Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RUBBER COMPOSITION
Document Type and Number:
WIPO Patent Application WO/2022/136753
Kind Code:
A1
Abstract:
The present invention relates to a rubber composition based on: - at least one elastomer matrix comprising from 45 to 80 phr of at least one polyisoprene and from 20 to 55 phr of at least one highly saturated diene elastomer; - a dialkyl ester of aliphatic diacid as plasticizer; - carbon black; and - a cross-linking system; wherein the highly saturated diene elastomer is a copolymer of ethylene and 1,3-diene.

Inventors:
ARAUJO DA SILVA JOSÉ-CARLOS (FR)
CROCHET AURORE (FR)
Application Number:
PCT/FR2021/052125
Publication Date:
June 30, 2022
Filing Date:
November 29, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MICHELIN & CIE (FR)
International Classes:
B60C1/00; C08F210/02; C08K3/04; C08K5/11; C08L7/00; C08L23/08
Domestic Patent References:
WO2014114607A12014-07-31
WO2020011003A12020-01-16
WO2014114607A12014-07-31
WO2020011003A12020-01-16
WO2004035639A12004-04-29
WO2007054223A22007-05-18
WO2007054224A22007-05-18
WO2017093654A12017-06-08
WO2018020122A12018-02-01
WO2018020123A12018-02-01
WO1997036724A21997-10-09
WO1999016600A11999-04-08
WO2002010269A22002-02-07
WO1997036724A21997-10-09
WO1999016600A11999-04-08
WO2000005300A12000-02-03
WO2000005301A12000-02-03
Foreign References:
EP0722977B11999-04-28
EP0547344B11996-01-10
EP2682423A12014-01-08
EP1092731A12001-04-18
EP0501227A11992-09-02
EP0735088A11996-10-02
EP0810258A11997-12-03
Other References:
CAS, no. 122-62-3
Attorney, Agent or Firm:
SIDHU, Alban (FR)
Download PDF:
Claims:
Revendications

1. Composition de caoutchouc à base d'au moins : une matrice élastomère comprenant de 45 à 80 pce d'au moins un polyisoprène et de 20 à 55 pce d'au moins un élastomère diénique fortement saturé, un plastifiant dialkylester de diacide aliphatique, du noir de carbone, et un système de réticulation, dans laquelle, l'élastomère diénique fortement saturé est un copolymère d'éthylène et de 1,3-diène.

2. Composition de caoutchouc selon la revendication 1, dans laquelle les unités éthylène dans le copolymère représentent entre 50% et 95% en mole des unités monomères du copolymère.

3. Composition de caoutchouc selon l'une quelconque des revendications précédentes, dans laquelle le 1,3-diène est le 1,3-butadiène.

4. Composition de caoutchouc selon l'une quelconque des revendications précédentes, dans laquelle le copolymère est statistique.

5. Composition de caoutchouc selon l'une quelconque des revendications précédentes, dans laquelle le taux du copolymère contenant des unités éthylène et des unités diéniques est compris dans un domaine allant de 20 à 50 pce, de préférence compris dans un domaine allant de 20 à moins de 45 pce.

6. Composition de caoutchouc selon l'une quelconque des revendications précédentes, dans laquelle le polyisoprène est du caoutchouc naturel, un polyisoprène de synthèse ou un de leurs mélanges, de préférence du caoutchouc naturel.

7. Composition de caoutchouc selon l'une quelconque des revendications précédentes, dans laquelle le taux de polyisoprène est compris dans un domaine allant de 50 à 80 pce, de préférence, compris dans un domaine allant de plus de 55 à 80 pce.

8. Composition de caoutchouc selon l'une quelconque des revendications précédentes, dans laquelle le taux de plastifiant dialkylester de diacide aliphatique est compris dans un domaine allant de 5 à 50 pce, de préférence de 7 à 40 pce et plus préférentiellement de 8 à 30 pce.

9. Composition de caoutchouc selon l'une quelconque des revendications précédentes, dans laquelle plastifiant dialkylester de diacide aliphatique est un composé de formule ROOC- (CH2)n-COOR dans lequel R est un alkyl linéaire ou branché et n représente un nombre entier de 4 à 20.

10. Composition de caoutchouc selon la revendication précédente, dans laquelle le radical R est un alkyl comprenant de 4 à 20 atomes de carbone, de préférence de 6 à 12 atomes de carbone et plus préférentiellement de 6 à 10 atomes de carbone.

11. Composition de caoutchouc selon l'une quelconque des revendications 9 ou 10, dans laquelle le radical R est un alkyl ramifié, et plus préférentiellement R est un radical isooctyle.

12. Composition de caoutchouc selon l'une quelconque des revendications 9 à 11, dans laquelle n représente un entier de 4 à 12, de préférence un entier de 6 à 10, et plus préférentiellement n est égal à 8.

13. Composition de caoutchouc selon l'une quelconque des revendications précédentes, dans laquelle le plastifiant dialkylester de diacide aliphatique est le diisooctyle sébacate.

14. Composition de caoutchouc selon l'une quelconque des revendications précédentes, dans laquelle le taux total de noir de carbone est compris dans un domaine allant de 15 à 65 pce, de préférence de 20 à 45 pce. 15. Bandage pneumatique ou non-pneumatique comprenant une composition de caoutchouc définie à l'une quelconque des revendications 1 à 14, de préférence dans au moins un flanc du bandage pneumatique ou non-pneumatique.

Description:
COMPOSITION DE CAOUTCHOUC

Le domaine de la présente invention est celui des compositions de caoutchouc renforcées de noir de carbone et comportant un élastomère diénique fortement saturé, les compositions de caoutchouc étant particulièrement destinées à être utilisées dans un pneumatique, plus particulièrement dans un flanc de pneumatique.

Un pneumatique comporte usuellement deux bourrelets destinés à entrer en contact avec une jante, un sommet composé d'au moins une armature de sommet et une bande de roulement, deux flancs, le pneumatique étant renforcé par une armature de carcasse ancrée dans les deux bourrelets. Un flanc est une couche élastomère disposée à l'extérieur de l'armature de carcasse par rapport à la cavité interne du pneumatique, entre le sommet et le bourrelet de sorte à couvrir totalement ou partiellement la zone de l'armature de carcasse s'étendant du sommet au bourrelet.

Dans la fabrication conventionnelle d'un pneumatique, les différents composants constitutifs du sommet, de l'armature de carcasse, des bourrelets et des flancs sont assemblés pour former un bandage de pneumatique. L'étape d'assemblage est suivie d'une étape de conformation du bandage pour donner la forme torique à l'assemblage avant l'étape de cuisson sous presse.

Les pneumatiques, et notamment les flancs, sont soumis à de nombreuses sollicitations mécaniques qui sont répétées de façon cyclique lors du roulage. Ces sollicitations, sous forme de contraintes de flexion et de compression, éprouvent l'endurance du pneumatique et contribuent à diminuer sa durée de vie. Une façon pour améliorer l'endurance du pneumatique réside en l'augmentation de la résistance à la fatigue des compositions de caoutchouc qui constituent le pneumatique. Par exemple, l'utilisation de silice de faible surface spécifique typiquement inférieure à 125 m 2 /g, voire très inférieure à 100 m 2 /g dans une composition de caoutchouc est décrite respectivement dans les brevets EP 722 977 B1 et EP 547 344 B1 pour être favorable à la résistance à la fatigue.

Par ailleurs, les flancs de pneumatique sont également exposés à l'action de l'ozone. Les cycles de déformation conjugués à l'action de l'ozone peuvent faire apparaître des craquelures ou fissures dans le flanc, empêchant ^utilisation du pneumatique indépendamment de l'usure de la bande de roulement. Par conséquent, il est recherché des compositions de caoutchouc qui soient très cohésives pour constituer par exemple des flancs de pneumatique par leur capacité à subir de grandes déformations sans se rompre.

Pour minimiser l'action de l'ozone sur des compositions de caoutchouc, il est connu d'utiliser des copolymères présentant une sensibilité moindre à l'oxydation, comme par exemple les élastomères diéniques fortement saturés, élastomères comprenant des unités éthylène à un taux molaire supérieur à 50% en mole des unités monomère de l'élastomère. On peut citer par exemple les copolymères d'éthylène et de 1,3-diène qui contiennent plus de 50% en mole d'éthylène, en particulier les copolymères d'éthylène et de 1,3-butadiène. L'utilisation de tels copolymères d'éthylène et de 1,3- butadiène dans une bande de roulement d'un pneumatique est par exemple décrite dans le document WO 2014114607 Al et a pour effet de conférer de bonnes propriétés de résistance à l'usure et de résistance au roulement au pneumatique. L'utilisation de copolymères d'éthylène et de 1,3-diène dans une composition pour flanc est aussi par exemple décrite dans le document EP 2 682 423 Al pour augmenter la résistance à l'action de l'ozone.

En parallèle, certains documents tels que le document W02020011003A1, mentionnent l'utilisation de plastifiant dialkylester de diacide aliphatique (diisooctyle sébacate) dans des compositions de polyéthylène, comme un plastifiant possible dans une liste, sans discuter d'aucun effet particulier lié à l'utilisation de ce plastifiant.

Dans le domaine discuté plus haut des pneumatiques comprenant un élastomère diénique fortement saturé, il reste un besoin d'améliorer davantage l'équilibre entre les performances d'endurance, de déformabilité et d'hystérèse des compositions de caoutchouc, notamment pour leur utilisation en flanc de pneumatique.

Poursuivant ses recherches, la Demanderesse a découvert que l'utilisation d'un plastifiant spécifique dans une composition de caoutchouc comprenant un copolymère fortement saturé à base d'unités éthylène et d'unités diéniques, permet, d'améliorer dans cette composition, l'équilibre entre les performances d'endurance, de déformabilité et d'hystérèse.

Ainsi, un premier objet de l'invention est une composition de caoutchouc à base d'au moins une matrice élastomère comprenant de 45 à 80 pce d'au moins un polyisoprène et de 20 à 55 pce d'au moins un élastomère diénique fortement saturé ; un plastifiant dialkylester de diacide aliphatique, du noir de carbone, et un système de réticulation ; dans laquelle, l'élastomère diénique fortement saturé est un copolymère d'éthylène et de 1,3-diène.

Un autre objet de la composition est un bandage pneumatique ou non-pneumatique comprenant une composition selon l'invention, de préférence dans au moins un flanc du bandage pneumatique ou non-pneumatique.

I- DÉFINITIONS

Par l'expression "composition à base de", il faut entendre une composition comportant le mélange et/ou le produit de réaction in situ des différents constituants utilisés, certains de ces constituants pouvant réagir et/ou étant destinés à réagir entre eux, au moins partiellement, lors des différentes phases de fabrication de la composition ; la composition pouvant ainsi être à l'état totalement ou partiellement réticulé ou à l'état non-réticulé.

Par l'expression "partie en poids pour cent parties en poids d'élastomère" (ou pce), il faut entendre au sens de la présente invention, la partie, en masse pour cent parties en masse d'élastomère.

Dans la présente, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des pourcentages (%) en masse.

D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b). Dans la présente, lorsqu'on désigne un intervalle de valeurs par l'expression "de a à b", on désigne également et préférentiellement l'intervalle représenté par l'expression "entre a et b".

Dans la présente demande, on entend par « l'ensemble des unités monomères de l'élastomère » ou « la totalité des unités monomères de l'élastomère » tous les motifs de répétitions constitutifs de l'élastomère qui résultent de l'insertion des monomères dans la chaîne élastomère par polymérisation. Sauf indication contraire, les teneurs en une unité monomère ou motif de répétition dans l'élastomère diénique fortement saturé sont données en pourcentage molaire calculé sur la base de l'ensemble des unités monomères de l'élastomère.

Lorsqu'on fait référence à un composé "majoritaire", on entend au sens de la présente invention, que ce composé est majoritaire parmi les composés du même type dans la composition, c'est-à-dire que c'est celui qui représente la plus grande quantité en masse parmi les composés du même type. Ainsi, par exemple, un élastomère majoritaire est l'élastomère représentant la plus grande masse par rapport à la masse totale des élastomères dans la composition. De la même manière, une charge dite majoritaire est celle représentant la plus grande masse parmi les charges de la composition. A titre d'exemple, dans un système comprenant un seul élastomère, celui-ci est majoritaire au sens de la présente invention ; et dans un système comprenant deux élastomères, l'élastomère majoritaire représente plus de la moitié de la masse des élastomères. Au contraire, un composé "minoritaire" est un composé qui ne représente pas la fraction massique la plus grande parmi les composés du même type. De préférence par majoritaire, on entend présent à plus de 50%, de préférence plus de 60%, 70%, 80%, 90%, et plus préférentiellement le composé « majoritaire » représente 100%.

Les composés mentionnés dans la description peuvent être d'origine fossile ou biosourcés. Dans ce dernier cas, ils peuvent être, partiellement ou totalement, issus de la biomasse ou obtenus à partir de matières premières renouvelables issues de la biomasse. De la même manière, les composés mentionnés peuvent également provenir du recyclage de matériaux déjà utilisés, c'est-à-dire qu'ils peuvent être, partiellement ou totalement, issus d'un procédé de recyclage, ou encore obtenus à partir de matières premières elles-mêmes issues d'un procédé de recyclage. Sont concernés notamment les polymères, les plastifiants, les charges, etc.

Sauf indication différente, les valeurs de température de transition vitreuse « Tg » décrite dans la présente sont mesurées de manière connue par DSC (Differential Scanning Calorimetry) selon la norme ASTM D3418 (1999).

Il- DESCRIPTION DE L'INVENTION ll-l Matrice élastomère

Par « matrice élastomère », on entend l'ensemble des élastomères de la composition.

Selon l'invention, la matrice élastomère comprend de 45 à 80 pce d'au moins un polyisoprène et de 20 à 55 pce d'au moins un élastomère diénique fortement saturé, ce dernier étant un copolymère d'éthylène et de 1,3-diène (ci-après dénommé « le copolymère »).

Par « copolymère contenant des unités éthylène et des unités de 1,3-diène », on entend tout copolymère comprenant, au sein de sa structure, au moins des unités éthylène et des unités de 1,3-diène. Le copolymère peut ainsi comprendre des unités monomères différentes des unités éthylène et des unités de 1,3-diène. Par exemple, le copolymère peut comprendre également des unités alpha-oléfine, notamment des unités alpha-oléfines ayant de 3 à 18 atomes de carbone, avantageusement ayant 3 à 6 atomes de carbone. Par exemple, les unités alpha-oléfines peuvent être choisies dans le groupe constitué par le propylène, le butène, le pentène, l'hexène ou leurs mélanges.

De manière connue, l'expression « unité éthylène » fait référence au motif -(CH2-CH2)- résultant de l'insertion de l'éthylène dans la chaîne élastomère. On entend « par unité de 1,3-diène », une unité monomère issue de l'insertion d'un motif monomère résultant de la polymérisation d'un monomère 1,3-diène. En particulier, les unités de 1,3-diène du copolymère peuvent être des unités 1,3-diène ayant 4 à 12 atomes de carbone, par exemple des unités 1,3-butadiène, 2-méthyl-l,3- butadiène. De préférence encore, les unités de 1,3-diène sont majoritairement, voire préférentiellement exclusivement, des unités 1,3-butadiène.

Dans le copolymère, les unités éthylène représentent avantageusement entre 50% et 95% en mole des unités monomères du copolymère, c'est-à-dire entre 50% et 95% en moles des unités monomères du copolymère. Avantageusement, les unités éthylène dans le copolymère représentent plus de 60%, de préférence plus de 70%, en mole des unités monomères du copolymère. De manière avantageuse également, dans le copolymère, les unités éthylène représentent au plus 90% en mole, de préférence au plus 85% en mole, des unités monomères du copolymère.

Avantageusement, le copolymère (c'est-à-dire pour rappel l'au moins un copolymère contenant des unités éthylène et des unités diéniques) est un copolymère d'éthylène et de 1,3-diène (de préférence de 1,3-butadiène), c'est-à-dire, selon l'invention, un copolymère constitué exclusivement d'unités éthylène et d'unité 1,3-diène (de préférence de 1,3-butadiène), plus préférentiellement un copolymère d'éthylène et de 1,3-diène (de préférence de 1,3-butadiène) statistique.

Lorsque le copolymère est un copolymère d'éthylène et d'un 1,3-diène, celui-ci contient avantageusement des unités de formule (I) [Chem 1] et/ou (II) [Chem 2]. La présence de motif cyclique saturé à 6 membres, 1,2-cyclohexanediyle, de formule (I) comme unité monomère dans le copolymère peut résulter d'une série d'insertions très particulières de l'éthylène et du 1,3-butadiène dans la chaîne polymère au cours de sa croissance. [Chem 1]

Par exemple, le copolymère d'éthylène et d'un 1,3-diène peut être dépourvu d'unités de formule (I). Dans ce cas, il contient de préférence des unités de formule (II).

Lorsque le copolymère d'éthylène et d'un 1,3-diène comprend des unités de formule (I) ou des unités de formule (II), les pourcentages molaires des unités de formule (I) et des unités de formule (II) dans l'élastomère diénique fortement saturé, respectivement o et p, satisfont de préférence à l'équation suivante (eq. 1) [Math 1], de manière plus préférentielle à l'équation (eq. 2) [Math 2], et plus préférentiellement à l'équation (eq. 3) [Math 3], o et p étant calculés sur la base de l'ensemble des unités monomères de l'élastomère diénique fortement saturé.

[Math 1]

0 < o+p < 35

’ (eq. 1 )

[Math 2]

0 < o+p < 25

(eq. 2)

[Math 3]

0 < o+p < 20

(eq. 3)

Selon l'invention, le copolymère, de préférence le copolymère d'éthylène et d'un 1,3- diène (de préférence de 1,3-butadiène), est un copolymère statistique. Avantageusement, la masse moyenne en nombre (Mn) du copolymère, de préférence du copolymère d'éthylène et d'un 1,3-diène (de préférence de 1,3-butadiène) est comprise dans un domaine allant de 100 000 à 300 000 g/mol, de préférence de 150 000 à 250000 g/mol.

La Mn du copolymère est déterminée de manière connue, par chromatographie d'exclusion stérique (SEC) telle que décrite ci-dessous :

La technique SEC (Size Exclusion Chromatography) permet de séparer les macromolécules en solution suivant leur taille à travers des colonnes remplies d'un gel poreux. Les macromolécules sont séparées suivant leur volume hydrodynamique, les plus volumineuses étant éluées en premier. Sans être une méthode absolue, la SEC permet d'appréhender la distribution des masses molaires d'un polymère. A partir de produits étalons commerciaux, les différentes masses molaires moyennes en nombre (Mn) et en poids (Mw) peuvent être déterminées et l'indice de polymolécularité (Ip = Mw/Mn) calculé via un étalonnage dit de MOORE. Il n'y a pas de traitement particulier de l'échantillon de polymère avant analyse. Celui-ci est simplement solubilisé dans le solvant d'élution à une concentration d'environ 1 g.L-1. Puis la solution est filtrée sur filtre de porosité 0,45pm avant injection. L'appareillage utilisé est une chaîne chromatographique "WATERS Acquity" ou "WATERS Alliance". Le solvant d'élution est le tétrahydrofurane avec antioxydant de type BHT (hydroxytoluène butylé) de 250 ppm, le débit est de 1 mL.min-1, la température des colonnes est de 35° C et la durée d'analyse de 40 min. Les colonnes utilisées sont un jeu de trois colonnes Agilent de dénomination commerciale "Infin ityLab PolyPore". Le volume injecté de la solution de l'échantillon est 100 pL. Le détecteur est un réfractomètre différentiel "réfractomètre Acquity" ou "WATERS 2410" et le logiciel d'exploitation des données chromatographiques est le système "WATERS EMPOWER". Les masses molaires moyennes calculées sont relatives à une courbe d'étalonnage réalisée à partir de polystyrènes étalon.

Le copolymère peut être obtenu selon différentes méthodes de synthèses connues de l'homme du métier, notamment en fonction de la microstructure visée de l'élastomère diénique fortement saturé. Généralement, il peut être préparé par copolymérisation au moins d'un diène, de préférence d'un 1,3-diène, de préférence encore le 1,3- butadiène, et d'éthylène et selon des méthodes de synthèse connues, en particulier en présence d'un système catalytique comprenant un complexe métallocène. On peut citer à ce titre les systèmes catalytiques à base de complexes métallocènes, lesquels systèmes catalytiques sont décrits dans les documents EP 1 092 731, WO 2004035639, WO 2007054223 et WO 2007054224 au nom de la Demanderesse. Le copolymère, y compris lorsqu'il est statistique, peut être préparé aussi par un procédé utilisant un système catalytique de type préformé comme ceux décrits dans les documents WO 2017093654 Al, WO 2018020122 Al et WO 2018020123 Al.

Le copolymère peut être constitué d'un mélange de copolymères contenant des unités éthylène et des unités diéniques qui se différencient des uns des autres par leurs microstructures et/ou par leurs macrostructures.

Comme indiqué ci-dessus, la matrice élastomère de la composition selon l'invention contient également un polyisoprène. Le polyisoprène peut être un élastomère de toute microstructure.

Avantageusement, le polyisoprène, de préférence présentant un taux massique de liaison 1,4-cis d'au moins 90% de la masse du polyisoprène, est un caoutchouc naturel, un polyisoprène de synthèse ou un de leurs mélanges. De préférence encore, le polyisoprène, de préférence présentant un taux massique de liaison 1,4-cis d'au moins 90% de la masse du polyisoprène, est un caoutchouc naturel.

Le taux du copolymère, de préférence le copolymère d'éthylène et de 1,3-diène (de préférence de 1,3-butadiène), dans la composition, peut être compris dans un domaine allant de 20 à 50 pce, de préférence compris dans un domaine allant de 20 à moins de 45 pce, de préférence encore compris dans un domaine allant de 20 à 40 pce.

Par ailleurs, le taux de polyisoprène, de préférence de caoutchouc naturel, dans la composition peut être compris dans un domaine allant de 50 à 80 pce, de préférence, compris dans un domaine allant de plus de 55 pce à 80 pce, de préférence encore compris dans un domaine allant de 60 à 80 pce.

Selon l'invention, la matrice élastomère peut comprendre au moins un autre élastomère, qui n'est pas un polyisoprène ou un copolymère contenant des unités éthylène et des unités diéniques, mais cela n'est pas nécessaire. Ainsi, préférentiellement, l'au moins un polyisoprène et au moins un copolymère contenant des unités éthylène et des unités diéniques sont les seuls élastomères de la composition, c'est-à-dire qu'ils représentent 100% en masse de la matrice élastomère.

Lorsque la matrice élastomère comprend au moins un autre élastomère, qui n'est pas un polyisoprène ou un copolymère contenant des unités éthylène et des unités diéniques, l'au moins un autre élastomère peut représenter moins de 50%, de préférence moins de 40%, de préférence moins de 30%, de préférence moins de 20%, de préférence moins de 10%, en masse de la matrice élastomère. L'autre élastomère peut être tout élastomère diénique bien connu de l'homme du métier qui n'est pas un polyisoprène ou un copolymère contenant des unités éthylène et des unités diéniques. 11-2 Plastifiant spécifique

Selon l'invention, la composition de caoutchouc est à base d'au moins un plastifiant dialkylester de diacide aliphatique.

De préférence pour les besoins de l'invention, le plastifiant dialkylester de diacide aliphatique est présent dans la composition à un taux compris dans un domaine allant de 5 à 50 pce, de préférence de 7 à 40 pce et plus préférentiellement de 8 à 30 pce. De façon très préférentielle, le taux de plastifiant dialkylester de diacide aliphatique est compris dans un domaine allant de 10 à 25 pce.

De préférence, le plastifiant dialkylester de diacide aliphatique est un composé de formule ROOC-(CH2)n-COOR dans lequel R est un alkyl linéaire ou branché et n représente un nombre entier de 4 à 20.

De préférence, le radical R est un alkyl comprenant de 4 à 20 atomes de carbone, de préférence de 6 à 12 atomes de carbone et plus préférentiellement de 6 à 10 atomes de carbone.

De préférence, le radical R est un alkyl ramifié, et de façon très préférentielle, R est un radical isooctyle.

De préférence pour les besoins de l'invention, n représente un entier de 4 à 12, et de préférence un entier de 6 à 10. De façon très préférée, n est égal à 8. De façon très préférentielle, le plastifiant dialkylester de diacide aliphatique est le diisooctyle sébacate [Chem 3] ci-dessous.

[Chem 3]

Le diisooctyle sébacate, de numéro CAS 122-62-3, présente une température de transition vitreuse de -104°C et il est par exemple commercialisé sous la dénomination « Plasthall DOS » par la société Hallstar.

En outre, la composition selon l'invention ne comprend avantageusement pas de plastifiant autre que le plastifiant spécifique ci-dessus, ou en contient moins de 15 pce, de préférence moins de 10 pce, de préférence moins de 5 pce.

La composition de caoutchouc conforme à l'invention a pour autre caractéristique essentielle de comprendre une charge renforçante comprenant du noir de carbone.

La composition de caoutchouc peut comprendre tout autre type de charge dite renforçante, connue pour ses capacités à renforcer une composition de caoutchouc utilisable pour la fabrication de pneumatiques, par exemple une charge organique autre que du noir de carbone, une charge inorganique renforçante telle que de la silice à laquelle est associé de manière connue un agent de couplage. Une telle charge renforçante consiste typiquement en des nanoparticules dont la taille moyenne (en masse) est inférieure au micromètre, généralement inférieure à 500 nm, le plus souvent comprise entre 20 et 200 nm, en particulier et plus préférentiellement comprise entre 20 et 150 nm.

Comme noirs de carbone conviennent tous les noirs de carbone, notamment les noirs conventionnellement utilisés dans les pneumatiques ou leurs bandes de roulement. Parmi ces derniers, on citera plus particulièrement les noirs de carbone renforçants des séries 100, 200, 300, ou les noirs de série 500, 600 ou 700 (grades ASTM D-1765- 2017), comme par exemple les noirs N115, N134, N234, N326, N330, N339, N347, N375, N550, N683, N772). Ces noirs de carbone peuvent être utilisés à l'état isolé, tels que disponibles commercialement, ou sous tout autre forme, par exemple comme support de certains des additifs de caoutchouterie utilisés. Les noirs de carbone pourraient être par exemple déjà incorporés à l'élastomère diénique, notamment isoprénique sous la forme d'un masterbatch (voir par exemple demandes WO97/36724-A2 ou W099/16600-A1).

Avantageusement, le noir de carbone présente une surface spécifique BET comprise dans un domaine allant de 30 à 100 m 2 /g, de préférence de 33 à 70 m 2 /g, de préférence encore de 35 à 50 m 2 /g. La surface spécifique BET peut être mesurée selon la norme ASTM D6556-09 [méthode multipoints (5 points) - gaz : azote - domaine de pression relative P/PO : 0.05 à 0.30].

Avantageusement, la charge renforçante comprenant majoritairement, de préférence exclusivement, du noir de carbone. En particulier, la charge renforçante est de préférence constituée d'au moins 80% en poids, de préférence d'au moins 90% en poids de noir de carbone. De manière particulièrement préférée, la charge renforçante comprend exclusivement, c'est-à-dire 100% en poids, de noir de carbone. Le taux de noir de carbone, dans la composition selon l'invention, est préférentiellement compris dans un domaine allant de 15 à 65 pce, de préférence de 20 à 45 pce. Le noir de carbone peut être un mélange de différents noirs de carbone, auquel cas les taux de noir de carbone se rapportent à l'ensemble des noirs de carbone.

11-4 Système de réticulation

Le système de réticulation peut être tout type de système connu de l'homme de l'art dans le domaine des compositions de caoutchouc pour pneumatique. Il peut notamment être à base de soufre, et/ou de peroxyde et/ou de bismaléimides.

De manière préférentielle, le système de réticulation est à base de soufre, on parle alors d'un système de vulcanisation. Le soufre peut être apporté sous toute forme, notamment sous forme de soufre moléculaire, ou d'un agent donneur de soufre. Au moins un accélérateur de vulcanisation est également préférentiellement présent, et, de manière optionnelle, préférentielle également, on peut utiliser divers activateurs de vulcanisation connus tels qu'oxyde de zinc, acide stéarique ou composé équivalent tels que les sels d'acide stéarique et sels de métaux de transition, dérivés guanidiques (en particulier diphénylguanidine), ou encore des retardateurs de vulcanisation connus.

Le soufre est utilisé à un taux préférentiel compris entre 0,2 pce et 10 pce, plus préférentiellement entre 0,3 et 5 pce. L'accélérateur primaire de vulcanisation est utilisé à un taux préférentiel compris entre 0,5 et 10 pce, plus préférentiellement compris entre 0,5 et 5 pce.

On peut utiliser comme accélérateur tout composé susceptible d'agir comme accélérateur de vulcanisation des élastomères diéniques en présence de soufre, notamment des accélérateurs du type thiazoles ainsi que leurs dérivés, des accélérateurs de types sulfénamides, thiurames, dithiocarbamates, dithiophosphates, thiourées et xanthates. A titre d'exemples de tels accélérateurs, on peut citer notamment les composés suivants : disulfure de 2-mercaptobenzothiazyle (en abrégé "MBTS"), N-cyclohexyl-2-benzothiazyle sulfénamide ("CBS"), N,N-dicyclohexyl-2- benzothiazyle sulfénamide ("DCBS"), N-ter-butyl-2-benzothiazyle sulfénamide ("TBBS"), N-ter-butyl-2-benzothiazyle sulfénimide ("TBSI"), disulfure de tetrabenzylthiurame ("TBZTD"), dibenzyldithiocarbamate de zinc ("ZBEC") et les mélanges de ces composés.

11-5 Additifs possibles

Les compositions de caoutchouc selon l'invention peuvent comporter optionnellement également tout ou partie des additifs usuels habituellement utilisés dans les compositions d'élastomères pour pneumatique, comme par exemple, des pigments, des agents de protection tels que cires anti-ozone, anti-ozonants chimiques, antioxydants, des agents anti-fatigue, des résines renforçantes (telles que décrites par exemple dans la demande WO 02/10269).

Avantageusement, la composition selon l'invention ne comprend pas de résine plastifiante hydrocarbonée.

11-6 des compositions de caoutchouc

Les compositions conformes à l'invention peuvent être fabriquées dans des mélangeurs appropriés, en utilisant deux phases de préparation successives bien connues de l'homme du métier :

- une première phase de travail ou malaxage thermomécanique (phase dite « non- productive »), qui peut être conduite en une seule étape thermomécanique au cours de laquelle on introduit, dans un mélangeur approprié tel qu'un mélangeur interne usuel (par exemple de type 'Banbury'), tous les constituants nécessaires, notamment la matrice élastomérique, la charge renforçante, les éventuels autres additifs divers, à l'exception du système de réticulation. L'incorporation de la charge éventuelle à l'élastomère peut être réalisée en une ou plusieurs fois en malaxant thermomécaniquement. Dans le cas où la charge est déjà incorporée en totalité ou en partie à l'élastomère sous la forme d'un mélange-maître (« masterbatch » en anglais) comme cela est décrit par exemple dans les demandes WO 97/36724 ou WO 99/16600, c'est le mélange-maître qui est directement malaxé et le cas échéant on incorpore les autres élastomères ou charges présents dans la composition qui ne sont pas sous la forme de mélange-maître, ainsi que les éventuels autres additifs divers autres que le système de réticulation. La phase non-productive peut être réalisée à haute température, jusqu'à une température maximale comprise entre 110°C et 200°C, de préférence entre 130°C et 185°C, pendant une durée généralement comprise entre 2 et 10 minutes.

- une seconde phase de travail mécanique (phase dite « productive »), qui est réalisée dans un mélangeur externe tel qu'un mélangeur à cylindres, après refroidissement du mélange obtenu au cours de la première phase non-productive jusqu'à une plus basse température, typiquement inférieure à 120°C, par exemple entre 40°C et 100°C.On incorpore alors le système de réticulation, et le tout est alors mélangé pendant quelques minutes, par exemple entre 5 et 15 min.

De telles phases ont été décrites par exemple dans les demandes EP-A-0501227, EP-A- 0735088, EP-A-0810258, WO00/05300 ou WO00/05301.

La composition finale ainsi obtenue est ensuite calandrée par exemple sous la forme d'une feuille ou d'une plaque, notamment pour une caractérisation au laboratoire, ou encore extrudée (ou co-extrudée avec une autre composition de caoutchouc) sous la forme d'un semi-fini (ou profilé) de caoutchouc utilisable par exemple comme flanc de pneumatique. Ces produits peuvent ensuite être utilisés pour la fabrication de pneumatiques, selon les techniques connues de l'homme du métier.

La composition peut être soit à l'état cru (avant réticulation ou vulcanisation), soit à l'état cuit (après réticulation ou vulcanisation), peut être un produit semi-fini qui peut être utilisé dans un pneumatique.

La réticulation (ou cuisson), le cas échéant la vulcanisation, est conduite de manière connue à une température généralement comprise entre 130°C et 200°C, pendant un temps suffisant qui peut varier par exemple entre 5 et 90 min en fonction notamment de la température de cuisson, du système de réticulation adopté et de la cinétique de réticulation de la composition considérée.

11-7 Pneumatique

La présente invention a également pour objet un pneumatique comprenant une composition de caoutchouc selon l'invention.

De préférence, la composition selon l'invention est présente au moins dans un flanc du pneumatique selon l'invention. Avantageusement, cette composition est présente exclusivement dans les flancs du pneumatique.

Le pneumatique selon l'invention peut être destiné à équiper des véhicules à moteur de type tourisme, SUV ("Sport Utility Vehicles"), ou deux roues (notamment motos), ou avions, ou encore des véhicules industriels choisis parmi camionnettes, « Poids- lourd » - c'est-à-dire métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route tels qu'engins agricoles ou de génie civil -, et autres.

III. EXEMPLES DE REALISATION DE L'INVENTION lll.l Tests et mesures :

Les propriétés dynamiques sont mesurées sur un viscoanalyseur (Metravib V A4000), selon la norme ASTM D5992-96. On enregistre la réponse d'un échantillon de composition vulcanisée (éprouvette cylindrique de 4 mm d'épaisseur et de 400 mm2 de section), soumis à une sollicitation sinusoïdale en cisaillement simple alterné, à la fréquence de 10Hz selon la norme ASTM D 1349-99 à une température de 23°C. On effectue un balayage en amplitude de déformation crête à crête de 0,1 à 50% (cycle aller), puis de 50% à 0,1 % (cycle retour). Les résultats exploités sont la mesure, en cycle retour, des modules G' et G” à 10% de déformation, à 23°C, représentant respectivement la rigidité (et donc la déformabilité) et l'hystérèse des compositions.

Pour plus de lisibilité, les résultats sont indiqués en base 100 (pourcentage), la valeur 100 étant attribuée au témoin. Un résultat supérieur à 100 indique une amélioration de la performance concernée. Pour « G'10% retour à 23°C », un résultat supérieur à 100 indique une diminution du module et donc une meilleure déformabilité, propriété importante pour l'endurance dans le cas d'une utilisation dans des flancs de pneumatiques. Pour « G"10% retour à 23°C », un résultat supérieur à 100 indique une diminution de l'hystérèse et donc une meilleure performance en résistance au roulement dans le cas d'une utilisation en pneumatiques.

III.2 Préparation des compositions de caoutchouc :

L'élastomère (EBR) est préparé selon le mode opératoire suivant : 30 mg de métallocène [{Me2SiFlu2Nd(p-BH4)2Li(THF)}2, le symbole Flu représentant le groupe fluorényle de formule C13H8] sont introduits dans une première bouteille Steinie en boite à gant. Le co-catalyseur, le butyloctylmagnésium mis au préalable en solution dans 300 ml de méthylcyclohexane dans une seconde bouteille Steinie, est introduit dans la première bouteille Steinie contenant le métallocène dans les proportions suivantes 0.00007 mol/L de métallocène, 0.0004 mol/L de co-catalyseur. Après 10 minutes de contact à température ambiante est obtenue une solution catalytique. La solution catalytique est ensuite introduite dans le réacteur de polymérisation. La température dans le réacteur est alors augmentée à 80°C. Lorsque cette température est atteinte, la réaction démarre par injection d'un mélange gazeux d'éthylène et de 1,3-butadiène (80/20 % molaire) dans le réacteur. La réaction de polymérisation se déroule à une pression de 8 bars. Les proportions de métallocène et de co-catalyseur sont respectivement de 0.00007 mol/L et 0.0004 mol/L. La réaction de polymérisation est stoppée par refroidissement, dégazage du réacteur et ajout d'éthanol. Un anti-oxydant est ajouté à la solution de polymère. Le copolymère est récupéré par séchage en étuve sous vide. Dans un réacteur contenant à 80°C du méthylcyclohexane, de l'éthylène et du butadiène dans les proportions (80/20%molaire Ethylène / butadiène), on ajoute du butyloctylmagnésium (BOMAG) pour neutraliser les impuretés du réacteur, puis le système catalytique. A ce moment, la température de réaction est régulée à 80°C et la réaction de polymérisation démarre. La réaction de polymérisation se déroule à une pression constante de 8 bars. Le réacteur est alimenté tout au long de la polymérisation en éthylène et en butadiène dans les proportions 80/20%molaire (Ethylène/Butadiene). La réaction de polymérisation est stoppée par refroidissement, dégazage du réacteur et ajout d'éthanol. Un anti-oxydant est ajouté à la solution de polymère. Le copolymère est récupéré par séchage en étuve sous vide jusqu'à masse constante.

Le système catalytique est un système catalytique préformé. Il est préparé dans le méthylcyclohexane à partir d'un métallocène, le [Me2Si(Flu)2Nd(p-BH4)2Li(THF)], d'un co-catalyseur, le butyloctylmagnésium (BOMAG), et d'un monomère de préformation, le 1,3-butadiène, dans les teneurs suivant : métallocène : 0.00007 mol/L, cocatalyseur : 0.00036 mol/L. Il est préparé selon une méthode de préparation conforme au paragraphe ll.l de la demande de brevet WO 2017093654 Al.

Dans les exemples qui suivent, les compositions caoutchouteuses ont été réalisées comme décrit au point 11.6 ci-dessus. En particulier, la phase « non-productive » a été réalisée dans un mélangeur de 0,4 litres pendant 6 minutes, pour une vitesse moyenne de palettes de 50 tours par minute jusqu'à atteindre une température maximale de tombée de 160°C. La phase « productive » a été réalisée dans un outil à cylindre à 23°C pendant 10 minutes.

La réticulation de la composition a été conduite à une température comprise entre 130°C et 200°C, sous pression.

III.3 Essais de caoutchouterie :

Les exemples présentés ci-dessous ont pour objet de comparer le compromis de performance entre la déformabilité et l'hystérèse de deux compositions conformes à l'invention (Cl et C2), respectivement avec deux compositions témoin (Tl et T2).

Le Tableau 1 présente les compositions testées (en pce), et le tableau 2 présente les résultats obtenus, en base 100. [Table 1]

(1) Caoutchouc naturel

(2) EBR mooney 85, taux d'éthylene : 77%, (3) Noir de carbone de grade N550 selon la norme ASTM D-1765, de la société Cabot

(4) Huile paraffinique « Tudalen 1968 » de la société Klaus Dahleke

(5) Huile Plasthal I DOS de chez Hallstar

(6) 2,2,4-triméthyl-l,2-dihydroquinoline « Pilnox TMQ » de la société Nocil

(7) N-l,3-diméthylbutyl-N-phénylparaphénylènediamine « Santoflex 6-PPD » de la société Flexsys (8) N-cyclohexyl-2-benzothiazyle sulfénamide « Santocure CBS » de la société Flexsys

[Table 2] Les résultats présentés dans le Tableau 2 ci-dessus montrent que les compositions selon l'invention permettent d'améliorer l'équilibre des performances de déformabilité et d'hystérèse par rapport aux compositions témoin.