Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SAFETY CONTROLLER FOR AN ACTUATOR
Document Type and Number:
WIPO Patent Application WO/2011/047490
Kind Code:
A2
Abstract:
The invention relates to a safety controller for an actuating drive (2.1, 2.2, 2.3) for controlling a gas flow or a liquid flow in an open-loop or closed-loop manner by means of a flap (3.1, 3.2, 3.3) or a valve, in particular in the field of heating, ventilation, and air conditioning (HVAC) systems, fire-protection systems, and/or room protection systems. A safety circuit (9.1, 9.2, 9.3) is implemented to ensure the energy supply in a safety operating mode if an electricity supply circuit (8.1, 8.2, 8.3) drops off or is lost. A control value output circuit (1.1, 1.2, 1.3) detects status signals, in particular signals of a sensor (11.1, 11.2, 11.3), and/or status parameters of a system and/or a specifiable setting of an adjustment device that can be actuated manually. The safety control value is set to one of at least two different control values (SW1, SW2,...) depending on the status signals so that the safety position of the flap is determined adaptively.

Inventors:
FURRER ANDREAS (CH)
OCHSENBEIN MARTIN (CH)
Application Number:
PCT/CH2010/000247
Publication Date:
April 28, 2011
Filing Date:
October 06, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BELIMO HOLDING AG (CH)
FURRER ANDREAS (CH)
OCHSENBEIN MARTIN (CH)
International Classes:
H02J9/06
Domestic Patent References:
WO2007134471A12007-11-29
Foreign References:
US20050127854A12005-06-16
US5744923A1998-04-28
EP2052191A12009-04-29
EP1924793A12008-05-28
Attorney, Agent or Firm:
ROSHARDT, Werner, A. (CH)
Download PDF:
Claims:
Patentansprüche

1. Sicherheitssteuerung für ein Stellglied, insbesondere für ein Stellglied mit einem Stellantrieb (2.1 , 2.2, 2.3) mit einer Klappe (3.1 , 3.2, 3.3) oder einem Ventil zur Steuerung oder Regelung eines Gas- oder Flüssigkeitsstroms, insbesondere zur Verwendung in einer Anlage für Heizung-Lüftung-Klima (HLK), Brand- und/oder Raumschutz, mit einer Stellwertausgabeschaltung (1.1 , 1.2, 1.3), welche einen eine Sicherheitsposition des Stellglieds definierenden Sicherheitsstellwert (SSW) für das Stellglied ausgibt, dadurch gekennzeichnet, dass die Stellwertausgabeschaltung (1.1 , 1.2, 1.3) mindestens einen Eingang (E1 , ..., E4) für ein variables Zustandssignal aufweist und dass sie ausgebildet ist, um den Sicherheitsstellwert (SSW) in Abhängigkeit vom genannten Zustandssignal auf einen von mindestens zwei verschiedenen Stellwerten (SW1 , SW2, ...) festzulegen.

2. Sicherheitssteuerung nach Anspruch 1 , dadurch gekennzeichnet, dass sie einen Controller (10) umfasst, welcher einen Eingang für ein Spannungsabfallsignal oder einen Detektor für einen Spannungsabfall einer externen Stromspeisungsschaltung (8.1 , 8.2, 8.3) umfasst, und welcher über einen Sicherheitsbetrieb verfügt, in welchem bei vorgegebenem Spannungsabfall das Stellglied (2.1 , 2.2, 2.3) mit Hilfe eines elektrischen Energiespeichers (30), insbesondere eines kapazitiven Energiespeichers, in die Sicherheitsposition gefahren wird, die dem durch die Stellwertausgabeschaltung (1.1 , 1.2, 1.3) ausgegebenen Sicherheitsstellwert (SSW) entspricht. Sicherheitssteuerung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie einen Sensor (1 1.4) umfasst, welcher mit dem mindestens einen Eingang (E3) für das variable Zustandssignal in Verbindung steht, so dass der Sicherheitsstellwert (SSW) in Abhängigkeit von einem Signal des Sensors (1 1.4) auf einen der mindestens zwei verschiedenen Stellwerte (SW1 , SW2, ...) festgelegt wird.

4. Sicherheitssteuerung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass an dem Eingang (E1 ) für das Zustandssignal ein Anlagenparametermodul (12) angeschlossen ist, so dass der Sicherheitsstellwert in Abhängigkeit von mindestens einem Parameterwert der Anlagensteuereinheit (12) festgelegt wird. 5. Sicherheitssteuerung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass an dem Eingang (E4) für das Zustandssignal eine manuell betätigbare Einstellvorrichtung (13) angeschlossen ist, so dass der Sicherheitsstellwert in Abhängigkeit von einer momentanen Stellung der Einstellvorrichtung (13) festgelegt wird.

Sicherheitssteuerung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie eine Datenschnittstelle (E2) für einen Zugang zu einem Server (15) aufweist und dass der Sicherheitsstellwert in Abhängigkeit von mindestens einem Parameterwert des Servers (15) festgelegt wird.

Sicherheitssteuerung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass sie einen kapazitiven Energiespeicher (30) umfasst und dass der Controller (10) in einem Mikroprozessor (16) zur Steuerung des Energiespeichers (30) integriert ist.

8. Sicherheitssteuerung nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass sie eine Antriebssteuerung (6.3) umfasst.

9. Sicherheitssteuerung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass der Sensor (1 1.1 , 1 1.2, 1 1.3) ein Gassensor, ein Rauchsensor, ein Temperatursensor, ein Luftdrucksensor und/oder ein Strömungssensor ist.

10. Sicherheitssteuerung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein Zeitmodul (17) vorgesehen ist, um den Sicherheitsstellwert (SSW) zeitabhängig zu ermitteln, insbesondere abhängig von der Tageszeit, vom Wochentag und/oder von der Jahreszeit.

1 1. Sicherheitssteuerung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sie eine Verzögerungsschaltung (18) aufweist, um bei Abfall oder Wegfall der Stromspeisungsschaltung (8) erst nach einer Verzögerungszeit in den

Sicherheitsbetrieb überzugehen.

12. Stellglied mit einem Stellantrieb (2.1 , 2.2, 2.3) zum Positionieren einer Klappe (3.1 , 3.2, 3.3) oder eines Ventils zur Steuerung oder Regelung eines Gas- oder Flüssigkeitsstroms, insbesondere zur Verwendung in einer Anlage für Heizung- Lüftung-Klima (HLK), Brand- und/oder Raumschutz, gekennzeichnet durch eine

Sicherheitssteuerung nach einem der Ansprüche 1 bis 1 1.

Sicherheitsschaltung (1.4) mit einem kapazitiven Energiespeicher (30), einem Detektor (27) für einen Spannungsabfall einer externen Stromspeisungsschaltung (8.1 , 8.2, 8.3) und einem Controller (10), gekennzeichnet durch eine Sicherheitssteuerung nach einem der Ansprüche 1 bis 1 1.

14. Anlage für die Steuerung und/oder Regelung von Heizung-Lüftung-Klima (HLK) und/oder für den Brand- und/oder Raumschutz, mit mindestens einem Stellantrieb (2.1 , 2.2, 2.3) und einer von diesem angetriebenen Klappe (3.1 , 3.2, 3.3) oder einem Ventil zur Steuerung oder Regelung eines Gas- oder Flüssigkeitsstroms, gekennzeichnet durch eine Sicherheitssteuerung nach einem der Ansprüche 1 bis 1 1.

15. Anlage nach Anspruch 14, dadurch gekennzeichnet, dass sie mindestens einen Sensor (1 1.1 , 1 1.2, 1 1.3) extern vom Stellantrieb (2.1 , 2.2, 2.3) umfasst.

16. Anlage nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass an dem Eingang für das Zustandssignal ein Anlagenparametermodul angeschlossen ist, so dass der Sicherheitsstellwert (SSW) in Abhängigkeit von mindestens einem

Anlagenparameterwert festgelegt wird, wobei der mindestens eine Anlagenparameterwert insbesondere ein Druckwert, ein Temperaturwert, ein Strömungswert ist.

17. Verfahren zum Betreiben einer Anlage für die Steuerung und/oder Regelung von Heizung-Lüftung-Klima (HLK) und/oder für den Brand- und/oder Raumschutz mit folgenden Schritten: a) Erfassen eines Zustandssignals; b) Festlegen des Sicherheitsstellwerts in Abhängigkeit vom Zustandssignal auf einen von mindestens zwei verschiedenen Stellwerten; c) Detektieren eines Abfalls oder Ausfalls einer Stromspeisungsschaltung und d) bei Bedarf Auslösen eines Sicherheitsbetriebs, in welchem eine Sicherheitsposition des Stellglieds entsprechend dem Sicherheitsstellwert angefahren wird.

18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Erfassen des Zustandssignals und das Festlegen des Sicherheitsstellwerts in einem Normalbetrieb der Anlage erfolgt.

19. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass das Zustandssignal aus mindestens einen Anlagenparameterwert besteht.

20. Verfahren nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass der Sicherheitsstellwert (SSW) zeitabhängig ermittelt wird, insbesondere abhängig von der Tageszeit, vom Wochentag und/oder von der Jahreszeit.

21. Verfahren nach einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, dass mehrere Sensorsignale von intern und/oder extern vom Stellantrieb angeordneten Sensoren (1 1.1 , 1 1.2, 1 1.3,... 1 1.n) erfasst werden.

22. Verfahren nach einem der Ansprüche 17 bis 21 , dadurch gekennzeichnet, dass bei Abfall oder Wegfall der Stromspeisungsschaltung (8.1 , 8.2, 8.3) der Sicherheitsbetrieb nur dann ausgelöst wird, wenn der Abfall oder Wegfall während einer vorgegebenen Mindestzeitspanne bestehen bleibt.

23. Computerprogrammprodukt zur Durchführung des Verfahrens nach einem der Ansprüche 17 - 22.

Description:
Sicherheitssteuerung für ein Stellglied

Technisches Gebiet

Die Erfindung betrifft eine Sicherheitssteuerung für ein Stellglied mit einer Steilwertausgabeschaltung, welche einen eine Sicherheitsposition des Stellglieds definierenden Sicherheitsstellwert für das Stellglied ausgibt. Insbesondere ist die Sicherheitssteuerung für ein Stellglied mit einem Stellantrieb mit einer Klappe oder einem Ventil zur Steuerung oder Regelung eines Gas- oder Flüssigkeitsstroms bestimmt. Die Sicherheitssteuerung kommt vorzugsweise in einer Anlage für Heizung-Lüftung-Klima (HLK), Brand- und/oder Raumschutz zur Anwendung. Weiter betrifft die Erfindung eine Anlage mit einer solchen Sicherheitssteuerung und ein Verfahren zum Betreiben einer Anlage. Stand der Technik

Zur Einstellung von Klappen oder Ventilen in einem Lüftungs- oder Wasserleitungssystem und somit zur Regelung eines Luft- oder Wasserstroms werden so genannte Stellantriebe verwendet, wobei relativ schwache Elektromotoren über ein Untersetzungsgetriebe die Klappen oder Ventile respektive die Regelorgane antreiben. Das Schwenken der Klappe oder das Drehen eines Kugelhahns eines Ventils erfolgt mit hoher Genauigkeit über zahlreiche Umdrehungen der Antriebswelle des Elektromotors.

Beim Betrieb eines Lüftungs- oder Wasserleitungssystems ist es aus Sicherheitsgründen erforderlich, dass bei einem Stromausfall der Gas- oder Flüssigkeitsvolumenstrom unterbrochen wird, um Schäden an Gebäuden oder an Personen zu verhindern, d.h. die Klappen oder Ventile des Lüftungs- oder Wasserleitungssystems werden geschlossen.

Dies kann mit einer Rückholfeder erfolgen, welche beim Öffnen der Klappe oder dem Ventil durch den Elektromotor gespannt wird. Bei einem Stromausfall entfällt die Kraft des Elektromotors, worauf die Klappe oder das Ventil durch die Kraft der Rückholfeder geschlossen wird.

Wie in der WO 2007/ 134471 (Belimo) gezeigt ist, kann eine elektrische Sicherheitsschaltung vorgesehen sein, mit welcher bei vorhandener Stromversorgung ein Kondensator aufgeladen wird. Die Sicherheitsschaltung ist eingerichtet, um bei einem Stromausfall die im Kondensator gespeicherte Energie zum Schliessen der Klappe oder dem Ventil zu verwenden. Die Spannung oder die Kapazität können erhöht werden, indem mehrere Kondensatoren in Serieschaltung oder Parallelschaltung angeordnet werden.

Die US 2005/ 127854 (Siemens Corp.) zeigt eine Steuerung für einen ausfallsicheren Antrieb einer Lüftungsklappe oder eines Ventils in einem HLK-System. Das Ventil kann bei Stromausfall in eine offene, geschlossene oder mittlere Position gebracht werden. Die Energie, um das Ventil in die gewünschte Lage zu bringen, wird von einer Kapazität bereitgestellt. Die Verwendung eines elektrischen Antriebs und einer Kapazität erlaubt es, durch einfaches Konfigurieren bei Stromausfall eine Endposition oder auch eine Mittelposition anzufahren. Dies ist bei einer Feder nicht möglich. Gegenüber der Batterie hat der Kapazitätsspeicher den Vorteil geringerer technischer Komplexität und höherer Zuverlässigkeit.

Die US 5,744,923 (National Environmental Products) zeigt einen Luftklappenantrieb, welcher bei Stromausfall in eine Sicherheitsposition gefahren wird. Es ist eine "soft landing" Steuerung vorgesehen, damit der von der Kapazität betriebene Antrieb nicht ungebremst in die Sicherheitsposition fährt. In der Sicherheitsposition kann die Klappe eine offene, geschlossene oder mittlere Position einnehmen, je nach Vorgabe des Anlagendesigners.

Mit dem Einstellen von Klappen oder Ventilen bei einem Stromausfall in eine offene, mittlere oder geschlossene Position wird ein Volumenstrom in einem Lüftungs- oder Wasserleitungssystem auf einen vorgegebenen Wert geregelt. Falls der Stromausfall im Zusammenhang mit einem Brand mit starker Rauchgasentwicklung steht, können Rauchgase bei geschlossenen Klappen nicht mehr über das Lüftungssystem abgeführt werden. Demgegenüber sind geschlossene Klappen günstig, um bei einem gleichzeitigen Stromausfall und Brand die Ausbreitung des Brands entlang eines Lüftungssystems zu verhindern. Das Regeln des Volumenstroms bei Stromausfall auf einen vorgegebenen Wert führt somit nicht immer zum optimalen Ergebnis und kann sogar im Gegenteil zu einer verstärkten Schädigung von Gebäuden und Personen führen.

Darstellung der Erfindung Aufgabe der Erfindung ist es, ein dem eingangs genannten technischen Gebiet zugehörende Sicherheitssteuerung zu schaffen, welche bei Ereignissen wie einem Stromausfall flexibler anwendbar ist und die Schädigung von Gebäuden oder Personen so gering wie möglich hält.

Die Lösung der Aufgabe ist durch die Merkmale des Anspruchs 1 definiert. Gemäss der Erfindung ist eine Stellwertausgabeschaltung vorgesehen, welche einen eine Sicherheitsposition des Stellglieds definierenden Sicherheitsstellwert für das Stellglied ausgibt. Die Stellwertausgabeschaltung hat mindestens einen Eingang für ein variables Zustandssignal und ist ausgebildet, um den Sicherheitsstellwert in Abhängigkeit vom genannten Zustandssignal auf einen von mindestens zwei verschiedenen Stellwerten festzulegen.

Der Erfindung liegt somit der Gedanke zu Grund, dass die Sicherheitsposition abhängig von bestimmten Signalen festgelegt wird. Die Sicherheitsposition ist also nicht mehr fix vorgegeben, sondern wird adaptiv festgelegt entsprechend von im Lauf der Zeit sich ändernden Zuständen z.B. der Umgebung, der Anlage oder des Antriebs. Als Zustandssignal wird vorzugsweise ein physikalisch erfassbares (und in elektrische oder elektronische Form umgewandeltes) Signal verstanden. Ein Zustandssignal kann aber auch aus Steuer- oder Kontrollgrössen der Anlage erzeugt sein. Wichtig ist, dass das Zustandssignal der Stellwertausgabeschaltung auf automatisierter Basis übergeben werden kann.

Die Stellwertausgabeschaltung enthält eine Logik (in Form von einer digitalen Schaltung, eines in einem Controller lauffähigen Datenverarbeitungsprogramms oder ähnlich), welche aufgrund des mindestens einen eingangsseitigen Zustandssignals und ev. weiterer Parameter einen Sicherheitsstellwert ausgibt, welcher mindestens zwei verschiedene Werte annehmen kann. Die zulässigen Werte können z.B. der Sicherheitsposition "offen" und "geschlossen" entsprechen oder auch einer dazwischen liegenden Position "halboffen".

Vorzugsweise umfasst die Sicherheitssteuerung einen Controller, welcher einen Eingang für ein Spannungsabfallsignal oder einen Detektor für einen Spannungsabfall einer externen Stromspeisungsschaltung aufweist, und welcher über einen Sicherheitsbetrieb verfügt, in welchem bei vorgegebenem Spannungsabfall das Stellglied mit Hilfe eines elektrischen Energiespeichers, insbesondere eines kapazitiven Energiespeichers, in die Sicherheitsposition gefahren wird, die dem durch die Stellwertausgabeschaltung ausgegebenen Sicherheitsstellwert entspricht. Der Controller ist typischerweise in einem elektronischen Bauteil integriert, welcher mit einem Mikroprozessor und allen üblichen Ein- und Ausgängen ausgestattet ist, um z.B. die Stromversorgung eines Antriebs zu überwachen und um den Antrieb bei Abfall der Versorgungsspannung mit Energie aus einem Kondensatorspeicher zu versorgen (vgl. WO 2007/134471). Auf diese Weise können die verbreitet eingesetzten Funktionseinheiten mit zusätzlichen Kontrolleigenschaften versehen werden, die nicht fest vorgegeben sein müssen, sondern nach Bedarf (d.h. adaptiv) genutzt bzw. aktiviert werden können.

Die Sicherheitssteuerung kann aber auch in einem separaten elektronischen Bauteil untergebracht sein, oder in einer Zentralsteuerung einer Anlage in Form einer Subroutine eines grösseren Computerprogramms implementiert sein.

Besonders bevorzugt ist es, die Sicherheitssteuerung (d.h. den mindestens einen Eingang für das variable Zustandssignal) mit einem Sensor zu verbinden, so dass der Sicherheitsstellwert in Abhängigkeit von einem Signal des Sensors auf einen der mindestens zwei verschiedenen Stellwerte festgelegt wird. Je nach Komplexität der Anlage und der Anforderungen an die Sicherheitssteuerung kann es nützlich sein, zwei, drei oder mehr Sensoren an die Sicherheitssteuerung anzuhängen.

Das Sensorsignal bezieht sich beispielsweise auf eine Temperatur- oder eine Rauchmessung. Je nach Standort der Klappe oder des Ventils, welche durch den Stellantrieb gesteuert oder geregelt wird, kann es erwünscht sein, dass bei einer bestimmten Temperatur- oder Rauchentwicklung und gleichzeitigem Stromausfall die Klappe oder das Ventil in eine bestimmte Stellung zu führen ist, also z.B. in eine Stellung bei welcher die Klappe oder das Ventil zu 10% geöffnet ist.

So kann eine sehr hohe Temperaturmessung und geringe Rauchentwicklung erfordern, dass die Klappe oder das Ventil bei einem Stromausfall vollständig oder teilweise zu schliessen ist, um die Ausbreitung eines Brands mit geringer Rauchgasentwicklung zu verhindern und einer Schädigung an Gebäuden oder Personen optimal vorzubeugen.

Andererseits kann eine hohe Rauchentwicklung erfordern, dass die Klappe oder das Ventil vollständig oder praktisch vollständig zu öffnen ist, um ein optimales Abführen von Rauchgasen und die Belüftung von Räumen zu gewährleisten. Beim Ereignis eines Stromausfalls oder -abfalls, welcher bei einem Brand in einem Gebäude aufgrund von Zerstörungen oder von Löschwassereinwirkung eintreten kann, erfolgt die Energieversorgung des Stellantriebs im Sicherheitsbetrieb über die Sicherheitsschaltung und die Klappe oder das Ventil kann in diejenige Position gefahren werden, welche bei einer vorliegenden Gefahrenlage die Schädigung von Personen oder Gebäuden so klein wie möglich hält.

Im Normalbetrieb erfolgt die Energieversorgung des Stellantriebs über die Stromspeisungsschaltung, während im Sicherheitsbetrieb die Energieversorgung über die Sicherheitsschaltung erfolgt.

Das Sensorsignal kann kontinuierlich oder zu festlegbaren Zeitpunkten erfasst werden, um den Stellparameter entsprechend aktueller Messwerte nachzuführen, so dass im Falle eines Stromausfalls oder -abfalls schon der erforderliche Stellparameter ermittelt ist.

Nach einer weiteren Variante ist an dem Eingang für das Zustandssignal eine manuell betätigbare Einsteilvorrichtung angeschlossen, so dass der Sicherheitsstellwert in Abhängigkeit von einer momentanen Stellung der Einstellvorrichtung festgelegt wird. Dazu kannz.B. ein Stellrad, eine Stellschraube ein oder mehrere Kippschalter vorgesehen sein. Dies kann insbesondere bei der Installation eines Stellantriebs erfolgen. So kann ein teilweises Öffnen erwünscht sein bei einer Klappe welche den Abluftstrom für einen Raum regelt oder ein vollständiges Schliessen bei einer Klappe welche den Luftstrom zwischen zwei Gebäuden regelt. Die manuell betätigbare Einstellvorrichtung kann direkt am Gehäuse des Antriebs oder der elektronischen Energieversorgung angebracht sein. Es ist aber auch denkbar, dass die Bedienelemente (Drehknopf etc.) distanziert zur Lüftungsklappe, z.B. einige Meter entfernt an einem gut zugänglichen Ort vorgesehen sind. Die Logik, nach welcher in Abhängigkeit von den erfassten Zustandssignalen der Sicherheitsstellwert ermittelt wird, hängt von den konkreten Umständen des Einsatzes der Lüftungsklappe bzw. der die Lüftungsklappen bedienenden Anlage ab. In der Regel wird die Logik nach dem Schwellwertprinzip arbeiten. Das heisst, dass der übliche Sicherheitsstellwert der geschlossenen Ventilposition entspricht, dass aber dann, wenn ein Zustandssignal einen vorgegebenen Schwellwert überschreitet, ein anderer Sicherheitsstellwert ausgegeben wird, welcher z.B. der offenen oder halboffenen Ventilposition entspricht. Es kann auch sein, dass mehrere Schwellwerte für verschiedene Zustandssignale kombiniert werden und dass erst dann ein vom üblichen Sicherheitsstellwert abweichender Stellwert ausgegeben wird, wenn mehrere Zustandssignale den für sie jeweils vorgesehenen Stellwert überschreiten.

Eine weitere vorteilhafte Ausführungsvariante besteht darin, dass an dem Eingang für das Zustandssignal ein Anlagenparametermodul angeschlossen ist. Das genannte Anlagenparametermodul stellt Zustandsparameter der gesamten HLK-Anlage (mit ihrer Vielzahl von Lüftungsklappen) zur Verfügung, so dass der Sicherheitsstellwert in Abhängigkeit von mindestens einem Parameterwert der Anlagensteuereinheit festgelegt wird. Als Anlagenparameter kann z.B. der Umfang des Stromausfalls (total oder teilweise) die Zahl der aktiven Ventilatoren, die Anzahl der gerade geschlossenen oder offenen Lüftungsklappen sein, das gerade aktive jahreszeitspezifische Betriebsprogramm etc. sein.

Das Anlagenparametermodul wird in der Regel in der Zentralsteuereinheit vorhanden sein. Es kann aber auch dezentral (z.B. für eine lokale Gruppe von Ventilen) installiert sein. Wenn die Sicherheitssteuerung in der kapazitiven Stromversorgung integriert ist, wird der Kontakt zum Anlagenparametermodul über eine Datenübertragungsschnittstelle geschaffen.

Bei kleineren Anlagen, bei welchen die Stromversorgung z.B. nur ganz ausfällt oder gar nicht, kann auf die Verwendung von Anlagenparameterwerten verzichtet werden. Die vom Anlagenparametermodul bereitgestellten Zustandssignale werden in der Regel nicht auf Sensorwerte beruhen. Es ist aber nicht ausgeschlossen, dass zur Ermittlung der Anlagenparameter auf Kontrollsensoren der Anlagensteuerung zurückgegriffen wird.

Als Zustandssignal kann auch ein Parameter der Stromspeisungsschaltung, des elektrischen Energiespeichers, und/oder eines Betriebszustands einer benachbarten Systemkomponente, wie beispielsweise eines Systemventilators eines Heizungs- Lüftungssystems, um aufgrund dessen Sensorsignals den Stellparameter zu ermitteln und/oder den Sicherheitsbetrieb zu erstellen.

Je nach dem ob in einem Lüftungsrohr noch ein Ventilator in Betrieb ist oder nicht, kann die Klappe in eine Minimalposition eingestellt werden oder eben ganz geschlossen werden. Ein elektrischer Parameter eines elektrischen Energiespeichers, also z.B. eine nachlassende elektrische Spannung, kann eine nachlassende Kapazität des elektrischen Energiespeichers oder eine Überalterung anzeigen und die Klappe oder das Ventil kann in diesem Fall vorsichtshalber in eine dem Standort angepasste Position eingestellt werden.

Eine weitere Möglichkeit zur Nutzung der adaptiven Sicherheitssteuerung besteht darin, dass eine Datenschnittstelle für einen Zugang zu einem Server vorgesehen ist und dass der Sicherheitsstellwert in Abhängigkeit von mindestens einem Parameterwert des Servers festgelegt wird. Der Server kann z.B. über das Internet zugänglich sein und Sturmwarnungen oder Wetterprognosedaten zur Verfügung stellen.

Bevorzugt umfasst die Sicherheitsschaltung einen elektrischen, insbesondere einen kapazitiven Energiespeicher. Der Controller ist dann typischerweise in einem Mikroprozessor zur Steuerung des Energiespeichers integriert. Mit anderen Worten, die erfindungsgemässe Sicherheitsschaltung ist in einer Schalteinheit gemäss WO 2007/134471 eingebaut. Der elektrische Energiespeicher kann aber auch durch einen Akkumulator oder irgendeinen anderen elektrischen Energiespeicher gebildet sein.

Die Sicherheitsschaltung, der kapazitive Energiespeicher, ein Detektor für einen Spannungsabfall einer externen Stromspeisungsschaltung und ein Controller sind also vorzugsweise als bauliche Einheit ausgebildet, welche als Ganzes mit einem (z.B. in einem separaten Gehäuse untergebrachten) Stellantrieb elektrisch verbunden und mechanisch gekoppelt ("Huckepack-Anordnung") werden kann.

In einer Schaltungsvariante erfolgt die Energieversorgung auch ausserhalb des Sicherheitsbetriebs, also im Normalbetrieb, durch den elektrischen Energiespeicher, wobei dieser durch die Stromspeisungsschaltung ständig nachgeladen wird.

Alternativ umfasst die Sicherheitsschaltung einen mechanischen Energiespeicher wie z.B. eine Feder oder ein Schwungrad. Die mechanische Energie kann entweder direkt an die Klappe oder das Ventil übertragen werden, insbesondere bei der Feder, oder es kann eine Umwandlung der mechanischen Energie in elektrische Energie erfolgen, insbesondere beim Schwungrad. Im Falle einer direkten Übertragung der mechanischen Energie können elektrisch betätigbare Arretierungen vorgesehen sein, um im Sicherheitsbetrieb die Klappen- oder Ventilstellung zu definieren. Die Sicherheitsschaltung kann auch in der Antriebssteuerung integriert sein. Wenn ein Ausfall der normalen Stromversorgung erfolgt, kennt der Antrieb seine Sicherheitsposition und wird in die gewünschte Stellung fahren, wenn er mit der Energie des z.B. kapazitiven Energiespeichers versorgt wird. Es kann auch der kapazitive Energiespeicher mit der Antriebssteuerung in einem gemeinsamen Gehäuse untergebracht sein, so dass eine Baueinheit (nämlich ein sogenannt integriertes Stellglied) zur Verfügung steht, welche vielfältig eingesetzt werden kann.

Bevorzugt ist ein Controller und/oder ein Zentralrechner vorgesehen, um mindestens ein Sensorsignal zu erfassen und den Stellparameter zu ermitteln. Der Controller und/oder der Zentralrechner weist einen digitalen Prozessor zur Abarbeitung von Programmen (Softwaremodule) sowie analoge oder digitale Schnittstellen wie z.B. Analog/Digital Konverter oder eine Busschnittstelle auf, um die Sensorsignale zu erfassen und dem digitalen Prozessor zuzuführen.

Die Softwaremodule werten die erfassten Sensorsignale nach spezifischen Kriterien aus und legen den Stellparameter fest, welcher beispielsweise über eine digitale Schnittstelle an eine Motorensteuerung des Stellantriebs übertragen wird. Insbesondere im Falle des Controllers lässt sich ein Stellantrieb kostengünstig mit einer Sicherheitssteuerung ausrüsten.

Den Sensoren ist ein Datenübermittlungsmodul zugeordnet, um Sensorsignale an den Controller oder den Zentralrechner zu übermitteln. Es können drahtgebundene und/oder drahtlose Datenübermittlungsmodule vorgesehen sein, welche im Stand der Technik gemäss verschiedenen Standards wie beispielsweise USB, Ethernet, Bluetooth oder Wireless LAN bekannt sind.

Indem bei der Datenübermittlung zugleich eine Identifikation des Sensors übermittelt wird, kann aufgrund einer Standorttabelle der Sensoren und den aktuell gemessenen Sensorsignalen der Stellparameter festgelegt und an eine aktuelle Umgebung adaptiert werden, wobei dieser anschliessend über eine weitere Datenverbindung an einen Stellantrieb übermittelt wird. In einem Gebäude können eine Vielzahl Sensoren und Stellantriebe vorgesehen sein. Indem die Gebäudestruktur, die Installation von Wasser- und Lüftungsrohren sowie die Sensoren und Stellantriebe im Gebäude elektronisch erfasst werden, können bei gegebenen Messwerten der Sensoren verschiedene Szenarien durchgerechnet werden, also insbesondere ein Ausbreitungsszenario eines Brands und der Rauchgase für unterschiedliche Klappen- oder Ventilstellungen, und es können aus den berechneten Szenarien optimale Stell parameter festgelegt werden.

Vorzugsweise ist mindestens ein Sensor im Stellantrieb integriert und/oder mindestens ein Sensor extern vom Stellantrieb angeordnet.

Sensoren, welche in den Stellantrieb integriert sind, haben den Vorteil, dass keine Datenübertragungsvorrichtungen wie z.B. ein Kabel zwischen den Sensoren und dem Stellantrieb angeordnet werden müssen. Dies erleichtert die Montage des Stellantriebs.

Demgegenüber haben Sensoren, welche extern vom Stellantrieb angeordnet sind, den Vorteil, dass eine grössere Umgebung überwacht werden kann und Änderungen in der Umgebung, welche für einen Stellantrieb relevant sind, früher erkannt werden können. Die Verwendung von externen Sensoren erlaubt auch eine modulares Systemkonzept: An eine Sicherheitssteuerung können nach Bedarf unterschiedliche Sensoren angeschlossen werden. Sensoren können auch leichter ersetzt oder ausgetauscht werden.

Vorzugsweise ist mindestens ein Sensor zur Erfassung von chemischen und/oder physikalischen Messwerten vorgesehen, wobei der Sensor insbesondere ein Gassensor, ein Rauchsensor, ein Temperatursensor, ein Luftdrucksensor und/oder ein Strömungssensor ist, um aufgrund dessen Sensorsignals den Stellparameter zu ermitteln und/oder den Sicherheitsbetrieb zu erstellen.

Aufgrund solcher Sensoren lässt sich die Dynamik eines (möglichen) Brands in einem Gebäude sehr genau voraussagen und (sofern er eintritt) erfassen und verfolgen, sodass Stellparameter von Stellantrieben präziser festgelegt werden können. So können insbesondere die Aussen- und die Innentemperatur eines Gebäudes mitberücksichtigt werden, welche die Dynamik wesentlich beeinflussen können.

Bevorzugt ist das Ermittlungsmodul eingerichtet, den Stellparameter dynamisch zu ermitteln, insbesondere nach Ablauf eines bestimmbaren Zeitintervalls oder aufgrund von erfassten Sensorsignalen. Somit ist bei einem Stromausfall ein Stellparameter ermittelt, welcher der aktuellen Situation in einem Gebäude optimal entspricht, womit die Schädigung von Personen oder Gebäuden minimiert wird.

Die Stromversorgung des Stellantriebs und des Controllers erfolgt im Normalbetrieb über die Stromspeisungsschaltung. Im Sicherheitsbetrieb übernimmt die Sicherheitsschaltung die Stromversorgung des Stellantriebs und des Controllers. Bis zu einem Stromausfall oder -abfall der Stromversorgung können somit die verschiedenen Sensorsignale erfasst und ausgewertet werden, um den Stellparameter zu ermitteln, beispielsweise regelmässig nach Ablauf eines Zeitintervalls. Die Nachführung des Stellparameters und somit die Klappen- oder Ventilstellung lässt sich bei Bedarf solange weiterführen, als der elektrische Energiespeicher ausreicht, um den Controller und den Stellantrieb mit Strom zu versorgen. Somit kann eine optimale Klappenstellung zur Vermeidung von Schädigungen an Personen oder Gebäuden über einen längeren Zeitraum sichergestellt werden.

Die Festlegung des Stellparameters kann beim Erstellen des Sicherheitsbetriebs ausgelöst werden. Dadurch ist gewährleistet, dass die Klappe aufgrund einer aktuellen Gefahrenlage eingestellt wird.

Vorzugsweise ist ein Zeitmodul vorgesehen ist, um den Stellparameter zeitabhängig zu ermitteln, insbesondere abhängig von der Tageszeit, vom Wochentag und/oder von der Jahreszeit. So kann es erforderlich sein, dass beispielsweise in einer Fabrikhalle mit einem Maschinenpark während dem Tagbetrieb oder dem Nacht- respektive Wochenendbetrieb unterschiedliche Stellparameter erforderlich sind, da beispielsweise das Schliessen von Klappen bei Vollbetrieb der Maschinen während dem Tag zu einer Überhitzung des Maschinenparks und somit einer erhöhten Brandgefahr führen kann. Während einer typischerweise trockenen Jahreszeit wie dem Herbst kann es ferner notwendig sein die Stellparameter so zu ermitteln, dass ein Übergreifen auf ein Nebenhaus statt auf einen naheliegenden Wald in Kauf genommen werden muss, um die Schädigung von Personen oder Gebäuden zu minimieren, da durch ein Waldbrand umliegende Dörfer gefährdet sein können. Gemäss einer weiteren Ausführungsvariante weist die Sicherheitssteuerung eine Verzögerungsschaltung auf, um bei Abfall oder Wegfall der Stromspeisungsschaltung erst nach einer (vorgegebenen) Verzögerungszeit in den Sicherheitsbetrieb überzugehen. Die Verzögerungszeit kann ein Vielfaches der normalen Reaktionszeit sein, beispielsweise beträgt sie z.B. mindestens eine Sekunde. So können kurze Stromversorgungsunterbrüche von bis zu einigen Sekunden überbrückt werden, ohne dass der Sicherheitsbetrieb erstellt wird und die Klappen unnötigerweise umgestellt werden. Alternativ kann die Sicherheitssteuerung eingerichtet sein, dass beim Eintreten des Ereignisses der Sicherheitsbetrieb unmittelbar erstellt wird, wobei eine manuell zu betätigende Rücksteilvorrichtung vorgesehen ist, um die Sicherheitssteuerung vom Sicherheitsbetrieb in den Normalbetrieb zurückzustellen. Gleichzeitig kann zu bestätigen sein, dass die Klappenstellung korrekt eingestellt ist. Dadurch wird insbesondere erzwungen, dass bei einem Vorfall, welcher zum Sicherheitsbetrieb führt, die Funktionstüchtigkeit der Sicherheitssteuerung kontrolliert wird. Die Erfindung ermöglicht eine funktionelle Flexibilisierung von bestehenden Anlagen für die Steuerung und/oder Regelung von Heizung-Lüftung-Klima (HLK) und/oder für den Brand- und/oder Raumschutz. Es braucht mindestens einen Stellantrieb (vorzugsweise mehrere) und eine von diesem angetriebene Klappe oder ein Ventil zur Steuerung oder Regelung eines Gas- oder Flüssigkeitsstroms (bzw. mehrere Klappen oder Ventile). Die erfindungsgemässe Sicherheitssteuerung der zuvor beschriebenen Art kann in den Stellantrieben, in den Sicherheitsschaltungen oder auch in der Zentralsteuerung der Anlage untergebracht sein. Insbesondere sind Mischmodelle möglich, bei welchen z.B. gewisse Antriebe eine integrierte Sicherheitssteuerung aufweisen, andere aber nicht. Ebenso können gewisse Sicherheitsschaltungen (welche für die lokale Energieversorgung bei Stromausfall bereit stehen) eine Sicherheitssteuerung der erfindungsgemässen Art aufweisen und andere nicht. Auch kann die Sicherheitssteuerung direkt in der zentralen Anlagensteuerung integriert sein.

Vorzugsweise ist in der Anlage mindestens ein Sensor extern vom Stellantrieb vorgesehen, dessen Signal für die Festlegung des Sicherheitsstellwerts gemäss der Erfindung mitberücksichtigt wird. Insbesondere wenn die Sicherheitssteuerung in der zentralen Anlagensteuerung untergebracht ist, ist es sehr einfach, an einem Eingang der Sicherheitssteuerung ein Ausgang des Anlagenparametermoduls anzuschliessen, so dass der Sicherheitsstellwert in Abhängigkeit von mindestens einem Anlagenparameterwert festgelegt wird. Dieser kann ein Druckwert, ein Temperaturwert, ein Strömungswert oder auch ein errechneter Wert sein.

Die Erfindung kann auch durch ein Verfahren zum Betreiben einer Anlage für die Steuerung und/oder Regelung von Heizung-Lüftung-Klima (HLK) und/oder für den Brand- und/oder Raumschutz verwirklicht werden mit folgenden Schritten: a) Erfassen eines Zustandssignals; b) Festlegen des Sicherheitsstellwerts in Abhängigkeit vom Zustandssignal auf einen von mindestens zwei verschiedenen Stellwerten; c) Detektieren eines Abfalls oder Ausfalls einer Stromeinspeisung und d) Bei Bedarf Auslösen eines Sicherheitsbetriebs, in welchem eine Sicherheitsposition des Stellglieds entsprechend dem Sicherheitsstellwert angefahren wird.

Sofern ein (optionales) Zeitverzögerungsmodul der weiter oben beschriebenen Art vorgesehen ist, kann es sein, dass das Auslösen des Sicherheitsbetriebs nicht zwingend bzw. nicht in jedem Fall erfolgt, sondern nur bei Bedarf (also wenn die Verzögerungszeit abgelaufen ist bevor die ordentliche Stromversorgung über das Netz wieder läuft). Vorzugsweise erfolgt das Erfassen des Zustandssignals und das Festlegen des Sicherheitsstellwerts in einem Normalbetrieb der Anlage. Auf diese Weise wird sichergestellt, dass bei Stromausfall durch einen einfachen und sicheren Verfahrensablauf die Anlage in den Sicherheitsbetrieb übergehen kann.

Wenn die Sicherheitsposition des Ventils oder der Klappe von Parametern abhängen soll, die gerade beim Stromausfall gegeben sind, dann ist es nötig, die entsprechenden Parameter in Echtzeit zu ermitteln und daraus den Sicherheitsstellwert zu errechnen bzw. zu bestimmen. Bevorzugte Ausführungsformen des Verfahrens ergeben sich aus einem oder mehreren der oben dargestellten Ausführungsformen der Sicherheitssteuerung.

Die Erfindung kann auch in Form eines Computerprogrammprodukts verwirklicht sein, d.h. einer Software, welche das beschriebene Verfahren durchführt, wenn es in einem Zentralrechner oder in einem Mikroprozessor einer Sicherheitsschaltung oder einer Antriebssteuerung geladen ist.

Aus der nachfolgenden Detailbeschreibung und der Gesamtheit der Patentansprüche ergeben sich weitere vorteilhafte Ausführungsformen und Merkmalskombinationen der Erfindung. Kurze Beschreibung der Zeichnungen

Die zur Erläuterung des Ausführungsbeispiels verwendeten Zeichnungen zeigen schematisch:

Fig. 1 eine HLK-Anlage mit einer erfindungsgemässe Sicherheitssteuerung;

Fig. 2 eine Sicherheitssteuerung für mehrere Zustandssignale; Fig. 3 eine Sicherheitsschaltung mit kapazitivem Energiespeicher und einer

Sicherheitssteuerung; und

Fig. 4 ein Flussdiagram zur Festlegung eines Stellparameters.

Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen. Wege zur Ausführung der Erfindung Die nachfolgend dargestellte Ausführung der Erfindung bezieht sich auf eine Klappe zur Regelung eines Gasstroms in einem Lüftungskanal. Sie lässt sich ohne weiteres auf ein Ventil zur Regelung eines Flüssigkeitsstroms in einem Flüssigkeitsrohr übertragen respektive analog anwenden. Eine Vorrichtung zur Regelung eines Luftstroms ist aus der EP 2 052 191 (Belimo) bekannt. Ein Kugelhahn zur Regelung eines Flüssigkeitsstroms ist beispielsweise aus der EP 1 924 793 (Belimo) bekannt. Solche Anlagen bzw. Vorrichtungen können mit der erfindungsgemassen Steuerung versehen werden.

Die Klappe 3 ist innerhalb des Lüftungskanals 4 angeordnet und ist beispielsweise um eine Achse drehbar, sodass durch die Drehung der Klappe 3 der Gasstrom im Lüftungskanal 4 gedrosselt werden kann. Je nach Stellung kann mit der Klappe 3 der Gasstrom im Lüftungskanal 4 ganz freigegeben oder teilweise bis ganz unterbunden werden, d.h. die Klappe 3 kann von einer maximalen Öffnung von 100% bis zu einem vollständigen Verschluss eingestellt werden. Damit ist eine Einstellung des Luftstroms in einem Heizungs- oder Lüftungssystem ermöglicht, um das Zu- oder Abführen von beispielsweise Frischluft, Warmluft oder Abluft zu regeln.

Die nachfolgend erwähnten Module können im Allgemeinen als integrierte Bauelemente, d.h. als ASIC, oder als auf einem Prozessor ablauffähiges Softwareprogramm ausgeführt sein. Fig. 1 zeigt ein Schaltungsschema einer HLK-Anlage mit mehreren Lüftungskanälen 4.1, 4.2, 4.3, in welchen der Durchfluss der Luft durch Klappen 3.1, 3.2, 3.3 an sich bekannter Bauart kontrolliert und geregelt wird. Die Klappen 3.1 , 3.2, 3.3 werden je durch einen Stellantrieb 2.1 , 2.2, 2.3 betätigt. Jeder Stellantrieb 2.1, 2.2, 2.3 umfasst einen Elektromotor 5.1, 5.2, 5.3 und ein untersetzendes Getriebe 7.1, 7.2. 7.3. Die Motorensteuerungen 6.1, 6.2, 6.3, welche vorzugsweise mit Elektromotor und Getriebe in einem gemeinsamen Gehäuse untergebracht sind, sind elektrisch mit einer Stromspeisungsschaltung 8.1, 8.2, 8.3 verbunden, welche am allgemeinen Stromnetz angehängt sind und im Normalbetrieb die elektrische Energie zum Betreiben der Stellantriebe 2.1, 2.2, 2.3 bereit stellen. Zwischen der Stromspeisungsschaltung 8.1, 8.2, 8.3 und dem Stellantrieb 2.1, 2.2, 2.3 ist jeweils eine Sicherheitsschaltung 9.1, 9.2, 9.3 eingesetzt, welche bei Stromabfall oder Stromausfall der Stromspeisungsschaltung 8.1, 8.2, 8.3 die nötige Reserveenergie zur Verfügung stellen, um die Klappe in die Sicherheitsposition zu fahren. Die Sicherheitsschaltungen 9.1, 9.2, 9.3 können vorbehaltlich einer erfindungsgemässen Anpassung (wie sie in Fig. 1 bei 9.3 angedeutet ist und wie sie nachfolgend erläutert wird) wie in der WO 2007/134471 beschrieben ausgeführt sein.

Für die Steuerung und Regelung im Normalbetrieb ist eine Anlagensteuereinheit 23 vorgesehen, welche steuerungstechnisch mit der Motorensteuerung 6.1, 6.2, 6.3 verbunden ist (gestrichelte Linie).

In Fig. 1 sind drei verschiedene Ausführungsvarianten der Erfindung dargestellt. Bei einer ersten Variante ist die Stellwertausgabeschaltung 1.1 in der Sicherheitsschaltung 9.1 untergebracht. Wie aus Fig. 1 ersichtlich ist, kann die Stellwertausgabeschaltung 1.1 mit einem Anlagenparametermodul 12, welches in der zentralen Anlagensteuereinheit 23 integriert ist, und mit einem lokalen Sensor 1 1.1 verbunden sein. Die Stellwertausgabeschaltung 1.1 hat in diesem Beispiel also zwei Eingänge, an welchen Zustandssignale (Anlagenparameterwerte, Sensorwerte) anliegen.

Bei einer zweiten Variante ist die in der Stellwertausgabeschaltung 1.2 in der Motorensteuerung 6.2 integriert. Auch hier ist als weiterer Eingang ein Signal eines Sensors 1 1.2 vorgesehen. Die Sicherheitsschaltung 9.2 kann bei dieser Variante in konventioneller Weise ausgeführt sein.

In der dritten Variante ist die Stellwertausgabeschaltung 1.3 in der zentralen Anlagensteuereinheit 23 enthalten. Der Sensor 1 1.3, dessen Signal für die Ermittlung des Sicherheitsstellwertes herangezogen wird, ist mit der Anlagensteuereinheit 23 und genau gesagt mit der Stellwertausgabeschaltung 1.3 verbunden. Die Motorensteuerung 6.3 hat nur einen lokalen Sicherheitsstellwertspeicher, auf welchen bei Stromausfall zugegriffen werden kann. Die Stellwertausgabeschaltung 1.3 liefert z.B. in regelmässigen Zeitabständen den aktuellen Sicherheitsstellwert (wobei der zuvor gespeicherte Wert gelöscht wird). Bei Stromausfall braucht die Datenverbindung zur zentralen Anlagensteuereinheit 23 nicht funktionstüchtig zu sein, weil ja der zuletzt übertragene Sicherheitsstellwert im Sicherheitsstellwertspeicher 22.1 vorhanden ist.

Wenn die Versorgungsspannung zusammenbricht und die Sicherheitsschaltungen 9.1, 9.2, 9.3 dies detektieren und das Signal für den Sicherheitsbetrieb geben, dann fährt jede Motorensteuerung 6.1 , 6.2, 6.3 die zugehörige Klappe 3.1, 3.2, 3.3 in die Sicherheitsposition, welche durch den Sicherheitsstellwert gegeben ist. Die drei schematisch dargestellten Klappen 3.1 , 3.2, 3.3 brauchen nicht in die gleiche Sicherheitsposition zu gehen.

Fig. 2 zeigt eine mögliche Ausführungsform einer erfindungsgemässen Sicherheitssteuerung 1.4.

Es sind z.B. vier Eingänge E1 , ..., E4 für Zustandssignale Z1 , ..., Z4 vorgesehen. Das Zustandssignal Z1 wird z.B. von dem Anlagenparametermodul 12 geliefert. Das Zustandssignal Z2 wird z.B. über das Datennetzwerk 14 (Internet, Intranet) von einem Server 15 übertragen. Das Zustandssignal Z3 wird z.B. von einem Sensor 1 1.4 geliefert und das Zustandssignal Z4 ergibt sich durch eine Abfrage des manuell einstellbaren Potenziometers 13.

Die Zustandssignale Z1 , ..., Z4 werden je nach Ausgestaltung der Sicherheitssteuerung 1.4 auf ein Berechnungsmodul 19 oder ein Tabellenmodul 20 geführt. Diese beiden Module ermitteln nach einem anwendungsspezifischen Algorithmus den Sicherheitsstellwert SSW, sei es nun, dass nach einer bestimmten Formel SW(Z) ein Wert berechnet oder nach bestimmten Kriterien ein Wert aus einer Tabelle SW1 , SW2, SW3 ausgelesen wird.

Es kann ein Selektor 21 vorgesehen sein, welcher so eingestellt ist, dass je nach den Erfordernissen der berechnete Wert als Sicherheitsstellwert oder der aus der Tabelle gelesene Wert am Ausgang A ausgegeben wird. (In der Regel ist entweder ein Berechnungsmodul 1 oder ein Tabellenmodul 20 vorgesehen und der Selektor 21 erübrigt sich.) Der Sicherheitsstellwert SSW wird in einem Sicherheitsstellwertspeicher 22.2 abgespeichert.

In Fig. 2 ist weiter ein Zeitmodul 17 dargestellt. Dieses dient dazu, eine Abfrage der Zustandssignale zu einem bestimmten (vorprogrammierten oder periodischen) Zeitpunkt anzustossen.

In Fig. 3 ist ein Schema einer Sicherheitsschaltung 9.4 gezeigt, welches sich durch eine erfindungsgemässe Veränderung bzw. Anpassung der Schaltungsanordnung gemäss WO 2007/134471 ergibt. Ein Mikroprozessor 16 steuert einen Energiewandler 28 und eine Überwachungseinheit 29 eines kapazitiven Energiespeichers 30 (mit einem oder mehreren Supercaps). Das heisst, der Mikroprozessor 16 sorgt dafür, dass der Energiespeicher 30 bei Normalbetrieb in geladenem Zustand ist. Bei Abfall der normalen Stromversorgungsspannung sorgt der Mikroprozessor 16 dafür, dass der Strom aus dem kapazitiven Energiespeicher 30 dem Stellantrieb 2.1 (Fig. 1) zugeführt wird, so dass die Klappe in die abgespeicherte Sicherheitsposition gefahren werden kann.

Am Mikroprozessor 16 ist ein Detektor 27 für den Spannungsabfall angeschlossen. Spricht dieser Detektor 27 an, wird das (im Sinn einer Ausführungsvariante vorgesehene) Verzögerungsmodul 18 aktiviert. Bleibt das Signal für den Spannungsabfall während einer vorgegebenen Dauer T 0 (z.B. 5 Sekunden) bestehen, wird der Controller 10 dahingehend aktiv, dass er den Sicherheitsbetrieb auslöst. Ist die Stromausfalldauer kürzer als die vorgegebene Dauer T 0 , bleibt der Controller 10 im Normalbetrieb.

Im Sicherheitsbetrieb überträgt der Controller den im Sicherheitsstellwertspeicher 22.3 abgespeicherten Sicherheitsstellwert SSW an die Motorensteuerung und überträgt die im kapazitiven Energiespeicher 30 enthaltene Energie, damit die Motorensteuerung den erhaltenen Befehl ausführen und die Klappe in die Sicherheitsposition fahren kann.

Gemäss einer Ausführungsvariante kann auch vorgesehen sein, dass die Stellwertausgabeschaltung 1.5 den Sicherheitsstellwert SSW erst dann ermittelt, wenn der Controller 10 in den Sicherheitsbetrieb übergeht. Es wird dann das Signal des Sensors 1 1.5 und ev. ein weiteres Zustandssignal verwendet, um den Sicherheitsstellwert zu berechnen.

Die Stromspeisungsschaltung 8.1, 8.2, 8.3, beispielsweise eine 230 V oder 1 10 V AC Netzstromeinspeisung oder eine 24 V oder 72 V AC oder DC Stromeinspeisung, kann direkt beim Stellantrieb 2.1, 2.2, 2.3 angeordnet sein oder zentral im Gebäude, in welchem die Heizungs- oder Lüftungsanlage installiert ist.

Die Übermittlung von Sensorsignalen von den Sensoren auf den Zentralrechner kann insbesondere über digitale Kommunikationsverbindungen wie beispielsweise ein Ethernet oder ein Wireless LAN erfolgen. Es ist prinzipiell auch denkbar eine unidirektionale digitale Datenverbindung, entweder drahtgebunden oder drahtlos, zu verwenden, um die gemessenen Sensorwerte an den Zentralrechner zu übermitteln.

Der Zentralrechner kann durch irgendein Computersystem gebildet sein und ein Erfassungsmodul sowie ein Ermittlungsmodul umfassen, um eine auf Sensorsignalen oder Anlagenparametern basierte Ermittlung des Sicherheitsstellwerts durchzuführen. Es kann ein Brandausbreitungsmodul 24 vorgesehen sein, um aufgrund einer elektronisch erfassten Gebäudebeschreibung, also insbesondere aufgrund der Raumgeometrie und der Anordnung der Lüftungsanlage, die Ausbreitung eines Brandes oder des Rauchgases abzuschätzen, indem diese verschiedenen Szenarien berechnet werden. Nachdem eine aktuelle Brandsituation von den Sensoren ermittelt ist, kann beispielsweise in einem ersten, zweiten und dritten Szenario der Sicherheitsstellwert des Stellantriebs 2.1 als vollständig geschlossen, halb offen und ganz offen sowie der verbleibenden Stellantriebe 2.2, 2.3 als vollständig geschlossen angenommen werden und die Ausbreitung des Brands und der Rauchgase kann durch das Brandausbreitungsmodul 24 für zukünftige Zeit- Intervalle rechnerisch bestimmt werden. In weiteren Szenarien können die Stellantriebe 2.2, 2.3 nacheinander ebenfalls als halb offen und ganz offen angenommen werden und die Brandausbreitung mit dem Brandausbreitungsmodul 24 bestimmt werden. Aus den so ermittelten Szenarien wird schliesslich dasjenige mit den geringsten zu erwartenden Schädigungen an Personen oder Gebäuden ausgewählt und die Sicherheitsstellwerte der Stellantriebe 2.1, 2.2, 2.3 werden dementsprechend festgelegt.

Der Zentralrechner kann ferner ein Zeitmodul umfassen sinngemäss zur Ausführungsform der Fig. 3.

Fig. 4 zeigt schematisch ein Flussdiagramm eines Softwaremoduls mit den wesentlichsten Schritten zur Festlegung des Sicherheitsstellwerts. Wie erwähnt kann dies im Normalbetrieb erfolgen, nachdem zu einem Erfassungszeitpunkt neue Sensorsignale der Sensoren 1 1.1, 1 1.2, 1 1.3 erfasst wurden, es kann bei der Erstellung (also zu Beginn) des Sicherheitsbetriebs erfolgen oder es kann zu einem Erfassungszeitpunkt nach dem Beginn des Sicherheitsbetriebs erfolgen. Im Schritt S1 werden Sensorsignale der Sensoren 1 1.1, 1 1.2, 1 1.3, von der Steilwertausgabeschaltung 1.4 (Fig. 2) erfasst und in einem Arbeitsspeicher des Mikroprozessors abgespeichert. Die Sensorsignale können quasi kontinuierlich erfasst werden, indem diese mit einer hohen Abtastfrequenz von beispielsweise einigen 100 Hz erfasst werden. Für viele Anwendungen ist es ausreichend, die Sensorsignale in Zeitintervallen von einigen Minuten oder Stunden abzuspeichern. Die Abspeicherung kann sich nur auf den aktuellsten Wert beziehen oder es kann in Tabellenstruktur eine Zeitreihe erfasst werden.

Im Schritt S2 werden die abgespeicherten Sensorsignale zur Ermittlung des Sicherheitsstellwerts ausgewertet. Es kann auch eine Schätzung einer zukünftigen Entwicklung der Sensorsignale und damit der Schädigung an Gebäuden und Personen durchgeführt werden. Falls ein Sensorsignal einen in einer Vergleichstabelle abgespeicherten Schwellwert überschreitet, also z.B. eine Temperaturmessung eine grosse Hitze anzeigt, dann kann dies erfordern, dass bei Erstellung des Sicherheitsbetriebs bestimmte Stellantriebe 2.1 , 2.2, 2.3 auf eine geschlossene oder vorwiegend geschlossene Stellung einzustellen sind, um die Ausbreitung eines Brandes zu verhindern. Durch die Berechnung der zukünftigen Entwicklung der Sensorsignale kann beispielsweise ermittelt werden, auf welche Position die Klappe einzustellen ist, also ob beispielsweise eine Öffnung von 10% oder eine von 70% einzustellen ist.

Im Schritt S3 werden die Sicherheitsstellwerte der verschiedenen Stellantriebe z.B. in einer Vektorstruktur abgespeichert.

Im Schritt S4 werden die Sicherheitsstellwerte der Vektorstruktur an die einzelnen Stellantriebe 2.1, 2.2, 2.3 übermittelt. Dies erfolgt bevorzugt unmittelbar nachdem die genannten Werte ermittelt worden sind, so dass stets aktualisierte Werte in den Stellantrieben vorliegen. Zusammenfassend ist festzustellen, dass die erfindungsgemässe Sicherheitssteuerung bei Ereignissen wie einem Stromausfall flexibler anwendbar ist und die Schädigung von Gebäuden oder Personen so gering wie möglich hält.




 
Previous Patent: TOOTHBRUSH

Next Patent: ROLLER COOLING DEVICE