Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM FOR NOx REDUCTION IN EXHAUST GASES
Document Type and Number:
WIPO Patent Application WO/1999/039809
Kind Code:
A1
Abstract:
A system for NOx reduction in combustion gases, especially from diesel engines, incorporates an oxidation catalyst to convert at least a portion of NO to NO¿2?, a particulate filter, a source of reductant such as NH¿3?, and an SCR catalyst. Considerable improvements in NOx conversion are observed.

Inventors:
ANDREASSON ANDERS (SE)
CHANDLER GUY RICHARD (GB)
GOERSMANN CLAUS FRIEDRICH (GB)
WARREN JAMES PATRICK (GB)
Application Number:
PCT/GB1999/000292
Publication Date:
August 12, 1999
Filing Date:
January 28, 1999
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
JOHNSON MATTHEY PLC (GB)
ANDREASSON ANDERS (SE)
CHANDLER GUY RICHARD (GB)
GOERSMANN CLAUS FRIEDRICH (GB)
WARREN JAMES PATRICK (GB)
International Classes:
B01D53/94; F01N3/023; F01N3/20; F01N3/08; F01N3/24; F01N3/28; F01N9/00; F01N3/32; F01N13/02; (IPC1-7): B01D53/94; F01N3/28
Foreign References:
EP0758713A11997-02-19
EP0283913A21988-09-28
EP0341832A21989-11-15
DE4032085A11992-04-16
Other References:
DATABASE WPI Section Ch Week 9710, Derwent World Patents Index; Class H06, AN 97-104299, XP002102630
See also references of EP 1054722A1
Attorney, Agent or Firm:
Wishart, Ian Carmichael (Johnson Matthey Technology Centre Blounts Court Sonning Common Reading RG4 9NH, GB)
Download PDF:
Claims:
CLAIMS
1. An improved SCR system for treating combustion exhaust gas containing NO and particulates, comprising in combination and in order, an oxidation catalyst effective to convert at least a portion of NO in said NOx to N02, a particulate trap, a source of reductant fluid and an SCR catalyst.
2. An SCR system according to claim 1, wherein the reductant fluid is NH3.
3. An SCR system according to claim 1 or 2, wherein the oxidation catalyst is a platinum catalyst carried on a throughflow honeycomb support.
4. An SCR system according to claims 1,2 or 3 wherein the particulate filter is a wall flow filter.
5. An SCR system according to any one of the preceding claims, comprising also means to cool gases upstream of the SCR catalyst.
6. An SCR system according to claim 5, comprising also control means such that said gas cooling means is activated only when a high SCR catalyst temperature is detected or conditions are determined that are expected to lead to high catalyst temperatures.
7. A diesel engine provided with an SCR system according to any one of claims 1 to 5.
8. A light duty diesel engine according to claim 6, wherein the volume of the exhaust gas aftertreatment system is reduced.
9. A method of reducing pollutants, including particulates and NOx, in gas streams, comprising passing such gas stream over an oxidation catalyst under conditions effective to convert at least a portion of NO in the gas stream to N02, removing at least a portion of said particulates, adding reductant fluid to the gas stream containing enhanced N02 to form a gas mixture, and passing the gas mixture over an SCR catalyst under NOx reduction conditions.
10. A method according to claim 9, wherein said gas stream is the exhaust from a diesel, GDI or CNG engine.
11. A method according to claim 9 or 10, wherein the gases are cooled, if necessary, before reaching the SCR catalyst.
12. A method according to claim 9,10 or 11, wherein the NO to N02 ratio in the gases is adjusted to a level predetermined to be optimum for the SCR catalyst, by oxidation of NO over an oxidation catalyst.
Description:
SYSTEM FOR NOx REDUCTION IN EXHAUST GASES The present invention concerns improvements in selective catalytic reduction of NOx in waste gas streams such as diesel engine exhausts or other lean exhaust gases such as from gasoline direct injection (GDI).

The technique named SCR (Selective Catalytic Reduction) is well established for industrial plant combustion gases, and may be broadly described as passing a hot exhaust gas over a catalyst in the presence of a nitrogenous reductant, especially ammonia or urea. This is effective to reduce the NOx content of the exhaust gases by about 20-25% at about 250°C, or possibly rather higher using a platinum catalyst, although platinum catalysts tend to oxidise NH3 to NOx during higher temperature operation. We believe that SCR systems have been proposed for NOx reduction for vehicle engine exhausts, especially large or heavy duty diesel engines, but this does require on-board storage of such reductants, and is not believed to have met with commercial acceptability at this time.

We believe that if there could be a significant improvement in performance of SCR systems, they would find wider usage and may be introduced into vehicular applications.

It is an aim of the present invention to improve significantly the conversion of NOx in a SCR system, and to improve the control of other pollutants using a SCR system.

Accordingly, the present invention provides an improved SCR catalyst system, comprising in combination and in order, an oxidation catalyst effective to convert NO to N02, a particulate filter, a source of reductant fluid and downstream of said source, an SCR catalyst.

The invention further provides an improved method of reducing NOx in gas streams containing NO and particulates comprising passing such gas stream over an oxidation catalyst under conditions effective to convert at least a portion of NO in the gas stream to N02, removing at least a portion of said particulates, adding reductant fluid to the gas stream containing enhanced N02 to form a gas mixture, and passing the gas mixture over an SCR catalyst.

Although the present invention provides, at least in its preferred embodiments, the opportunity to reduce very significantly the NOX emissions from the lean (high in oxygen) exhaust gases from diesel and similar engines, it is to be noted that the invention also permits very good reductions in the levels of other regulated pollutants, especially hydrocarbons and particulates.

The invention is believed to have particular application to the exhausts from heavy duty diesel engines, especially vehicle engines, eg truck or bus engines, but is not to be regarded as being limited thereto. Other applications might be LDD (light duty diesel), GDI, CNG (compressed natural gas) engines, ships or stationary sources. For simplicity, however, the majority of this description concerns such vehicle engines.

We have surprisingly found that a"pre-oxidising"step, which is not generally considered necessary because of the low content of CO and unburnt fuel in diesel exhausts, is particularly effective in increasing the conversion of NOx to N2 by the SCR system.

We also believe that minimising the levels of hydrocarbons in the gases may assist in the conversion of NO to NO2. This may be achieved catalytically and/or by engine design or management. Desirably, the NO2/NO ratio is adjusted according to the present invention to the most beneficial such ratio for the particular SCR catalyst and CO and hydrocarbons are oxidized prior to the SCR catalyst. Thus, our preliminary results indicate that for a transition metal/zeolite SCR catalyst it is desirable to convert all NO to N02, whereas for a rare earth-based SCR catalyst, a high ratio is desirable providing there is some NO, and for other transition metal-based catalysts gas mixtures are notably better than either substantially only NO or NO2. Even more surprisingly, the incorporation of a particulate filter permits still higher conversions of NOx.

The oxidation catalyst may be any suitable catalyst, and is generally available to those skilled in art. For example, a Pt catalyst deposited upon a ceramic or metal through- flow honeycomb support is particularly suitable. Suitable catalysts are e. g. Pt/A1203 catalysts, containing 1-150g Pt/ft3 (0.035-5.3g Pt/litre) catalyst volume depending on the

N02/NO ratio required. Such catalysts may contain other components providing there is a beneficial effect or at least no significant adverse effect.

The source of reductant fluid conveniently uses existing technology to inject fluid into the gas stream. For example, in the tests for the present invention, a mass controller was used to control supply of compressed NH3, which was injected through an annular injector ring mounted in the exhaust pipe. The injector ring had a plurality of injection ports arranged around its periphery. A conventional diesel fuel injection system including pump and injector nozzle has been used to inject urea by the present applicants. A stream of compressed air was also injected around the nozzle; this provided good mixing and cooling.

The reductant fluid is suitably NH3, but other reductant fluids including urea, ammonium carbamate and hydrocarbons including diesel fuel may also be considered.

Diesel fuel is, of course, carried on board a diesel-powered vehicle, but diesel fuel itself is a less selective reductant than NH3 and is presently not preferred.

Suitable SCR catalysts are available in the art and include Cu-based and vanadia- based catalysts. A preferred catalyst at present is a V205/WO3/TiO2 catalyst, supported on a honeycomb through-flow support. Although such a catalyst has shown good performance in the tests described hereafter and is commercially available, we have found that sustained high temperature operation can cause catalyst deactivation. Heavy duty diesel engines, which are almost exclusively turbocharged, can produce exhaust gases at greater than 500°C under conditions of high load and/or high speed, and such temperatures are sufficient to cause catalyst deactivation. In one embodiment of the invention, therefore, cooling means is provided upstream of the SCR catalyst. Cooling means may suitably be activated by sensing high catalyst temperatures or by other, less direct, means, such as determining conditions likely to lead to high catalyst temperatures. Suitable cooling means include water injection upstream of the SCR catalyst, or air injection, for example utilising the engine turbocharger to provide a stream of fresh intake air by-passing the engine. We have observed a loss of activity of the catalyst, however, using water injection, and air injection by modifying the turbocharger leads to higher space velocity over the catalyst which tends

to reduce NOx conversion. Preferably, the preferred SCR catalyst is maintained at a temperature from 160°C to 450°C.

We believe that in its presently preferred embodiments, the present invention may depend upon an incomplete conversion of NO to NO2. Desirably, therefore, the oxidation catalyst, or the oxidation catalyst together with the particulate trap if used, yields a gas stream entering the SCR catalyst having a ratio of NO to N02 of from about 4: 1 to about 1: 3 by vol, for the commercial vanadia-type catalyst. As mentioned above, other SCR catalysts perform better with different NO/NO2 ratios. We do not believe that it has previously been suggested to adjust the NO/NO2 ratio in order to improve NOx reduction.

The present invention incorporates a particulate trap downstream of the oxidation catalyst. We discovered that soot-type particulates may be removed from a particulate trap by"combustion"at relatively low temperatures in the presence of NO2. In effect, the incorporation of such a particulate trap serves to clean the exhaust gas of particulates without causing accumulation, with resultant blockage or back-pressure problems, whilst simultaneously reducing a proportion of the NOx. Suitable particulate traps are generally available, and are desirably of the type known as wall-flow filters, generally manufactured from a ceramic, but other designs of particulate trap, including woven knitted or non-woven heat-resistant fabrics, may be used.

It may be desirable to incorporate a clean-up catalyst downstream of the SCR catalyst, to remove any NH3 or derivatives thereof which could pass through unreacted or as by-products. Suitable clean-up catalysts are available to the skilled person.

A particularly interesting possibility arising from the present invention has especial application to light duty diesel engines (car and utility vehicles) and permits a significant reduction in volume and weight of the exhaust gas after-treatment system, in a suitable engineered system.

Several tests have been carried out in making the present invention. These are described below, and are supported by results shown in graphical form in the attached drawings.

A commercial 10 litre turbocharged heavy duty diesel engine on a test-bed was used for all the tests described herein.

Test l- (Comparative) A conventional SCR system using a commercial V205/WO3/TiO2 catalyst, was adapted and fitted to the exhaust system of the engine. NH3 was injected upstream of the SCR catalyst at varying ratios. The NH3 was supplied from a cylinder of compressed gas and a conventional mass flow controller used to control the flow of NH3 gas to an experimental injection ring. The injection ring was a 1 0cm diameter annular ring provided with 20 small injection ports arranged to inject gas in the direction of the exhaust gas flow.

NOx conversions were determined by fitting a NOx analyser before and after the SCR catalyst and are plotted against exhaust gas temperature in Figure 1. Temperatures were altered by maintaining the engine speed constant and altering the torque applied.

A number of tests were run at different quantities of NH3 injection, from 60% to 100% of theoretical, calculated at 1: 1 NH3NO and 4: 3 NH3/N02. It can readily be seen that at low temperatures, corresponding to light load, conversions are about 25%, and the highest conversions require stoichiometric (100%) addition of NH3 at catalyst temperatures of from 325 to 400°C, and reach about 90%. However, we have determined that at greater than about 70% of stoichiometric NH3 injection, NH3 slips through the SCR catalyst unreacted, and can cause further pollution problems.

Test 2 (Comparative) The test rig was modified by inserting into the exhaust pipe upstream of the NH3 injection, a commercial platinum oxidation catalyst of 10.5 inch diameter and 6 inch length

(26.67cm diameter and 15.24cm length) containing lOg Pt/ft3 (= 0.35g/litre) of catalyst volume. Identical tests were run, and it was observed from the results plotted in Figure 2, that even at 225°C, the conversion of NOx has increased from 25% to >60%. The greatest conversions were in excess of 95%. No slippage of NH3 was observed in this test nor in the following test.

Test 3 The test rig was modified further, by inserting a particulate trap before the NH3 injection point, and the tests run again under the same conditions at 100% NH3 injection and a space velocity in the range 40,000 to 70,000 hr~l over the SCR catalyst. The results are plotted and shown in Figure 3. Surprisingly, there is a dramatic improvement in NOx conversion, to above 90% at 225°C, and reaching 100% at 350°C. Additionally, of course, the particulates which are the most visible pollutant from diesel engines, are also controlled.

Test 4 An R49 test with 80% NH3 injection was carried out over a V205/W03/Ti02 SCR catalyst. This gave 67% particulate, 89% HC and 87% NOx conversion ; the results are plotted in Figure 4.

Additionally tests have been carried out with a different diesel engine, and the excellent results illustrated in Test 3 and 4 above have been confirmed.

The results have been confirmed also for a non-vanadium SCR catalyst.