Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RSV F PROTEIN MUTANTS
Document Type and Number:
WIPO Patent Application WO/2017/109629
Kind Code:
A1
Abstract:
The present disclosure relates to RSV F protein mutants, nucleic acids or vectors encoding a RSV F protein mutant, compositions comprising a RSV F protein mutant or nucleic acid, and uses of the RSV F protein mutants, nucleic acids or vectors, and compositions.

Inventors:
CHE YE (US)
DORMITZER PHILIP RALPH (US)
GRIBENKO ALEXEY VYACHESLAVOVICH (US)
HANDKE LUKE DAVID (US)
PRASAD AVVARI KRISHNA (US)
QIU XIAYANG (US)
RUPPEN MARK EDWARD (US)
SONG XI (US)
SWANSON KENA ANNE (US)
KODALI SRINIVAS (US)
XU XIN (US)
EFFEREN KARIANN SWEENEY (US)
CAI PING (US)
TOMPKINS KRISTIN RACHAEL (US)
NUNEZ LORNA DEL PILAR (US)
Application Number:
PCT/IB2016/057502
Publication Date:
June 29, 2017
Filing Date:
December 09, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PFIZER (US)
International Classes:
A61K39/155; A61K39/12; C07K14/005
Domestic Patent References:
WO2014160463A12014-10-02
WO2012158613A12012-11-22
WO2017040387A22017-03-09
WO2008147196A22008-12-04
WO2011043643A12011-04-14
WO2014160463A12014-10-02
WO1990014837A11990-12-13
WO1990003184A11990-04-05
WO1996011711A11996-04-25
WO2004004762A12004-01-15
WO2005002620A12005-01-13
Foreign References:
US20060159695A12006-07-20
US5340740A1994-08-23
US5656479A1997-08-12
US5830510A1998-11-03
US6114168A2000-09-05
US6500668B22002-12-31
US5057540A1991-10-15
Other References:
WIDJAJA I ET AL: "Recombinant Soluble Respiratory Syncytial Virus F Protein That Lacks Heptad Repeat B, Contains a GCN4 Trimerization Motif and Is Not Cleaved Displays Prefusion-Like Characteristics", PLOS ONE, PUBLIC LIBRARY OF SCIENCE, US, 24 June 2015 (2015-06-24), pages 1/19 - 19/19, XP009186476, ISSN: 1932-6203, DOI: 10.1371/JOURNAL.PONE.0130829
CIMICA V ET AL: "Novel Respiratory Syncytial Virus-Like Particle Vaccine Composed of the Postfusion and Prefusion Conformations of the F Glycoprotein", CLINICAL AND VACCINE IMMUNOLOGY, vol. 23, no. 6, 6 June 2016 (2016-06-06), US, pages 451 - 459, XP055364859, ISSN: 1556-6811, DOI: 10.1128/CVI.00720-15
MCLELLAN J S ET AL: "Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus", SCIENCE, vol. 342, no. 6158, 31 October 2013 (2013-10-31), pages 592 - 598, XP055132637, ISSN: 0036-8075, DOI: 10.1126/science.1243283
DORMITZER, P.R.; GRANDI, G.; RAPPUOLI, R., NATURE REVIEWS MICROBIOL, vol. 10, 2012, pages 807
GILMAN MS; MOIN SM; MAS V ET AL.: "Characterization of a prefusion-specific antibody that recognizes a quaternary, cleavage-dependent epitope on the RSV fusion glycoprotein", PLOS PATHOGENS, vol. 11, no. 7, 2015
NGWUTA, J.O.; CHEN, M.; MODJARRAD, K.; JOYCE, M.G.; KANEKIYO, M.; KUMAR, A.; YASSINE, H.M.; MOIN, S.M.; KILLIKELLY, A.M.; CHUANG,, SCIENCE TRANSLAT. MED., vol. 14, no. 7, 2015, pages 309
MCLELLAN JS; CHEN M; LEUNG S ET AL.: "Structure of RSV fusion glycoprotein trimer bound to a pre-fusion-specific neutralizing antibody", SCIENCE, vol. 340, 2013, pages 1113 - 1117
CHAIWATPONGSAKORN, S.; EPAND, R.F.; COLLINS, P.L.; EPAND R.M.; PEEPLES, M.E., J VIROL., vol. 85, no. 8, 2011, pages 3968 - 77
YUNUS, A.S.; JACKSON T.P.; CRISAFI, K.; BURIMSKI, I.; KILGORE, N.R.; ZOUMPLIS, D.; ALLAWAY, G.P.; WILD, C.T.; SALZWEDEL, K., VIROLOGY, vol. 396, no. 2, 20 January 2010 (2010-01-20), pages 226 - 37
MCLELLAN ET AL., SCIENCE, vol. 342, no. 6158, 2013, pages 592 - 598
SMITH; WATERMAN, ADV. APPL. MATH., vol. 2, 1981, pages 482
NEEDLEMAN; WUNSCH, MOL. BIOL., vol. 48, 1970, pages 443
PEARSON; LIPMAN, PROC. NAT'L. ACAD. SCI. USA, vol. 85, 1988, pages 2444
"Wisconsin Genetics Software Package", GENETICS COMPUTER GROUP
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 2012, COLD SPRING HARBOR, NEW YORK
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", 2013, JOHN WILEY AND SONS, NEW YORK, pages: 104
CORTI, D.; BIANCHI, S.; VANZETTA, F.; MINOLA, A.; PEREZ, L.; AGATIC, G.; LANZAVECCHIA, A: "Cross-neutralization of four paramyxoviruses by a human monoclonal antibody", NATURE, vol. 501, no. 7467, 2013, pages 439 - 443
HARBURY ET AL., SCIENCE, vol. 262, 1993, pages 1401 - 1407
HOPPE ET AL., FEB S LETT, vol. 344, 1994, pages 191 - 195
MCALINDEN ET AL., BIOL CHEM, vol. 278, 2003, pages 42200 - 42207
MIROSHNIKOV ET AL., PROTEIN ENG, vol. 11, 1998, pages 329 - 414
"BioLuminate", 2015, SCHRODINGER LLC, NEW YORK
"Discovery Studio Modeling Environment", 2015, ACCELRYS, SAN DIEGO
"Molecular Operating Environment", 2015, CHEMICAL COMPUTING GROUP INC., MONTREAL
ROSETTA, UNIVERSITY OF WASHINGTON, SEATTLE, 2015
"BioLuminate", 2015, SCHRODINGER LLC
SUMMERS; SMITH, TEXAS AGRICULTURAL EXPERIMENT STATION BULLETIN NO. 1555, 1987
"Yeast Genetic Engineering", 1989, BUTTERWORTHS, LONDON
RUIZ-ARGUELLO ET AL., J. GEN. VIROL., vol. 85, 2004, pages 3677 - 3687
SOLABOMI ET AL., INFECT IMMUN, vol. 76, 2008, pages 3817 - 23
NIWA, H.; YAMAMURA, K.; MIYAZAKI, J.: "Efficient selection for high-expression transfectants with a novel eukaryotic vector", GENE, vol. 108, no. 2, 1991, pages 193 - 199
WALSH EE; COTE PT; FERNIE BF ET AL.: "Analysis of the Respiratory Syncytial Virus Fusion Protein Using Monoclonal and Polyclonal Antibodies", J. GEN. VIROL, vol. 76, 1986, pages 505 - 513
EYLES JE; JOHNSON JE; MEGATI S ET AL.: "Nonreplicating vaccines can protect african green monkeys from the Memphis 37 strain of respiratory syncytial virus", J INF DIS., vol. 208, no. 2, 2013, pages 319 - 29
Attorney, Agent or Firm:
WALDRON, Roy F. (US)
Download PDF:
Claims:
CLAIMS

1. A mutant of a wild-type RSV F protein, which mutant comprises a F1 polypeptide and a F2 polypeptide, wherein the mutant comprises at least one amino acid mutation relative to the amino acid sequence of the wild-type RSV F protein, and wherein the amino acid mutation is selected from the group consisting of:

(1) an engineered disulfide bond mutation;

(2) a cavity filling mutation;

(3) an electrostatic mutation;

(4) a combination of at least one engineered disulfide mutation and at least one cavity filling mutation;

(5) a combination of at least one engineered disulfide mutation and at least one electrostatic mutation;

(6) a combination of at least one cavity filling mutation and at least one electrostatic mutation; and

(7) a combination of at least one engineered disulfide mutation, at least one cavity filling mutation, and at least one electrostatic mutation.

2. The mutant according to claim 1 , wherein the amino acid mutations comprise a combination of at least one engineered disulfide mutation, at least one cavity filling mutation, and at least one electrostatic mutation.

3. The mutant according to claim 1 , which is in the form of a trimer.

4. The mutant according to claim 1 , which has increased stability as compared with the corresponding wild-type RSV F protein, wherein the stability is measured by binding of the mutant with antibody AM 14.

5. The mutant according to any one of claims 1-4, wherein the wild-type RSV is subtype A, subtype B, strain A2, strain Ontario, or strain Buenos Aires.

6. The mutant according to any one of claims 1-5, wherein the engineered disulfide mutation is selected from the group consisting of: S55C and L188C; S155C and S290C; T103C and I 148C; and L142C and N371C.

7. The mutant according to any one of claims 1-5, wherein the cavity filling mutation is selected from the group consisting of:

(1) substitution of S at positions 55, 62, 155, 190, or 290 with I, Y, L, H, or M;

(2) substitution of T at position 54, 58, 189, 219, or 397 with I, Y, L, H, or M;

(3) substitution of G at position 151 with A or H; (4) substitution of A at position 147 or 298 with I, L, H, or M;

(5) substitution of V at position 164, 187, 192, 207, 220, 296, 300, or 495 with I, Y, H; and

(6) substitution of R at position 106 with W.

8. The mutant according to any one of claims 1-5, wherein the electrostatic mutation is selected from the group consisting of:

(1) substitution of E at position 82, 92, or 487 by D, F, Q, T, S, L, or H;

(2 ) substitution of K at position 315, 394, or 399 by F, M, R, S, L, I, Q, or T;

(3) substitution of D at position 392, 486, or 489 by H, S, N, T, or P; and

(4) Substitution of R at position 106 or 339 by F, Q, N, or W.

9. The mutant according to any one of claims 1-5, wherein the amino acid mutation is a combination of at least one engineered disulfide mutation, at least one cavity filling mutation, and at least one electrostatic mutation, and wherein:

(i) the engineered disulfide mutation is selected from the group consisting of: 55C and 188C; 155C and 290C; 103C and 148C; and 142C and 371C.

(ii) the cavity filling mutation is selected from the group consisting of:

(1) substitution of S at positions 55, 62, 155, 190, or 290 with I, Y, L, H, or M;

(2) substitution of T at position 54, 58, 189, 219, or 397 with I , Y, L, H, or M;

(3) substitution of G at position 151 with A or H;

(4) substitution of A at position 147 or 298 with I, L, H, or M;

(5) substitution of V at position 164, 187, 192, 207, 220, 296, 300, or 495 with I, Y, H; and

(6) substitution of R at position 106 with W; and

(iii) the electrostatic mutation is selected from the group consisting of:

(1) substitution of E at position 82, 92, or 487 by D, F, Q, T, S, L, or H;

(2 ) substitution of K at position 315, 394, or 399 by F, M, R, S, L, I, Q, or T;

(3) substitution of D at position 392, 486, or 489 by H, S, N, T, or P; and

(4) Substitution of R at position 106 or 339 by F, Q, N, or W.

10. The mutant according to claim 9, wherein the amino acid mutations are a combination of mutations selected from the group consisting of: (1) combination of T103C, I 148C, S190I, and D486S;

(2) combination of T54H S55C L188C D486S;

(3) combination of T54H, T103C, I 148C, S190I, V296I, and D486S;

(4) combination of T54H, S55C, L142C, L188C, V296I, and N371 C;

(5) combination of S55C, L188C, and D486S;

(6) combination of T54H, S55C, L188C, and S190I;

(7) combination of S55C, L188C, S190I, and D486S;

(8) combination of T54H, S55C, L188C, S190I, and D486S;

(9) combination of S155C, S190I, S290C, and D486S;

(10) combination of T54H, S55C, L142C, L188C, V296I, N371C, D486S, E487Q, and D489S; and

(11) combination of T54H, S155C, S190I, S290C, and V296I.

11. The mutant according to claim 1 , wherein the mutant comprises a cysteine (C) at position 103 (103C) and at position 148 (148C), an isoleucine (I) at position 190 (1901), and a serine (S) at position 486 (486S), and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:41 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:42;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:41 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:42;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 43 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:44;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:43 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:44;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 45 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:46;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:45 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:46;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 47 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:48;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:47 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:48;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 49 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:50;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:49 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:50.

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:279 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:280;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:279 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:280;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:281 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:282;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:281 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:282;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:283 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:284;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:283 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:284; (17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:285 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:286;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:285 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:286;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:287 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:288;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:287 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:288;

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:289 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:290; and (22) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:289 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:290.

12. The mutant according to claim 1 , wherein the mutant comprises a histidine (H) at position 54, a cysteine (C) at positions 103 and 148, a isoleucine (I) at positions 190, and 296, and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 51 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:52;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:51 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:52;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:53 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:54;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:53 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:54;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:55 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:56;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:55 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:56;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:57 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:58;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:57 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:58;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:59 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:60;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:59 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:60;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:291 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:292;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:291 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:292;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:293 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:294;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:293 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:294; (15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:295 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:296;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:295 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:296;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:297 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:298;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:297 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:298;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:299 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:300;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:299 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:300;

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:301 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:302; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:301 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:302.

13. The mutant according to claim 1 , wherein the mutant comprises a histidine (H) at position 54, a cysteine (C) at positions 55 and 188, and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:61 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:62;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:61 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:62;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:63 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:64;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:63 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:64;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:65 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:66;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:65 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:66;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:67 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:68;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:67 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:68;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:69 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:70;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:69 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:70;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:303 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:304;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:303 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:304; (13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:305 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:306;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:305 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:306;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:307 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:308;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:307 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:308;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:309 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:310;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:309 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:310;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:311 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:312;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:31 1 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:312.

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:313 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:314; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:313 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:314.

14. The mutant accorrding to claim 1 , wherein the mutant comporises a histidine (H) at position 54, a cysteine (C) at positions 55 and 188, an isoleucine (I) at position 190 (1901), and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:71 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:72;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:71 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:72;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:73 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:74;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:73 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:74;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:75 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:76;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:75 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:76;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:77 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:78;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:77 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:78;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:79 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:80;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:79 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:80; (11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:315 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:316;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:315 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:316;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:317 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:318;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:317 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:318;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:319 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:320;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:319 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:320;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:321 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:322;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:321 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:322;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:323 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:324;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:323 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:324.

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:325 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:326; and (22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:325 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:326.

15. The mutant according to claim 10, which comprises amino acids 26-109 and 137-513 of an amino acid sequence selected from the group consisting of:

(1) amino acid sequence of SEQ ID NO: 19;

(2) amino acid sequence of SEQ ID NO:20; and

(3) amino acid sequence of SEQ ID NO:21.

16. The mutant according to claim 9, further comprising at least one pair of cysteine mutations in the HRB region.

17. The mutant according to claim 16, wherein at least one pair of cysteine mutations is selected from the group consisting of:

(1) 508C and 509C;

(2) 515C and 516C; and

(3) 522C and 523C.

18. A pharmaceutical composition comprising (i) a RSV F protein mutant according to any one of claims 1-17 and (ii) a pharmaceutically acceptable carrier.

19. The pharmaceutical composition according to claim 18, wherein the F1 polypeptide and F2 polypeptide are from the F protein of RSV subtype B.

20. The pharmaceutical composition according to claim 18, wherein the F1 polypeptide and F2 polypeptide are from the F protein of RSV subtype A.

21. The pharmaceutical composition according to claim 20, further comprising a second mutant according to any one of claims 1-17, wherein the F1 polypeptide and F2 polypeptide of the second mutant are from the F protein of RSV subtype B.

22. The pharmaceutical composition according to claim 18, which is a vaccine.

23. A method of reducing RSV infection in a human, comprising administering to the subject an effective amount of the vaccine according to claim 22.

Description:
RSV F PROTEIN MUTANTS

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/387,270 filed December 23, 2015 and U.S. Provisional Application No. 62/421 , 184 filed November 11 , 2016. The entire content of each of the foregoing applications is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to vaccines in general and vaccines against respiratory syncytial viruses specifically.

BACKGROUND OF THE INVENTION

Respiratory syncytial virus, or RSV, is a respiratory virus that infects the lungs and breathing passages. RSV is the leading cause of serious viral lower respiratory tract illness in infants worldwide and an important cause of respiratory illness in the elderly. However, no vaccines have been approved for preventing RSV infection.

RSV is a member of the Paramyxoviridae family. Its genome consists of a single- stranded, negative-sense RNA molecule that encodes 11 proteins, including nine structural proteins (three glycoproteins and six internal proteins) and two non-structural proteins. The structural proteins include three transmembrane surface glycoproteins: the attachment protein G, fusion protein F, and the small hydrophobic SH protein. There are two subtypes of RSV, A and B. They differ primarily in the G glycoprotein, while the sequence of the F glycoprotein is more conserved between the two subtypes.

The mature F glycoprotein has three general domains: ectodomain (ED), transmembrane domain (TM), and a cytoplasmic tail (CT). CT contains a single palmitoylated cysteine residue.

The F glycoprotein of human RSV is initially translated from the mRNA as a single 574-amino acid polypeptide precursor (referred to "F0" or "F0 precursor"), which contains a signal peptide sequence (amino acids 1-25) at the N-terminus. Upon translation the signal peptide is removed by a signal peptidase in the endoplasmic reticulum. The remaining portion of the F0 precursor (i.e., residues 26-574)may be further cleaved at two polybasic sites (a. a. 109/110 and 136/137) by cellular proteases (in particular furin), removing a 27-amino acid intervening sequence designated pep27 (amino acids 110-136) and generating two linked fragments designated F1 (C-terminal portion; amino acids 137-574) and F2 (N-terminal portion; amino acids 26-109). F1 contains a hydrophobic fusion peptide at its N-terminus and two heptad-repeat regions (HRA and HRB). HRA is near the fusion peptide, and HRB is near the TM domain. The F1 and F2 fragments are linked together through two disulfide bonds. Either the uncleaved F0 protein without the signal peptide sequence or a F1-F2 heterodimer can form a RSV F protomer. Three such protomers assemble to form the final RSV F protein complex, which is a homotrimer of the three protomers.

The F proteins of subtypes A and B are about 90 percent identical in amino acid sequence. An example sequence of the F0 precursor polypeptide for the A subtype is provided in SEQ ID NO: 1 (A2 strain; GenBank Gl: 138251 ; Swiss Prot P03420), and for the B subtype is provided in SEQ ID NO: 2 (18537 strain; GenBank Gl: 138250; Swiss Prot P13843). SEQ ID NO: 1 and SEQ ID NO:2 are both 574 amino acid sequences. The signal peptide sequence for SEQ ID NO: 1 and SEQ ID NO:2 has also been reported as amino acids 1-25 (GenBank and UniProt). In both sequences the TM domain is from approximately amino acids 530 to 550, but has alternatively been reported as 525-548. The cytoplasmic tail begins at either amino acid 548 or 550 and ends at amino acid 574, with the palmitoylated cysteine residue located at amino acid 550.

One of the primary antigens explored for RSV subunit vaccines is the F protein. The RSV F protein trimer mediates fusion between the virion membrane and the host cellular membrane and also promotes the formation of syncytia. In the virion prior to fusion with the membrane of the host cell, the largest population of F molecules forms a lollipop-shaped structure, with the TM domain anchored in the viral envelope [Dormitzer, P.R. , Grandi, G., Rappuoli, R., Nature Reviews Microbiol, 10, 807, 2012.]. This conformation is referred to as the pre-fusion conformation. Pre-fusion RSV F is recognized by monoclonal antibodies (mAbs) D25, AM22, and MPE8, without discrimination between oligomeric states. Pre-fusion F trimers are specifically recognized by mAb AM14 [Gilman MS, Moin SM, Mas V et al. Characterization of a prefusion-specific antibody that recognizes a quaternary, cleavage-dependent epitope on the RSV fusion glycoprotein. PLoS Pathogens, 1 1 (7), 2015]. During RSV entry into cells, the F protein rearranges from the pre-fusion state (which may be referred to herein as "pre-F"), through an intermediate extended structure, to a post-fusion state ("post-F"). During this rearrangement, the C-terminal coiled-coil of the pre-fusion molecule dissociates into its three constituent strands, which then wrap around the globular head and join three additional helices to form the post-fusion six helix bundle. If a pre-fusion RSV F trimer is subjected to increasingly harsh chemical or physical conditions, such as elevated temperature, it undergoes structural changes. Initially, there is loss of trimeric structure (at least locally within the molecule), and then rearrangement to the post-fusion form, and then denaturation of the domains.

To prevent viral entry, F-specific neutralizing antibodies presumably must bind the pre-fusion conformation of F on the virion, or potentially the extended intermediate, before the viral envelope fuses with a cellular membrane. Thus, the pre-fusion form of the F protein is considered the preferred conformation as the desired vaccine antigen [Ngwuta, J.O., Chen, M., Modjarrad, K., Joyce, M.G., Kanekiyo, M., Kumar, A., Yassine, H.M., Moin, S.M., Killikelly, A.M., Chuang, G.Y., Druz, A., Georgiev, I.S., Rundlet, E.J., Sastry, M., Stewart-Jones, G.B., Yang. Y. , Zhang, B., Nason, M.C., Capella, C, Peeples, M., Ledgerwood, J. E., Mclellan, J.S., Kwong, P.D., Graham, B.S., Science Translat. Med., 14, 7, 309 (2015)] . Upon extraction from a membrane with surfactants such as Triton X-100, Triton X-114, NP-40, Brij-35, Brij-58, Tween 20, Tween 80, Octyl glucoside, Octyl thioglucoside, SDS, CHAPS, CHAPSO, or expression as an ectodomain, physical or chemical stress, or storage, the F glycoprotein readily converts to the post-fusion form [McLellan JS, Chen M, Leung S et al. Structure of RSV fusion glycoprotein trimer bound to a pre-fusion-specific neutralizing antibody. Science 340, 1 113-1117 (2013); Chaiwatpongsakorn, S., Epand, R.F., Collins, P.L, Epand R.M., Peeples, M.E., J Virol. 85(8):3968-77 (201 1); Yunus, A.S.,, Jackson T.P., Crisafi, K., Burimski, I., Kilgore, N.R., Zoumplis, D., Allaway, G.P., Wild, C.T., Salzwedel, K. Virology. 2010 Jan 20;396(2):226-37]. Therefore, the preparation of pre-fusion F as a vaccine antigen has remained a challenge. Since the neutralizing and protective antibodies function by interfering with virus entry, it is postulated that an F antigen that elicits only post-fusion specific antibodies is not expected to be as effective as an F antigen that elicits pre-fusion specific antibodies. Therefore, it is considered more desirable to utilize an F vaccine that contains a F protein immunogen in the pre-fusion form (or potentially the extended intermediate form). Efforts to date have not yielded an RSV vaccine that has been demonstrated in the clinic to elicit sufficient levels of protection to support licensure of an RSV vaccine. Therefore, there is a need for immunogens derived from a RSV F protein that have improved properties, such as enhanced immunogenicity or improved stability of the pre-fusion form, as compared with the corresponding native RSV F protein, as well as compositions comprising such an immunogen, such as a vaccine.

SUMMARY OF THE INVENTION

In some aspects, the present invention provides mutants of wild-type RSV F proteins, wherein the mutants display introduced mutations in the amino acid sequence relative to the amino acid sequence of the corresponding wild-type RSV F protein and are immunogenic against the wild-type RSV F protein or against a virus comprising the wild-type F protein. The amino acid mutations in the mutants include amino acid substitutions, deletions, or additions relative to a wild-type RSV F protein.

In some embodiments, the present disclosure provides mutants of a wild-type RSV F protein, wherein the introduced amino acid mutations are mutation of a pair of amino acid residues in a wild-type RSV F protein to a pair of cysteines ("engineered disulfide mutation"). The introduced pair of cysteine residues allows for formation of a disulfide bond between the cysteine residues that stabilize the protein's conformation or oligomeric state, such as the pre-fusion conformation. Examples of specific pairs of such mutations include: 55C and 188C; 155C and 290C; 103C and 148C; and 142C and 371 C, such as S55C and L188C; S155C and S290C; T103C and I148C; and L142C and N371C.

In still other embodiments, the RSV F protein mutants comprise amino acid mutations that are one or more cavity filling mutations. Examples of amino acids that may be replaced with the goal of cavity filling include small aliphatic (e.g. Gly, Ala, and Val) or small polar amino acids (e.g. Ser and Thr) and amino acids that are buried in the pre-fusion conformation, but exposed to solvent in the post-fusion conformation. Examples of the replacement amino acids include large aliphatic amino acids (lie, Leu and Met) or large aromatic amino acids (His, Phe, Tyr and Trp). In some specific embodiments, the RSV F protein mutant comprises a cavity filling mutation selected from the group consisting of:

(1) substitution of S at positions 55, 62, 155, 190, or 290 with I, Y, L, H, or M; (2) substitution of T at position 54, 58, 189, 219, or 397 with I, Y, L, H, or M;

(3) substitution of G at position 151 with A or H;

(4) substitution of A at position 147 or 298 with I, L, H, or M; (5) substitution of V at position 164, 187, 192, 207, 220, 296, 300, or 495 with I, Y, H; and

(6) substitution of R at position 106 with W.

In some particular embodiments, a RSV F protein mutant comprises at least one cavity filling mutation selected from the group consisting of: T54H, S190I, and V296I.

In still other embodiments, the present disclosure provides RSV F protein mutants, wherein the mutants comprise electrostatic mutations, which decrease ionic repulsion or increase ionic attraction between resides in a protein that are proximate to each other in the folded structure. In several embodiments, the RSV F protein mutant includes an electrostatic substitution that reduces repulsive ionic interactions or increases attractive ionic interactions with acidic residues of Glu487 and Asp489 from another protomer of RSV F trimer. In some specific embodiments, the RSV F protein mutant comprises an electrostatic mutation selected from the group consisting of:

(1) substitution of E at position 82, 92, or 487 by D, F, Q, T, S, L, or H;

(2) substitution of K at position 315, 394, or 399 by F, M, R, S, L, I, Q, or T;

(3) substitution of D at position 392, 486, or 489 by H, S, N, T, or P; and

(4) substitution of R at position 106 or 339 by F, Q, N, or W.

In still other embodiments, the present disclosure provides RSV F protein mutants, which comprise a combination of two or more different types of mutations selected from engineered disulfide mutations, cavity filling mutations, and electrostatic mutations. In some particular embodiments, the present invention provides a mutant of a wild-type RSV F protein, which comprises a combination of mutations relative to the corresponding wild-type RSV F protein, wherein the combination of mutations is selected from the group consisting of:

(1) combination of T103C, I 148C, S190I, and D486S;

(2) combination of T54H S55C L188C D486S;

(3) combination of T54H, T103C, I 148C, S190I, V296I, and D486S;

(4) combination of T54H, S55C, L142C, L188C, V296I, and N371 C;

(5) combination of S55C, L188C, and D486S;

(6) combination of T54H, S55C, L188C, and S190I;

(7) combination of S55C, L188C, S190I, and D486S;

(8) combination of T54H, S55C, L188C, S190I, and D486S;

(9) combination of S155C, S190I, S290C, and D486S; (10) combination of T54H, S55C, L142C, L188C, V296I, N371C, D486S, E487Q, and D489S; and

(11) combination of T54H, S155C, S190I, S290C, and V296I.

In another aspect, the present invention provides nucleic acid molecules that encode a RSV F protein mutant described herein. In some other specific embodiments, the present disclosure provides a nucleic acid molecule encoding a RSV F protein mutant, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:

(I) a nucleotide sequence of SEQ ID NO:8;

(2) a nucleotide sequence of SEQ ID NO:9 ;

(3) a nucleotide sequence of SEQ ID NO: 10;

(4) a nucleotide sequence of SEQ ID NO: 11 ;

(5) a nucleotide sequence of SEQ ID NO: 12;

(6) a nucleotide sequence of SEQ ID NO: 13;

(7) a nucleotide sequence of SEQ ID NO: 14;

(8) a nucleotide sequence of SEQ ID NO: 15;

(9) a nucleotide sequence of SEQ ID NO: 16 ;

(10) a nucleotide sequence of SEQ ID NO: 17; and

(I I) a nucleotide sequence of SEQ ID NO: 18.

In another aspect, the invention provides compositions that comprise (1) a RSV

F protein mutant described in the disclosure, or (2) a nucleic acid molecule or vector encoding such a RSV F protein mutant. In some particular embodiments, the compositions are pharmaceutical compositions, which comprise a RSV F protein mutant provided by the present disclosure and a pharmaceutically acceptable carrier. In still other particular embodiments, the pharmaceutical composition is a vaccine.

The present disclosure also relates to use of a RSV F protein mutant, nucleic acids encoding such as a RSV F protein mutant, or vectors for expressing such a RSV F protein mutant, or compositions comprising a RSV F protein mutant or nucleic acids. In some particular embodiments, the present disclosure provides a method of preventing RSV infection in a subject, comprising administering to the subject an effective amount of a pharmaceutical composition, such as a vaccine, comprising a RSV F protein mutant, a nucleic acid encoding a RSV F protein mutant, or a vector expressing a RSV F protein mutant. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts the amino acid sequence of the precursor polypeptide template (SEQ ID NO:3) used for the construction of some of the RSV F protein mutants described in the Examples. The precursor polypeptide includes a signal sequence (residues 1-25), F2 polypeptide (residues 26-109), pep27 sequence (residues 1 10-136), F1 polypeptide (residues 137-513), a T4 fibritin-derived trimerization domain (foldon; residues 518-544), a thrombin recognition sequence (residues 547-552), a histidine tag (residues 553-558), a Streptag II (561-568), and linker sequences (residues 514-517, 545-546, and 559-560). It also includes three naturally occurring substitutions (P102A, I379V, and M447V) relative to the native RSV F sequence set forth in SEQ ID NO: 1. The furin cleavage sites are shown as RARR and KKRKRR.

Figure 2A depicts sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis of selected pre-fusion F mutants (pXCS847, pXCS851 and pXCS852) under non-reducing conditions.

Figure 2B shows sedimentation coefficient distributions of selected mutants

(pXCS847, pXCS851 and pXCS852) calculated from sedimentation velocity experiments using an analytical ultracentrifuge.

Figures 3A and 3B depict the circular dichroism spectroscopy (CD) spectra of exemplary modified RSV F proteins with specific site mutations. The far- ultraviolet (UV) CD spectra of the designed mutants confirm secondary structure integrity, and the near- UV CD spectra confirm tertiary structure integrity.

Figure 4 depicts the time-dependent stress testing of purified DS-Cav1 using two different monoclonal antibodies (mAbs) D25 and AM 14 at two temperatures (50 °C and 60 °C).

Figure 5 depicts differential scanning calorimetry (DSC) experiments with purified

DS-Cav1 (Example 8). The experiments were done as described for the designed pre- fusion F mutants. Solid line - initial DSC scan of the sample, dashed line - repeated scan of the same sample that was used in the initial scan. The DSC peak largely recovers during the repeated scan, indicating that conformational transition detected by the DSC is reversible.

Figure 6A depicts far-UV CD spectra of DS-Cav1 stressed at 60 °C (Example 8). CD spectra were recorded as described above for the designed pre-fusion RSV F mutants (Example 6). DS-Cav1 retains defined far-UV CD spectrum after up to 2 hours of incubation at 60 °C, indicating that no global protein unfolding is taking place during that time.

Figure 6B depicts near-UV CD spectra of DS-Cav1 stressed at 60 °C (Example 8). CD spectra were recorded as described above for the designed pre-fusion RSV F mutants (Example 6).

Figure 7A depicts the protein concentration dependence of thermal stress resistance, as determined by the preservation of the pre-fusion F trimer-specific AM14 epitope (Example 8).

Figure 7B depicts the protein concentration dependence of thermal stress resistance, as determined by the preservation of the pre-fusion F-specific D25 epitope (Example 8). Protein samples were serially diluted and subjected to the 50 °C stress for 1 hour. D25 reactivity remaining after the stress in relation to the control (unstressed) samples was assessed in ELISA assays.

Figure 8 shows neutralizing antibody responses from mice immunized with DS- Cav1 ; wild-type F; or mutants pXCS852, pXCS855, pXCS830, pXCS853, pXCS780, pXCS898, pXCS851 , pXCS874, pXCS881 , pXCS738, or pXCS847; with or without aluminum phosphate as adjuvant. Results are reported as the 50% geometric mean titer (GMT) from 10 mice per group. Each scatter plot reflects the response of individual mice with 10 animals total per group. The line within each group indicates the geometric mean 50% neutralizing antibody titer. "Wild-type F" refers to a wild-type F ectodomain recombinant construct.

Figures 9A and 9B describe correlations between the neutralizing antibody titers elicited by and the stabilities of the engineered pre-fusion F protein mutants. Y-axis - neutralizing antibody titers elicited by immunization of the mice with 0.25 μg antigen and no adjuvant or 0.025 μg antigen with 0.1 mg/ml AIP04 adjuvant. (Data are shown in Table 12.) X-axis - stability of the engineered mutants, as defined by the residual AM 14 reactivity after thermal stress. (Data are shown in Table 8B.)

DETAILED DESCRI PTION OF THE INVENTION

The present disclosure relates to RSV F protein mutants, immunogenic compositions comprising the RSV F protein mutants, methods for producing the RSV F protein mutants, compositions comprising the RSV F protein mutants, and nucleic acids that encode the RSV F protein mutants.

A. DEFINITIONS The term "101 F" refers to an antibody described in US 2006/0159695 A1 , which has a heavy chain variable domain comprising an amino acid sequence of SEQ ID NO:30 and a light chain variable domain comprising an amino acid sequence of SEQ ID NO:31.

As used herein, the singular forms "a," "an," and "the," refer to both the singular as well as plural, unless the context clearly indicates otherwise. For example, the term "an antigen" includes single or plural antigens and can be considered equivalent to the phrase "at least one antigen."

The term "adjuvant" refers to a substance capable of enhancing, accelerating, or prolonging the body's immune response to the antigen in a vaccine (although it is not the target antigen of the vaccine itself). An adjuvant may be included in the vaccine composition, or may be administered separately from the vaccine.

The term "administration" refers to the introduction of a substance or composition into a subject by a chosen route. Administration can be local or systemic. For example, if the chosen route is intramuscular, the composition (such as a composition including a disclosed immunogen) is administered by introducing the composition into a muscle of the subject.

The term "AM 14" refers to an antibody described in WO 2008/147196 A2, which has a heavy chain variable domain comprising an amino acid sequence of SEQ ID NO:24 and a light chain variable domain comprising an amino acid sequence of SEQ ID NO:25.

The term "AM22" refers to an antibody described in WO 201 1/043643 A1 , which has a heavy chain variable domain comprising an amino acid sequence of SEQ ID NO:26 and a light chain variable domain comprising an amino acid sequence of SEQ ID NO:27.

The term "antigen" refers to a molecule that can be recognized by an antibody. Examples of antigens include polypeptides, peptides, lipids, polysaccharides, and nucleic acids containing antigenic determinants, such as those recognized by an immune cell.

The term "conservative substitution" refers to the substitution of an amino acid with a chemically similar amino acid. Conservative amino acid substitutions providing functionally similar amino acids are well known in the art. The following six groups each contain amino acids that are conservative substitutions for one another: 1) alanine (A), serine (S), threonine (T);

2) aspartic acid (D), glutamic acid (E);

3) asparagine (N), glutamine (Q);

4) arginine (R), lysine (K);

5) isoleucine (I), leucine (L), methionine (M), valine (V); and

6) phenylalanine (F), tyrosine (Y), tryptophan (W).

The term "D25" refers to an antibody described in WO 2008/147196 A2, which has a heavy chain variable domain comprising an amino acid sequence of SEQ ID NO:22 and a light chain variable domain comprising an amino acid sequence of SEQ ID NO:23.

The term "degenerate variant" of a reference polynucleotide refers to a polynucleotide that differs in the nucleotide sequence from the reference polynucleotide but encodes the same polypeptide sequence as encoded by the reference polynucleotide. There are 20 natural amino acids, most of which are specified by more than one codon. For instance, the codons CGU, CGC, CGA, CGG, AGA, and AGG all encode the amino acid arginine. Thus, at every position where an arginine is specified within a protein encoding sequence, the codon can be altered to any of the corresponding codons described without altering the encoded protein. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given polypeptide.

The term "DS-Cav1" refers to a version of the RSV F protein having the amino acid sequence described in McLellan, et al., Science, 342(6158), 592-598, 2013.

The term "effective amount" refers to an amount of agent that is sufficient to generate a desired response. For instance, this can be the amount necessary to inhibit viral replication or to measurably alter outward symptoms of the viral infection.

The term "epitope" (or "antigenic determinant" or "antigenic site") refers to the region of an antigen to which an antibody, B cell receptor, or T cell receptor binds or responds. Epitopes can be formed from contiguous amino acids or noncontiguous amino acids juxtaposed by secondary, tertiary, or quaternary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents whereas epitopes formed by higher order folding are typically lost on treatment with denaturing solvents. The term "FO polypeptide" (FO) refers to the precursor polypeptide of the RSV F protein, which is composed of a signal polypeptide sequence, a F1 polypeptide sequence, a pep27 polypeptide sequence, and a F2 polypeptide sequence. With rare exceptions the FO polypeptides of the known RSV strains consist of 574 amino acids.

The term "F1 polypeptide" (F1) refers to a polypeptide chain of a mature RSV F protein. Native F1 includes approximately residues 137-574 of the RSV FO precursor and is composed of (from N- to C-terminus) an extracellular region (approximately residues 137-524), a transmembrane domain (approximately residues 525-550), and a cytoplasmic domain (approximately residues 551-574). As used herein, the term encompasses both native F1 polypetides and F1 polypeptides including modifications (e.g., amino acid substitutions, insertions, or deletion) from the native sequence, for example, modifications designed to stabilize a F mutant or to enhance the immunogenicity of a F mutant.

The term "F2 polypeptide" (F2) refers to the polypeptide chain of a mature RSV F protein. Native F2 includes approximately residues 26-109 of the RSV F0 precursor. As used herein, the term encompasses both native F2 polypetides and F2 polypeptides including modifications (e.g., amino acid substitutions, insertions, or deletion) from the native sequence, for example, modifications designed to stabilize a F mutant or to enhance the immunogenicity of a F mutant. In native RSV F protein, the F2 polypeptide is linked to the F1 polypeptide by two disulfide bonds to form a F2-F1 heterodimer. The term "foldon" or "foldon domain" refers to an amino acid sequence that is capable of forming trimers. One example of such foldon domains is the peptide sequence derived from bacteriophage T4 fibritin, which has the sequence of GYIPEAPRDGQAYVRKDGEWVLLSTFL (SEQ ID NO:40). The term "mammal" refers to any animal species of the Mammalia class. Examples of mammals include: humans; non-human primates such as monkeys; laboratory animals such as rats, mice, guinea pigs; domestic animals such as cats, dogs, rabbits, cattle, sheep, goats, horses, and pigs; and captive wild animals such as lions, tigers, elephants, and the like.

The term "glycoprotein" refers to a protein that contains oligosaccharide chains (glycans) covalently attached to polypeptide side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification known as glycosylation. The term "glycosylation site" refers to an amino acid sequence on the surface of a polypeptide, such as a protein, which accommodates the attachment of a glycan. An N-linked glycosylation site is triplet sequence of NX(S/T) in which N is asparagine, X is any residue except proline, and (S/T) is a serine or threonine residue. A glycan is a polysaccharide or oligosaccharide. Glycan may also be used to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, or a proteoglycan.

The term "host cells" refers to cells in which a vector can be propagated and its DNA or RNA expressed. The cell may be prokaryotic or eukaryotic.

The term "identical" or percent "identity," in the context of two or more nucleic acid or polypeptide sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence. Methods of alignment of sequences for comparison are well known in the art. Once aligned, the number of matches is determined by counting the number of positions where an identical nucleotide or amino acid residue is present in both sequences. The percent sequence identity is determined by dividing the number of matches either by the length of the sequence set forth in the identified sequence, or by an articulated length (such as 100 consecutive nucleotides or amino acid residues from a sequence set forth in an identified sequence), followed by multiplying the resulting value by 100. For example, a peptide sequence that has 1166 matches when aligned with a test sequence having 1554 amino acids is 75.0 percent identical to the test sequence (1166÷1554*100=75.0).

Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman, Adv. Appl. Math. 2:482, 1981 , by the homology alignment algorithm of Needleman and Wunsch, Mol. Biol. 48:443, 1970, by the search for similarity method of Pearson and Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444, 1988, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wl), or by manual alignment and visual inspection (see, e.g., Sambrook et al. (Molecular Cloning: A Laboratory Manual, 4th ed, Cold Spring Harbor, New York, 2012) and Ausubel et al. (In Current Protocols in Molecular Biology, John Wiley and Sons, New York, through supplement 104, 2013).

The term "immunogenic" refers to the ability of a substance to cause, elicit, stimulate, or induce an immune response against a particular antigen, in an animal, whether in the presence or absence of an adjuvant. The term "immune response" refers to any detectable response of a cell or cells of the immune system of a host mammal to a stimulus (such as an immunogen), including, but not limited to, innate immune responses (e.g., activation of Toll receptor signaling cascade), cell-mediated immune responses (e.g., responses mediated by T cells, such as antigen-specific T cells, and non-specific cells of the immune system), and humoral immune responses (e.g. , responses mediated by B cells, such as generation and secretion of antibodies into the plasma, lymph, and/or tissue fluids). Examples of immune responses include an alteration (e.g., increase) in Toll-like receptor activation, lymphokine (e.g., cytokine (e.g., Th1 , Th2 or Th17 type cytokines) or chemokine) expression or secretion, macrophage activation, dendritic cell activation, T cell (e.g., CD4+ or CD8+ T cell) activation, NK cell activation, B cell activation (e.g., antibody generation and/or secretion), binding of an immunogen (e.g., antigen (e.g., immunogenic polypeptide)) to an MHC molecule, induction of a cytotoxic T lymphocyte ("CTL") response, induction of a B cell response (e.g., antibody production), and, expansion (e.g., growth of a population of cells) of cells of the immune system (e.g., T cells and B cells), and increased processing and presentation of antigen by antigen presenting cells. The term "immune response" also encompasses any detectable response to a particular substance (such as an antigen or immunogen) by one or more components of the immune system of a vertebrate animal in vitro.Jhe term "immunogen" refers to a compound, composition, or substance that is immunogenic as defined herein below.

The term 'immunogenic composition" refers to a composition comprising an immunogen.

The term "MPE8" refers to an antibody described in Corti et al. [Corti, D., Bianchi, S., Vanzetta, F., Minola, A., Perez, L, Agatic, G., Lanzavecchia, A. Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature, 501 (7467), 439-443 (2013)], which has a heavy chain variable domain comprising an amino acid sequence of SEQ ID NO:28 and a light chain variable domain comprising an amino acid sequence of SEQ ID NO:29.The term "mutant" of a wild-type RSV F protein, "mutant" of a RSV F protein, "RSV F protein mutant," or "modified RSV F protein" refers to a polypeptide that displays introduced mutations relative to a wild-type F protein and is immunogenic against the wild-type F protein. The term "mutation" refers to deletion, addition, or substitution of amino acid residues in the animo acid sequence of a protein or polypeptide as compared to the amino acid sequence of a reference protein or polypeptide. Throughout the specification and claims, the substitution of an amino acid at one particular location in the protein sequence is referred to using a notation "(amino acid residue in wild type protein)(amino acid position)(amino acid residue in engineered protein)". For example, a notation Y75A refers to a substitution of a tyrosine (Y) residue at the 75th position of the amino acid sequence of the reference protein by an alanine (A) residue (in a mutant of the reference protein). In cases where there is variation in the amino acid residue at the same position among different wild-type sequences, the amino acid code preceeding the position number may be omitted in the notation, such as "75A."

The term "native" or "wild-type" protein, sequence, or polypeptide refers to a naturally existing protein, sequence, or polypeptide that has not been artificially modified by selective mutations.

The term "pep27 polypeptide" or "pep27" refers to a 27-amino acid polypeptide that is excised from the F0 precursor during maturation of the RSV F protein. The sequence of pep27 is flanked by two furin cleavage sites that are cleaved by a cellular protease during F protein maturation to generate the F1 and F2 polypeptides.

The term "pharmaceutically acceptable carriers" refers to a material or composition which, when combined with an active ingredient, is compatible with the active ingredient and does not cause toxic or otherwise unwanted reactions when administered to a subject, particularly a mammal. Examples of pharmaceutically acceptable carriers include solvents, surfactants, suspending agents, buffering agents, lubricating agents, emulsifiers, absorbants, dispersion media, coatings, and stabilizers.

The term "pre-fusion-specific antibody" refers to an antibody that specifically binds to the RSV F glycoprotein in a pre-fusion conformation, but does not bind to the RSV F protein in a post-fusion conformation. Exemplary pre-fusion-specific antibodies include the D25, AM22, 5C4, MPE8, and AM14 antibodies.

The term "pre-fusion trimer-specific antibody" refers to an antibody that specifically binds to the RSV F glycoprotein in a pre-fusion, trimeric conformation, but does not bind to the RSV F protein in a post-fusion conformation or in a pre-fusion conformation that is not also trimeric. An exemplary pre-fusion trimer-specific antibody is the AM14 antibody. "Pre-fusion trimer-specific antibodies" are a subset of "pre-fusion- specific antibodies."

The term "prime-boost vaccination" refers to an immunotherapy regimen that includes administration of a first immunogenic composition (the primer vaccine) followed by administration of a second immunogenic composition (the booster vaccine) to a subject to induce an immune response. The primer vaccine and the booster vaccine typically contain the same immunogen and are presented in the same or similar format. However, they may also be presented in different formats, for example one in the form of a vector and the other in the form of a naked DNA plasmid. The skilled artisan will understand a suitable time interval between administration of the primer vaccine and the booster vaccine. Further, the primer vaccine, the booster vaccine, or both primer vaccine and the booster vaccine additionally include an adjuvant.

The term "pre-fusion conformation" refers to a structural conformation adopted by an RSV F protein or mutant that can be specifically bound by (i) antibody D25 when the RSV F protein or mutant is in the form of a monomer or trimer, or (ii) by antibody AM14 when the RSV F protein mutant is in the form of a trimer. The pre-fusion trimer conformation is a subset of pre-fusion conformations.

The term "post-fusion conformation" refers to a structural conformation adopted by the RSV F protein that is not specifically bound by D25, AM22, or AM 14. Native F protein adopts the post-fusion conformation subsequent to the fusion of the virus envelope with the host cellular membrane. RSV F protein may also assume the post- fusion conformation outside the context of a fusion event, for example, under stress conditions such as heat and low osmolality, when extracted from a membrane, when expressed as an ectodomain, or upon storage..

The term "soluble protein" refers to a protein capable of dissolving in aqueous liquid and remaining dissolved. The solubility of a protein may change depending on the concentration of the protein in the water-based liquid, the buffering condition of the liquid, the concentration of other solutes in the liquid, for example salt and protein concentrations, and the temperature of the liquid.

The term "specifically bind," in the context of the binding of an antibody to a given target molecule, refers to the binding of the antibody with the target molecule with higher affinity than its binding with other tested substances. For example, an antibody that specifically binds to the RSV F protein in pre-fusion conformation is an antibody that binds RSV F protein in pre-fusion conformation with higher affinity than it binds to the RSV F protein in the post-fusion conformation.

The term "therapeutically effective amount" refers to the amount of agent that is sufficient to prevent, treat (including prophylaxis), reduce and/or ameliorate the symptoms and/or underlying causes of a disorder.

The term "vaccine" refers to a pharmaceutical composition comprising an immunogen that is capable of eliciting a prophylactic or therapeutic immune response in a subject. Typically, a vaccine elicits an antigen- specific immune response to an antigen of a pathogen, for example a viral pathogen.

The term "vector" refers to a nucleic acid molecule capable of transporting or transferring a foreign nucleic acid molecule. The term encompasses both expression vectors and transcription vectors. The term "expression vector" refers to a vector capable of expressing the insert in the target cell, and generally contains control sequences, such as enhancer, promoter, and terminator sequences, that drive expression of the insert. The term "transcription vector" refers to a vector capable of being transcribed but not translated. Transcription vectors are used to amplify their insert. The foreign nucleic acid molecule is referred to as "insert" or "transgene." A vector generally consists of an insert and a larger sequence that serves as the backbone of the vector. Based on the structure or origin of vectors, major types of vectors include plasmid vectors, cosmid vectors, phage vectors such as lambda phage, viral vectors such as adenovirus (Ad) vectors, and artificial chromosomes.

B. RSV F PROTEIN MUTANTS

In some aspects, the present invention provides mutants of wild-type RSV F proteins, wherein the mutants display introduced mutations in the amino acid sequence relative to the amino acid sequence of the corresponding wild-type RSV F protein and are immunogenic against the wild-type RSV F protein or against a virus comprising the wild-type F protein. In certain embodiments, the RSV F mutants possess certain beneficial characteristics, such as increased immunogenic properties or improved stability in the pre-fusion conformation of the mutants or pre-fusion trimeric conformation of the mutant, as compared to the corresponding wild-type F protein. In still other embodiments, the present disclosure provide RSV F mutants that display one or more introduced mutations as described herein and bind to a pre-fusion specific antibody selected from antibody D25 or antibody AM 14. The introduced amino acid mutations in the RSV F protein mutants include amino acid substitutions, deletions, or additions. In some embodiments, the only mutations in the amino acid sequence of the mutants are amino acid substitutions relative to a wild-type RSV F protein.

The amino acid sequence of a large number of native RSV F proteins from different RSV subtypes, as well as nucleic acid sequences encoding such proteins, is known in the art. For example, the sequence of several subtype A, B and bovine RSV FO precursor proteins are set forth in SEQ ID NOs:1 , 2, 4, 6 and 81-270.

The native RSV F protein exhibits remarkable sequence conservation across RSV subtypes. For example, RSV subtypes A and B share 90% sequence identity, and RSV subtypes A and B each share 81 % sequence identify with bovine RSV F protein, across the F0 precursor molecule. Within RSV subtypes the F0 sequence identity is even greater; for example within each of RSV A, B, and bovine subtypes, the RSV F0 precursor protein has about 98% sequence identity. Nearly all identified RSV F0 precursor sequences consist of 574 amino acids in length, with minor differences in length typically due to the length of the C-terminal cytoplasmic tail. Sequence identity across various native RSV F proteins is known in the art (see, for example, WO2014/160463). To further illustrate the level of the sequence conservation of F proteins, non-consensus amino acid residues among F0 precursor polypeptide sequences from respresentative RSV A strains and RSV B strains are provided in Tables 17 and 18, respectively (where non-consensus amino acids were identified following alignment of selected F protein sequences from RSV A strains with ClustalX (v. 2)) .

In view of the substantial conservation of RSV F sequences, a person of ordinary skill in the art can easily compare amino acid positions between different native RSV F sequences to identify corresponding RSV F amino acid positions between different RSV strains and subtypes. For example, across nearly all identified native RSV F0 precursor proteins, the furin cleavage sites fall in the same amino acid positions. Thus, the conservation of native RSV F protein sequences across strains and subtypes allows use of a reference RSV F sequence for comparison of amino acids at particular positions in the RSV F protein. For the purposes of this disclosure (unless context indicates otherwise), the RSV F protein amino acid positions are given with reference to the sequence of the F0 precursor polypeptide set forth in SEQ ID NO: 1 (the amino acid sequence of the full length native F precursor polypeptide of the RSV A2 strain; corresponding to Genlnfo Identifier Gl 138251 and Swiss Prot identifier P03420). However, it should be noted, and one of skill in the art will understand, that different RSV F0 sequences may have different numbering systems, for example, if there are additional amino acid residues added or removed as compared to SEQ ID NO: 1. As such, it is to be understood that when specific amino acid residues are referred to by their number, the description is not limited to only amino acids located at precisely that numbered position when counting from the beginning of a given amino acid sequence, but rather that the equivalent/corresponding amino acid residue in any and all RSV F sequences is intended even if that residue is not at the same precise numbered position, for example if the RSV sequence is shorter or longer than SEQ I D NO: 1 , or has insertions or deletions as compared to SEQ ID NO: 1.

B-1. Structure of the RSV F Protein Mutants

The RSV F protein mutants provided by the present disclosure comprise a F1 polypeptide and a F2 polypeptide. In several embodiments, the mutants further comprise a trimerization domain. In some embodiments, either the F1 polypeptide or the F2 polypeptide includes at least one introduced modification (e.g., amino acid substitution) as described in detail herein below. In some other embodiments, each of the F1 polypeptide and F2 polypeptide includes at least one introduced modification (e.g., amino acid substitution) as described in detail herein below.

B-1 (a). F1 Polypeptide and F2 Polypeptide of the RSV F Mutants

In some embodiments, the mutants are in the mature form of the RSV F protein, which comprises two separate polypeptide chains, namely the F1 polypeptide and F2 polypeptide. In some other embodiments, the F2 polypeptide is linked to the F1 polypeptide by one or two disulfide bonds to form a F2-F1 polypeptide heterodimer. In still other embodiments, the RSV F mutants are in the form a single chain protein, wherein the F2 polypeptide is linked to the F1 polypeptide by a peptide bond or peptide linker. Any suitable peptide linkers for joining two polypeptide chains together may be used. Examples of such linkers include G, GG, GGG, GS, and SAIG linker sequences. The linker may also be the full length pep27 sequence or a fragment thereof.

The F1 polypeptide chain of the mutant may be of the same length as the full length F1 polypeptide of the corresponding wild-type RSV F protein; however, it may also have deletions, such as deletions of 1 up to 60 amino acid residues from the C- terminus of the full-length F1 polypeptide. A full-length F1 polypeptide of the RSV F mutants corresponds to amino acid positions 137-574 of the native RSV F0 precursor, and includes (from N- to C-terminus) an extracellular region (residues 137-524), a transmembrane domain (residues 525-550), and a cytoplasmic domain (residues 551- 574). It should be noted that amino acid residues 514 onwards in a native F1 polypeptide sequence are optional sequences in a F1 polypeptide of the RSV F mutants provided herein, and therefore may be absent from the F1 polypeptide of the mutant.

In some embodiments, the F1 polypeptide of the RSV F mutants lacks the entire cytoplasmic domain. In other embodiments, the F1 polypeptide lacks the cytoplasmic domain and a portion of or all entire transmembrane domain. In some specific embodiments, the mutant comprises a F1 polypeptide wherein the amino acid residues from position 510, 511 , 512, 513, 514, 515, 520, 525, or 530 through 574 are absent. Typically, for mutants that are linked to trimerization domain, such as a foldon, amino acids 514 through 754 can be absent. Thus, in some specific embodiment, amino acid residues 514 through 574 are absent from the F1 polypeptide of the mutant. In still other specific embodiments, the F1 polypeptide of the RSV F mutants comprises or consists of amino acid residues 137-513 of a native F0 polypeptide sequence, such as any of the F0 precursor sequence set forth in SEQ ID Nos: 1 , 2, 4, 6, and 81-270.

On the other hand, the F1 polypeptide of the RSV F mutant may include a C- terminal linkage to a trimerization domain, such as a foldon. Many of the sequences of the RSV F mutants disclosed herein include a sequence of protease cleavage site, such as thrombin cleavage site (LVPRGS), protein tags, such as 6x His-tag (HHHHHH) and Streptag II (WSHPGFEK), or linker sequences (such as GG and GS) (See Figure 1) that are not essential for the function of the RSV F protein, such as for induction of an immune response. A person skilled in the art will recognize such sequences, and when appropriate, understand that these sequences are not included in a disclosed RSV F mutant.

In the RSV F mutants provided by the present disclosure, the F2 polypeptide chain may be of the same length as the full-length F2 polypeptide of the corresponding wild-type RSV F protein; it may also have deletions, such as deletions of 1 , 2, 3, 4, 5, 6, 7, or 8 amino acid residues from the N-terminus or C-terminus of the F2 polypeptide. The mutant in FO form (i.e., a single chain polypeptide comprising the F2 polypeptide joined to the F1 polypeptide with or without partial or full length pep 27) or F1-F2 herterodimer form may form a protomer. The mutant may also be in the form of a trimer, which comprises three of the same protomer. Further, the mutants may be glycosylated proteins (i.e., glycoproteins) or non-glycosylated proteins. The mutant in FO form may incude, or may lack, the signal peptide sequence.

The F1 polypeptide and F2 polypeptide of the RSV F protein mutants to which one or more mutations are introduced can be from any wild-type RSV F proteins known in the art or discovered in the future, including, without limitations, the F protein amino acid sequence of RSV subtype A, and subtype B strains, including A2 Ontario and Buenos Aires, or any other subtype. In some embodiments, the RSV F mutant comprises a F1 and/or a F2 polypeptide from a RSV A virus, for example, a F1 and/or F2 polypeptide from a RSV FO precursor protein set forth in any one of SEQ ID NOs: 1 , 2, 4, 6, and 81-270 to which one or more mutations are introduced. In some other embodiments, the RSV F mutant comprises a F1 and/or a F2 polypeptide from a RSV B virus, for example, a F1 and/or F2 polypeptide from a RSV F0 precursor protein set forth in any one of SEQ ID NOs:2, and 211- 263 to which one or more mutations are introduced. In still other embodiments, the RSV F mutant comprises a F1 and/or a F2 polypeptide from a RSV bovine virus, for example, a F1 and/or F2 polypeptide from a RSV F0 precursor protein set forth in any one of SEQ ID NOs:264-270 to which one or more mutations are introduced.

In some embodiments, the RSV F protein mutants comprise a F1- polypeptide, a F2 polypeptide, and one or more introduced amino acid mutations as described herein below, wherein the F1 polypeptide comprises 350 consecutive amino acids and is at least 90, 95, 98, or 99 percent identical to amino acids 137-513 of any of the sequence of SEQ ID NO: 1 , 4, and 81-210, wherein the F2 polypeptide comprises 70 consecutive amino acids and is at least 90, 95, 98, or 99 percent identical to amino acids 26-109 of of any of the sequence of SEQ ID NO: 1 , 4, and 81-210 and wherein RSV F protein mutant is stabilized in pre-fusion conformation, whether as monomer or trimer. In some embodiments, the F1 polypeptide comprises 350 consecutive amino acids and is at least 90, 95, 98, or 99 percent identical to amino acids 137-513 of any of the sequence of SEQ ID NOs:2, 6, and 211-263, and the F2 polypeptide comprises 70 consecutive amino acids and is at least 90, 95, 98, or 99 percent identical to amino acids 26-109 of any of the sequence of SEQ ID NOs:2, 6, and 21 1-263 and In some other embodiments, the RSV F protein mutant is stabilized in pre-fusion trimer conformation.

B-1(b) Trimerization Domains

In several embodiments, the RSV F mutant provided by the present disclosure is linked to a trimerization domain. In some embodiments, the trimerization domain promotes the formation of trimer of three F1/F2 heterodimers.

Several exogenous multimerization domains that promote formation of stable trimers of soluble proteins are known in the art. Examples of such multimerization domains that can be linked to a mutant provided by the present disclosure include: (1) the GCN4 leucine zipper (Harbury et al. 1993 Science 262: 1401-1407); (2) the trimerization motif from the lung surfactant protein (Hoppe et al. 1994 FEB S Lett 344: 191-195); (3) collagen (McAlinden et al. 2003 Biol Chem 278:42200-42207); and (4) the phage T4 fibritin foldon (Miroshnikov et al. 1998 Protein Eng 1 1 :329-414). In some embodiments, a foldon domain is linked to a F mutant at the C-terminus of F1 polypeptide. In specific embodiments, the foldon domain is a T4 fibritin foldon domain, such as the amino acid sequence GYIPEAPRDGQAYVRKDGEWVLLSTFL (SEQ ID NO: 40).

Typically, the multimerization domain is positioned C-terminal to the F1 polypeptide. It may join directly to the F1 polypeptide chain. Optionally, the multimerization domain is connected to the F1 polypeptide via a linker, such as an amino acid linker, for example the sequence GG, GS, or SAIG. The linker can also be a longer linker (for example, including the repeat sequence GG). Numerous conformationally neutral linkers are known in the art that can be used in the mutants provided by the present disclosure. In some embodiments, the F mutant comprising a foldon domain include a protease cleavage site for removing the foldon domain from the F1 polypeptide, such as a thrombin site between the F1 polypeptide and the foldon domain.

B-2. Introduced Mutations in the RSV F Protein Mutants

The RSV F mutants provided by the present disclosure comprise a F1 polypeptide and a F2 polypeptide, wherein (1) either the F1 polypeptide or (2) the F2 polypeptide, or (3) both the F1 polypeptide and F2 polypeptide include one or more introduced amino acid mutations relative to the amino acid sequence of the corresponding native F protein. The introduction of such amino acid mutations in the RSV F mutants confers a beneficial property to the mutants, such as enhanced immunogenicity, improved stability, or formation or improved stability of certain desired physical form or conformation of the mutants. Such introduced amino acid mutations are refered to as "engineered disulfide bond mutations," "cavity filling mutations," or "electrostatic mutations," and are described in detail herein below. RSV F mutants that incude any additional mutations are also encompassed by the invention so long as the immunogenic property of the mutants is not substantially adversely affected by the additional mutations.

B-2(a) Engineered Disulfide Bond Mutations

In some embodiments, RSV F mutants provided by the present disclosure include one or more engineered disulfide bond mutations. The term "engineered disulfide bond mutation" refers to mutation of a pair of amino acid residues in a wild- type RSV F protein to a pair of cysteine residues. The introduced pair of cysteine residues allows for formation of a disulfide bond between the intruced cysteine residues, which disulfide bond serves to stabilize the protein's conformation or oligomeric state, such as pre-fusion conformation. For stabilizing the pre-fusion conformation of the mutant, the residue pairs for mutation to cysteine should be in close proximity in the pre-fusion conformation but distant in the post-fusion conformation. Such residues can be identified by suitable method known in the art, such as by visual inspection of a crystal structure of RSV F in a pre-fusion conformation, or more quantitative selection using computational protein design software (such as BioLuminate™ [BioLuminate, Schrodinger LLC, New York, 2015 ], Discovery Studio™ [Discovery Studio Modeling Environment, Accelrys, San Diego, 2015 ], MOE™ [Molecular Operating Environment, Chemical Computing Group Inc., Montreal, 2015 ], and Rosetta™ [Rosetta, University of Washington, Seattle, 2015]). Preferably, the distance between the pair of residues (e.g. the beta carbons) is less than 8 A in a pre-fusion conformation, but more than 20 A in a post-fusion conformation.

In some embodiments, the RSV F protein mutants comprise only one engineered disulfide mutation ("single engineered disulfide mutation"). In some other embodiments, the RSV F protein mutants comprise at least two engineered disulfide mutations, wherein each pair of the cysteine residues of the engineered disulfide mutations are appropriately positioned when RSV F protein mutant is in pre-fusion conformation ("double engineered disulfide mutation").

In some specific embodiments, the present disclosure provides a RSV F mutant comprising at least one engineered disulfide bond mutation, wherein the mutant comprises the same introduced mutations that are in any of the exemplary mutants provided in Tables 1 and 4 - 6. The exemplary RSV F mutants provided in Tables 1 and 4-6 are based on the same native F0 sequence of RSV A2 strain with three naturally-occurring substitutions at positions 102, 379, and 447 (SEQ ID NO:3). The same introduced mutations in each of the mutants can be made to a native F0 polypeptide sequence of any other RSV subtype or strain to arrive at different RSV F mutants, such as a native F0 polypeptide sequence set forth in any of the SEQ ID NOs: 1 , 2, 4, 6, and 81-270. RSV F mutants that are based on a native F0 polypeptide sequence of any other RSV subtype or strain and comprise any of the engineered disulfide mutations are also within the scope of the invention. In some particular embodiments, a RSV F protein mutant comprises at least one engineered disulfide mutation selected from the group consisting of: 55C and 188C; 155C and 290C; 103C and 148C; and 142C and 371 C, such as S55C and L188C, S155C and S290C, T103C and I 148C, or L142C and N371C.

In some embodiments, the present disclosure provides RSV F protein mutants, wherein the amino acid mutations are mutation of a pair of amino acid residues in the HRB region (approximately amino acids 476 - 524) of a RSV F protein to a pair of cysteines. The introduced pair of cysteine residues allows for formation of a disulfide bond between the cysteine residues from two adjacent F2-F1 mutant protomers of a trimer. The disulfide linking two protomers in a trimer serves to stabilize the mutant in a trimeric state. Examples of specific pairs of such mutations include: 508C and 509C; 515C and 516C; 522C and 523C, such as K508C and S509C, N515C and V516C, or T522C and T523C. In some embodiments, the RSV F mutants comprise (1) at least one pair of cysteine mutations in the HRB region and (2) at least one introduced mutation outside of the HRB region selected from an engineered disulfide bond mutation as described herein above, a cavity filling mutation as descrtibed herein below, an electrostatic mutation as described herein below, or a combination of any of these mutations.

B-2(b) Cavity Filling Mutations. ln other embodiments, the present disclosure provides RSV F mutants that comprise one or more cavity filling mutations. The term "cavity filling mutation" refers to the substitution of an amino acid residue in the wild-type RSV F protein by an amino acid that is expected to fill an internal cavity of the mature RSV F protein. In one application, such cavity-filling mutations contribute to stabilizing the pre-fusion conformation of a RSV F protein mutant. The cavities in the pre-fusion conformation of the RSV F protein can be identified by methods known in the art, such as by visual inspection of a crystal structure of RSV F in a pre-fusion conformation, or by using computational protein design software (such as BioLuminate™ [BioLuminate, Schrodinger LLC, New York, 2015], Discovery Studio™ [Discovery Studio Modeling Environment, Accelrys, San Diego, 2015], MOE™ [Molecular Operating Environment, Chemical Computing Group Inc., Montreal, 2015], and Rosetta™ [Rosetta, University of Washington, Seattle, 2015]). The amino acids to be replaced for cavity-filling mutations typically include small aliphatic (e.g. Gly, Ala, and Val) or small polar amino acids (e.g. Ser and Thr). They may also include amino acids that are buried in the pre-fusion conformation, but exposed to solvent in the post-conformation. The replacement amino acids can be large aliphatic amino acids (lie, Leu and Met) or large aromatic amino acids (His, Phe, Tyr and Trp). For example, in several embodiments, the RSV F protein mutant includes a T54H mutation. In some specific embodiments, a RSV F protein mutant comprises one or more cavity filling mutations selected from the group consisting of:

1) substitution of S at positions 55, 62, 155, 190, or 290 with I, Y, L, H, or M;

2) substitution of T at position 54, 58, 189, 219, or 397 with I , Y, L, H, or M;

3) substitution of G at position 151 with A or H;

4) substitution of A at position 147 or 298 with I, L, H, or M;

5) substitution of V at position 164, 187, 192, 207, 220, 296, 300, or 495 with I, Y,

H; and

6) substitution of R at position 106 with W.

In some specific embodiments, the present disclosure provides a RSV F mutant comprising one or more cavity filling mutations, wherein the mutant comprises the cavity filling mutations in any of the mutants provided in Tables 2, 4, and 6. RSV F mutants provided in Tables 2, 4, and 6 are based on the same native F0 sequence of RSV A2 strain with three naturally occurring substitutions at positions 102, 379, and 447 (SEQ ID NO:3). The same introduced mutations in each of the mutants can be made to a native FO polypeptide sequence of any other RSV subtype or strain to arrive at different RSV F mutants, such as a native FO polypeptide sequence set forth in any of the SEQ ID NOs: 1 , 2, 4, 6, and 81-270. The RSV F mutants that are based on a native FO polypeptide sequence of any other RSV subtype or strain and comprise any of the one or more cavity filling mutations are also within the scope of the invention. In some particular embodiments, a RSV F protein mutant provided by the present disclosure comprises at least one cavity filling mutation selected from the group consisting of: T54H, S190I, and V296I.

B-2 (c) Electrostatic Mutations.

In still other embodiments, the present disclosure provides RSV F protein mutants that include one or more electrostatic mutations. The term "electrostatic mutation" refers to an amino acid mutation introduced to a wild-type RSV F protein that decreases ionic repulsion or increase ionic attraction between residues in a protein that are proximate to each other in the folded structure. As hydrogen bonding is a special case of ionic attraction, electrostatic mutations may increase hydrogen bonding between such proximate residues. In one example, an electrostatic mutation may be introduced to improve trimer stability. In some embodiments, an electrostatic mutation is introduced to decrease repulsive ionic interactions or increase attractive ionic interactions (potentially including hydrogen bonds) between residues that are in close proximity in the RSV F glycoprotein in its pre-fusion conformation but not in its post- fusion conformation. For example, in the pre-fusion conformation, the acidic side chain of Asp486 from one protomer of the RSV F glycoprotein trimer is located at the trimer interface and structurally sandwiched between two other acidic side chains of Glu487 and Asp489 from another protomer. On the other hand, in the post-fusion conformation, the acidic side chain of Asp486 is located on the trimer surface and exposed to solvent. In several embodiments, the RSV F protein mutant includes an electrostatic D486S substitution that reduces repulsive ionic interactions or increases attractive ionic interactions with acidic residues of Glu487 and Asp489 from another protomer of RSV F trimer. Typically, introduction of an electrostatic mutation will increase the melting temperature (Tm) of the pre-fusion conformation or pre-fusion trimer conformation of the RSV F protein. Unfavorable electrostatic interactions in a pre-fusion or pre-fusion trimer conformation can be identified by method known in the art, such as by visual inspection of a crystal structure of RSV F in a pre-fusion or pre-fusion trimer conformation, or by using computational protein design software (such as BioLuminate™ [BioLuminate, Schrodinger LLC, New York, 2015], Discovery Studio™ [Discovery Studio Modeling Environment, Accelrys, San Diego, 2015], MOE™ [Molecular Operating Environment, Chemical Computing Group Inc., Montreal, 2015.], and Rosetta™ [Rosetta, University of Washington, Seattle, 2015.]).

In some specific embodiments, the RSV F protein mutant comprises at least one electrostatic mutation selected from the group consisting of:

1) substitution of E at position 82, 92, or 487 by D, F, Q, T, S, L, or H;

2) substitution of K at position 315, 394, or 399 by F, M, R, S, L, I, Q, or T;

3) substitution of D at position 392, 486, or 489 by H, S, N, T, or P; and

4) substitution of R at position 106 or 339 by F, Q, N, or W.

In some specific embodiments, the present disclosure provides a RSV F mutant comprising one or more electrostatic mutations, wherein the mutant comprises the electrostatic mutations in any of the mutants provided in Tables 3, 5, and 6. RSV F mutants provided in Tables 3, 5, and 6 are based on the same native F0 sequence of RSV A2 strain with three naturally occurring substitutions at positions 102, 379, and 447 (SEQ ID NO:3). The same introduced mutations in each of the mutants can be made to a native F0 polypeptide sequence of any other RSV subtype or strain to arrive at different RSV F mutants, such as a native F0 polypeptide sequence set forth in any of the SEQ ID NOs: 1 , 2, 4, 6, and 81-270. RSV F mutants that are based on a native F0 polypeptide sequence of any other RSV subtype or strain and comprise any of the one or more electrostatic mutations are also within the scope of the invention. In some particular embodiments, the RSV F protein mutant comprises mutation D486S.

B-2 (d) Combination of Engineered Disulfide Bond Mutations, Cavity Filling Mutations, and Electrostatic Mutations.

In another aspect, the present disclosure provides RSV F protein mutants, which comprise a combination of two or more different types of mutations selected from engineered disulfide bond mutations, cavity filling mutations, and electrostatic mutations, each as described herein above. ln some embodiments, the mutants comprise at least one engineered disulfide bond mutation and at least one cavity filling mutation. In some specific embodiments, the RSV F mutants include a combination of mutations as noted in Table 4.

In some further embodiments, the RSV F protein mutants comprise at least one engineered disulfide mutation and at least one electrostatic mutation. In some specific embodiments, the RSV F mutants include a combination of mutations as noted in Table 5.

In still other embodiments, the RSV F protein mutants comprise at least one engineered disulfide mutation, at least one cavity filling mutation, and at least one electrostatic mutation. In some specific embodiments, the RSV F mutants include a combination of mutations as provided in Table 6.

In some particular embodiments, the present invention provides a RSV F mutant that comprises a combination of mutations selected from the group consisting of:

(1) combination of T103C, I 148C, S190I, and D486S;

(2) combination of T54H S55C L188C D486S;

(3) combination of T54H, T103C, I 148C, S190I, V296I, and D486S;

(4) combination of T54H, S55C, L142C, L188C, V296I, and N371 C;

(5) combination of S55C, L188C, and D486S;

(6) combination of T54H, S55C, L188C, and S190I ;

(7) combination of S55C, L188C, S190I, and D486S;

(8) combination of T54H, S55C, L188C, S190I, and D486S;

(9) combination of S155C, S190I, S290C, and D486S;

(10) combination of T54H, S55C, L142C, L188C, V296I, N371C, D486S, E487Q, and D489S; and

(11) combination of T54H, S155C, S190I, S290C, and V296I.

In some specific embodiments, the present disclosure provides a RSV F mutant comprising a combination of introduced mutations, wherein the mutant comprises a combination of mutations in any of the mutants provided in Tables 4, 5, and 6. RSV F mutants provided in Tables 4, 5, and 6 are based on the same native F0 sequence of RSV A2 strain with three naturally occurring substitutions at positions 102, 379, and 447 (SEQ ID NO:3). The same introduced mutations in each of the mutants can be made to a native F0 polypeptide sequence of any other RSV subtype or strain to arrive at different RSV F mutants, such as a native F0 polypeptide sequence set forth in any of the SEQ ID N0s: 1 , 2, 4, 6, and 81-270. RSV F mutants that are based on a native FO polypeptide sequence of any other RSV subtype or strain and comprise any of the combination of mutations are also within the scope of the invention.

In some other particular embodiments, the present invention provides a RSV F mutant, wherein the mutant comprises a cysteine (C) at position 103 (103C) and at position 148 (148C), an isoleucine (I) at position 190 (1901), and a serine (S) at position 486 (486S), and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:41 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:42;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:41 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:42;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 43 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:44;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:43 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:44;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 45 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:46;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:45 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:46;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 47 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:48;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:47 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:48; (9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 49 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:50;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:49 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:50.

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:279 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:280;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:279 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:280;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:281 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:282;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:281 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:282;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:283 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:284;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:283 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:284;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:285 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:286;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:285 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:286;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:287 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:288; (20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:287 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:288;

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:289 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:290; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:289 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:290.

In some other particular embodiments, the present invention provides a RSV F mutant, wherein the mutant comprises a histidine (H) at position 54, a cysteine (C) at positions 103 and 148, a isoleucine (I) at positions 190 and 296, and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 51 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:52;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:51 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:52;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:53 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:54;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:53 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:54;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:55 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:56;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:55 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:56; (7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:57 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:58;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:57 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:58;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:59 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:60;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:59 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:60;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:291 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:292;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:291 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:292;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:293 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:294;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:293 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:294;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:295 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:296;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:295 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:296;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:297 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:298; (18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:297 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:298;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:299 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:300;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:299 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:300;

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:301 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:302; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:301 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:302.

In some other particular embodiments, the present invention provides a RSV F mutant, wherein the mutant comprises a histidine (H) at position 54, a cysteine (C) at positions 55 and 188, and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:61 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:62;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:61 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:62;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:63 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:64;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:63 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:64; (5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:65 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:66;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:65 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:66;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:67 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:68;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:67 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:68;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:69 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:70;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:69 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:70;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:303 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:304;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:303 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:304;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:305 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:306;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:305 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:306;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:307 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:308; (16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:307 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:308;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:309 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:310;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:309 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:310;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:311 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:312;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:31 1 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:312.

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:313 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:314; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:313 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:314.

In some other particular embodiments, the present invention provides a RSV F mutant, wherein the mutant comporises a histidine (H) at position 54, a cysteine (C) at positions 55 and 188, an isoleucine (I) at position 190 (1901), and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:71 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:72;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:71 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:72; (3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:73 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:74;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:73 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:74;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:75 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:76;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:75 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:76;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:77 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:78;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:77 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:78;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:79 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:80;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:79 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:80;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:315 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:316;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:315 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:316;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:317 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:318; (14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:317 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:318;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:319 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:320;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:319 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:320;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:321 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:322;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:321 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:322;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:323 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:324;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:323 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:324.

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:325 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:326; and (22) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:325 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:326.

The amino acid sequence of the F2 polypeptide and F1 polypeptide of exemplary RSV F mutants provided by the present disclosure is provided in Tables 19- 22. ln several embodiments, a foldon domain is linked to a RSV F mutant described herein above, wherein the foldon domain is linked to the C-terminus of the F1 polypeptide and comprises the amino acid sequence of SEQ ID NO:40.

The RSV F protein mutants provided by the present disclosure can be prepared by routine methods known in the art, such as by expression in a recombinant host system using a suitable vector. Suitable recombinant host cells include, for example, insect cells, mammalian cells, avian cells, bacteria, and yeast cells. Examples of suitable insect cells include, for example, Sf9 cells, Sf21 cells, Tn5 cells, Schneider S2 cells, and High Five cells (a clonal isolate derived from the parental Trichoplusia ni BTI- TN-5B1-4 cell line (Invitrogen)). Examples of suitable mammalian cells include Chinese hamster ovary (CHO) cells, human embryonic kidney cells (HEK293 or Expi 293 cells, typically transformed by sheared adenovirus type 5 DNA), NIH-3T3 cells, 293-T cells, Vero cells, and HeLa cells. Suitable avian cells include, for example, chicken embryonic stem cells (e.g., EBx.RTM. cells), chicken embryonic fibroblasts, chicken embryonic germ cells, quail fibroblasts (e.g. ELL-O), and duck cells. Suitable insect cell expression systems, such as baculovirus-vectored systems, are known to those of skill in the art and described in, e.g., Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987). Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, inter alia, Invitrogen, San Diego Calif. Avian cell expression systems are also known to those of skill in the art and described in, e.g., U.S. Pat. Nos. 5,340,740; 5,656,479; 5,830,510; 6, 1 14, 168; and 6,500,668. Similarly, bacterial and mammalian cell expression systems are also known in the art and described in, e.g., Yeast Genetic Engineering (Barr et al., eds., 1989) Butterworths, London.

A number of suitable vectors for expression of recombinant proteins in insect or mammalian cells are well-known and conventional in the art. Suitable vectors can contain a number of components, including, but not limited to one or more of the following: an origin of replication; a selectable marker gene; one or more expression control elements, such as a transcriptional control element (e.g., a promoter, an enhancer, a terminator), and/or one or more translation signals; and a signal sequence or leader sequence for targeting to the secretory pathway in a selected host cell (e.g., of mammalian origin or from a heterologous mammalian or non-mammalian species). For example, for expression in insect cells a suitable baculovirus expression vector, such as pFastBac (Invitrogen), is used to produce recombinant baculovirus particles. The baculovirus particles are amplified and used to infect insect cells to express recombinant protein. For expression in mammalian cells, a vector that will drive expression of the construct in the desired mammalian host cell (e.g., Chinese hamster ovary cells) is used.

The RSV F protein mutant polypeptides can be purified using any suitable methods. For example, methods for purifying RSV F protein mutant polypeptides by immunoaffinity chromatography are known in the art. Ruiz-Arguello et al., J. Gen. Virol., 85:3677-3687 (2004). Suitable methods for purifying desired proteins including precipitation and various types of chromatography, such as hydrophobic interaction, ion exchange, affinity, chelating and size exclusion are well-known in the art. Suitable purification schemes can be created using two or more of these or other suitable methods. If desired, the RSV F protein mutant polypeptides can include a "tag" that facilitates purification, such as an epitope tag or a histidine (HIS) tag. Such tagged polypeptides can conveniently be purified, for example from conditioned media, by chelating chromatography or affinity chromatography.

C. NUCLEIC ACIDS ENCODING RSV F PROTEIN MUTANTS

In another aspect, the present invention provides nucleic acid molecules that encode a RSV F protein mutant described herein above. These nucleic acid molecules include DNA, cDNA, and RNA sequences. Nucleic acid molecules that encode only a F2 polypeptide or only a F1 polypeptide of a RSV F mutant are also encompassed by the invention. The nucleic acid molecule can be incorporated into a vector, such as an expression vector.

In some embodiments, the nucleic acid molecule encodes a precursor F0 polypeptide that, when expressed in an appropriate cell, is processed into a disclosed RSV F mutant. In some embodiments, the nucleic acid molecule encodes a precursor F0 polypeptide that, when expressed in an appropriate cell, is processed into a disclosed RSV F mutant, wherein the precursor F0 polypeptide includes, from N- to C- terminus, a signal peptide, a F2 polypeptide, a Pep27 polypeptide, and a F1 polypeptide. In some embodiments, the Pep27 polypeptide comprises the amino acid sequence set forth as positions 1 10-136 of any one SEQ ID NOs: 1 , 2, 4, 6, and 81-270, wherein the amino acid positions correspond to the amino acid sequence of SEQ ID NO: 1. In some embodiments, the signal peptide comprises the amino acid sequence set forth as positions 1-25 of any one SEQ ID NOs: 1 , 2, 4, 6, and 81-270, wherein the amino acid positions correspond to the amino acid sequence of a reference of SEQ ID NO: 1.

In some embodiments, the nucleic acid molecule encodes a mutant selected from the goup consisting of:

(1) a mutant comprising at least one engineered disulfide mutation;

(2) a mutant comprising at least one cavity filing mutation;

(3) a mutant comprising at least one electrostatic mutation;

(4) a mutant comprising at least one engineered disulfide mutation and at least one cavity filing mutation;

(5) a mutant comprising at least one engineered disulfide mutation and at least one electrostatic mutation;

(6) a mutant comprising at least one cavity filing mutation and at least one electrostatic mutation; and

(7) a mutant comprising at least one engineered disulfide mutation and at least one electrostatic mutation, at least one cavity filing mutation, and at least one electrostatic mutation.

In some specific embodiments, the present disclosure provides a nucleic acid molecule which encodes a mutant selected from the group consisting of:

(1) a mutant comprising a combination of substitutions 103C, 148C, 1901, and

486S;

(2) a mutant comprising a combination of substitutions 54H, 55C, 188C, and

486S;

(3) a mutant comprising a combination of substitutions 54H, 103C, 148C, 1901, 2961, and 486S;

(4) a mutant comprising a combination of substitutions 54H, 55C, 142C, 188C, 296I, and 371C;

(5) a mutant comprising a combination of amino acid substitutions 55C, 188C, and 486S;

(6) a mutant comprising a combination of amino acid substitutions 54H, 55C,

188C, and 1901;

(7) a mutant comprising a combination of amino acid substitutions 55C, 188C, 1901, and 486S; (8) a mutant comprising a combination of amino acid substitutions 54H, 55C, 188C, 1901, and 486S;

(9) a mutant comprising a combination of amino acid substitutions 155C, 1901, 290C, and 486S;

(10) a mutant comprising a combination of amino acid substitutions 54H, 55C,

142C, 188C, 296I, 371C, 486S, 487Q, and 489S; and

(11) a combination of amino acid substitutions 54H, 155C, 1901 , 290C, and 2961. In some particular embodiments, the nucleic acid molecule encodes a RSV F mutant, wherein the mutant comprises a cysteine (C) at position 103 (103C) and at position 148 (148C), an isoleucine (I) at position 190 (1901), and a serine (S) at position 486 (486S), and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:41 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:42;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:41 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:42;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 43 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:44;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:43 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:44;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 45 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:46;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:45 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:46;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 47 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:48; (8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:47 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:48;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 49 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:50;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:49 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:50.

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:279 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:280;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:279 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:280;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:281 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:282;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:281 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:282;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:283 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:284;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:283 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:284;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:285 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:286;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:285 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:286;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:287 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:288;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:287 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:288;

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:289 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:290; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:289 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:290.

In some other particular embodiments, the nucleic acid molecule encodes a RSV

F mutant, wherein the mutant comprises a histidine (H) at position 54, a cysteine (C) at positions 103 and 148, a isoleucine (I) at positions 190 and 296, and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 51 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:52;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:51 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:52;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:53 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:54;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:53 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:54;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:55 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:56; (6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:55 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:56;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:57 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:58;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:57 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:58;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:59 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:60;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:59 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:60;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:291 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:292;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:291 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:292;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:293 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:294;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:293 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:294;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:295 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:296;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:295 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:296;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:297 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:298;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:297 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:298;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:299 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:300;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:299 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:300;

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:301 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:302; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:301 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:302.

In some other particular embodiments, the nucleic acid molecule encodes a RSV F mutant, wherein the mutant comprises a histidine (H) at position 54, a cysteine (C) at positions 55 and 188, and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:61 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:62;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:61 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:62;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:63 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:64; (4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:63 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:64;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:65 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:66;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:65 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:66;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:67 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:68;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:67 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:68;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:69 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:70;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:69 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:70;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:303 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:304;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:303 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:304;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:305 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:306;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:305 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:306;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:307 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:308;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:307 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:308;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:309 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:310;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:309 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:310;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:311 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:312;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:31 1 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:312.

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:313 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:314; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:313 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:314.

In some other particular embodiments, the nucleic acid molecule encodes a RSV F mutant, wherein the mutant comporises a histidine (H) at position 54, a cysteine (C) at positions 55 and 188, an isoleucine (I) at position 190 (1901), and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:71 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:72; (2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:71 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:72;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:73 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:74;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:73 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:74;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:75 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:76;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:75 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:76;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:77 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:78;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:77 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:78;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:79 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:80;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:79 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:80;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:315 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:316;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:315 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:316;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:317 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:318;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:317 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:318;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:319 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:320;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:319 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:320;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:321 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:322;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:321 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:322;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:323 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:324;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:323 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:324.

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:325 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:326; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:325 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:326. ln some specific embodiments, the present disclosure provides a nucleic acid molecule, which encodes a mutant selected from the goup consisting of:

(1) a mutant comprising amino acids 26-513 of SEQ ID NO: 19;

(2) a mutant comprising amino acids 26-513 of SEQ ID NO:20;and

(3) a mutant comprising amino acids 26-513 of SEQ ID NO:21.

In some other specific embodiments, the present disclosure provides a nucleic acid molecule encoding a RSV F protein mutant, or a degenerate variant thereof, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:

(1) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO 8;

(2) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO 9 ;

(3) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO 10;

(4) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO 11 ;

(5) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO 12;

(6) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO 13;

(7) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO 14;

(8) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO 15;

(9) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO 16;

(10) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO: 17; and

(11) a nucleotide sequence comprising nucleotides 76-1539 of SEQ ID NO: 18.

D. COMPOSITIONS COMPRISING A RSV F PROTEIN MUTANT;

COMPOSITIONS COMPRISING A NUCLEIC ACID ENCODING A RSV F PROTEIN MUTANT

In another aspect, the invention provides compositions that comprise (1) a RSV F protein mutant described in the disclosure, or (2) a nucleic acid molecule or vector encoding such a RSV F protein mutant.

In some embodiments, the composition is an immunogenic composition capable of eliciting an immune response against the F protein of RSV in a subject. In some particular embodiments, the immunogenic composition is a pharmaceutical composition, which comprises a RSV F protein mutant provided by the present disclosure and a pharmaceutically acceptable carrier. ln still other embodiments, the pharmaceutical composition is a vaccine. The immunogenic component in the vaccine may be (1) a RSV F protein mutant described in the disclosure, (2) a nucleic acid encoding such as a RSV F protein mutant, or (3) a vector for expressing such a RSV F protein mutant.

In some particular embodiments, the vaccine comprises a RSV F mutant, wherein the mutant comprises a cysteine (C) at position 103 (103C) and at position 148 (148C), an isoleucine (I) at position 190 (1901), and a serine (S) at position 486 (486S), and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:41 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:42;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:41 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:42;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 43 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:44;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:43 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:44;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 45 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:46;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:45 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:46;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 47 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:48;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:47 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:48; (9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 49 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:50;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:49 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:50.

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:279 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:280;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:279 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:280;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:281 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:282;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:281 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:282;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:283 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:284;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:283 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:284;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:285 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:286;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:285 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:286;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:287 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:288; (20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:287 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:288;

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:289 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:290; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:289 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:290.

In some other particular embodiments, the vaccine comprises a RSV F mutant, wherein the mutant comprises a histidine (H) at position 54, a cysteine (C) at positions 103 and 148, a isoleucine (I) at positions 190 and 296, and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) F2 polypeptide comprising the amino acid sequence of SEQ ID NO: 51 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:52;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:51 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:52;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:53 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:54;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:53 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:54;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:55 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:56;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:55 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:56; (7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:57 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:58;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:57 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:58;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:59 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:60;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:59 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:60;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:291 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:292;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:291 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:292;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:293 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:294;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:293 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:294;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:295 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:296;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:295 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:296;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:297 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:298; (18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:297 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:298;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:299 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:300;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:299 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:300;

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:301 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:302; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:301 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:302.

In some other particular embodiments, the vaccine comprises a RSV F mutant, wherein the mutant comprises a histidine (H) at position 54, a cysteine (C) at positions 55 and 188, and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:61 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:62;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:61 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:62;

(3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:63 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:64;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:63 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:64; (5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:65 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:66;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:65 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:66;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:67 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:68;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:67 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:68;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:69 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:70;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:69 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:70;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:303 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:304;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:303 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:304;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:305 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:306;

(14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:305 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:306;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:307 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:308; (16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:307 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:308;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:309 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:310;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:309 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:310;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:311 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:312;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:31 1 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:312.

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:313 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:314; and

(22) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:313 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:314.

In some other particular embodiments, the vaccine comprises a RSV F mutant, wherein the mutant comporises a histidine (H) at position 54, a cysteine (C) at positions 55 and 188, an isoleucine (I) at position 190 (1901), and a serine (S) at position 486, and wherein the mutant comprises a F1 polypeptide and a F2 polypeptide selected from the group consisting of:

(1) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:71 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:72;

(2) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:71 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:72; (3) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:73 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:74;

(4) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:73 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:74;

(5) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:75 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:76;

(6) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:75 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:76;

(7) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:77 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:78;

(8) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:77 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:78;

(9) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:79 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:80;

(10) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:79 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:80;

(11) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:315 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:316;

(12) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:315 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:316;

(13) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:317 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:318; (14) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:317 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:318;

(15) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:319 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:320;

(16) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:319 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:320;

(17) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:321 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:322;

(18) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:321 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:322;

(19) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:323 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:324;

(20) a F2 polypeptide comprising an amino acid sequence that is at least 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:323 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:324.

(21) a F2 polypeptide comprising the amino acid sequence of SEQ ID NO:325 and a F1 polypeptide comprising the amino acid sequence of SEQ ID NO:326; and (22) a F2 polypeptide comprising an amino acid sequence that is at least 97%,

98% or 99% identical to the amino acid sequence of SEQ ID NO:325 and a F1 polypeptide comprising an amino acid sequence that is at least 97%, 98%, or 99% identical to the amino acid sequence of SEQ ID NO:326.

In some embodiments, a composition, such as a pharmaceutical composition or a vaccine, comprises two or more different RSV F mutants. The two or more different RSV F mutants may comprise the same introduced amino acid mutations but comprise a F1 polypeptide and F2 polypeptide from different RSV strains or subtypes. The two or more different RSV F mutants may comprise different introduced amino acid mutations.

In some embodiments, the composition comprises two different mutants comprising the same introduced amino acid mutations, wherein one of the mutant comprises a F1 polypeptide and F2 polypeptide from RSV subtype A and wherein the other mutant comprises a F1 polypeptide and F2 polypeptide from RSV subtype B. In some specific embodiments, the two different mutants comprise the same combination of amino acid substitutions selected from the group consisting of:

(I) a combination of amino acid substitutions 103C, 148C, 1901 , and 486S;

(2) a combination of amino acid substitutions 54H, 55C, 188C, and 486S;

(3) a combination of amino acid substitutions 54H, 103C, 148C, 1901, 2961, and

486S;

(4) a combination of amino acid substitutions 54H, 55C, 142C, 188C, 296I, and

371C;

(5) a combination of amino acid substitutions 55C, 188C, and 486S;

(6) a combination of amino acid substitutions 54H, 55C, 188C, and 1901 ;

(7) a combination of amino acid substitutions 55C, 188C, 1901, and 486S;

(8) a combination of amino acid substitutions 54H, 55C, 188C, 1901, and 486S;

(9) a combination of amino acid substitutions 155C, 1901, 290C, and 486S;

(10) a combination of amino acid substitutions 54H, 55C, 142C, 188C, 296I,

371 C, 486S, 487Q, and 489S; and

(I I) a combination of amino acid substitutions 54H, 155C, 1901 , 290C, and 2961. In addition to the immunogenic component, the vaccine may further comprise an immunomodulatory agent, such as an adjuvant. Examples of suitable adjuvants include aluminum salts such as aluminum hydroxide and/or aluminum phosphate; oil-emulsion compositions (or oil-in-water compositions), including squalene-water emulsions, such as MF59 (see e.g., WO 90/14837); saponin formulations, such as, for example, QS21 and Immunostimulating Complexes (ISCOMS) (see e.g., U.S. Pat. No. 5,057,540; WO 90/03184, WO 96/11711 , WO 2004/004762, WO 2005/002620); bacterial or microbial derivatives, examples of which are monophosphoryl lipid A (MPL), 3-O-deacylated MPL (3dMPL), CpG-motif containing oligonucleotides, ADP-ribosylating bacterial toxins or mutants thereof, such as E. coli heat labile enterotoxin LT, cholera toxin CT, and the like. It is also possible to use vector-encoded adjuvant, e.g., by using heterologous nucleic acid that encodes a fusion of the oligomerization domain of C4-binding protein (C4 bp) to the antigen of interest (e.g., Solabomi et al., 2008, Infect Immun 76: 3817-23). In certain embodiments the compositions hereof comprise aluminum as an adjuvant, e.g., in the form of aluminum hydroxide, aluminum phosphate, aluminum potassium phosphate, or combinations thereof, in concentrations of 0.05-5 mg, e.g., from 0.075- 1.0 mg, of aluminum content per dose.

E. USES OF THE RSV F PROTEIN MUTANTS, NUCLEIC ACID MOLECULES,

AND COMPOSITIONS

The present disclosure also relates to use of a RSV F protein mutant, nucleic acids encoding a RSV F protein mutant, or vectors for expressing a RSV F protein mutant, or compositions comprising a RSV F protein mutant or nucleic acids.

In several embodiments, the present disclosure provides a method of eliciting an immune response to RSV in a subject, comprising administering to the subject an effective amount of a RSV F protein mutant, a nucleic acid molecule encoding a RSV F protein mutant, or a composition comprising a RSV F protein mutant or nucleic acid molecule.

In some particular embodiments, the present disclosure provides a method of preventing RSV infection in a subject, comprising administering to the subject an effective amount of a pharmaceutical composition, such as a vaccine, comprising a RSV F protein mutant, a nucleic acid encoding a RSV F protein mutant, or a vector expressing a RSV F protein mutant. In some embodiments, the subject is a human. In some particular embodiments, the human is a child, such as an infant. In some other particular embodients, the human is woman, particularly a pregnant woman.

The composition may be administered to the subject with or without administration of an adjuvant. The effective amount administered to the subject is an amount that is sufficient to elicit an immune response against an RSV antigen, such as RSV F protein, in the subject. Subjects that can be selected for treatment include those that are at risk for developing an RSV infection because of exposure or the possibility of exposure to RSV. Because nearly all humans are infected with RSV by the age of 2, the entire birth cohort is included as a relevant population for immunization. This could be done, for example, by beginning an immunization regimen anytime from birth to 6 months of age, from 6 months of age to 5 years of age, in pregnant women (or women of child-bearing age) to protect their infants by passive transfer of antibody, family members of newborn infants or those still in utero, and subjects greater than 50 years of age. Subjects at greatest risk of RSV infection with severe symptoms (e.g. requiring hospitalization) include children with prematurity, bronchopulmonary dysplasia, and congenital heart disease.

Administration of the compositions provided by the present disclosure, such as pharmaceutical compositions, can be carried out using standard routes of administration. Non-limiting embodiments include parenteral administration, such as intradermal, intramuscular, subcutaneous, transcutaneous, mucosal, or oral administration.

The total dose of the composition provided to a subject during one administration can be varied as is known to the skilled practitioner.

It is also possible to provide one or more booster administrations of one or more of the vaccine compositions. If a boosting vaccination is performed, typically, such a boosting vaccination will be administered to the same subject at a moment between one week and 10 years, preferably between two weeks and six months, after administering the composition to the subject for the first time (which is in such cases referred to as "priming vaccination"). In alternative boosting regimens, it is also possible to administer different vectors, e.g., one or more adenovirus, or other vectors such as modified vaccinia virus of Ankara (MVA), or DNA, or protein, to the subject after the priming vaccination. It is, for instance, possible to administer to the subject a recombinant viral vector hereof as a prime, and boosting with a composition comprising RSV F protein.

In certain embodiments, the administration comprises a priming administration and at least one booster administration. In certain other embodiments, the administration is provided annually. In still other embodiments, the administration is provided annually together with an influenza vaccine.

The vaccines provided by the present disclosure may be used together with one or more other vaccines. For example, in adults they may be used together with an influenza vaccine, Prevnar, tetanus vaccine, diphtheria vaccine, and pertussis vaccine. For pediatric use, vaccines provided by the present disclosure may be used with any other vaccine indicated for pediatric patients. Table 17. Non-consensus amino acid residues among F protein sequences from selected RSV A strains.

Table 18. Non-consensus amino acid residues among F protein sequences from selected RSV B strains.

Table 19. Variants of Mutant pXCS847 Comprising Introduced Mutations T103C, I 148C, S190I, and D486S

Table 20. Variant of Mutant pXCS851 Comprising Introduced Mutations T54H, T103C, I 148C, S190I, V296I, D486S

Table 21. Variant of Mutants pXCS852 Comprising Introduced Mutations T54H, S55C, L188C, D486S

Table 22. Variant of Mutant pXCS855 Comprising Introduced Mutations T54H, S55C, L188C, S190I, D486S

Table 23 . Sequence Index

F. EXAMPLES

The invention is further described by the following illustrative examples. The examples do not limit the invention in any way. They merely serve to clarify the invention.

Example 1 : Design and Preparation of RSV F Protein Mutants

1A: RSV F Mutants with Foldon Domain

This example illustrates the design and preparation of various RSV F protein mutants, which include a fibritin foldon trimerization domain and introduced amino acid mutations, such as engineered disulfide bond mutations, cavity-filling mutations, electrostatic mutations, or a combination thereof. Exemplary RSV F mutants, each of which is identified by an unique identifier, such as pXCS501 , pXCS601 , etc., are provided in Tables 1-6. Each of these mutants was designed and prepared based on the amino acid sequence set forth in SEQ I D NO:3, which is also illustrated in Figure 1. Amino acid residues 1-513 of the sequence of SEQ ID NO:3 are identical to amino acid residues 1-513 of the FO precursor polypeptide of native RSV A2 as set forth in SEQ ID NO: 1 , except for the three naturally occurring substitutions, P102A, I379V and M447V, in the sequence of SEQ ID NO:3. Therefore, the amino acid sequences of these exemplary F mutants are identical except for the introduced amino acid mutations as noted for each mutant listed in Tables 1-6. Each of these RSV F protein mutants comprises two separate polypeptide chains. One of the polypeptide chains, the F2 polypeptide, comprises amino acids 26-109 of SEQ ID NO:3 except for the introduced mutations as noted. The other polypeptide chain comprises the F1 polypeptide (residues 137-513) linked to a foldon trimerization domain (residues 518-544) via a SAIG linker (residues 514-517). The signal peptide (residues 1-25) and pep27 (residues 110-136) of SEQ ID NO:3 were cleaved from the F0 precursor during the expression process. The process for expression and purification of these exemplary RSV F mutants is described in Examples 2 and 3.

1B: RSV F Mutants without Foldon Domain

RSV F mutant, pXCS899, which was devoid of foldon domain, was prepared in the same method described in Example 1A above, except that amino acids 514-544 of the F0 precursor sequence of SEQ ID NO:3 were deleted. The amino acid sequence of the precursor polypeptide of pXCS899 is set forth in SEQ ID NO:271.

Table 1. Exemplary RSV F Protein Mutants Comprising Engineered Disulfide Mutations

Mutant ID Mutations

pXCS501 I28C, G464C

pXCS502 E30C, S466C

pXCS503 Q34C, G471 C

pXCS504 S35C, G471 C

pXCS505 W52C, S150C pXCS506 T54C, G151C pXCS507 S55C, L188C pXCS508 V56C, V187C pXCS509 V56C, T189C pXCS510 I57C, S190C pXCS511 T58C, K191C pXCS512 I59C, L193C pXCS513 E60C, K196C pXCS514 L61C, L195C pXCS515 S62C, K196C pXCS516 S62C, I199C pXCS518 T103C, A147C pXCS519 T103C, I148C pXCS520 R106C, V144C pXCS521 L138C, T337C pXCS522 G139C, P353C pXCS523 G139C, Q354C pXCS524 L142C, N371C pXCS525 G145C, M370C pXCS526 I148C, Y286C pXCS527 G151C, V300C pXCS528 G151C, Q302C pXCS529 V154C, V300C pXCS531 S155C, V300C pXCS532 L158C, S290C pXCS534 V164C, K293C pXCS535 V164C, E294C

pXCS536 T397C, P484C

pXCS537 T397C, E487C

pXCS538 K399C, S485C

pXCS539 L410C, G464C

pXCS540 L410C, S466C

pXCS541 S443C, S466C

pXCS542 L138C, P353C

pXCS543 G151C, I288C

pXCS544 S155C, S290C

pXCS545 S155C, S290C; I28C, G464C pXCS546 S155C, S290C; E30C, S466C pXCS547 S155C, S290C; Q34C, G471C pXCS548 S155C, S290C; S35C, G471C pXCS549 S155C, S290C; T397C, P484C pXCS550 S155C, S290C; T397C, E487C pXCS551 S155C, S290C; K399C, S485C pXCS553 S155C, S290C; L410C, S466C pXCS554 S155C, S290C; S443C, S466C pXCS556 R106C, V144C; S443C, S466C pXCS557 R106C, V144C; L142C, N371C pXCS558 R106C, V144C; T397C, P484C pXCS596 S55C, L188C; T103C, I148C pXCS597 S55C, L188C; R106C, V144C pXCS598 S55C, L188C; L142C, N371C pXCS599 S55C, L188C; T397C, P484C pXCS600 S55C, L188C; Q34C, G471C pXCS601 S55C, L188C; T397C, E487C pXCS602 S55C, L188C; S443C, S466C pXCS603 S55C, L188C; L410C, S466C pXCS604 S55C.L188C; S35C, G471C pXCS605 S55C, L188C; S62C, I199C pXCS606 T103C, I148C; Q34C, G471C pXCS607 T103C, I148C; S35C, G471C pXCS608 T103C, I148C; S62C, I199C pXCS609 T103C, I 148C; L142C, N371C pXCS610 T103C, I148C; T397C, P484C pXCS611 T103C, I148C; T397C, E487C pXCS612 T103C, I148C; L410C, S466C pXCS613 T103C, I148C; S443C, S466C pXCS614 Q34C, G471C; S62C, I199C pXCS615 Q34C, G471C; R106C, V144C pXCS616 Q34C, G471C; L138C, T337C pXCS617 Q34C, G471C; L142C, N371C pXCS618 L142C, N371C; S35C, G471C pXCS619 L142C, N371C; S62C, I199C pXCS620 L142C, N371C; S155C, S290C pXCS621 L142C, N371C; T397C, P484C pXCS622 L142C, N371C; T397C, E487C pXCS623 L142C, N371C; L410C, S466C pXCS624 L142C, N371C; S443C, S466C pXCS625 R106C, V144C; S62C, I199C pXCS626 R106C, V144C; T397C, E487C

pXCS627 R106C, V144C; L410C, S466C

pXCS628 S55C, L188C; L138C, T337C

pXCS629 S55C, L188C; G145C, M370C

pXCS630 T103C, I148C; L138C, T337C

pXCS712 S55C, L188C; R106C, V144C; L142C,

N371C

pXCS517 S62C, D200C

pXCS530 S155C, I288C

pXCS533 L158C, I291C

pXCS552 S155C, S290C; L410C, G464C

pXCS555 S155C, S290C; R106C, V144C

Table 2. Exemplary RSV F Protein Mutants Comprising Cavity Filling Mutations

Mutant ID Mutations

pXCS559 S55I

pXCS560 S55Y

pXCS561 S62L

pXCS562 S62Y

pXCS563 S155H

pXCS564 S155Y

pXCS565 S190I

pXCS566 S190M

pXCS567 S190Y

pXCS568 S290H

pXCS569 S290M

pXCS570 S290Y pXCS571 T54H pXCS572 T54I pXCS573 T58L pXCS574 T58M pXCS575 T189I pXCS577 T219I pXCS578 T219M pXCS579 T397I pXCS580 T397Y pXCS581 G151A pXCS582 G151 H pXCS583 A147H pXCS584 A147I pXCS585 A298L pXCS586 A298M pXCS587 V164I pXCS588 V187I pXCS589 V192H pXCS590 V207I pXCS591 V220I pXCS592 V296I pXCS593 V300I pXCS594 V495Y pXCS595 R106W pXCS666 S190F, V207L pXCS691 V495Y, S62L pXCS692 V495Y, T219M

pXCS693 V495Y, T54H

pXCS694 V495Y, T58L

pXCS695 V495Y, V164I

pXCS696 V495Y, V187I

pXCS697 V495Y, V296I

pXCS698 V296I, S62L

pXCS699 V296I , T219M

pXCS700 V296I, T54H

pXCS701 T54H, S62L

pXCS702 T54H, T219M

pXCS71 1 F488W

pXCS576 T189Y

Table 3. Exemplary RSV F Protein Mutants Comprising Electrostatic Mutations

Mutant I D Mutations

pXCS631 E82Q

pXCS632 E82S

pXCS633 E82L

pXCS634 E92D

pXCS635 E92T

pXCS636 E92Q

pXCS637 E92F

pXCS638 R106Q

pXCS639 R106N

pXCS640 R106F

pXCS641 K315F pXCS642 K315L pXCS643 K315I pXCS644 K315Q pXCS645 R339Q pXCS646 R339W pXCS647 R339F pXCS648 D392N pXCS649 D392S pXCS650 D392P pXCS651 K394M pXCS652 K394T pXCS653 K394F pXCS654 K399R pXCS655 K399M pXCS656 K399S pXCS657 D486H pXCS658 D486S pXCS659 D486T pXCS660 E487Q pXCS661 E487H pXCS662 E487D pXCS663 D489H pXCS664 D489S pXCS665 D489N Table 4. Exemplary RSV F Protein Mutants Comprising Engineered Disulfide Mutations and Cavity Filling Mutations

Mutant I D Mutations

pXCS667 R106C-V144C; S443C-S466C; S55I

pXCS668 R106C-V144C; L142C-N371C; S55I

pXCS669 R106C-V144C; T397C-P484C; S55I

pXCS670 R106C-V144C; S443C-S466C; T54H

pXCS671 R106C-V144C; L142C-N371C; T54H

pXCS672 R106C-V144C; T397C-P484C; T54H

pXCS674 R106C-V144C L142C-N371C; T54H, S190Y

pXCS679 S62C-I199C; L142C-N371C; S55I

pXCS680 S62C-I199C; L142C-N371C; T54H

pXCS683 Q34C-G471C; L142C-N371C; S62L

pXCS684 Q34C-G471C; L142C-N371C; T219M

pXCS685 Q34C-G471C; L142C-N371C; T54H

pXCS686 Q34C-G471C; L142C-N371C; V164I

pXCS687 Q34C-G471C; L142C-N371C; V187I

pXCS688 Q34C-G471C; L142C-N371C; V296I

pXCS689 Q34C-G471C; L142C-N371C; T397Y

pXCS690 Q34C-G471C; L142C-N371C; V495Y

pXCS713 Q34C-G471C; S155C-S290C; T54H

pXCS714 Q34C-G471C; S155C-S290C; V296I

pXCS715 Q34C-G471C; S155C-S290C; V495Y

pXCS716 Q34C-G471C; S155C-S290C; T54H, V495Y

pXCS717 Q34C-G471C; S155C-S290C; T54H, V296I

pXCS718 Q34C-G471C; S155C-S290C; T54H, V296I, V495Y

pXCS719 Q34C-G471C; S155C-S290C; S 190I

pXCS720 S155C-S290C; L410C-S466C; T54H

pXCS721 S155C-S290C; L410C-S466C; V296I

pXCS722 S155C-S290C; L410C-S466C; V495Y

pXCS723 S155C-S290C; L410C-S466C; T54H, V495Y

pXCS724 S155C-S290C; L410C-S466C; T54H, V296I pXCS725 S155C-S290C; L410C-S466C; T54H, V296I, V495Y pXCS726 S155C-S290C; L410C-S466C; S190I

pXCS727 R106C-V144C; L142C-N371C; T54H

pXCS728 R106C-V144C; L142C-N371C; V296I

pXCS729 R106C-V144C; L142C-N371C; V495Y

pXCS730 R106C-V144C; L142C-N371C; T54H, V495Y pXCS731 R106C-V144C; L142C-N371C; T54H, V296I pXCS732 R106C-V144C; L142C-N371C; T54H, V296I, V495Y pXCS733 R106C-V144C; L142C-N371C; S190I

pXCS734 S55C-L188C; L142C-N371C; T54H

pXCS735 S55C-L188C; L142C-N371C; V296I

pXCS736 S55C-L188C; L142C-N371C; V495Y

pXCS737 S55C-L188C; L142C-N371C; T54H, V495Y pXCS738 S55C-L188C; L142C-N371C; T54H, V296I pXCS739 S55C-L188C; L142C-N371C; T54H, V296I, V495Y pXCS740 S55C-L188C; L142C-N371C; S 190I

pXCS741 Q34C-G471C; S55C-L188C; T54H

pXCS742 Q34C-G471C; S55C-L188C; V296I

pXCS743 Q34C-G471C; S55C-L188C; V495Y

pXCS744 Q34C-G471C; S55C-L188C; T54H, V495Y pXCS745 Q34C-G471C; S55C-L188C; T54H, V296I pXCS746 Q34C-G471C; S55C-L188C; T54H, V296I, V495Y pXCS747 Q34C-G471C; S55C-L188C; S 190I

pXCS748 T103C-I148C; T54H

pXCS749 T103C-I148C; V296I

pXCS750 T103C-I148C; V495Y

pXCS751 T103C-I148C; T54H, V495Y

pXCS752 T103C-I148C; T54H, V296I

pXCS753 T103C-I148C; T54H, V296I, V495Y

pXCS754 T103C-I148C; S190I

pXCS781 S55C-L188C; T54H

pXCS782 S55C-L188C; V296I pXCS783 S55C-L188C; V495Y

pXCS784 S55C-L188C; T54H, V495Y

pXCS785 S55C-L188C; T54H, V296I

pXCS786 S55C-L188C; T54H, V296I, V495Y pXCS787 S55C-L188C; S190I

pXCS789 R106C-V144C; T54H

pXCS790 R106C-V144C; V296I

pXCS791 R106C-V144C; V495Y

pXCS792 R106C-V144C; T54H, V495Y

pXCS793 R106C-V144C; T54H, V296I

pXCS794 R106C-V144C; T54H, V296I, V495Y pXCS795 R106C-V144C; S 190I

pXCS797 L142C-N371C; T54H

pXCS798 L142C-N371C; V296I

pXCS799 L142C-N371C; V495Y

pXCS800 L142C-N371C; T54H, V495Y

pXCS801 L142C-N371C; T54H, V296I

pXCS802 L142C-N371C; T54H, V296I, V495Y pXCS803 L142C-N371C; S 190I

pXCS805 S155C-S290C; T54H

pXCS806 S155C-S290C; V296I

pXCS807 S155C-S290C; V495Y

pXCS808 S155C-S290C; T54H, V495Y

pXCS809 S155C-S290C; T54H, V296I

pXCS810 S155C-S290C; T54H, V296I, V495Y pXCS811 S155C-S290C; S190I

pXCS812 Q34C-G471C; S155C-S290C; T54H, S190I pXCS815 S155C-S290C; L410C-S466C; T54H, S 190I pXCS818 R106C-V144C; L142C-N371C; T54H, S190I pXCS821 S55C-L188C; L142C-N371C; T54H, S190I pXCS827 T103C-I148C; T54H, S 190I

pXCS828 T103C-I148C; S190I, V495Y pXCS830 S55C-L188C; T54H, S 190I

pXCS831 S55C-L188C; S190I, V495Y

pXCS833 R106C-V144C; T54H, SI 901

pXCS834 R106C-V144C; S190I, V495Y

pXCS836 L142C-N371C; T54H, S 190I

pXCS837 L142C-N371C; S 190I, V495Y

pXCS839 S155C-S290C; T54H, S190I

pXCS840 S155C-S290C; S190I, V495Y

pXCS889 T103C-I148C; S190I, V296I

pXCS890 T103C-I148C; T54H, S190I, V296I

pXCS891 S55C-L188C; S190I, V296I

pXCS892 S55C-L188C; T54H, S 190I, V296I

pXCS893 R106C-V144C; SI 901, V296I

pXCS894 R106C-V144C; T54H, S190I, V296I

pXCS895 L142C-N371C; S 190I, V296I

pXCS896 L142C-N371C; T54H, S 190I, V296I

pXCS897 S155C-S290C; S190I, V296I

pXCS898 S155C-S290C; T54H, S190I, V296I

Table 5. Exemplary RSV F Protein Mutants Comprising Engineered Disulfide Mutations and Electrostatic Mutations.

Mutant ID Mutations

pXCS755 Q34C-G471C; S155C-S290C; D486S

pXCS756 S 155C-S290C; L410C-S466C; D486S

pXCS757 R106C-V144C; L142C-N371C; D486S

pXCS758 S55C-L188C; L142C-N371C; D486S

pXCS759 Q34C-G471C; S55C-L188C; D486S

pXCS760 T103C-I148C; D486S

pXCS770 Q34C-G471C; S155C-S290C; D486S, E487Q

pXCS771 Q34C-G471C; S155C-S290C; D486S, D489S

pXCS772 Q34C-G471C; S155C-S290C; D486S, E487Q, D489S

pXCS776 T103C-I148C; D486S, E487Q pXCS777 T103C-I148C; D486S, D489S

pXCS778 T103C-I148C; D486S, E487Q, D489S

pXCS779 T103C-I148C; E92D

pXCS780 S55C-L188C; D486S

pXCS788 R106C-V144C; D486S

pXCS796 L142C-N371C; D486S

pXCS804 S 155C-S290C; D486S

pXCS883 S55C-L188C; L142C-N371C; D486S, E487Q

pXCS884 S55C-L188C; L142C-N371C; D486S, D489S

pXCS885 S55C-L188C; L142C-N371C; D486S, E487Q, D489S

Table 6. Exemplary RSV F Protein Mutants Comprising a Combination of Engineered

Disulfide Mutations, Cavity Filling Mutations, and Electrostatic Mutations.

Mutant ID Mutations

pXCS761 Q34C-G471C; S 155C-S290C; T54H, D486S, E487Q, D489S, V495Y pXCS762 Q34C-G471C; S 155C-S290C; T54H, V296I, D486S, E487Q, D489S pXCS763 Q34C-G471C; S155C-S290C; T54H, V296I, D486S, E487Q, D489S,

V495Y

pXCS764 Q34C-G471C; S55C-L188C; T54H, D486S, E487Q, D489S, V495Y pXCS765 Q34C-G471C; S55C-L188C; T54H, V296I, D486S, E487Q, D489S pXCS766 Q34C-G471C; S55C-L188C; T54H, V296I, D486S, E487Q, D489S,

V495Y

pXCS767 R106C-V144C; L142C-N371C; T54H, D486S, E487Q, D489S, V495Y pXCS768 R106C-V144C; L142C-N371C; T54H, V296I, D486S, E487Q, D489S pXCS769 R106C-V144C; L142C-N371C; T54H, V296I, D486S, E487Q, D489S,

V495Y

pXCS773 T103C-I148C; T54H, D486S, E487Q, D489S, V495Y

pXCS774 T103C-I148C; T54H, V296I, D486S, E487Q, D489S

pXCS775 T103C-I148C; T54H, V296I, D486S, E487Q, D489S, V495Y pXCS842 T103C-I148C; T54H, SI 901, D486S

pXCS843 T103C-I148C; S190I, D486S, V495Y

pXCS844 T103C-I148C; T54H, S190I, D486S, V495Y pXCS845 T103C-I148C; T54H, D486S

pXCS846 T103C-I148C; D486S, V495Y

pXCS847 T103C-I148C; S190I, D486S

pXCS848 T103C-I148C; V296I, D486S

pXCS849 T103C-I148C; T54H, V296I, D486S pXCS850 T103C-I148C; S190I, V296I, D486S pXCS851 T103C-I148C; T54H, S190I, V296I, D486S pXCS852 S55C-L188C; T54H, D486S

pXCS853 S55C-L188C; S190I, D486S

pXCS854 S55C-L188C; V296I, D486S

pXCS855 S55C-L188C; T54H, S190I, D486S pXCS856 S55C-L188C; T54H, V296I, D486S pXCS857 S55C-L188C; S190I, V296I, D486S pXCS858 S55C-L188C; T54H, S 190I, V296I, D486S pXCS859 R106C-V144C; T54H, D486S

pXCS860 R106C-V144C; S190I, D486S

pXCS861 R106C-V144C; V296I, D486S

pXCS862 R106C-V144C; T54H, S190I, D486S pXCS863 R106C-V144C; T54H, V296I, D486S pXCS864 R106C-V144C; S190I, V296I, D486S pXCS865 R106C-V144C; T54H, S190I, V296I, D486S pXCS866 L142C-N371C; T54H, D486S

pXCS867 L142C-N371C; S 190I, D486S

pXCS868 L142C-N371C; V296I, D486S

pXCS869 L142C-N371C; T54H, S 190I, D486S pXCS870 L142C-N371C; T54H, V296I, D486S pXCS871 L142C-N371C; S 190I, V296I, D486S pXCS872 L142C-N371C; T54H, S 190I, V296I, D486S pXCS873 S155C-S290C; T54H, D486S

pXCS874 S155C-S290C; S190I, D486S

pXCS875 S155C-S290C; V296I, D486S

pXCS876 S155C-S290C; T54H, S190I, D486S pXCS877 S155C-S290C; T54H, V296I, D486S

pXCS878 S155C-S290C; S190I, V296I, D486S

pXCS879 S155C-S290C; T54H, S190I, V296I, D486S

pXCS880 S55C-L188C; L142C-N371C; T54H, S190I, D486S, E487Q, D489S pXCS881 S55C-L188C; L142C-N371C; T54H, V296I, D486S, E487Q, D489S pXCS882 S55C-L188C; L142C-N371C; T54H, S190I, V296I, D486S, E487Q,

D489S

pXCS886 T103C-I148C; T54H, S190I, D486S, E487Q, D489S

pXCS888 T103C-I148C; T54H, S190I, V296I, D486S, E487Q, D489S

Example 2. RSV F Mutant Expression Vector Construction

A nucleic acid molecule encoding the native RSV A2 F0 polypeptide set forth in SEQ ID NO:1 having the naturally-occurring substitutions P102A, I379V and M447V was mutated using standard molecular biology techniques to encode a precursor polypeptide for a RSV F mutant having desired introduced amino acid mutations. The structure and components of the precursor polypeptide are set forth in Figure 1 and SEQ ID NO:3. The precursor polypeptide comprises a signal peptide (residues 1-25), F2 polypeptide (residues 26-109), pep27 polypeptide (residues 1 10-136), F1 polypeptide (residues137-513), T4 fibritin foldon (residues 518-544), thrombin recognition sequence (547-552), purification tags (HIS-tag (residues 553-558)), Strep tag II (residues 561-568), and linker sequences (residues 514-517, 545, 546, 559, and 560).

The protein sequence of SEQ ID NO:3 was submitted for mammalian codon optimization and synthesis by DNA2.0 (Menlo Park, CA). The synthesized gene product was introduced into a commercially available expression vector, pcDNA3.1/Zeo(+) (ThermoFisher Scientific, Waltham, MA) that had been modified to encode kanamycin resistance instead of ampicillin resistance and to encode the CAG promoter [Niwa, H., Yamamura, K., & Miyazaki, J., Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 108(2), 193-199, 1991] in place of the the CMV promoter. Mutagenic oligonucleotides were designed with the QuikChange Primer Design algorithm (Agilent Technologies, Santa Clara, CA), and all oligonucleotides were purchased from Integrated DNA Technologies (Coralville, IA). Nucleotide substitutions, insertions, and deletions were incorporated with the QuikChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent Technologies). Following digestion of the original plasmid template with Dpn\, the mutagenized F allele was re- amplified by polymerase chain reaction (PCR) with high-fidelity Q5 DNA polymerase (New England Biolabs, Ipswich, MA) or PrimeSTAR HS (Premix) DNA polymerase (Takara/Clontech, Mountain View, CA), and the resulting product was inserted into a mammalian expression vector with the NEBuilder Hi Fi DNA Assembly Kit (New England Biolabs) or with Gibson Assembly Master Mix (New England Biolabs). The presence of the intended sequence was confirmed by DNA sequencing. Plasmid DNA for transfection into Expi293 cells was purified with the QIAprep Spin MiniPrep Kit (Qiagen, Valencia, CA), or with the EndoFree Plasmid Mega Kit (Qiagen). For all commercial kits or reagents, procedures were performed according to the manufacturer's protocol.

Example 3. Expression and Purification of RSV F Protein Mutants

Protein for RSV F protein mutant evaluation was produced by transient transfection of Expi293F cells (ThermoFisher, Waltham, MA) with DNA constructs assembled and prepared as described in Example 2. Transient transfections were carried out according to the manufacturer's protocol.

Clarified cell culture was concentrated 5-10 fold using tangential flow filtration, followed by buffer exchange into a buffer suitable for capture on a Ni-IMAC column. The conditioned cell culture medium containing soluble F protein was loaded onto a Ni-IMAC column. The product was eluted using increasing concentrations of imidazole. The fractions containing product were pooled and then loaded on a Strep- Tactin column (IBA Life Sciences, Goettingen, Germany). The product was eluted from the Strep-Tactin column using increasing concentrations of desthiobiotin. Fractions containing product were pooled and dialysed into the final storage buffer. The crude culture supernatants and purified proteins were used for in vitro and in vivo assays described herein.

Example 4: Stability of RSV F Protein Mutants

The stability of the designed RSV F protein mutants was evaluated by stress testing and storage stability experiments. During thermal stress testing, crude culture supernatants of the designed mutants were incubated for 1 hour at 50 °C or 60 °C and probed with the pre-fusion specific monoclonal antibody D25 and the pre-fusion trimer- specific antibody AM14 in ELISA assays. The ratio of the antibody reactivity of the stressed versus unstressed sample is defined as the stress resistance parameter. More stable mutants are expected to have higher stress resistance. During storage stability assays, pre-fusion antibody reactivity in crude culture supernatants after 1 week of storage at 4 °C was compared to the reactivity of the fresh culture supernatants. The activity ratio is defined as storage stability of the mutant.

Results are presented in Tables 7A-7C and 8A-8C. Stress resistance was calculated as fractional pre-fusion specific mAb reactivity remaining after stress ("NR" - No Reactivity was detected, "ND" - Not Determined). The most stabilizing amino acid substitutions identified from screens of the individual engineered disulfide mutants, cavity filling mutants and electrostatic mutants (pre-fusion stability defined by D25 reactivity remaining after thermal stress) were combined into the combination mutants. These combination mutants were also subjected to the thermal stress and probed with two monoclonal antibodies - D25 (pre-fusion-specific) and AM14 (pre-fusion trimer- specific). The pre-fusion trimer-specific quaternary epitope recognized by the AM14 antibody is significantly more sensitive to thermal stress than the D25 epitope (Table 8B). No significant AM14 reactivity was retained after 60 °C stress by any of the combination mutants, yet most of the mutants retained D25 reactivity after the 60 °C thermal stress. This observation provides important evidence that the AM14 antibody is a much more precise indicator of pre-fusion structure loss, and particiularly loss of the pre-fusion trimeric state.

Table 7A. Thermal and storage stability for mutants containing engineered disulfides

Mutant ID 50 °C stress 60 °C stress Storage stability

resistance, D25 resistance, D25

pXCS507 0.45±0.09 <0.05 0.58

pXCS519 1.07±0.18 NR 0.75

pXCS524 0.64±0.08 NR 1.00

pXCS544 0.52±0.04 NR 0.76

pXCS545 0.97±0.12 0.52±0.13 low expression

pXCS546 1.11 ±0.09 0.43±0.09 low expression

pXCS547 1.00±0.04 0.49±0.11 0.96

pXCS548 1.04±0.08 0.45±0.10 low expression

pXCS549 0.66±0.09 0.24±0.07 1.03

pXCS550 0.83±0.02 0.19±0.04 1.06

pXCS551 0.72±0.08 NR low expression

pXCS553 1.12±0.08 0.33±0.03 1.31 pXCS554 2.08±0.19 0.41±0.08 low expression

pXCS596 0.86±0.09 0.02 0.80

pXCS597 0.50±0.05 0.05 1.07

pXCS598 0.75±0.03 0.13±0.03 1.09

pXCS599 0.68±0.10 0.02 0.95

pXCS600 0.87±0.09 0.15±0.04 0.90

pXCS601 0.71±0.08 0.04 0.57

pXCS602 0.75±0.03 0.06±0.01 0.58

pXCS603 0.67±0.06 0.12±0.02 0.40

pXCS604 0.74±0.03 ND low expression

pXCS605 0.71±0.04 0.16±0.03 0.00

pXCS606 0.76±0.06 NR low expression

pXCS607 NR NR low expression

pXCS608 0.62±0.14 NR 0.00

pXCS609 0.76±0.08 0.08±0.01 0.28

pXCS610 0.34±0.06 NR 0.00

pXCS611 0.35±0.11 NR low expression

pXCS612 NR NR low expression

pXCS613 0.3 NR 0.00

pXCS617 1.04±0.04 0.43±0.04 0.50

pXCS618 1.01 ±0.07 0.30±0.08 low expression

pXCS619 1.04±0.08 0.34±0.07 0.57

pXCS620 ND ND low expression

pXCS621 0.87±0.03 0.14±0.02 0.62

pXCS622 ND ND low expression

pXCS623 0.91±0.03 0.26±0.03 low expression

pXCS624 0.87±0.06 0.18±0.04 0.67

pXCS628 0.83±0.04 0.16±0.02 0.71

pXCS629 1.01±0.06 0.04±0.03 1.00

pXCS630 0.61 ±0.04 NR 0.00

Table 7B. Thermal and storage stability of mutants containing cavity filling mutations

Table 7C. Thermal and storage stability of mutants containing electrostatic mutations

Mutant ID 50 °C stress 60 °C stress Storage

resistance, D25 resistance, D25 stability

pXCS658 1.05±0.05 0.30±0.03 0.71 pXCS660 1.03±0.03 NR 0.94

pXCS664 0.87±0.03 NR 0.76

Table 8A. Thermal and storage stability of mutants containing double combination mutations

Table 8B. Thermal and storage stability for mutants containing triple combination mutations

Stress resistance was calculated as fractional pre-fusion-specific mAb (D25) and pre- fusion trimer-specific mAb (AM14) reactivity remaining after stress. "NR" - No Reactivity was detected, "ND" - Not Determined.

Mutant ID 50 °C 60 °C stress Storage

resistance, resistance, stability

AM14 D25

pXCS734 0.61 0.31±0.00 1.09±0.06

pXCS735 0.70 0.37±0.04 0.73±0.13

pXCS738 0.72 0.37 0.58±0.10

pXCS740 0.69 0.41±0.06 1.03±0.1 1

pXCS749 ND 0.00±0.10 0.65±0.15

pXCS752 ND 0.00±0.10 0.62±0.05

pXCS754 ND 0.00±0.10 1.19±0.06 pXCS758 0.70 0.22±0.04 1.32±0.03 pXCS760 ND 0.82±0.04 0.66±0.22 pXCS774 1.00±0.16 0.74±0.03 0.74±0.10 pXCS776 1.40±0.21 1.08±0.09 0.30±0.16 pXCS777 1.03±0.17 1.17±0.05 0.54±0.21 pXCS778 1.14±0.18 0.36±0.07 0.34±0.06 pXCS779 0.85±0.15 O.OOiO.OO 0.51±0.08 pXCS780 0.70±0.17 0.11±0.00 0.82±0.08 pXCS781 0.88±0.17 0.00±0.10 0.94±0.05 pXCS782 0.55±0.18 0.07±0.01 0.67±0.13 pXCS785 1.01 ±0.18 0.00±0.10 1.08±0.18 pXCS787 0.82±0.17 0.14±0.01 0.82±0.19 pXCS804 0.79±0.11 0.19±0.01 0.98±0.08 pXCS805 0.72±0.15 0.24±0.01 0.78±0.24 pXCS806 0.40±0.13 0.16±0.03 0.79±0.13 pXCS809 0.84±0.12 0.29±0.04 0.82±0.11 pXCS811 0.67±0.10 0.30±0.04 1.03±0.16 pXCS827 0.88±0.07 0.06 0.50±0.10 pXCS830 1.01 ±0.15 0.14±0.02 0.53±0.10 pXCS839 0.82±0.06 0.55±0.03 0.57±0.14 pXCS842 0.87±0.14 0.88±0.02 0.57±0.10 pXCS845 1.00±0.11 1.11+0.11 0.50±0.20 pXCS847 0.92±0.14 0.74±0.01 0.54±0.11 pXCS848 1.24±0.12 1.00±0.03 0.15±0.29 pXCS849 0.92±0.30 1.08±0.10 0.59±0.14 pXCS850 0.88±0.22 0.70±0.01 0.75±0.16 pXCS851 0.95±0.09 0.84±0.05 0.79±0.10 pXCS852 0.86±0.13 0.78±0.02 0.89±0.03 pXCS853 0.98±0.10 0.10±0.01 0.53±0.11 pXCS854 0.93±0.08 0.08±0.01 0.55±0.14 pXCS855 0.94±0.10 0.81±0.07 0.53±0.10 pXCS856 0.97±0.10 0.78±0.00 0.59±0.12 pXCS857 0.90±0.14 0.11 0.91±0.07 pXCS858 0.95±0.10 0.78±0.08 0.94±0.06 pXCS873 0.77±0.22 1.11±0.01 0.36±0.13 pXCS874 0.93±0.20 0.46±0.01 0.78±0.19 pXCS875 0.62±0.16 0.23±0.00 0.50±0.10 pXCS876 0.90±0.20 1.06±0.04 0.52±0.10 pXCS877 0.49±0.20 1.09±0.00 0.41±0.09 pXCS878 0.66±0.16 0.40±0.04 0.47±0.16 pXCS879 0.82±0.20 0.84±0.04 0.50±0.20

pXCS880 0.68±0.20 0.87±0.07 0.46±0.15

pXCS881 0.68±0.23 0.92±0.03 0.47±0.26

pXCS882 0.75±0.21 0.94±0.01 0.44±0.16

pXCS883 0.81 ±0.13 0.40±0.01 0.47±0.24

pXCS884 0.69±0.15 0.43±0.05 0.45±0.17

pXCS885 0.60±0.21 0.47±0.01 0.45±0.13

pXCS886 0.89±0.13 0.70±0.02 0.45±0.14

pXCS888 0.86±0.14 0.81±0.05 0.43±0.10

pXCS889 0.99±0.14 0.00±0.10 0.86±0.10

pXCS890 0.72±0.34 0.10±0.03 1.08±0.05

pXCS891 0.93±0.06 0.08±0.01 1.08±0.06

pXCS892 0.95±0.13 0.18±0.01 1.09±0.04

pXCS897 0.60±0.28 0.42±0.04 0.67±0.37

pXCS898 0.94±0.46 0.48±0.05 0.81±0.19

DS-Cav1 0.60 0.22 0.90

Table 8C: Thermal stability of a mutant devoid of a foldon trimerization domain

(pXCS899)

Example 5: Conformational Integrity of RSV F Protein Mutants Evaluated with a Panel of Monoclonal Antibodies.

The purpose of the study was to identify RSV F protein mutants that maintain the structural integrity of a RSV-F pre-fusion conformation, including a pre-fusion trimer conformation and association. Each mutant was tested against a panel of reference mAbs that includes two site ø- and pre-fusion-specific mAbs (AM22 and D25), one mAb that binds an epitope close to site II is also pre-fusion-specific (MPE8), one site II- specific mAb that binds both pre-fusion and post-fusion F (palivizumab, Synagis ® ), one pre-fusion trimer-specific mAb (AM 14) and a site IV-specific antibody that binds both pre-fusion and post-fusion F (101 F). RSV F protein mutants maintained in a pre-fusion conformation were expected to bind all the reference antibodies tested. The OCTET HTX (ForteBio, Pall Corporation, Port Washington, NY) instrument, which measures kinetics of real-time biomolecular interactions, was used to evaluate the antibody reactivity for each mutant. Experiments were conducted with 1000 rpm agitation, at 30 °C temperature in 96-well black plates (Greiner Bio-One, Monroe, NC) with a final volume of 200 μΙ_ per well. Anti-HIS biosensor tips were equilibrated in phosphate-buffered saline (PBS), 2% bovine serum albumin (BSA), 0.05% Tween 20 (PBT) for 10 min before commencing binding measurements. HIS-tagged mutant proteins were captured by anti-HIS biosensors for 5 min. Baseline was established in PBT for 3 min before the association step with 20 nM antibodies in PBT for 10 min. Dissociation of all antibodies was allowed for 20 min in the same wells used to establish baseline. OCTET data analysis software (version 8.2, Pall Corp.) was used for kinetic analysis, based on curve fitting of association and dissociation steps, and assuming 1 : 1 reversible binding interaction. Binding responses (nm shift) for each of the mutants with various reference monoclonal antibodies are presented in Tables 9A and 9B. A response value < 0.10 was considered negative and is the limit of detection (LOD) for this assay. Values≥ 0.10 were considered positive and indicated antibody binding to individual mutants. Varying degrees of binding were observed across the mutants and with each antibody. However, the majority of combination mutants were bound by 101 F and Synagis whereas mutants such as pXCS735 and pXCS776 for example showed loss of binding to at least one pre-fusion-specific mAb. Loss of binding indicated lack of an intact pre-fusion conformation.

Table 9A. OCTET Results for Pre-Fusion-Specific Antibodies

Response (nm shift)

Mutant ID AM22 D25 MPE8 AM 14 pXCS734 0.284 0.590 0.818 0.931 pXCS735 LoD 0.302 0.375 0.442 pXCS738 0.273 0.545 0.741 0.899 pXCS740 0.172 0.422 0.546 0.524 pXCS749 LoD 0.153 0.206 0.178 pXCS752 0.234 0.463 0.703 0.641 pXCS754 0.298 0.562 0.676 0.816 pXCS758 0.273 0.589 0.816 0.772 pXCS760 0.121 0.176 0.151 0.203 pXCS774 0.340 0.595 0.795 0.738 pXCS776 LoD LoD 0.127 LoD pXCS777 0.121 0.201 0.270 0.285 pXCS778 LoD LoD LoD 0.121 pXCS779 0.125 0.200 0.232 0.329 pXCS780 0.290 0.495 0.608 0.684 pXCS781 0.423 0.666 0.876 1.053 pXCS782 0.222 0.378 0.513 0.580 pXCS785 0.465 0.727 0.937 0.955 pXCS787 0.225 0.464 0.621 0.445 pXCS804 0.267 0.432 0.605 0.522 pXCS805 0.173 0.282 0.443 0.355 pXCS806 0.152 0.252 0.347 0.330 pXCS809 0.185 0.281 0.392 0.444 pXCS811 0.322 0.490 0.638 0.714 pXCS827 0.450 0.692 0.880 0.881 pXCS830 0.465 0.707 0.923 0.878 pXCS839 0.390 0.593 0.782 0.731 pXCS842 0.493 0.780 0.932 0.930 pXCS845 0.314 0.495 0.699 0.653 pXCS847 0.484 0.732 0.871 0.935 pXCS848 0.109 0.188 0.266 0.235 pXCS849 0.430 0.668 0.908 0.886 pXCS850 0.517 0.839 1.038 1.018 pXCS851 0.508 0.824 1.025 1.027 pXCS852 0.565 0.881 1.126 1.144 pXCS853 0.484 0.746 0.905 0.883 pXCS854 0.453 0.693 0.886 0.884 pXCS855 0.523 0.778 0.982 0.992 pXCS856 0.568 0.827 1.063 1.094 pXCS857 0.563 0.890 1.091 1.110 pXCS858 0.547 0.840 1.061 1.097 pXCS873 0.192 0.398 0.537 0.434 pXCS874 0.444 0.681 0.851 0.771 pXCS875 0.205 0.459 0.623 0.540 pXCS876 0.268 0.523 0.702 0.600 pXCS877 0.213 0.419 0.573 0.525 pXCS878 0.324 0.666 0.812 0.833 pXCS879 0.351 0.680 0.826 0.804 pXCS880 0.213 0.563 0.684 0.505 pXCS881 0.178 0.556 0.763 0.623 pXCS882 0.219 0.516 0.691 0.463 pXCS883 0.233 0.553 0.704 0.484 pXCS884 0.323 0.576 0.784 0.714 pXCS885 0.105 0.327 0.408 0.239 pXCS886 0.443 0.715 0.863 0.872 pXCS888 0.434 0.726 0.878 0.875 pXCS889 0.477 0.720 0.889 0.870 pXCS890 0.538 0.778 0.999 0.994 pXCS891 0.461 0.719 0.920 0.828 pXCS892 0.542 0.756 1.032 1.000 pXCS897 0.406 0.605 0.745 0.740 pXCS898 0.416 0.614 0.816 0.795

DS Cav1 0.469 0.714 0.810 0.842

Note: LoD = limit of c etection, ND = not determined

Table 9B. OCTET Results for Antibodies 101 F and Synagis

Response (nm shift)

Mutant ID 101 F Synagis

pXCS734 0.843 0.653

pXCS735 0.813 0.560

pXCS738 0.774 0.519

pXCS740 0.759 0.61 1

pXCS749 0.629 0.480

pXCS752 0.739 0.520

pXCS754 0.665 0.394

pXCS758 0.743 0.431

pXCS760 0.345 0.334

pXCS774 0.742 0.530

pXCS776 0.139 0.123

pXCS777 0.389 0.329

pXCS778 0.1 18 0.124

pXCS779 0.340 0.286

pXCS780 0.623 0.471

pXCS781 0.786 0.536

pXCS782 0.615 0.468

pXCS785 0.763 0.580

pXCS787 0.615 0.547

pXCS804 0.788 0.574 pXCS805 0.810 0.598 pXCS806 0.865 0.621 pXCS809 0.687 0.554 pXCS811 0.768 0.606 pXCS827 0.973 0.898 pXCS830 0.901 0.839 pXCS839 0.900 0.880 pXCS842 0.942 0.853 pXCS845 0.798 0.782 pXCS847 0.941 0.960 pXCS848 0.400 0.394 pXCS849 0.999 0.991 pXCS850 1.040 1 .076 pXCS851 0.991 1 .002 pXCS852 1.072 1 .014 pXCS853 0.842 0.878 pXCS854 0.851 0.857 pXCS855 0.914 0.894 pXCS856 0.957 0.935 pXCS857 1.016 1 .056 pXCS858 0.981 1 .010 pXCS873 0.809 0.798 pXCS874 0.881 0.844 pXCS875 0.912 0.833 pXCS876 0.820 0.727 pXCS877 0.842 0.823 pXCS878 0.832 0.776 pXCS879 0.838 0.725 pXCS880 0.693 0.735 pXCS881 0.812 0.786 pXCS882 0.651 0.714 pXCS883 0.719 0.807 pXCS884 0.798 0.792 pXCS885 0.666 0.737 pXCS886 0.807 0.853 pXCS888 0.839 0.873 pXCS889 1.020 0.946 pXCS890 0.999 0.949 pXCS891 0.919 0.851 pXCS892 0.960 0.889 pXCS897 0.939 0.901

pXCS898 0.802 0.773

DS Cav1 0.821 0.704

Example 6. Molecular weight and size distribution analysis of selected profusion RSV F mutants.

Stabilized pre-fusion F mutants were analyzed by SDS-PAGE followed by western blotting with the RSV F-specific monoclonal antibody L4 [Walsh EE, Cote PT, Fernie BF et al. Analysis of the Respiratory Syncytial Virus Fusion Protein Using Monoclonal and Polyclonal Antibodies. J. Gen. Virol. 76: 505-513, 1986.]. Figure 2A shows SDS-PAGE mobility profiles for representative mutants pXCS847, pXCS851 and pXCS852 and DS-Cav1. In all cases a major band with an apparent molecular weight between 55 and 60 kDa, as expected for the monomeric RSV F mutants, was present under non-reducing conditions. The observed slight change in mobility between DS- Cav1 and mutants pXCS847, pXCS851 , pXCS852 could be due to the nature of the individual disulfide bonds and the resulting effect on the overall compactness of the protein in the unfolded state and accessibility to SDS. Figure 2B describes molecular weights and size distributions of the mutants pXCS847, pXCS851 , pXCS852, and DS-Cav1 in solution under native conditions. The molecular weights and size distributions were estimated from sedimentation velocity analysis using the analytical ultracentrifuge. Purifed protein was centrifuged at 35,000 rpm, at 20 °C, and UV absorbance across the sample cells was monitored at 280 nm. Data were fit to the continuous c(s) distributions, assuming the same frictional ratio for all of the sedimenting species in the cell. All proteins sedimented with sedimentation coefficient of ~ 7.6 S and apparent molecular weight ot -180 kDa, indicating that purified proteins are trimeric in solution. The expected molecular weight of the RSV F trimer, calculated from its amino acid composition is 171 kDa. Example 7. Circular Dichroism Spectroscopy to Characterize Secondary and Tertiary Structure Integrity of the Designed RSV F Protein Mutants.

Both far- and near-UV CD spectra were recorded on a Jasco J-810 automated recording spectropolarimeter, equipped with a Peltier-type 6-position temperature- controlled cell holder. Far-UV CD spectra were recorded at 0.10-0.12 mg/ml protein concentration in 1x PBS, pH 7.4, in 1 mm rectangular quartz cells between 200 and 260 nm every 0.1 nm at 100 nm/min, with 3 nm band width. Five spectra were collected and averaged for each sample. Near-UV CD spectra were recorded at 0.4-0.5 mg/ml protein concentration in 1x PBS, pH 7.4, in 1 cm rectangular quartz cells between 250 and 320 nm every 0.1 nm at 100 nm/min, with 3 nm band width. Five spectra were collected and averaged for each sample as well. Data were corrected for the buffer baseline contributions and normalized to either mean residue ellipticity (far-UV CD) or molar ellipticity (near-UV CD), using established relationships. The results are shown in Figures 3A and 3B. Both far- and near-UV CD data show that all proteins retain well defined secondary and tertiary structure. Furthermore, obvious similarity of the far- and near-UV CD spectra indicates that overall secondary and tertiary structures of the mutants are similar, and structural integrity of the proteins is preserved. Example 8. Structural Stability of the Designed RSV F Protein Mutants

The structural stability of the purified RSV F protein mutants was characterized using differential scanning calorimetry (DSC). DSC experiments were conducted on a VP-DSC microcalorimeter (MicroCal, Northampton, MA). Protein concentration was determined spectrophotometrically and corrected for light scattering contribution. Protein samples in 1x PBS, pH 7.4 at 0.2-0.5 mg/mL (1.0-2.4 micromolar trimer concentration) were scanned from 10 °C to 80 °C at 90 °C/hr, with a response time of 8 seconds and pre-scan equilibration time of 5 minutes. Depending on the number of the observed transitions in thermograms, heat capacity profiles were fit to the 2- or 3-state unfolding models using Origin 7.0 software provided by the DSC manufacturer. Melting temperatures of the first observable transitions are given as melting temperatures of each mutant.

DSC data show almost all of the designed mutants are more stable than DS- Cav1 (Table 10). Melting temperatures (defined as DSC maxima of the first observable DSC peak in each experiment, Table 10) of all mutants (with the exception of pXCS738) are higher than DS-Cav1 by up to 18 °C. DSC data show that computational protein design described in Example 1 succeeded in producing significantly more stable RSV F mutants that also retain a pre-fusion conformation (Octet data, Example 5).

Table 10. Melting temperatures of RSV F protein mutants.

Melting temperatures were calculated from the DSC experiments (as described in Example 8).

Example 9. Mechanism of the Pre-Fusion Trimer Conformation Loss.

In order to characterize a specific structural pathway leading to loss of the pre- fusion conformation, we subjected purified DS-Cav1 to thermal stress testing. The purified glycoprotein (0.5 mg/ml in 1x PBS, pH 7.4) was incubated at 50 °C and 60 °C for 30, 60 and 120 minutes. Binding of the pre-fusion-specific mAb D25 and the pre- fusion trimer-specific mAb AM 14 to the stressed protein was assessed via ELISA experiments as described in Example 4). The structural integrity of the protein was characterized via CD and DSC as described in Examples 7 and 8, respectively. The results are shown in Figures 4-6.

The relative AM 14 and D25 reactivities of the stressed samples are shown in Figure 4. Both D25 and AM 14 reactivity of DS-Cav1 remain largely unchanged after up to 2 hours of incubation at 50 °C. In contrast, reactivity to both pre-fusion specific antibodies is progressively lost during 60 °C treatment. Furthermore, AM 14 reactivity is lost more quickly than D25 reactivity, indicating that the quaternary pre-fusion AM 14 epitope is disrupted earlier than the D25 epitope. The result highlights an advantage of the AM 14 antibody as a probe for the detection of the pre-fusion trimer conformation loss.

DSC assessment of the unstressed DS-Cav1 (Figure 5) shows that the protein undergoes a reversible conformational transition between 50 °C and 60 °C. This transition does not correspond to the loss of the pre-fusion conformation, which is irreversible. Furthermore, this transition does not result from the global unfolding of the protein as DS-Cav1 retains defined far- and near-UV CD spectra (Figures 6A and 6B), indicating that the protein remains folded under these conditions. The most likely explanation of the observed DSC transition is reversible loss of the quaternary structure of the protein, i.e., at least local dissociation of the pre-fusion trimer. This dissociation is required for the initial steps toward loss of the pre-fusion conformation, since neither AM 14 nor D25 reactivity is appreciably lost before that transition takes place (Figure 4, ELISA data). These data emphasize the importance of trimer integrity for the stability of the pre-fusion conformation. Trimer integrity can only be confirmed by the reactivity against quaternary epitope-specific antibody AM14, but not the site 0 specific antibody D25.

These data suggest that the loss of the pre-fusion conformation occurs via the following pathway:

N 3 o 3N→ 3U→ U n

Native trimer (N 3 ) reversibly dissociates into native monomers (3N), which slowly and irreversibly lose pre-fusion conformation (3U) and ultimately aggregate, forming high molecular mass species (U n ). The trimer dissociation, in turn, means that DS-Cav1 will display protein concentration-dependent resistance against thermal stress: a decrease in total protein concentration will promote trimer dissociation, which, in turn, will accelerate pre-fusion conformation loss. In contrast, stabilized pre-fusion F mutants (e.g. 851) should show little to no concentration dependence of their stress resistance, provided they were made sufficiently stable. Figures 7A and 7B provide further experimental evidence to support this hypothesis. Protein samples were serially diluted and subjected to 50 °C stress for one hour. AM14 and D25 reactivities remaining after stress in relation to the control (unstressed) samples were assessed in ELISA assays. Stress resistance of DS-Cav1 shows pronounced dependence on protein concentration, as determined by either AM14 (Figure 7A) or D25 (Figure 7B) antibody reactivity. In contrast, stress resistance of the stabilized mutants pXCS851 and pXCS898 remains largely unchanged over the same protein concentration range.

Example 10: Stabilized RSV F Protein Mutants in Pre-Fusion Conformation Elicit Neutralizing Antibody Responses in Mice.

Female Balb/c mice were immunized with either 0.025 μg or 0.25 μg of either DS-Cav1 , wild-type F, F mutants pXCS852, pXCS855, pXCS830, pXCS853, pXCS780, pXCS898, pXCS851 , pXCS874, pXCS881 , pXCS738, or pXCS847, with or without 0.1 mg per dose aluminum phosphate as adjuvant. Immunizations were given intramuscularly at weeks 0 and 3 (Table 11). Pre (week 0) and post-dose 2 (PD2, week 5) sera were evaluated in an RSV subfamily A neutralization assay as described with minor modifications [Eyles JE, Johnson JE, Megati S, et al. Nonreplicating vaccines can protect african green monkeys from the Memphis 37 strain of respiratory syncytial virus. J Inf Dis. 208(2):319-29, 2013.]. Briefly, neutralizing antibody titers were determined as the serum dilution factor resulting in a 50% reduction in infectious units. Results are reported as the geometric mean titer from 10 mice per group. Sera with no detectable virus neutralization were assigned a titer of 20. Fold rise in 50% geometric mean titers are reported as the ratio of post-dose 2 (PD2) to pre-immunization titers within each group.

Table 11. Immunization schedule of the murine immunogenicity study comparing pre- fusion F mutants.

All mutants tested elicited a neutralizing antibody response following two immunizations in mice (Table 12). Overall, antibody titers were consistenly higher at both antigen doses for mutants 852, 830, 851 , and 847, demonstrating that these mutants were the more immunogenic forms of a stabilized RSV pre-fusion F glycoprotein (Table 12 and 13, Figure 8). Table 12. Geometric mean 50% neutralizing antibody titers of Balb/c mice following immunization with pre-fusion F mutants.

Table 13. Fold rise in 50% neutralizing antibody titers of Balb/c mice following immunization with pre-fusion F mutants.

Comparison of the PD2 50% neutralizing antibody titers with their corresponding mutants' in vitro characterization data shows correlation between the PD2 neutralizing antibody titer and the AM 14 thermal stress resistance (Figure 9). This result suggests that AM 14 binding, which is specific for the pre-fusion trimeric state, correlates with the mutants' immunogenicity.

Example 11. RSV F Mutants Comprising Introduced Cysteine Mutations in the HRB Region

11A. Preparation of RSV F Mutants Comprising Introduced Mutations in the HRB

Region

Representative RSV F mutants that comprise introduced cysteine mutations in the HRB region (approximately amino acids 476 - 524 of the F0 polypeptide) are provided in Table 14, where the specific mutations in this region in each mutant are noted. In addition to the mutations in the HRB region, each of these mutants also includes introduced mutations S55C, L188C, T54H, and D486S. These mutants were prepared by methods similar to those described in Examples 1-3. In brief, a precursor polypeptide consisting of 545 amino aicds was prepared for each mutant, which comprises: (1) amino acids 1-529 of the sequence of SEQ ID NO: 1 except for a deletion of 41 amino acids between residues 104 and 144; (2) the introduced mutations (S55C, L188C, T54H, and D486S) outside of the HRB region, (3) a thrombin protease recognition sequence; (4) a foldon domain; (5) a HIS-tag; (6) a Streptag II; (7) linker sequences; and (8) the introduced cysteine mutations as noted. The signal peptide, which comprises amino acids 1-25, was cleaved from the precursor during the expression process. The foldon domain was also cleaved from the mutants, which was achieved by digestion with 500ug/ml bovine alpha-thrombin (HTI) overnight at room termaperature after the expression process.

Table 14: Exemplary RSV F protein mutants comprising engineered disulfide mutations in the HRB region

SEQ ID NO

of Amino Acid

Mutant ID Mutations in HRB Region Sequence of

Precursor

Polypeptide pXCS1106 K508C, S509C 272 pXCS1107 N515C, V516C 273 pXCS1108 T522C, T523C 274 pXCS1109 K508C, S509C, N515C, V516C 275 pxcsmo K508C, S509C, T522C, T523C 276

PXCS11 1 1 N515C, V516C, T522C, T523C 277 pXCS1112 K508C, S509C, N515C,V516C, T522C, T523C 278

11B. Stability of RSV F Mutants Comprising Introduced Cysteine Mutations in the HRB Region

Stability of RSV F Mutants provided in Table 14 was assessed according to the method described in Example 8 and Example 4. Results are presented in Tables 15 and 16, respectively.

Table 15: Melting temperatures of RSV F protein mutants

Table 16: Thermal stability for mutants comprising engineered disulfide mutations

Stress resistance was calculated as fractional pre-fusion specific mAb reactivity remaining after stress. Purified pXCS1106 protein from which the foldon had been cleaved was diluted into conditioned medium at a concentration of 12 μg/mL.

Mutant ID 50 °C 60 °C stress 50 °C 60 °C stress

resistance, resistance, resistance, resistance,

AM14 AM14 D25 D25

pXCS1106 1.041 0.720 1.080 1.019 Listing of Raw Sequences

SEQ ID NO: 1. Amino Acid Sequence of the Full Length FO of Native RSV A2 (GenBank GI: 138251 ; Swiss Prot P03420)

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPPTNNRARRELPRFMNYT LNNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKA VVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREF S VNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLA YVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAE TCKVQSNRVFCDTMNSLTLPSEINLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSC YGKTKCTASNKNRGIIKTFSNGCDYVSNKGMDTVSVGNTLYYVNKQEGKSLYVKGEPI INFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNIMITTIIIVI IVILL S LIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN SEQ ID NO: 2. Amino Acid Sequence of the Full Length FO of Native RSV B (18537 strain; GenBank Gl: 138250; Swiss Prot P13843)

MELLIHRSSAIFLTLAVNALYLTSSQNITEEFYQSTCSAVSRGYFSALRTGWYTSVITIE

LSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNY TI

NTTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNK AVV SLSNGVSVLTSKVLDLKNYINNRLLPIVNQQSCRISNIETVIEFQQMNSRLLEITREFSV N AGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYV VQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTC KVQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYG KTKCTASN KN RG 11 KTFSNGCDYVSN KG VDTVSVG NTLYYVN KLEG KN LYVKG EPI I NY YDPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNIMITTIIIVIIVV LLS LIAIGLLLYCKAKNTPVTLSKDQLSGINNIAFSK

SEQ ID NO: 3. RSV A2 F Ectodomain with foldon

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE LS NIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKI KSALLSTNKAVV SLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSV N AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETC KVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCY GKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIIN FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDGE WVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

SEQ ID N0:4: RSV RSVA/Homo sapiens/USA/LA2_21/2013 F (Ontario) Native Amino Acid Sequence (GenBank Gl: AHX57185):

MELPILKTNAITTILAAVTLCFASSQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE LS NIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPAANSRARRELPRFMNYTLN NTKNTNVTLSKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKI KSALLSTNKAVVS LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN A GVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVV QLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCK VQSNRVFCDTMNSLTLPSEVNLCNIDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGK TKCTASN KN RGI I KTFSNGCDYVSN KGVDTVSVGNTLYYVN KQEGKSLYVKGEPI I N FY DPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVIL LALIA VGLLLYCKARSTPVTLSKDQLSGINNIAFSN SEQ ID NO:5: RSV RSVA/Homo sapiens/USA/LA2_21/2013 F Ectodomain with foldon:

MELPILKTNAITTILAAVTLCFASSQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE LS

NIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPAANSRARRELPRFMNYTL N

NTKNTNVTLSKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKI KSALLSTNKAVVS LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN A GVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVV QLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCK VQSNRVFCDTMNSLTLPSEVNLCNIDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGK TKCTASN KN RGI I KTFSNGCDYVSN KGVDTVSVGNTLYYVN KQEGKSLYVKGEPI I N FY DPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDGEW VLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK SEQ ID NO:6: RSV RSVB/Homo sapiens/PER/FPP00592/2011 F (Buenos Aires) Native Amino Acid Sequence (GenBank Gl: AHV80758):

MELLIHRSSAIFLTLAINALYLTSSQNITEEFYQSTCSAVSRGYFSALRTGWYTSVITIE LS NIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTIN TTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVS LSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVN A GVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVV QLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCK VQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGK TKCTASN KN RGI I KTFSNGCDYVSN KGVDTVSVGNTLYYVN KLEGKN LYVKGEPI I NYY DPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNIMITAIIIVIIVVL LSLI AIGLLLYCKAKNTPVTLSKDQLSGINNIAFSK

SEQ ID NO:7: RSV RSVB/Homo sapiens/PER/FPP00592/2011 F Ectodomain with foldon:

MELLIHRSSAIFLTLAINALYLTSSQNITEEFYQSTCSAVSRGYFSALRTGWYTSVITIE LS NIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTIN TTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVS LSNGVSVLTSKVLDLKNYINNQLLPIVNQQSCRISNIETVIEFQQKNSRLLEITREFSVN A GVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYVV QLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCK VQSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGK TKCTASN KN RGI I KTFSNGCDYVSN KGVDTVSVGNTLYYVN KLEGKN LYVKGEPI I NYY DPLVFPSDEFDASISQVNEKINQSLAFIRRSDELLSAIGGYIPEAPRDGQAYVRKDGEW VLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

SEQ ID NO:8: Nucleotide Sequence Encoding Pre-cursor Polypeptide of pXCS738:

atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcacc ttctgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtaccactg tgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcgaa ggtcaagctgattaagca ggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacccc tgccactaacaacagag ctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaacg tgaccctgtccaagaagc gcaagcggaggttcctgggattcctgtgtggcgtgggctccgcaatcgcatccggagtgg ccgtgtccaaagtgctgcatc tggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtggtgt ccctgagcaacggagtca gcgtgtgtacatccaaggtcctggacctcaagaactacatcgacaagcagctgttgccca tcgtcaacaagcagtcatgc tcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctcgaa attacccgggagttttccgtg aacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctcagc ctcatcaacgatatgccgatc actaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcctac tcaatcatgtcaattatcaa ggaggaaatcctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacaccctg ctggaagctgcacactagcc cactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatcggg gctggtattgcgataatgct gggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtgttc tgtgacaccatgtgtagcctg accctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacgactgc aagattatgacctccaagac cgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaagac caaatgcactgcctcgaaca agaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaagggag tggacaccgtgtccgtcg ggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaagggggaac cgattatcaatttctacga ccccctggtgttcccttccgacgagttcgatgcctccatatcccaagtcaacgagaagat caaccagtctcttgccttcatcc ggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccagggatg gacaggcctacgtgcgga aggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggctcac accatcatcaccaccacggttc gtggtcccaccctcaatttgagaagtga

[Relevant components (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539; F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639- 1656; His-tag: 1657-1674; Streptag II: 1681-1704; Linker sequences: 1540-1551 , 1633-1638, 1675-1680; P102A (naturally-occurring substitution): 304-306; I379V (naturally-occurring substitution): 1135-1137; M447V (naturally-occurring substitution): 1339-1341 ; T54H: 160-162; S55C: 163-165; L142C: 424-426; L188C: 562-564; V296I: 886-888; N371 C: 11 11-1 113]

SEQ ID NO:9: Nucleotide Sequence Encoding Precursor Polypeptide of pXCS780: atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcaccttc tgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtacacctg tgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcgaa ggtcaagctgattaagca ggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacccc tgccactaacaacagag ctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaacg tgaccctgtccaagaagc gcaagcggaggttcctgggattcctgttgggcgtgggctccgcaatcgcatccggagtgg ccgtgtccaaagtgctgcatc tggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtggtgt ccctgagcaacggagtca gcgtgtgtacatccaaggtcctggacctcaagaactacatcgacaagcagctgttgccca tcgtcaacaagcagtcatgc tcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctcgaa attacccgggagttttccgtg aacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctcagc ctcatcaacgatatgccgatc actaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcctac tcaatcatgtcaattatcaa ggaggaagtgctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacaccctg ctggaagctgcacactagcc cactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatcggg gctggtattgcgataatgct gggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtgttc tgtgacaccatgaacagcct gaccctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacgactg caagattatgacctccaaga ccgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaaga ccaaatgcactgcctcgaac aagaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaaggga gtggacaccgtgtccgtc gggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaagggggaa ccgattatcaatttctacg accccctggtgttcccttcctccgagttcgatgcctccatatcccaagtcaacgagaaga tcaaccagtctcttgccttcatcc ggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccagggatg gacaggcctacgtgcgga aggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggctcac accatcatcaccaccacggttc gtggtcccaccctcaatttgagaagtga

[Relevant components (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539; F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639- 1656; His-tag: 1657-1674; Streptag II: 1681-1704; Linker sequences: 1540-1551 , 1633-1638, 1675-1680; P102A (naturally-occurring substitution): 304-306; I379V (naturally-occurring substitution): 1135-1137; M447V (naturally-occurring substitution): 1339-1341 ; S55C: 163-165; L188C: 562-564; D486S: 1456-1458]

SEQ ID NO:10: Nucleotide Sequence Nucleotide Sequence Encoding Pre-coursor Polypeptide of pXCS830:

atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcacc ttctgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtaccactg tgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcgaa ggtcaagctgattaagca ggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacccc tgccactaacaacagag ctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaacg tgaccctgtccaagaagc gcaagcggaggttcctgggattcctgttgggcgtgggctccgcaatcgcatccggagtgg ccgtgtccaaagtgctgcatc tggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtggtgt ccctgagcaacggagtca gcgtgtgtacaatcaaggtcctggacctcaagaactacatcgacaagcagctgttgccca tcgtcaacaagcagtcatgc tcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctcgaa attacccgggagttttccgtg aacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctcagc ctcatcaacgatatgccgatc actaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcctac tcaatcatgtcaattatcaa ggaggaagtgctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacaccctg ctggaagctgcacactagcc cactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatcggg gctggtattgcgataatgct gggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtgttc tgtgacaccatgaacagcct gaccctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacgactg caagattatgacctccaaga ccgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaaga ccaaatgcactgcctcgaac aagaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaaggga gtggacaccgtgtccgtc gggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaagggggaa ccgattatcaatttctacg accccctggtgttcccttccgacgagttcgatgcctccatatcccaagtcaacgagaaga tcaaccagtctcttgccttcatc cggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccagggat ggacaggcctacgtgcgg aaggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggctca caccatcatcaccaccacggtt cgtggtcccaccctcaatttgagaagtga

[Relevant components (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539; F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639- 1656; His-tag: 1657-1674; Streptag II: 1681-1704; Linker sequences: 1540-1551 , 1633-1638, 1675-1680; P102A (naturally-occurring substitution): 304-306; I379V (naturally-occurring substitution): 1135-1137; M447V (naturally-occurring substitution): 1339-1341 ; T54H: 160-162; S55C: 163-165; L188C: 562-564; S190I: 568-570]

SEQ ID NO:11 : Nucleotide Sequence Nucleotide Sequence Encoding Pre-coursor Polypeptide of pXCS847:

atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcacc ttctgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtacacca gcgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcga aggtcaagctgattaag caggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacc cctgcctgtaacaacaga gctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaac gtgaccctgtccaagaag cgcaagcggaggttcctgggattcctgttgggcgtgggctccgcatgtgcatccggagtg gccgtgtccaaagtgctgcat ctggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtggtg tccctgagcaacggagtc agcgtgctgacaatcaaggtcctggacctcaagaactacatcgacaagcagctgttgccc atcgtcaacaagcagtcat gctcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctcg aaattacccgggagttttcc gtgaacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctc agcctcatcaacgatatgccg atcactaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcc tactcaatcatgtcaattat caaggaggaagtgctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacacc ctgctggaagctgcacacta gcccactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatc ggggctggtattgcgataat gctgggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtg ttctgtgacaccatgaacag cctgaccctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacga ctgcaagattatgacctccaa gaccgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaa gaccaaatgcactgcctcga acaagaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaagg gagtggacaccgtgtccg tcgggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaaggggg aaccgattatcaatttcta cgaccccctggtgttcccttcctccgagttcgatgcctccatatcccaagtcaacgagaa gatcaaccagtctcttgccttcat ccggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccaggga tggacaggcctacgtgcg gaaggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggctc acaccatcatcaccaccacgg ttcgtggtcccaccctcaatttgagaagtga

[Relevant components (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539; F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639- 1656; His-tag: 1657-1674; Streptag II: 1681-1704; Linker sequences: 1540-1551 , 1633-1638, 1675-1680; P102A (naturally-occurring substitution): 304-306; I379V (naturally-occurring substitution): 1 135-1137; M447V (naturally-occurring substitution): 1339-1341 ; T103C: 307-309; 1148C: 442-444; S190I: 568-570; D486S: 1456-1458]

SEQ ID NO:12: Nucleotide Sequence Nucleotide Sequence Encoding Pre-coursor Polypeptide of pXCS851 :

atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcacc ttctgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtaccaca gcgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcga aggtcaagctgattaag caggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacc cctgcctgtaacaacaga gctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaac gtgaccctgtccaagaag cgcaagcggaggttcctgggattcctgttgggcgtgggctccgcatgtgcatccggagtg gccgtgtccaaagtgctgcat ctggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtggtg tccctgagcaacggagtc agcgtgctgacaatcaaggtcctggacctcaagaactacatcgacaagcagctgttgccc atcgtcaacaagcagtcat gctcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctcg aaattacccgggagttttcc gtgaacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctc agcctcatcaacgatatgccg atcactaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcc tactcaatcatgtcaattat caaggaggaaatcctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacacc ctgctggaagctgcacacta gcccactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatc ggggctggtattgcgataat gctgggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtg ttctgtgacaccatgaacag cctgaccctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacga ctgcaagattatgacctccaa gaccgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaa gaccaaatgcactgcctcga acaagaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaagg gagtggacaccgtgtccg tcgggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaaggggg aaccgattatcaatttcta cgaccccctggtgttcccttcctccgagttcgatgcctccatatcccaagtcaacgagaa gatcaaccagtctcttgccttcat ccggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccaggga tggacaggcctacgtgcg gaaggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggctc acaccatcatcaccaccacgg ttcgtggtcccaccctcaatttgagaagtga

[Relevant components (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539; F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639- 1656; His-tag: 1657-1674; Streptag II: 1681-1704; Linker sequences: 1540-1551 , 1633-1638, 1675-1680; P102A (naturally-occurring substitution): 304-306; I379V (naturally-occurring substitution): 1135-1137; M447V (naturally-occurring substitution): 1339-1341 ; T54H: 160-162; T103C: 307-309; 1148C: 442-444; S190I: 568-570; V296I: 886-888; D486S: 1456-1458]

SEQ ID NO:13: Nucleotide Sequence Nucleotide Sequence Encoding Pre-coursor Polypeptide of pXCS852:

atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcacc ttctgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtaccactg tgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcgaa ggtcaagctgattaagca ggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacccc tgccactaacaacagag ctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaacg tgaccctgtccaagaagc gcaagcggaggttcctgggattcctgttgggcgtgggctccgcaatcgcatccggagtgg ccgtgtccaaagtgctgcatc tggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtggtgt ccctgagcaacggagtca gcgtgtgtacatccaaggtcctggacctcaagaactacatcgacaagcagctgttgccca tcgtcaacaagcagtcatgc tcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctcgaa attacccgggagttttccgtg aacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctcagc ctcatcaacgatatgccgatc actaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcctac tcaatcatgtcaattatcaa ggaggaagtgctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacaccctg ctggaagctgcacactagcc cactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatcggg gctggtattgcgataatgct gggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtgttc tgtgacaccatgaacagcct gaccctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacgactg caagattatgacctccaaga ccgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaaga ccaaatgcactgcctcgaac aagaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaaggga gtggacaccgtgtccgtc gggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaagggggaa ccgattatcaatttctacg accccctggtgttcccttcctccgagttcgatgcctccatatcccaagtcaacgagaaga tcaaccagtctcttgccttcatcc ggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccagggatg gacaggcctacgtgcgga aggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggctcac accatcatcaccaccacggttc gtggtcccaccctcaatttgagaagtga

[Relevant components (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539 (only including native RSV F sequence); F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639-1656; His-tag: 1657-1674; Streptag II: 1681- 1704; Linker sequences: 1540-1551 , 1633-1638, 1675-1680; P102A (naturally- occurring substitution): 304-306; I379V (naturally-occurring substitution): 1135-1 137; M447V (naturally-occurring substitution): 1339-1341 ; T54H: 160-162; S55C: 163-165; L188C: 562-564; D486S: 1456-1458]

SEQ ID NO:14: Nucleotide Sequence Encoding Pre-cursor Polypeptide of pXCS853:

atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcacc ttctgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtacacctg tgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcgaa ggtcaagctgattaagca ggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacccc tgccactaacaacagag ctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaacg tgaccctgtccaagaagc gcaagcggaggttcctgggattcctgttgggcgtgggctccgcaatcgcatccggagtgg ccgtgtccaaagtgctgcatc tggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtggtgt ccctgagcaacggagtca gcgtgtgtacaatcaaggtcctggacctcaagaactacatcgacaagcagctgttgccca tcgtcaacaagcagtcatgc tcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctcgaa attacccgggagttttccgtg aacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctcagc ctcatcaacgatatgccgatc actaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcctac tcaatcatgtcaattatcaa ggaggaagtgctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacaccctg ctggaagctgcacactagcc cactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatcggg gctggtattgcgataatgct gggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtgttc tgtgacaccatgaacagcct gaccctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacgactg caagattatgacctccaaga ccgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaaga ccaaatgcactgcctcgaac aagaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaaggga gtggacaccgtgtccgtc gggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaagggggaa ccgattatcaatttctacg accccctggtgttcccttcctccgagttcgatgcctccatatcccaagtcaacgagaaga tcaaccagtctcttgccttcatcc ggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccagggatg gacaggcctacgtgcgga aggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggctcac accatcatcaccaccacggttc gtggtcccaccctcaatttgagaagtga

[Relevant components (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539; F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639- 1656; His-tag: 1657-1674; Streptag II: 1681-1704; Linker sequences: 1540-1551 , 1633-1638, 1675-1680; P102A (naturally-occurring substitution): 304-306; I379V (naturally-occurring substitution): 1135-1137; M447V (naturally-occurring substitution): 1339-1341 ; S55C: 163-165; L188C: 562-564; S190I: 568-570; D486S: 1456-1458] SEQ ID NO:15: Nucleotide Sequence Encoding Pre-cursor Polypeptide of pXCS855:

atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcacc ttctgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtaccactg tgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcgaa ggtcaagctgattaagca ggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacccc tgccactaacaacagag ctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaacg tgaccctgtccaagaagc gcaagcggaggttcctgggattcctgttgggcgtgggctccgcaatcgcatccggagtgg ccgtgtccaaagtgctgcatc tggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtggtgt ccctgagcaacggagtca gcgtgtgtacaatcaaggtcctggacctcaagaactacatcgacaagcagctgttgccca tcgtcaacaagcagtcatgc tcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctcgaa attacccgggagttttccgtg aacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctcagc ctcatcaacgatatgccgatc actaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcctac tcaatcatgtcaattatcaa ggaggaagtgctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacaccctg ctggaagctgcacactagcc cactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatcggg gctggtattgcgataatgct gggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtgttc tgtgacaccatgaacagcct gaccctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacgactg caagattatgacctccaaga ccgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaaga ccaaatgcactgcctcgaac aagaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaaggga gtggacaccgtgtccgtc gggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaagggggaa ccgattatcaatttctacg accccctggtgttcccttcctccgagttcgatgcctccatatcccaagtcaacgagaaga tcaaccagtctcttgccttcatcc ggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccagggatg gacaggcctacgtgcgga aggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggctcac accatcatcaccaccacggttc gtggtcccaccctcaatttgagaagtga

[Relevant features (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539; F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639- 1656; His-tag: 1657-1674; Streptag II: 1681-1704; Linker sequences: 1540-1551 , 1633-1638, 1675-1680; P102A (naturally-occurring substitution): 304-306; I379V (naturally-occurring substitution): 1135-1137; M447V (naturally-occurring substitution): 1339-1341 ; T54H: 160-162; S55C: 163-165; L188C: 562-564; S190I: 568-570; D486S: 1456-1458]

SEQ ID NO:16: Nucleotide Sequence Encoding Precursor Polypeptide of pXCS874:

atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcacc ttctgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtacacca gcgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcga aggtcaagctgattaag caggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacc cctgccactaacaacag agctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaa cgtgaccctgtccaagaa gcgcaagcggaggttcctgggattcctgttgggcgtgggctccgcaatcgcatccggagt ggccgtgtgtaaagtgctgc atctggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtgg tgtccctgagcaacggagt cagcgtgctgacaatcaaggtcctggacctcaagaactacatcgacaagcagctgttgcc catcgtcaacaagcagtca tgctcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctc gaaattacccgggagttttcc gtgaacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctc agcctcatcaacgatatgccg atcactaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcc tactcaatcatgtgcattat caaggaggaagtgctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacacc ctgctggaagctgcacacta gcccactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatc ggggctggtattgcgataat gctgggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtg ttctgtgacaccatgaacag cctgaccctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacga ctgcaagattatgacctccaa gaccgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaa gaccaaatgcactgcctcga acaagaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaagg gagtggacaccgtgtccg tcgggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaaggggg aaccgattatcaatttcta cgaccccctggtgttcccttcctccgagttcgatgcctccatatcccaagtcaacgagaa gatcaaccagtctcttgccttcat ccggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccaggga tggacaggcctacgtgcg gaaggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggctc acaccatcatcaccaccacgg ttcgtggtcccaccctcaatttgagaagtga

[Relevant features (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539; F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639-1656; His-tag: 1657-1674; Streptag II: 1681-1704; Linker sequences: 1540-1551 , 1633-1638, 1675-1680; P102A (naturally-occurring substitution): 304-306; I379V (naturally- occurring substitution): 1135-1 137; M447V (naturally-occurring substitution): 1339- 1341 ; S155C: 463-465; S190I: 568-570; S290C: 868-870; D486S: 1456-1458]

SEQ ID NO:17: Nucleotide Sequence Encoding Precursor Polypeptide of pXCS881 :

atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcacc ttctgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtaccactg tgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcgaa ggtcaagctgattaagca ggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacccc tgccactaacaacagag ctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaacg tgaccctgtccaagaagc gcaagcggaggttcctgggattcctgtgtggcgtgggctccgcaatcgcatccggagtgg ccgtgtccaaagtgctgcatc tggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtggtgt ccctgagcaacggagtca gcgtgtgtacatccaaggtcctggacctcaagaactacatcgacaagcagctgttgccca tcgtcaacaagcagtcatgc tcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctcgaa attacccgggagttttccgtg aacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctcagc ctcatcaacgatatgccgatc actaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcctac tcaatcatgtcaattatcaa ggaggaaatcctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacaccctg ctggaagctgcacactagcc cactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatcggg gctggtattgcgataatgct gggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtgttc tgtgacaccatgtgtagcctg accctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacgactgc aagattatgacctccaagac cgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaagac caaatgcactgcctcgaaca agaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaagggag tggacaccgtgtccgtcg ggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaagggggaac cgattatcaatttctacga ccccctggtgttcccttccagccagttcagtgcctccatatcccaagtcaacgagaagat caaccagtctcttgccttcatcc ggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccagggatg gacaggcctacgtgcgga aggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggctcac accatcatcaccaccacggttc gtggtcccaccctcaatttgagaagtga

[Relevant features (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539; F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639-1656; His-tag: 1657-1674; Streptag I I: 1681-1704; Linker sequences: 1540-1551 , 1633- 1638, 1675-1680; P102A (naturally-occurring substitution): 304-306; I379V (naturally- occurring substitution): 1135-1137; M447V (naturally-occurring substitution): 1339- 1341 ; T54H: 160-162; S55C: 163-165; L142C: 424-426; L188C: 562-564; V296I: 886-888; N371C: 111 1-1113; D486S: 1456-1458; E487Q: 1459-1461 ; D489S: 1465- 1467]

SEQ ID NO:18: Nucleotide Sequence Encoding Precursor Polypeptide of pXCS898:

atggaacttctgatcctgaaagccaacgcgattaccactatcctgactgccgtcacc ttctgcttcgcatcgggacagaaca ttaccgaggagttctaccagtccacctgttcggcggtgtccaagggttacctctcggccc tgagaactggctggtaccaca gcgtgattactatcgagctgagcaacatcaaggagaacaagtgcaatggaacggacgcga aggtcaagctgattaag caggaactcgataagtacaagaacgccgtgaccgagctccagctgctgatgcaatcgacc cctgccactaacaacag agctcgccgggaactgccgcgcttcatgaattacaccctcaacaacgcgaagaaaaccaa cgtgaccctgtccaagaa gcgcaagcggaggttcctgggattcctgttgggcgtgggctccgcaatcgcatccggagt ggccgtgtgtaaagtgctgc atctggagggggaagtgaacaagatcaagtccgccctcctgtcaactaataaggcggtgg tgtccctgagcaacggagt cagcgtgctgacaatcaaggtcctggacctcaagaactacatcgacaagcagctgttgcc catcgtcaacaagcagtca tgctcgattagcaatatcgaaaccgtgattgagttccagcagaagaacaacagactgctc gaaattacccgggagttttcc gtgaacgccggagtgaccactcctgtgtccacctacatgcttacgaactccgaactgctc agcctcatcaacgatatgccg atcactaacgaccagaagaagttgatgagcaacaatgtgcagatcgtgcgccaacagtcc tactcaatcatgtgcattat caaggaggaaatcctcgcctatgtggtgcaattgcctctgtacggagtcatcgacacacc ctgctggaagctgcacacta gcccactctgtacgaccaacaccaaggaaggttccaacatctgcctgactaggaccgatc ggggctggtattgcgataat gctgggtccgtgagcttcttcccgcaagccgagacttgcaaagtgcagtcaaaccgcgtg ttctgtgacaccatgaacag cctgaccctgccatccgaagtcaacctctgcaacgtggacatctttaacccgaaatacga ctgcaagattatgacctccaa gaccgacgtcagcagctctgtcatcactagcctgggagctattgtgtcctgctacggaaa gaccaaatgcactgcctcga acaagaacagaggcatcatcaagaccttcagcaacggctgtgactacgtgtccaacaagg gagtggacaccgtgtccg tcgggaacaccctgtactacgtgaacaagcaggaggggaagtcgctctacgtcaaggggg aaccgattatcaatttcta cgaccccctggtgttcccttccgacgagttcgatgcctccatatcccaagtcaacgagaa gatcaaccagtctcttgccttc atccggaagtcggacgaactgctgtccgccatcggtggctatattccggaagcccccagg gatggacaggcctacgtgc ggaaggatggagaatgggtgcttttgtccaccttcctgggcggtctggtgccccgcggct cacaccatcatcaccaccacg gttcgtggtcccaccctcaatttgagaagtga

[Relevant features (bp coordinates): Signal sequence: 1-75; pep27: 328-408; F1 : 409-1539; F2: 76-327; foldon: 1552-1632; Thrombin recognition sequence: 1639- 1656; His-tag: 1657-1674; Streptag II: 1681-1704; Linker sequences: 1540-1551 , 1633-1638, 1675-1680; P102A (naturally-occurring substitution): 304-306; I379V (naturally-occurring substitution): 1135-1137; M447V (naturally-occurring substitution): 1339-1341 ; T54H: 160-162; S155C: 463-465; S190I: 568-570; S290C: 868-870; V296I: 886-888]

SEQ ID NO:19: Amino Acid Sequence of Precursor Polypeptide of pXCS847:

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVI TIELS

NIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPACNNRARRELPRFMNYTL N

NAKKTNVTLSKKRKRRFLGFLLGVGSACASGVAVSKVLHLEGEVNKI KSALLSTNKAVV SLSNGVSVLTIKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSV NA GVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVV QLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCK VQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYG KTKCTASN KN RG 11 KTFSNGCDYVSN KG VDTVSVG NTLYYVN KQEG KSLYVKG EPI I N F YDPLVFPSSEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDGE WVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

[Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 1 10-136; F1 : 137-513; F2: 26- 109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag II: 561-568; P102A (naturally-occurring substitution); I379V (naturally- occurring substitution); M447V (naturally-occurring substitution); T103C; I 148C; S190I; D486S]

SEQ ID NO:20: Amino Acid Sequence of Precursor Polypeptide of pXCS851 :

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYHSVI TI EL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPACNNRARRELPRFMNYTL NNAKKTNVTLSKKRKRRFLGFLLGVGSACASGVAVSKVLHLEGEVNKIKSALLSTNKA VVSLSNGVSVLTIKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREF SV NAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEILAY V VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETC KVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCY GKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIIN FYDPLVFPSSEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDGE WVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

[Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 1 10-136; F1 : 137-513; F2: 26- 109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag II: 561-568; P102A (naturally-occurring substitution); I379V (naturally- occurring substitution); M447V (naturally-occurring substitution); T54H; T103C; I 148C; S190I; V296I; D486S]

SEQ ID NO:21 : Amino Acid Sequence of Precursor Polypeptide of pXCS852:

M ELLI LKANAITTI LTAVTFCFASGQN ITEEFYQSTCSAVSKGYLSALRTGWYHCVITI EL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTL NNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKI KSALLSTNKAV VSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFS V NAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAY VVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAET CKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSC YGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPII NFYDPLVFPSSEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDG EWVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

[Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 110-136; F1 : 137-513 (only including native RSV F sequence); F2: 26-109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag II: 561-568; P102A (naturally-occurring substitution); I379V (naturally-occurring substitution); M447V (naturally-occurring substitution); T54H (introduced mutation); S55C (introduced mutation); L188C (introduced mutation); D486S (introduced mutation)] SEQ ID NO:22: Amino Acid Sequence of Heavy Chain Variable Domain of

Antibody D25:

QVQLVQSGAEVKKPGSSVM VSCQASGGPLRNYI I NWLRQAPGQGPEWMGGI I PVLGT VHYAPKFQGRVTITADESTDTAYIHLISLRSEDTAMYYCATETALVVSTTYLPHYFDNW GQGTLVTVSS

SEQ ID NO:23: Amino Acid Sequence of Light Chain Variable Domain of Antibody D25:

DIQMTQSPSSLSAAVGDRVTITCQASQDIVNYLNWYQQKPGKAPKLLIYVASNLETGV PSRFSGSGSGTDFSLTISSLQPEDVATYYCQQYDNLPLTFGGGTKVEIKR

SEQ ID NO:24: Amino Acid Sequence of Heavy Chain Variable Domain of Antibody AM14:

EVQLVESGGGVVQPGRSLRLSCAASGFSFSHYAMHWVRQAPGKGLEWVAVISYDGE NTYYADSVKGRFSISRDNSKNTVSLQMNSLRPEDTALYYCARDRIVDDYYYYGMDVW GQGATVTVSS

SEQ ID NO:25: Amino Acid Sequence of Light Chain Variable Domain of Antibody AM 14:

DIQMTQSPSSLSASVGDRVTITCQASQDIKKYLNWYHQKPGKVPELLMHDASNLETG V PSRFSGRGSGTDFTLTISSLQPEDIGTYYCQQYDNLPPLTFGGGTKVEIKRTV

SEQ ID NO:26: Amino Acid Sequence of Heavy Chain Variable Domain of

Antibody AM22

QVQLVQSGAEVKKPGATVKVSCKISGHTLIKLSIHWVRQAPGKGLEWMGGYEGEVDE IFYAQKFQHRLTVIADTATDTVYMELGRLTSDDTAVYFCGTLGVTVTEAGLGIDDYWG QGTLVTVSS

SEQ ID NO:27: Amino Acid Sequence of Light Chain Variable Domain of Antibody AM 22

EIVLTQSPGTLSLSPGERATLSCRASQIVSRNHLAWYQQKPGQAPRLLIFGASSRATGI PVRFSGSGSGTDFTLTINGLAPEDFAVYYCLSSDSSIFTFGPGTKVDFK SEQ ID NO:28: Amino Acid Sequence of Heavy Chain Variable Domain of Antibody MPE8:

EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISASSS YSDYADSAKGRFTISRDNAKTSLFLQMNSLRAEDTAIYFCARARATGYSSITPYFDIWG QGTLVTVSS

SEQ ID NO:29: Amino Acid Sequence of Light Chain Variable Domain of Antibody MPE8:

QSVVTQTPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYDNNNRP SGVPDRFSASKSGTSASLAITGLQAEDEADYYCQSYDRNLSGVFGTGTKVTVL

SEQ ID NO:30: Amino Acid Sequence of Heavy Chain Variable Domain of

Antibody 101 F:

QVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMGVSWIRQPSGKGLEWLAHIYWDD DKRYNPSLKSRLTISKDTSRNQVFLKITSVDTADTATYYCARLYGFTYGFAYWGQGTL VTVSA

SEQ ID NO:31 : Amino Acid Sequence of Light Chain Variable Domain of Antibody 101 F:

DIVLTQSPASLAVSLGQRATIFCRASQSVDYNGISYMHWFQQKPGQPPKLLIYAASN P ESGI PARFTGSGSGTDFTLN I H P V E E E D AATYYCQQ 11 EDPWTFGGGTKLEI K

SEQ ID NO: 32: Amino Acid Sequence of Precursor Polypeptide of pXCS738:

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYHCVI TIEL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTL NNAKKTNVTLSKKRKRRFLGFLCGVGSAIASGVAVSKVLHLEGEVNKI KSALLSTNKAV VSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFS V NAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEILAY V VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETC KVQSN RVFCDTMCSLTLPSEVN LCN VDI FN PKYDCKIMTSKTDVSSSVITSLGAI VSCY GKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIIN FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDGE WVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK [Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 1 10-136; F1 : 137; F2: 26- 109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag I I: 561-568; Linker sequences: 514-517, 545-546, 559-560; P102A (naturally- occurring substitution); I379V (naturally-occurring substitution); M447V (naturally- occurring substitution); T54H (introduced mutation); S55C (introduced mutation); L142C (introduced mutation); L188C (introduced mutation); V296I (introduced mutation);

N371C (introduced mutation)] SEQ ID NO:33 : Amino Acid Sequence of Precursor Polypeptide of pXCS780:

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTCVI TIEL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTL NNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKI KSALLSTNKAV VSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFS V NAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAY VVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAET CKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSC YGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPII NFYDPLVFPSSEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDG EWVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

[Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 1 10-136; F1 : 137-513; F2: 26-109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag I I: 561-568; Linker sequences: 514-517, 545-546, 559-560; P102A (naturally- occurring substitution); I379V (naturally-occurring substitution); M447V (naturally- occurring substitution); S55C (introduced mutation); L188C (introduced mutation);

D486S (introduced mutation)]

SEQ ID NO: 34: Amino Acid Sequence of Precursor Polypeptide of pXCS830: MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYHCVITIE L SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTL NNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKI KSALLSTNKAV VSLSNGVSVCTIKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFS VN AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETC KVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCY GKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIIN FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDGE WVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

[Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 1 10-136; F1 : 137-513; F2: 26-109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag I I: 561-568; Linker sequences: 514-517, 545-546, 559-560; P102A (naturally- occurring substitution); I379V (naturally-occurring substitution); M447V (naturally- occurring substitution); T54H (introduced mutation); S55C (introduced mutation); L188C (introduced mutation); S190I (introduced mutation)] SEQ ID NO:35: Amino Acid Sequence of Precursor Polypeptide of pXCS853:

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTCVI TIEL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTL NNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKI KSALLSTNKAV VSLSNGVSVCTIKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFS VN AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETC KVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCY GKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIIN FYDPLVFPSSEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDGE WVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

[Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 1 10-136; F1 : 137-513; F2: 26-109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag II: 561-568; Linker sequences: 514-517, 545-546, 559-560; P102A (naturally- occurring substitution); I379V (naturally-occurring substitution); M447V (naturally- occurring substitution); S55C (introduced mutation); L188C (introduced mutation); S190I (introduced mutation); D486S (introduced mutation)] SEQ ID NO:36: Amino Acid Sequence of Precursor Polypeptide of pXCS855:

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYHCVI TIEL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTL NNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKI KSALLSTNKAV VSLSNGVSVCTIKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFS VN AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETC KVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCY GKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIIN FYDPLVFPSSEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDGE WVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

[Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 110-136; F1 : 137-513; F2: 26-109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag I I: 561-568; Linker sequences: 514-517, 545-546, 559-560; P102A (naturally- occurring substitution); I379V (naturally-occurring substitution); M447V (naturally- occurring substitution); T54H (introduced mutation); S55C (introduced mutation); L188C (introduced mutation); S190I (introduced mutation); D486S (introduced mutation)] SEQ ID NO: 37: Amino Acid Sequence of Precursor Polypeptide of pXCS874:

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVI TIELS NIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVCKVLHLEGEVNKIKSALLSTNKAVV SLSNGVSVLTIKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSV NA GVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMCIIKEEVLAYVV QLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCK VQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYG KTKCTASN KN RG 11 KTFSNGCDYVSN KG VDTVSVG NTLYYVN KQEG KSLYVKG EPI I N F YDPLVFPSSEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDGE WVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

[Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 110-136; F1 : 137-513; F2: 26-109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag I I: 561-568; Linker sequences: 514-517, 545-546, 559-560; P102A (naturally- occurring substitution); I379V (naturally-occurring substitution); M447V (naturally- occurring substitution); S155C (introduced mutation); S190I (introduced mutation); S290C (introduced mutation); D486S (introduced mutation)]

SEQ ID NO:38: Amino Acid Sequence of Precursor Polypeptide of pXCS881 :

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYHCVI TIEL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTL NNAKKTNVTLSKKRKRRFLGFLCGVGSAIASGVAVSKVLHLEGEVNKI KSALLSTNKAV VSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFS V NAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEILAY V VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETC KVQSN RVFCDTMCSLTLPSEVN LCN VDI FN PKYDCKIMTSKTDVSSSVITSLGAI VSCY GKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIIN FYDPLVFPSSQFSASISQVN EKI NQSLAFI RKSDELLSAIGGYI PEAPRDGQAYVRKDGE WVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

[Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 1 10-136; F1 : 137-513; F2: 26-109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag II: 561-568; Linker sequences: 514-517, 545-546, 559-560; P102A (naturally- occurring substitution); I379V (naturally-occurring substitution); M447V (naturally- occurring substitution); T54H (introduced mutation); S55C (introduced mutation); L142C (introduced mutation); L188C (introduced mutation); V296I (introduced mutation); N371C (introduced mutation); D486S (introduced mutation); E487Q (introduced mutation); D489S (introduced mutation)]

SEQ ID NO:39: Amino Acid Sequence of Precursor Polypeptide of pXCS898:

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYHSVI TI EL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTL NNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVCKVLHLEGEVNKI KSALLSTNKAV VSLSNGVSVLTIKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFS VN AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMCIIKEEILAYV V QLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCK VQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYG KTKCTASN KN RG 11 KTFSNGCDYVSN KG VDTVSVG NTLYYVN KQEG KSLYVKG EPI I N F YDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLSAIGGYIPEAPRDGQAYVRKDGE WVLLSTFLGGLVPRGSHHHHHHGSWSHPQFEK

[Relevant features (amino acid residue coordinates): Signal sequence (not present in final product): 1-25; pep27 (not present in final product): 1 10-136; F1 : 137-513; F2: 26-109; foldon: 518-544; Thrombin recognition sequence: 547-552; His-tag: 553-558; Streptag II: 561-568; Linker sequences: 514-517, 545-546, 559-560; P102A (naturally- occurring substitution); I379V (naturally-occurring substitution); M447V (naturally- occurring substitution); T54H (introduced mutation); S155C (introduced mutation); S190I (introduced mutation); S290C (introduced mutation); V296I (introduced mutation)]

SEQ ID NO:40: Amino acid Sequence of the T4 Fibritin Foldon:

GYIPEAPRDGQAYVRKDGEWVLLSTFL

SEQ ID NO: 271. Amino Acid Sequence of Precursor Polypeptide of pXCS899

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYHCVI TIEL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTL NNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKI KSALLSTNKAV VSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFS V NAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAY VVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAET CKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSC YGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPII NFYDPLVFPSSEFDASISQVNEKI NQSLAFIRKSDELLGGLVPRGSHHHHHHGSWSHP QFEK

SEQ ID NO: 272. Amino Acid Sequence of Precursor Polypeptide of pXCS1106

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYHCVI TIEL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATGSAIASGVAVSKVLHLE GEVNKIKSALLSTNKAVVSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVI E FQQKNNRLLEITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIV RQQSYSIMSIIKEEVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRG WYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMT SKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTL YYVNKQEGKSLYVKGEPIINFYDPLVFPSSEFDASISQVNEKINQSLAFIRCCDELLHNV NAGKSTTNIMITTLVPRGSGGSAIGGYIPEAPRDGQAYVRKDGEWVLLSTFLGGHHHH HHGSWSHPQFEK

SEQ ID NO: 273. Amino Acid Sequence of Precursor Polypeptide of pXCS1107

MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYHCVI TIEL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATGSAIASGVAVSKVLHLE GEVNKIKSALLSTNKAVVSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVI E FQQKNNRLLEITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIV RQQSYSIMSIIKEEVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRG WYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMT SKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTL YYVNKQEGKSLYVKGEPIINFYDPLVFPSSEFDASISQVNEKINQSLAFIRKSDELLHCC NAGKSTTNIMITTLVPRGSGGSAIGGYIPEAPRDGQAYVRKDGEWVLLSTFLGGHHHH HHGSWSHPQFEK

SEQ ID NO: 274. Amino Acid Sequence of Precursor Polypeptide of pXCS1108 M ELLI LKANAITTI LTAVTFCFASGQN ITEEFYQSTCSAVSKGYLSALRTGWYHCVITI EL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATGSAIASGVAVSKVLHLE GEVNKIKSALLSTNKAVVSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVI E FQQKNNRLLEITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIV RQQSYSIMSIIKEEVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRG WYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMT SKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTL YYVNKQEGKSLYVKGEPIINFYDPLVFPSSEFDASISQVNEKINQSLAFIRKSDELLHNV NAGKSCCNIMITTLVPRGSGGSAIGGYIPEAPRDGQAYVRKDGEWVLLSTFLGGHHHH HHGSWSHPQFEK SEQ ID NO: 275. Amino Acid Sequence of Precursor Polypeptide of pXCS1109

M ELLI LKANAITTI LTAVTFCFASGQN ITEEFYQSTCSAVSKGYLSALRTGWYHCVITI EL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATGSAIASGVAVSKVLHLE GEVNKIKSALLSTNKAVVSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVI E FQQKNNRLLEITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIV RQQSYSIMSIIKEEVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRG WYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMT SKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTL YYVNKQEGKSLYVKGEPIINFYDPLVFPSSEFDASISQVNEKINQSLAFIRCCDELLHCC NAGKSTTNIMITTLVPRGSGGSAIGGYIPEAPRDGQAYVRKDGEWVLLSTFLGGHHHH HHGSWSHPQFEK

SEQ ID NO: 276. Amino Acid Sequence of Precursor Polypeptide of pXCS1110

M ELLI LKANAITTI LTAVTFCFASGQN ITEEFYQSTCSAVSKGYLSALRTGWYHCVITI EL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATGSAIASGVAVSKVLHLE GEVNKIKSALLSTNKAVVSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVI E FQQKNNRLLEITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIV RQQSYSIMSIIKEEVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRG WYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMT SKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTL YYVNKQEGKSLYVKGEPIINFYDPLVFPSSEFDASISQVNEKINQSLAFIRCCDELLHNV NAGKSCCNIMITTLVPRGSGGSAIGGYIPEAPRDGQAYVRKDGEWVLLSTFLGGHHHH HHGSWSHPQFEK

SEQ ID NO: 277. Amino Acid Sequence of Precursor Polypeptide of pXCS1111 M ELLI LKANAITTI LTAVTFCFASGQN ITEEFYQSTCSAVSKGYLSALRTGWYHCVITI EL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATGSAIASGVAVSKVLHLE GEVNKIKSALLSTNKAVVSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVI E FQQKNNRLLEITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIV RQQSYSIMSIIKEEVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRG WYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMT SKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTL YYVNKQEGKSLYVKGEPIINFYDPLVFPSSEFDASISQVNEKINQSLAFIRKSDELLHCC NAGKSCCNIMITTLVPRGSGGSAIGGYIPEAPRDGQAYVRKDGEWVLLSTFLGGHHHH HHGSWSHPQFEK SEQ ID NO: 278. Amino Acid Sequence of Precursor Polypeptide of pXCS1112

M ELLI LKANAITTI LTAVTFCFASGQN ITEEFYQSTCSAVSKGYLSALRTGWYHCVITI EL SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATGSAIASGVAVSKVLHLE GEVNKIKSALLSTNKAVVSLSNGVSVCTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVI E FQQKNNRLLEITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIV RQQSYSIMSIIKEEVLAYVVQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRG WYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMT SKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTL YYVNKQEGKSLYVKGEPIINFYDPLVFPSSEFDASISQVNEKINQSLAFIRCCDELLHCC NAGKSCCNIMITTLVPRGSGGSAIGGYIPEAPRDGQAYVRKDGEWVLLSTFLGGHHHH HHGSWSHPQFEK