 gelagert ist und mit diesem rotiert. Der Signalgeber 07 ist bevorzugt als magnetisches Target ausgeführt. Um ein Kommutierungssignal zu erzeugen wird das magnetische Target 07 durch den Rotorlagesensor 05 ausgelesen.

Zum Ausgleich eines Winkeloffsets zwischen dem Signalgeber 07 des Rotorlagegebers und der wahren Lage des Rotors 03 erfolgt erfindungsgemäß wäh- rend des Betriebs des Elektromotors 02 eine fortlaufende oder wiederholte Bestimmung dieses Winkeloffsets. Hierzu ist der erfindungsgemäße Rotorlagegeber mit einem Referenzgeber 08 ausgestattet. Als Referenzgeber 08 kann jeglicher magnetisch empfindlicher Sensor, wie beispielsweise ein Hall-Sensor, dienen. Der Referenzgeber 08 ist nahe der Permanentmagneten 04 des Rotors 03 angeordnet. Bei jeder Rotorumdrehung wird vom Referenzgeber 08 ein Referenzsignal erzeugt, welches eine Referenzposition des Rotors 03 darstellt. Nach einer bevorzugten Ausführung handelt es sich bei dieser Referenzpositi- on 09 um eine Position bei der der Absolutwert des Rotorfeldes gerade Null (Nulldurchgang der Flussdichte) ist. Durch Vergleich des Referenzsignals mit dem vom Rotorlagegeber 01 erzeugten Signalverlauf (Nullposition 10 des Signalgebers 07) lässt sich ein ggf. bestehender Winkeloffset 1 1 zwischen dem Signalgeber 07 des Rotorlagegebers 01 und dem Rotor 03 ermitteln, der an ein Steuergerät übermittelt werden kann, um ihn bei der Kommutierung berücksichtigen zu können.

Im Betrieb des Motors muss der Winkeloffset nicht ständig bestimmt werden, da er sich unter normalen Betriebsbedingungen nicht stark ändert. Möglich ist die erneute Bestimmung des Offsets jederzeit, beispielsweise beim Neustart des Motors, nach erhöhten Lastspitzen, nach einem Service oder dergleichen.

Bei alternativen Ausführungsformen können anstelle des Nullldurchgangs der Flussdichte die Maxima bzw. Minima der Flussdichte erfasst werden.

Bezugszeichenliste

02 elektnsche Maschine

03 Rotor

04 Permanentmagneten

05 Rotorlagesensor

06 -

07 Signalgeber

08 Referenzgeber

09 Referenzposition (Rotor-Null)

10 Nullposition des Signalgebers

1 1 Winkeloffset