Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SAFETY DEVICE FOR A POWER TRANSFORMER, AND RELATED POWER TRANSFORMER USING SUCH A SAFETY DEVICE
Document Type and Number:
WIPO Patent Application WO/2014/012750
Kind Code:
A1
Abstract:
Safety device for a power transformer containing a cooling liquid, comprising: - a shaped body having an inner chamber which is suitable to be at least partially immersed in the cooling liquid and inside which gas can accumulate; - a first floating element and a second floating element suitable to be at least partially immersed in and moved by the cooling liquid; - switching means suitable to be actuated by the first floating element when the gas accumulated is such that the level of the cooling liquid in the inner chamber reaches a predetermined first threshold level and by the second floating element when the gas accumulated is such that the level of said cooling liquid in the inner chamber reaches a lower predetermined second threshold level, respectively. The first and second floating elements are mounted on and move linearly relative to one or more corresponding guiding supports.

Inventors:
TONIN ANDREA (IT)
CAROLLO CARLO (IT)
MANCO GIUSEPPE LEONARDO (IT)
Application Number:
PCT/EP2013/063241
Publication Date:
January 23, 2014
Filing Date:
June 25, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ABB TECHNOLOGY AG (CH)
International Classes:
H01H33/55
Foreign References:
EP0945951A21999-09-29
FR2936901A12010-04-09
NL86718C1957-11-15
GB1000727A1965-08-11
Other References:
None
Attorney, Agent or Firm:
DE SANTIS, Giovanni (Via L. Lama 33, Sesto San Giovanni, IT)
Download PDF:
Claims:
CLAIMS

A safety device (100) suitable to be associated to a power transformer (101) containing a cooling liquid (103), comprising:

- a shaped body (1) having an inner chamber (2) which is suitable to be at least partially immersed in said cooling liquid and inside which gas can accumulate;

- a first floating element (3) and a second floating element (4) suitable to be at least partially immersed in and moved by said cooling liquid;

- switching means (20) suitable to be actuated by said first floating element (3) when the gas accumulated is such that the level of said cooling liquid in the inner chamber (2) reaches a predetermined first threshold level and by said second floating element (4) when the gas accumulated is such that the level of said cooling liquid in the inner chamber (2) reaches a lower predetermined second threshold level, respectively; characterized in that said first floating element (3) and said second floating element (4) are mounted on and move linearly (along a reference axis 110) relative to one or more corresponding guiding supports (5).

Safety device (100) according to claim 1, wherein said first floating element (3) and said second floating element (4) are mounted both on and move linearly relative to a common guide support (5).

Safety device (100) according to claim 1 or 2, wherein said switching means (20) comprise a first magnetic switch (20a), and wherein at least one first magnet (6) is placed on and moves solidly with said first floating element (3) so as to activate said first magnetic switch (20a) when the first floating element (3) reaches a position corresponding to said predetermined first threshold level.

Safety device (100) according to one or more of the previous claims, wherein said switching means (20) comprise a second magnetic switch (20b), and wherein at least one second magnet (7) is placed on and moves solidly with said second floating element (4) so as to activate said second magnetic switch (20b) when the second floating element (4) reaches a position corresponding to said predetermined second threshold level.

Safety device (100) according to one or more of the previous claims, wherein it comprises a stopper (8) suitable to interact with and stop said first floating element (3) when the first floating element reaches a position corresponding to said predetermined first threshold level.

Safety device (100) according to one or more of the previous claims, wherein it further comprises a transducer (9) having a cursor (10) suitable to be at least partially immersed in and moved by movements of said cooling liquid, said transducer (9) being arranged to output signals indicative of the actual position of the cursor (10) to an associated electronic unit (11).

7. Safety device (100) according to claim 6, wherein said second floating element (3) is mounted on and solidly moves with said cursor (10).

8. Safety device (100) according to claim 6, wherein said transducer (9) comprises a shaped body forming said common guide support (5).

9. Safety device (100) according to one or more of the claims 6-8, wherein said transducer (9) comprises a potentiometer.

10. Safety device (100) according to one or more of the previous claims, wherein it comprises a further movable element (13) suitable to be at least partially immersed in and moved by said cooling liquid, said further movable element being arranged to detect if the actual flow rate of said cooling liquid exceeds a predetermined third threshold and to actuate an associated switch suitable to disconnect electric power feeding said power transformer.

11. Power transformer (101) comprising a tank (102) at least partially filled with a cooling liquid (103), characterized in that it comprises at least one safety device (100) according to one or more of the previous claims.

Description:
SAFETY DEVICE FOR A POWER TRANSFORMER, AND RELATED POWER TRANSFORMER USING SUCH A SAFETY DEVICE

The present disclosure relates to a safety device for an associated liquid-filled power transformer, and to a power transformer comprising such a safety device.

It is widely known in the art the use of electrical induction devices, e.g. power transformers, which exploit the electromagnetic induction for properly transmitting and distributing electricity over power lines.

Most common power transformers comprise live parts, e.g. a magnetic core and a certain number of windings, for instance low- voltage windings, high- oltage windings, et cetera. Due to the intrinsic structural characteristics and functioning of these devices, important aspects of power transformers concern the electric insulation among the various components and cooling thereof which must be guaranteed in order to provide the desired electromagnetic performance without incurring in any malfunctioning or damage.

To this end, a power transformer comprises usually a closed main tank which is filled with an insulating fluid and which houses the live parts; the insulating fluid is usually a liquid, for example a highly-refined mineral oil that is stable at high temperatures and has excellent electrical insulating properties; combustion-resistant vegetable oil-based dielectric coolants are also becoming increasingly common as alternatives to mineral oils.

In addition, power transformers are usually provided with expansion vessels generally indicated as oil conservators; such conservators are positioned above the main tank, and have the function of compensating the unavoidable volume changes of the cooling fluid used in the tank, which volume changes result mainly from temperature fluctuations.

Since the insulating liquid helps cooling of the transformer and also contributes to the electrical insulation between live parts inside the tank, it must remain stable at high temperatures for an extended period.

During the working life of a power transformer, it is possible that gas is generated or present inside the tank and this is a clear indication of a possible problem.

For example, the gas may be the result of decomposition/degradation of the solid or liquid insulation inside the transformer caused by overheating or by the strike of electric arcs, or the gas may come from the insulating oil itself due to unsatisfactory de-gassing prior to filling the tank.

In addition, rapid movements, also indicated as rapid currents or flows, of the transformer liquid can be caused by an internal arc, short circuit, or hot spot; these rapid movements are indicative of possible abnormal or dangerous conditions and must be properly faced. In order to cope with these issues, there are used suitable safety devices, commonly indicated in the art as Buchholz relays, so that the generation of gas and the presence of rapid movements are detected and related risks are prevented or mitigated as much as possible. A typical Buchholz relay has a chamber inside which the gas formed or present in the transformer is accumulated, as defined by rules and standards, for instance EN 50216.

With the aim of monitoring the quantity of gas formed, Buchholz relays are equipped with two floats which are hinged onto a supporting frame, are immersed into the liquid of the transformer and are operatively associated to corresponding switches.

In detail one float, which is positioned inside the chamber at an upper part, starts to rotate at the onset of gas formation and activates some electrical contacts so as to cause an alarm signal if the quantity of gas is such that the level of liquid inside the chamber reaches a first alarm threshold. The second float starts to rotate after the alarm signal is generated and activates some corresponding electrical contacts to trip the transformer and disconnect it from power feeding when the quantity of gas is such that the level of liquid inside the chamber reaches a second trip threshold.

Although these known safety devices perform their functions in a quite satisfying way, there are some aspects that can be optimized, in particular as regard to the constructive layout of and the space available inside the safety device itself. Indeed, there are more and more requirements to add new functionalities to the existing safety devices, such as for example to be able to continuously measure the gas formation and so to properly monitor the transformer functioning over the time and even remotely. Indeed, with the actual constructive layout, the space inside a traditional Buchholz relay is not optimal and the actual floating equipment is quite cumbersome.

Hence, the present disclosure provides a safety device suitable to be associated to a power transformer containing a cooling liquid, comprising:

- a shaped body having an inner chamber which is suitable to be at least partially immersed in said cooling liquid and inside which gas can accumulate;

- a first floating element and a second floating element suitable to be at least partially immersed in and moved by said cooling liquid;

- switching means suitable to be actuated by said first floating element when the gas accumulated is such that the level of said cooling liquid in the inner chamber reaches a predetermined first threshold level and by said second floating element when the gas accumulated is such that the level of said cooling liquid in the inner chamber reaches a lower predetermined second threshold level, respectively; characterized in that said first floating element and said second floating element are mounted on and move linearly relative to one or more corresponding guiding supports.

Detailed characteristics and advantages will become apparent from the description of some preferred but not exclusive embodiments of a safety device and method according to the present disclosure, illustrated only by way of non-limitative examples with the accompanying drawings, wherein:

figure 1 is a view illustrating a power transformer equipped with a safety device according to the present disclosure;

figure 2 is a perspective view, partially cut, showing an exemplary embodiment of a safety device according to the present disclosure in a first position;

figure 3 is a perspective view, partially cut, showing the safety device of figure 2 in a second alarm position;

figure 4 is a perspective view, partially cut, showing the safety device of figure 2 in a third trip position;

figure 5 is a perspective view showing a transducer used in the safety device according to the present disclosure;

figure 6 is a perspective view illustrating some components of the safety device according to the present disclosure;

figure 7 is a perspective view, partially cut, schematically showing a further exemplary embodiment of a safety device according to the present disclosure.

It should be noted that in the detailed description that follows, identical or similar components, either from a structural and/or functional point of view, have the same reference numerals, regardless of whether they are shown in different embodiments of the present disclosure; it should also be noted that in order to clearly and concisely describe the present disclosure, the drawings may not necessarily be to scale and certain features of the disclosure may be shown in somewhat schematic form.

Figure 1 shows an exemplary power transformer 101 comprising a tank 102 filled with a cooling/insulating liquid 103 (hereinafter referred to as cooling liquid 103 for the sake of conciseness) of a type known per se, e.g. a mineral or vegetal oil; an expansion vessel or conservator 104, also filled with the cooling liquid 103, is mechanically connected to the tank 102 and is positioned as shown on top of the tank 102 itself.

A suitable pipe system 105 realizes the fluid communication between the conservator 104 and the tank 102.

As illustrated in the exemplary embodiment of figure 1, the transformer 101 is equipped with at least one safety device 100 according to the present disclosure, which is for instance fitted in the pipe system 105 along the fluid path leading from the tank 102 to the conservator 104. In the exemplary embodiment illustrated in figures 2-4, the safety device 100 comprises a shaped body 1 which is made for instance of cast aluminum alloy and is for example shaped to be connected to the pipe system 105; the shaped body 1 has an inner chamber 2 which, when the device 100 is connected in operation with the associated transformer 101, is suitable to be immersed at least partially in the cooling liquid 103 and inside which gas present or generated in the transformer 101 can accumulate.

An oil drain plug 23 can be provided at the bottom part of the inner chamber 2; further, the body 1 is for example provided with a cover 24 shaped so as to form with the upper part of the body 1 a further inner space 25.

The safety device 100 comprises also: a first floating element 3 and a second floating element 4 which are suitable to be at least partially immersed in and moved by movements of the cooling liquid 103 when the device 100 is connected to the transformer 101 ; and switching means 20 which are suitable to be actuated by the first floating element 3 when the gas accumulated in the inner chamber 2 is such that the level of the cooling liquid 103 in the inner chamber 2 reaches a predetermined first alarm threshold level and by the second floating element 4 when the gas accumulated in the inner chamber 2 is such that the level of the cooling liquid 103 in the inner chamber 2 reaches a lower predetermined second threshold level, respectively.

In the embodiments illustrated, the two floating elements 3 and 4 are positioned inside the inner chamber 2.

In particular, in the safety device 100 according to the present disclosure the first floating element 3 and the second floating element 4 are mounted on one or more corresponding guiding supports 5 and move linearly along a reference axis relative there to, namely both floating elements 3 and 4 slide along a substantially rectilinear direction on and relative to the one or more corresponding guiding supports 5.

Preferably, as illustrated in the embodiments of figures 2-4, the first floating element 3 and the second floating element 4 are mounted both on and move linearly relative to a common guide support 5; for instance, the common guide support 5 comprises a shaft 5 which is positioned inside the inner chamber 2 with the two floating elements 3 and 4 mounted thereon and sliding along the reference axis 110 (e.g. the axis of the shaft 5 itself.)

In the embodiments illustrated, the switching means 20 comprise for instance two switches, namely a first magnetic switch 20a or alarm switch 20a, and a second magnetic switch 20b or trip switch 20b, which can be placed in corresponding seats provided on the shaped body 1. Such switches 20a, 20b are of type known per se and for instance comprise, inside a bulb, a magnet and electrical contacts, not shown in the figures, which are operatively connected to an alarm circuit for the switch 20a, and to a power disconnection circuit for the trip switch 20b, respectively, according to solutions well known in the art or readily available to those skilled in the art and therefore not described herein in details.

As illustrated, at least one first magnet 6 is placed on and moves substantially solidly with the first floating element 3 so as to activate the first magnetic switch 20a when the first floating element 3 reaches a position corresponding to the predetermined first threshold level; likewise, at least one second magnet 7 is placed on and moves solidly with the second floating element 4 so as to activate the second magnetic switch 20b when the second floating element 4 reaches a position corresponding to the predetermined second threshold level.

Further, the safety device 100 comprises a stopper 8, e.g. a mechanical stopper, suitable to interact with and stop the first floating element 3 when the first floating element 3 itself reaches a position corresponding to the predetermined first threshold level, as illustrated in figure 3.

In particular, as illustrated in the attached figures, the first floating element 3 and the second floating element 4 are mounted on the common guide support 5 so as to move, for instance in contact to each other, until the first floating element 3 reaches the position corresponding to the predetermined first threshold level and is blocked there by the stopper 8, while the second floating element 4 can continue to slide down if the level of cooling liquid 103 in the inner chamber 2 continues to further lower.

The safety device 100 comprises also a transducer 9 having a cursor 10 suitable to be at least partially immersed in and moved by movements of the cooling liquid 103; the transducer 9, illustrated for example in figure 5, can be also positioned inside the inner chamber 2, and is arranged to output signals indicative of the actual position of the cursor 10 to an operatively associated electronic unit 11. For example, the transducer 9 comprises output cables 17 which are connected to terminals 21 placed inside the inner space 25; also the electronic unit 11 is connected (connections not illustrated for simplicity of illustration) to the terminals 21 and is positioned inside the space 25.

For example, the transducer 9 comprises a potentiometer, e.g. a linear position transducer type IC marketed by Gefran.

In particular, when the cursor 10 is moved by movements, e.g. changes of levels, of the cooling liquid 103, the transducer 9 outputs signals, e.g. electric signals, indicative of the actual position assumed by the cursor 10 as a consequence of movements of the cooling liquid 103, which signals are therefore indicative of the actual level of cooling liquid 103 and therefore ultimately of the quantity of gas accumulated.

The electronic unit 11 is arranged so as to elaborate, based on the output signals produced by the transducer 9, data related to actual conditions of the transformer 101 and/or of its cooling liquid 103, and if desired to transmit also remotely the data elaborated.

In particular, the electronic unit 11 is arranged so as to elaborate at least data indicative of the actual quantity of gas accumulated by the safety device 100 coming from tank 102 to conservator 104 through pipe 105, which gas accumulated is indicative of the quantity of gas generated into the transformer 101 for whatever reason.

Further, the electronic unit 11 can be part of the alarm circuit connected to the first magnetic switch 20a and also of the power disconnection circuit connected to the second switch 20b. For example, when the quantity of gas generated in the transformer 101 exceeds the predetermined first threshold, i.e. the first floating element 3 has reached the position corresponding to the first threshold level and has caused the actuation of the first magnetic switch 20a, the electronic unit 11 can receive, directly or indirectly, an input signal from the first switch 20a and outputs an alarm signal. Such an alarm signal can be of any type, e.g. acoustic or visual, and direct or indirect, e.g. it can cause switching of a lamp device or a siren, or can be routed to a switch which in turn actuates a lamp or a siren, and can be transmitted locally and/or remotely in whatever manner possible, e.g. through wires or wireless.

Likewise, when the quantity of gas generated in the transformer 101 exceeds the predetermined second threshold, i.e. the second floating element 4 has reached the position corresponding to the second threshold level and has caused the actuation of the second magnetic switch 20b, the electronic unit 11 can receive, directly or indirectly, an input signal from the second switch 20b and outputs a trip signal; this trip signal can be routed, locally and/or remotely, to an associated switch or trip unit whose intervention disconnects electric power feeding the power transformer 101.

As those skilled in the art may appreciate, the electronic unit 11 can comprise any suitable and commercially available micro-processor based electronic unit which elaborates digital data and outputs corresponding digital signals, e.g. a micro-processor NXP type LPC210.

According to a preferred embodiment illustrated in figures 2-4 and 6, the second floating element 3 is mounted on and solidly moves with the cursor 10 or said in another way, the cursor 10 is fitted inside the second floating 4 and slides together with along the same direction, e.g. the same reference axis 110.

In particular, as illustrated in such figures, the transducer 9 comprises a shaped body, e.g. rod- or stick-shaped, forming the common guide support 5 on which the two floating elements 3 and 4 are mounted and slide relative to the body itself.

Alternatively, as for example schematically illustrated in figure 7, the transducer 9 can be fitted in the shaped body 1 of the device 100, as a separate component with respect to the guiding support 5 and related floating elements 3, 4. In figure 7, for the sake of clarity of illustration, some components of the device 100, e.g. the flap 13, the switch means 20, the stopper 8, terminals 21, etc cetera have been removed.

The safety device 100 can comprise a further movable element or flap 13 suitable to be at least partially immersed in and moved by the cooling liquid 103; this movable element 13 is arranged to detect if the actual flow rate of the cooling liquid exceeds a predetermined third threshold and to actuate an associated switch suitable to disconnect electric power feeding said power transformer. For example, the flap 13 can be connected, e.g. hinged along the common guide support 5, for instance at an end portion thereof, or can be mounted on another supporting part, and the associated switch can be one of the first or second switches 20a, 20b, or an additional switch.

In this case, for example, the electronic unit 1 1 can be also arranged to elaborate data indicative of the actual flow rate of the cooling liquid 103, i.e. the speed of movement of such liquid and to output a trip signal if the elaborated data indicative of the flow-rate of the cooling liquid 103 exceed the related predetermined third threshold. Also this trip signal can be routed, locally and/or remotely, in whatever manner, e.g. through cabling or wireless, to any associated switch or trip unit whose intervention disconnects the electric power feeding the power transformer 101.

In practice, once the safety device 100 is connected to the associated power transformer 101, if during the normal functioning of the transformer gas forms or becomes present inside the transformer 101 for whatever reason, such gas tends to escape upward and to accumulate inside the body 1, and in particular inside the upper part of the inner chamber 2. As a consequence, the gas present lowers the level of the cooling liquid 103 and thus causes the movement of the floating elements 3 and 4 downwards, and also the movement of the cursor 10. Hence, the transducer 9 gives continuously the variation of its resistance values which are detected by the associated electronic unit 11 and are indicative of the actual position reached and therefore of the level reached by the liquid as a consequence of the quantity of gas actually generated in the transformer 101. In this way, since the actual quantity of gas can be continuously derived from the actual level reached by the cooling liquid 103, it is possible to track and have almost complete information about how much gas is present and the trend thereof over the time.

If the quantity of gas present in the transformer 101 is such that the level of the liquid is at and hence the first floating element 3 has reached the position corresponding to the predetermined first threshold, the magnet 6 activates the associated first magnetic switch 20a which causes the generation of an alarm signal; if the quantity of gas generated in the transformer 101 continues to increase, while the first floating 3 is stopped by the stop 8, the second floating 4 together with the cursor 10 slides further down until the level of liquid 103 is at and hence the second floating element 4 has reached the position corresponding to that of the predetermined second threshold; in this position the magnet 7 activates the second switch 20b which causes the generation of a trip signal and hence disconnects the electric power feeding the transformer 101.

In operation, it is also possible that for some reasons, e.g. a violent and sudden short circuit, strong/rapid currents of the liquid 103 are generated inside the tank 102; such rapid movements of the liquid are due usually to dangerous or abnormal working conditions and hence, in order to limit the negative effects a related flow rate limit (hereinafter referred to as "third threshold") is defined. The flow rate and therefore rapid currents or movements of the cooling liquid causes the rotation of the flap 13; if the flow rate of the cooling liquid exceeds the predefined third threshold then the movement of the element 13 is such that to actuate the associated switch which produces, directly or indirectly, the trip signal meant to cause disconnection of electric power feeding the transformer 101.

In practice, it has been found that the safety device 100 according to the present disclosure offers a solution which is quite simple and has a constructive layout which is substantially different from known Buchholz relays and allows to reduce the space occupied by the floating components and related supporting structure.

The optimization of the space available allows to use other components which increase the functionalities and performance of the device as previously described, and without modifying substantially or increasing the size of its structure.

Thanks to these characteristics, the safety device 100 according to the present disclosure is suitable to monitor in principle any type of power transformer filled with a cooling/insulating liquid.

Hence, the present disclosure also encompasses a power transformer 101 comprising at least one safety device 100 of the type previously described and as defined in the appended claims. Clearly more than one safety device 100 can be used in a single power transformer.

The device thus conceived is susceptible of modifications and variations, all of which are within the scope of the inventive concept as defined in particular by the appended claims; any possible combination of the previously disclosed embodiments can be implemented and has to be considered within the inventive concept of the present disclosure; all the details may furthermore be replaced with technically equivalent elements.

Also the materials used, so long as they are compatible with the specific use and purpose, as well as the dimensions, may be any according to the requirements and the state of the art; for example the various floating or movable elements are preferably made totally or partially of plastic materials but any suitable different material may be used.