Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SALINOMYCIN DERIVATIVES AND USES THEREOF
Document Type and Number:
WIPO Patent Application WO/2022/187849
Kind Code:
A1
Abstract:
The present invention provides compounds, compositions thereof, and methods of using the same.

Inventors:
SUMAN PATHI (US)
JONNALAGADDA SUBASH C (US)
RAMANUJACHARY KANDALAM (US)
PANDEY MANOJ (US)
Application Number:
PCT/US2022/070958
Publication Date:
September 09, 2022
Filing Date:
March 04, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HILLSTREAM BIOPHARMA INC (US)
International Classes:
A61K31/35; A61K31/337; A61K31/366
Other References:
ANTOSZCZAK ET AL.: "Synthesis, antiproliferative and antibacterial activity of new amides of salinomycin", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 24, 2014, pages 1724 - 1729, XP028835174, DOI: 10.1016/j.bmcl.2014.02.042
ANTOSZCZAK ET AL.: "Synthesis and antiproliferative activity of new bioconjugates of Salinomycin with amino acid esters", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 25, 2015, pages 3511 - 3514, XP029249467, DOI: 10.1016/j.bmcl.2015.06.086
HUANG ET AL.: "Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 127, 2017, pages 900 - 908, XP029907342, DOI: 10.1016/j.ejmech.2016.10.067
SHI ET AL.: "Discovery of a 19F MRI sensitive salinomycin derivative with high cytotoxicity towards cancer cells", CHEM COMMUN (CAMB, vol. G2, no. 29, pages 5136 - 5139, XP055696195, DOI: 10.1039/C6CC01508E
Attorney, Agent or Firm:
COUGHLIN, Sean (US)
Download PDF:
Claims:
CLAIMS

1. A compound of formula I: or a pharmaceutically acceptable salt thereof, wherein:

X is a bivalent group selected from -NR-NR-, -NR-NR-CO-, -NR-NR-CONR-, -NR-NR- SO2-, -NR-NR-SO2NR-, -NR-(CR2)n-CO-, -NR-(CR2)n-CONR-, -NR-(CR2)n-S02-, and -NR-(CR2)n-S02NR-; each R is independently hydrogen, or an optionally substituted group selected from Ci-6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 3-7 membered saturated or partially unsaturated heterocyclic having 1- 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or: two R groups on the same atom or different atoms in close proximity are optionally taken together with their intervening atoms to form a 4-7 membered saturated, partially unsaturated, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur; n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10;

L is a covalent bond or an optionally substituted Ci-10 bivalent straight or branched saturated or unsaturated hydrocarbon chain wherein 1-2 methylene units of the chain are independently and optionally replaced with -0-, -S-, -NR-, -C(O)-, or -SO2-;

Ring A is phenyl, a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, an 8-10 membered bicyclic aromatic carbocyclic ring, or an 8-10 membered bicyclic heteroaromatic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; each R2 is independently RA, halogen, -CN, -NO2, -OR, -SR, -NR2, -SO2R, -SO2NR2, -SOR, - CFR2, -CF2R, -CF3, -CR2OR, -CR2NR2, -COR, -CO2R, -CONR2, -CSNR2, -CONROR, -OCOR, -OCONR2, -NRCO2R, -NRCOR, -NRCONR2, -NRSO2R, - 0P(0)R2, -0P0(0R)2, -OPO(OR)NR2, -0P0(NR2)2, -S1R3, or -SF5; each RA is independently an optionally substituted group selected from Ci-6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 4- 7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and m is 0, 1, 2, 3, or 4.

2. The compound of claim 1, wherein X is -NR-NR-, -NR-NR-CO-, -NR-NR-CONR-, - NR-(CR2)n-CO-, or -NR-(CR2)n-CONR-.

3. The compound of claim 1 or claim 2, wherein Ring A is phenyl, a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-10 membered bicyclic heteroaromatic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur.

4. The compound of any one of claims 1-3, wherein Ring A is a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur.

5. The compound of any one of claims 1-4, wherein each R2 is independently RA, halogen, -CN, -NO2, -OR, -SR, -NR2, -CFR2, -CF2R, -CF , -CR2OR, -CR2NR2, -COR, -CO2R, -COMO, -CSNR2, -CONROR, -OCOR, -OCONR2, -NRCO2R, -NRCOR, or -NRCONR2.

6. The compound of any one of claims 1-5, wherein the compound is any one of the following formulae: or a pharmaceutically acceptable salt thereof.

7. The compound of any one of claims 1-6, wherein the compound is selected from any one of the compounds depicted in Table 1, or a pharmaceutically acceptable salt thereof.

8. A pharmaceutical composition comprising a compound according to any of one of claims 1-7, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.

9. The pharmaceutical composition according to claim 8, further comprising an additional therapeutic agent.

10. A method of inhibiting the phosphorylation of beta catenin in a patient or biological sample comprising administering to the patient or contacting the biological sample with a compound of any one of claims 1-7, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof.

11. The method of claim 10, wherein the patient has breast cancer.

12. A method of inhibiting a regulator of angiogenesis, invasion, or metastasis in a patient or biological sample comprising administering to the patient or contacting said biological sample with a compound of any one of claims 1-7, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof.

13. The method of claim 12, wherein the regulator is selected from VEGF, c-myc, and MMP-9.

14. The method of claim 12 or claim 13, wherein the patient has breast cancer.

15. A method of inhibiting the expression of Bcl-xL in a patient or biological sample comprising administering to the patient or contacting said biological sample with a compound of any one of claims 1-7, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof.

16. The method of claim 15, wherein the patient has breast cancer.

17. A method of treating cancer in a patient comprising administering to the patient a compound of any one of claims 1-7, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof.

18. The method of claim 17, wherein the cancer is selected from lung cancer, thyroid cancer, ovarian cancer, colorectal cancer, prostate cancer, cancer of the pancreas, cancer of the esophagus, liver cancer, breast cancer, skin cancer, mesothelioma, leukemias ( e.g ., acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute monocytic leukemia, acute erythroleukemia, chronic leukemia, chronic myelocytic leukemia, chronic lymphocytic leukemia), polycythemia vera, lymphoma (e.g., Hodgkin’s disease or non- Hodgkin’s disease), Waldenstrom's macroglobulinemia, multiple myeloma, heavy chain disease, and solid tumors such as sarcomas and carcinomas (e.g, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing’s tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, uterine cancer, testicular cancer, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, glioblastoma multiforme (GBM, also known as glioblastoma), medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, schwannoma, neurofibrosarcoma, meningioma, melanoma, neuroblastoma, and retinoblastoma).

19. The method of claim 18, wherein the breast cancer is selected from ductal carcinoma in situ (DCIS), invasive ductal carcinoma (H)C), invasive lobular cancer (ILC), inflammatory breast cancer (IBC), triple negative breast cancer (TNBC), and metastatic breast cancer.

20. The method of claim 18, wherein the breast cancer is triple negative breast cancer (TNBC).

Description:
SALINOMYCIN DERIVATIVES AND USES THEREOF

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/157,361, filed March 5, 2021. The contents of this application are incorporated herein by reference in its entirety.

TECHICAL FIELD OF THE INVENTION

[0001] The present invention relates to salinomycin compounds and methods of using said compounds in the treatment of various disorders. The invention also provides pharmaceutically acceptable compositions comprising the salinomycin derivatives of the present invention and methods of using said compositions in the treatment of various disorders.

BACKGROUND OF THE INVENTION

[0002] Salinomycin is a polyether antibiotic used in the animal farming as an anti- coccidiostat and is produced by Streptomyces albus. Recently, salinomycin was identified as a potent inhibitor of breast cancer stem cells based on a high-throughput screening of compounds with several fold higher potency than the anti-cancer drug Paclitaxel. Salinomycin has also been shown to induce apoptosis in many human cancer cells, however the mechanism of action is still not fully understood (Zhao, Y. et al., Oncol. Rep. 2018, 40, 877-886). Reports also indicate that salinomycin inhibits vascular endothelial growth factor receptor 2 (VEGFR2) mediated angiogenesis, which is an attractive strategy for cancer chemotherapy. WNT/D-catenin pathway is a critical process responsible for the cancer stem cell survival and salinomycin is also known to inhibit cell growth in several WNT dependent cancer cells in vitro. Salinomycin inhibits WNT-induced phosphorylation of the co-receptor LRP6, thereby inducing its degradation.

SUMMARY OF THE INVENTION

[0003] The present invention relates to salinomycin derivatives, methods of preparation of the salinomycin derivatives, pharmaceutical compositions comprising the salinomycin derivatives, and their use in medical therapy. In particular, the present invention provides salinomycin derivatives which find utility in treating cancer. An advantage of the compounds provided herein is that a broad range of pharmacological activities are possible, consistent with the inhibition of (i) beta catenin mediated signaling; (ii) angiogenesis, invasion, and metastasis; and (iii) anti-apoptotic proteins. In addition, the description provides methods of using an effective amount of the compounds as described herein for the treatment or amelioration of a disease condition, such as cancer, e.g., breast cancer.

[0004] It has now been found that the salinomycin derivatives of the invention, and pharmaceutically acceptable compositions thereof, are effective for the treatment of variety of diseases, disorders, or conditions. Such compounds of the invention have the general formula I:

I or a pharmaceutically acceptable salt thereof, wherein each variable is as defined and described herein.

[0005] Such diseases, disorders, or conditions include cellular proliferative disorders (e.g., cancer as described herein).

BRIEF DESCRIPTION OF THE FIGURES [0006] FIG. 1 is an HPLC chromatogram showing the purity of 1-17.

[0007] FIG. 2 shows the effects of salinomycin, 1-17, and 1-18 on beta-catenin in MDA-MB- 231 breast cancer cells.

[0008] FIG. 3 shows the effects of salinomycin, 1-17, and 1-18 on angiogenesis and metastasis in MDA-MB-231 breast cancer cells.

[0009] FIG. 4 shows the effects of salinomycin and 1-17 on in-vitro HUVEC tube formation. [0010] FIG. 5 shows the effects of salinomycin, 1-17, and 1-18 on cell death in MDA-MB- 231 breast cancer cells. DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS 1. General Description of Certain Embodiments of the Invention

[0011] There is a need to develop new analogs of salinomycin with improved properties (e.g., potency) to explore new therapeutic areas. The present invention addresses this need by providing potent salinomycin derivatives and methods for treating various diseases such as cancer, and offers other related advantages.

[0012] Compounds of the present invention, and pharmaceutical salts and compositions thereof, are useful inhibitors of (i) beta catenin mediated signaling; (ii) angiogenesis, invasion, and metastasis; and (iii) anti-apoptotic proteins. Without wishing to be bound by any particular theory, it is believed that compounds of the present invention, and pharmaceutical compositions thereof, have the aforementioned activities and thus treat diseases, disorders, or conditions associated with them, such as cancer.

[0013] In one aspect, the present invention provides a compound formula I: I or a pharmaceutically acceptable salt thereof, wherein:

X is a bivalent group selected from -NR-NR-, -NR-NR-CO-, -NR-NR-CONR-, -NR-NR- S0 2 -, -NR-NR-SO2NR-, -NR-(CR 2 ) n -CO-, -NR-(CR 2 ) n -CONR-, -NR-(CR 2 ) n -S0 2 -, and -NR-(CR 2 ) n -S0 2 NR-; each R is independently hydrogen, or an optionally substituted group selected from Ci- 6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 3-7 membered saturated or partially unsaturated heterocyclic having 1- 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or: two R groups on the same atom or different atoms in close proximity are optionally taken together with their intervening atoms to form a 4-7 membered saturated, partially unsaturated, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur; n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10;

L is a covalent bond or an optionally substituted Ci-io bivalent straight or branched saturated or unsaturated hydrocarbon chain wherein 1-2 methylene units of the chain are independently and optionally replaced with -0-, -S-, -NR-, -C(O)-, or -SO2-;

Ring A is phenyl, a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, an 8-10 membered bicyclic aromatic carbocyclic ring, or an 8-10 membered bicyclic heteroaromatic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; each R 2 is independently R A , halogen, -CN, -NO 2 , -OR, -SR, -NR 2 , -SO 2 R, -SO 2 NR 2, -SOR, - CFR 2 , -CF 2 R, -CF3, -CR2OR, -CR2NR2, -COR, -CO2R, -COMO, -CSNFO, -COMfOR, -OCOR, -OCONR 2 , -NRCO 2 R, -MIC OR, -NRCONR 2 , -NRSO 2 R, - OP(0)R 2 , -0P0(0R) 2 , -OPO(OR)NR 2 , -0P0(NR 2 )2, -S1R3, or -SF 5 ; each R A is independently an optionally substituted group selected from Ci- 6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 4- 7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and m is 0, 1, 2, 3, or 4.

[0014] In the following invention, certain specific details are set forth in order to provide a thorough understanding of various embodiments. However, one skilled in the art will understand that the methods and uses described herein may be practiced without these details. In other instances, well-known structures have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments. Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to.” Further, headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed invention. [0015] Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Also, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.

2. Compounds and Definitions

[0016] Compounds of the present invention include those described generally herein, and are further illustrated by the classes, subclasses, and species disclosed herein. As used herein, the following definitions shall apply unless otherwise indicated. For purposes of this disclosure, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75 th Ed. Additionally, general principles of organic chemistry are described in “Organic Chemistry”, Thomas Sorrell, University Science Books, Sausalito: 1999, and “March’s Advanced Organic Chemistry”, 5 th Ed., Ed.: Smith, M.B. and March, T, John Wiley & Sons, New York: 2001, the entire contents of which are hereby incorporated by reference.

[0017] The term “aliphatic” or “aliphatic group”, as used herein, means a straight-chain (i.e., unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic hydrocarbon or bicyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle,” “cycloaliphatic” or “cycloalkyl”), that has a single point of attachment to the rest of the molecule. Unless otherwise specified, aliphatic groups contain 1 to 6 aliphatic carbon atoms. In some embodiments, aliphatic groups contain lto 5 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1 to 4 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1 to 3 aliphatic carbon atoms, and in yet other embodiments, aliphatic groups contain 1 to 2 aliphatic carbon atoms. In some embodiments, “cycloaliphatic” (or “carbocycle” or “cycloalkyl”) refers to a monocyclic C3-C6 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic, that has a single point of attachment to the rest of the molecule. Suitable aliphatic groups include, but are not limited to, linear or branched, substituted or unsubstituted alkyl, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl. [0018] As used herein, the term “bridged bicyclic” refers to any bicyclic ring system, i.e., carbocyclic or heterocyclic, saturated or partially unsaturated, having at least one bridge. As defined by IUPAC, a “bridge” is an unbranched chain of atoms or an atom or a valence bond connecting two bridgeheads, where a “bridgehead” is any skeletal atom of the ring system which is bonded to three or more skeletal atoms (excluding hydrogen). In some embodiments, a bridged bicyclic group has 7 to 12 ring members and 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Such bridged bicyclic groups are well known in the art and include those groups set forth below where each group is attached to the rest of the molecule at any substitutable carbon or nitrogen atom. Unless otherwise specified, a bridged bicyclic group is optionally substituted with one or more substituents as set forth for aliphatic groups. Additionally or alternatively, any substitutable nitrogen of a bridged bicyclic group is optionally substituted. Exemplary bridged bicyclics include:

[0019] The term “lower alkyl” refers to a Ci-4 straight or branched alkyl group. Exemplary lower alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and tert-butyl.

[0020] The term “lower haloalkyl” refers to a Ci-4 straight or branched alkyl group that is substituted with one or more halogen atoms. [0021] The term “heteroatom” means one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon (including, any oxidized form of nitrogen, sulfur, phosphorus, or silicon; the quatemized form of any basic nitrogen; or an oxygen, sulfur, nitrogen, phosphorus, or silicon atom in a heterocyclic ring.

[0022] The term “unsaturated,” as used herein, means that a moiety has one or more units of unsaturation.

[0023] As used herein, the term “bivalent Ci-s (or Ci- 6 ) saturated or unsaturated, straight or branched, hydrocarbon chain”, refers to bivalent alkylene, alkenylene, and alkynylene chains that are straight or branched as defined herein.

[0024] The term “alkylene” refers to a bivalent alkyl group. An “alkylene chain” is a polymethylene group, i.e., -(CH2) n- , wherein n is a positive integer, preferably from 1 to 6, from 1 to 4, from 1 to 3, from 1 to 2, or from 2 to 3. A substituted alkylene chain is a polymethylene group in which one or more methylene hydrogen atoms are replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group.

[0025] The term “alkenylene” refers to a bivalent alkenyl group. A substituted alkenylene chain is a polymethylene group containing at least one double bond in which one or more hydrogen atoms are replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group.

[0026] As used herein, the term “cyclopropylenyl” refers to a bivalent cyclopropyl group of the following structure:

[0027] The term “halogen” means F, Cl, Br, or I.

[0028] The term “aryl” used alone or as part of a larger moiety as in “aralkyl,” “aralkoxy,” or “aryloxyalkyl,” refers to monocyclic or bicyclic ring systems having a total of 4 to 14 ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members. The term “aryl” may be used interchangeably with the term “aryl ring.” In certain embodiments of the present invention, “aryl” refers to an aromatic ring system which includes, but not limited to, phenyl, biphenyl, naphthyl, anthracyl and the like, which may bear one or more substituents. Also included within the scope of the term “aryl,” as it is used herein, is a group in which an aromatic ring is fused to one or more non-aromatic rings, such as indanyl, phthalimidyl, naphthimidyl, phenanthridinyl, or tetrahydronaphthyl, and the like. [0029] The terms “heteroaryl” and “heteroar-,” used alone or as part of a larger moiety, e.g., “heteroaralkyl,” or “heteroaralkoxy,” refer to groups having 5 to 10 ring atoms, preferably 5, 6, or 9 ring atoms; having 6, 10, or 14 □ electrons shared in a cyclic array; and having, in addition to carbon atoms, from 1 to 5 heteroatoms. The term “heteroatom” in the context of “heteroaryl” particularly includes, but is not limited to, nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen. Heteroaryl groups include, without limitation, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl. The terms “heteroaryl” and “heteroar-”, as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring. Nonlimiting examples include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, AH quinolizinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido[2,3- b]-l,4-oxazin-3(4H)-one. A heteroaryl group may be monocyclic or bicyclic. A heteroaryl ring may include one or more oxo (=0) or thioxo (=S) substituent. The term “heteroaryl” may be used interchangeably with the terms “heteroaryl ring,” “heteroaryl group,” or “heteroaromatic,” any of which terms include rings that are optionally substituted. The term “heteroaralkyl” refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.

[0030] As used herein, the terms “heterocycle,” “heterocyclyl,” “heterocyclic radical,” and “heterocyclic ring” are used interchangeably and refer to a stable 5- to 7-membered monocyclic or 7- to 10-membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more, preferably 1 to 4, heteroatoms, as defined above. When used in reference to a ring atom of a heterocycle, the term “nitrogen” includes a substituted nitrogen. As an example, in a saturated or partially unsaturated ring may have 0 to 3 heteroatoms selected from oxygen, sulfur or nitrogen.

[0031] A heterocyclic ring can be attached to a provided compound at any heteroatom or carbon atom that results in a stable structure and any of the ring atoms can be optionally substituted. Examples of such saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothiophenyl pyrrolidinyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, morpholinyl, and quinuclidinyl. The terms “heterocycle,” “heterocyclyl,” “heterocyclyl ring,” “heterocyclic group,” “heterocyclic moiety,” and “heterocyclic radical,” are used interchangeably herein, and also include groups in which a heterocyclyl ring is fused to one or more aryl, heteroaryl, or cycloaliphatic rings, such as indolinyl, 3// indolyl, chromanyl, phenanthridinyl, or tetrahydroquinolinyl. A heterocyclyl group may be monocyclic, bicyclic, bridged bicyclic, or spirocyclic. A heterocyclic ring may include one or more oxo (=0) or thioxo (=S) substituent. The term “heterocyclylalkyl” refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.

[0032] As used herein, the term “partially unsaturated” refers to a ring moiety that includes at least one double or triple bond. The term “partially unsaturated” is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.

[0033] As described herein, compounds of the invention may contain “substituted” moieties. In general, the term “substituted” means that one or more hydrogens of the designated moiety are replaced with a suitable substituent. Unless otherwise indicated, an “optionally substituted” group may have a suitable substituent at one or more substitutable position of the group, and when more than one position in any given structure is substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. Combinations of substituents envisioned by this disclosure are preferably those that result in the formation of stable or chemically feasible compounds. The term “stable,” as used herein, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein.

[0034] Suitable monovalent substituents on a substitutable carbon atom of an “optionally substituted” group are independently halogen; -(CH2)o-6R°; -(CH2)o- 6 0R°; -0(CH2)o- 6 R°, - 0-(CH 2 ) O-6 C(0)OR°; -(CH 2 ) O-6 CH(OR 0 ) 2 ; -(CH 2 ) O-6 SR 0 ; -(CH 2 )o- 6 Ph, which Ph may be substituted with R°; -(CH 2 )o- 6 0(CH 2 )o-iPh which Ph may be substituted with R°; - CH=CHPh, which Ph may be substituted with R°; -(CH 2 )o- 6 0(CH 2 )o-i-pyridyl which pyridyl may be substituted with R°; -N0 2 ; -CN; -N 3 ; -(CH 2 )o^N(R°) 2 ; -(CH 2 )o- 6 N(R°)C(0)R°; - N(R°)C(S)R°; -(CH 2 )OV,N(R 0 )C(0)NR° 2 ; -N(R°)C(S)NR° 2 ; -(CH 2 ) O ^N(R°)C(0)OR°; - N(R°)N(R°)C(0)R°; -N(R°)N(R 0 )C(0)NR 0 2 ; -N(R°)N(R°)C(0)0R°; -(CH 2 )o^C(0)R°; - C(S)R°; -(CH 2 ) O-6 C(0)OR°; -(CH 2 ) O-6 C(0)SR°; -(CH 2 ) 0 ^C(O)OSiR o 3 ; -(CH 2 ) 0-6 OC(O)R°; -OC(0)(CH 2 ) O-6 SR 0 -(CH 2 ) O-6 SC(0)R 0 ; -(CH 2 ) O ^C(0)NR° 2 ; -C(S)NR° 2 ; -C(S)SR°; - SC(S)SR°, -(CH 2 ) O-6 0C(0)NR° 2 ; -C(0)N(0R°)R°; -C(0)C(0)R°; -C(0)CH 2 C(0)R°; - C(NOR°)R°; -(CH 2 ) O-6 SSR°; -(CH 2 ) O ^S(0) 2 R°; -(CH 2 ) O-6 S(0) 2 OR°; -(CH 2 ) O ^OS(0) 2 R°; - S(0) 2 NR° 2 ; -(CH 2 ) O-6 S (0)R° ; -N(R°)S(0) 2 NR° 2 ; -N(R°)S(0) 2 R°; -N(OR°)R°; - C(NH)NR° 2 ; -P(0) 2 R°; -P(0)R° 2 ; -P(0)(0R°) 2 ; -0P(0)(R°)0R°; -0P(0)R° 2 ; - 0P(0)(0R°) 2 ; SiR° 3 ; -(Ci- 4 straight or branched alkylene)0-N(R°) 2 ; or -(Ci-4 straight or branched alkylene)C(0)0-N(R°) 2 , wherein each R° may be substituted as defined below and is independently hydrogen, Ci- 6 aliphatic, -CH 2 Ph, -0(CH 2 )o-iPh, -CH 2- (5- to 6-membered heteroaryl ring), or a 5- to 6-membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences of R°, taken together with their intervening atom(s), form a 3- to 12-membered saturated, partially unsaturated, or aryl mono- or bicyclic ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, which may be substituted as defined below.

[0035] Suitable monovalent substituents on R° (or the ring formed by taking two independent occurrences of R° together with their intervening atoms), are independently halogen, - (CH 2 ) O-2 R·, -(haloR*), -(CH 2 ) 0-2 OH, -(CH 2 ) O-2 OR·, -(CH 2 ) 0-2 CH(OR*) 2 ; -0(haloR*), -CN, -Ns, -(CH 2 ) O-2 C(0)R·, -(CH 2 ) O-2 C(0)OH, -(CH 2 ) O-2 C(0)OR·, -(CH 2 )o- 2 SR e , -(CH 2 ) 0-2 SH, -(CH 2 ) O-2 NH 2 , -(CH 2 ) O-2 NHR·, -(CH 2 ) O-2 NR* 2 , - b, -SiR's, -OSiR's, -C(0)SR* -(Ci_ 4 straight or branched alkylene)C(0)OR*, or -SSR* wherein each R* is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently selected from Ci- 4 aliphatic, -CH 2 Ph, -0(CH 2 )o-iPh, or a 5- to 6-membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Suitable divalent substituents on a saturated carbon atom of R° include =0 and =S.

[0036] Suitable divalent substituents on a saturated carbon atom of an “optionally substituted” group include the following: =0, =S, =NNR * 2 , =NNHC(0)R * , =NNHC(0)OR * , =NNHS(0) 2 R * , =NR * , =NOR * , -0(C(R * 2 )) 2-S 0-, or -S(C(R * 2 )) 2-3 S-, wherein each independent occurrence of R * is selected from hydrogen, Ci- 6 aliphatic which may be substituted as defined below, or an unsubstituted 5- to 6-membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. Suitable divalent substituents that are bound to vicinal substitutable carbons of an “optionally substituted” group include: -0(CR * 2 ) 2-3 0-, wherein each independent occurrence of R * is selected from hydrogen, Ci- 6 aliphatic which may be substituted as defined below, or an unsubstituted 5- to 6-membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.

[0037] Suitable substituents on the aliphatic group of R * include halogen, -R*, -(haloR*), - OH, -OR*, -0(haloR*), -CN, -C(0)OH, -C(0)OR*, -NH 2 , NHR*, -NR* 2 , or -N0 2 , wherein each R* is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently Ci- 4 aliphatic, -CH 2 Ph, -0(CH 2 )o-iPh, or a 5- to6- membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.

[0038] Suitable substituents on a substitutable nitrogen of an “optionally substituted” group include -R , -NR 2 , -C(0)R , -C(0)OR , -C(0)C(0)R , -C(0)CH 2 C(0)R , -S(0) 2 R , - S(0) 2 NR ÷ 2 , -C(S)NR ÷ , -C(NH)NR ÷ , or -N(R ÷ )S(0) 2 R ÷ ; wherein each R' is independently hydrogen, Ci- 6 aliphatic which may be substituted as defined below, unsubstituted -OPh, or an unsubstituted 5- to 6-membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences of R ÷ , taken together with their intervening atom(s) form an unsubstituted 3- to 12-membered saturated, partially unsaturated, or aryl monocyclic or bicyclic ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.

[0039] Suitable substituents on the aliphatic group of R' are independently halogen, -R", - (haloR*), -OH, -OR*, -0(haloR*), -CN, -C(0)OH, -C(0)OR*, -NH 2 , -NHR*, -NR* 2 , or - N0 2 , wherein each R* is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently Ci- 4 aliphatic, -CH 2 Ph, -0(CH 2 )o-iPh, or a 5- to 6-membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.

[0040] As used herein, the term “provided compound” refers to any genus, subgenus, and/or species set forth herein.

[0041] As used herein, the term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et ah, describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, which is incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecyl sulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like.

[0042] Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N + (Ci-4alkyl)4 salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate, and aryl sulfonate. [0043] Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, Z and E double bond isomers, and Z and E conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, all tautomeric forms of the compounds of the invention are within the scope of the invention. Additionally, unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures including the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of this invention. Such compounds are useful, for example, as analytical tools, as probes in biological assays, or as therapeutic agents in accordance with the present invention.

3. Description of Exemplary Embodiments

[0044] The present invention provides a compound formula I:

I or a pharmaceutically acceptable salt thereof, wherein:

X is a bivalent group selected from -NR-NR-, -NR-NR-CO-, -NR-NR-CONR-, -NR-NR- S0 2 -, -NR-NR-SO2NR-, -NR-(CR 2 ) n -CO-, -NR-(CR 2 ) n -CONR-, -NR-(CR 2 ) n -S0 2 -, and -NR-(CR 2 ) n -S0 2 NR-; each R is independently hydrogen, or an optionally substituted group selected from Ci- 6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 3-7 membered saturated or partially unsaturated heterocyclic having 1- 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or: two R groups on the same atom or different atoms in close proximity are optionally taken together with their intervening atoms to form a 4-7 membered saturated, partially unsaturated, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur; n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10; L is a covalent bond or an optionally substituted Ci-io bivalent straight or branched saturated or unsaturated hydrocarbon chain wherein 1-2 methylene units of the chain are independently and optionally replaced with -0-, -S-, -NR-, -C(O)-, or -SO2-;

Ring A is phenyl, a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, an 8-10 membered bicyclic aromatic carbocyclic ring, or an 8-10 membered bicyclic heteroaromatic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; each R 2 is independently R A , halogen, -CN, -NO 2 , -OR, -SR, -NR 2 , -SO 2 R, -SO 2 NR 2, -SOR, - CFR 2 , -CF 2 R, -CF3, -CR2OR, -CR2NR2, -COR, -CO2R, -COMO, -CSNFO, -COMfOR, -OCOR, -OCONR 2 , -NRCO 2 R, - IC OR, -NRCONR 2 , -NRSO 2 R, - OP(0)R 2 , -0P0(0R) 2 , -OPO(OR)NR 2 , -0P0(NR 2 )2, -S1R3, or -SF 5 ; each R A is independently an optionally substituted group selected from Ci- 6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 4- 7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur; and m is 0, 1, 2, 3, or 4.

[0045] As defined generally above, X is a bivalent group selected from -Mt-Mt-, -NR-NR- CO-, -MCMCCOMC, -NR-NR-SO2-, -NR-NR-SO2NR-, -NR-(CR 2 ) n -CO-, -NR-(CR?) n - COMC, -NR-(CR 2 ) n -S0 2 -, and -NR-(CR 2 ) n -S0 2 NR-.

[0046] In some embodiments, X is -NR-NR-. In some embodiments, X is -NR-NR-CO-. In some embodiments, X is -NR-NR-CONR- In some embodiments, X is -NR-NR-SO 2 -. In some embodiments, X is -Mt-Mt- SO 2 NR-. In some embodiments, X is -NR-(CR 2 ) n -CO-. In some embodiments, X is -NR-(CR 2 ) n -CONR- In some embodiments, X is -NR-(CR 2 ) n -S0 2 -. In some embodiments, X is -NR-(CR 2 ) n -S0 2 NR-

[0047] In some embodiments, X is -MI-MI-. In some embodiments, X is -MI-NH-CO-. In some embodiments, X is -MI-MI-COMI-. In some embodiments, X is -Md-CFh-COMI-. [0048] In some embodiments, X is selected from those depicted in Table 1, below.

[0049] As defined generally above, each R is independently hydrogen, or an optionally substituted group selected from Ci- 6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 3-7 membered saturated or partially unsaturated heterocyclic having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or two R groups on the same atom or different atoms in close proximity are optionally taken together with their intervening atoms to form a 4-7 membered saturated, partially unsaturated, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur.

[0050] In some embodiments, R is hydrogen. In some embodiments, R is an optionally substituted group selected from Ci- 6 aliphatic. In some embodiments, R is a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring. In some embodiments, R is an optionally substituted phenyl. In some embodiments, R is an optionally substituted 4-7 membered saturated or partially unsaturated heterocyclic having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, two R groups on the same atom or different atoms in close proximity are optionally taken together with their intervening atoms to form a 4-7 membered saturated, partially unsaturated, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur.

[0051] In some embodiments, each Ris selected from those depicted in Table 1, below.

[0052] As defined generally above, n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.

[0053] In some embodiments, n is 0. In some embodiments, n is 1. In some embodiments, n is 2. In some embodiments, n is 3. In some embodiments, n is 4. In some embodiments, n is 5. In some embodiments, n is 6. In some embodiments, n is 7. In some embodiments, n is 8. In some embodiments, n is 9. In some embodiments, n is 10.

[0054] In some embodiments, nis selected from those depicted in Table 1, below.

[0055] As defined generally above, R 1 is

[0056] In some embodiments, [0057] In some embodiments, R 1 is selected from those depicted in Table 1, below.

[0058] As defined generally above, L is a covalent bond or an optionally substituted Ci-io bivalent straight or branched saturated or unsaturated hydrocarbon chain wherein 1-2 methylene units of the chain are independently and optionally replaced with -0-, -S-, -NR-, - C(O)-, or -SO2-. [0059] In some embodiments, L is a covalent bond. In some embodiments, L is an optionally substituted Ci-io bivalent straight or branched saturated or unsaturated hydrocarbon chain wherein 1-2 methylene units of the chain are independently and optionally replaced with -0-, -S-, -NR-, -C(O)-, or -SO2-.

[0060] In some embodiments, L is -CH2-. In some embodiments, L is -CH2CH2-. In some embodiments, L is -CH=CH-.

[0061] In some embodiments, L is selected from those depicted in Table 1, below.

[0062] As defined generally above, Ring A is phenyl, a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, an 8-10 membered bicyclic aromatic carbocyclic ring, or an 8-10 membered bicyclic heteroaromatic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur.

[0063] In some embodiments, Ring A is phenyl. In some embodiments, Ring A is a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, Ring A is an 8-10 membered bicyclic aromatic carbocyclic ring. In some embodiments, Ring A is an 8-10 membered bicyclic heteroaromatic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur.

[0064] In some embodiments, Ring A is 2-pyridyl. In some embodiments, Ring A is 3- pyridyl. In some embodiments, Ring A is 4-pyridyl. In some embodiments, Ring A is imidazolyl. In some embodiments, Ring A is N-imidazolyl. In some embodiments, Ring A is furanyl. In some embodiments, Ring A is 1,3,4-thiadizolyl. In some embodiments, Ring A is 1,2,4-thiadizolyl. In some embodiments, Ring A is quinolinyl.

[0065] In some embodiments, Ring A is selected from those depicted in Table 1, below.

[0066] As defined generally above, each R 2 is independently R A , halogen, -CN, -NO2, -OR, - SR, -NR 2 , -SO2R, -SO2NR2, -SOR, -CFR 2 , -CF 2 R, -CF J -CR2OR, -CR2NR2, -COR, -CO2R, - COMO, -CSNR.2, -CONROR, -OCOR, -OCONR2, -NRCO2R, -NRCOR, -NRCONR2, - NRSO2R, -OP(0)R 2 , -0P0(0R) 2 , -OPO(OR)NR 2 , -0P0(NR 2 )2, -S1R3, or -SF 5 .

[0067] In some embodiments, R 2 is R A . In some embodiments, R 2 is halogen. In some embodiments, R 2 is -CN. In some embodiments, R 2 is -NO2. In some embodiments, R 2 is - OR. In some embodiments, R 2 is -SR. In some embodiments, R 2 is -MO. In some embodiments, R 2 is -SO2R. In some embodiments, R 2 is -SO2MO. In some embodiments, R 2 is -SOR. In some embodiments, R 2 is -CFR2. In some embodiments, R 2 is -CF2R. In some embodiments, R 2 is -CF3. In some embodiments, R 2 is -CR2OR. In some embodiments, R 2 is -CR2NR2. In some embodiments, R 2 is -COR. In some embodiments, R 2 is -CO2R. In some embodiments, R 2 is -CONR2. In some embodiments, R 2 is -CSNR2. In some embodiments, R 2 is -CONROR. In some embodiments, R 2 is -OCOR. In some embodiments, R 2 is -OCONR2. In some embodiments, R 2 is -NRCO2R. In some embodiments, R 2 is -NRCOR. In some embodiments, R 2 is -NRCONR2. In some embodiments, R 2 is -NRSO2R. In some embodiments, R 2 is -OP(0)R 2 . In some embodiments, R 2 is -OPO(OR)2. In some embodiments, R 2 is -OPO(OR)NR2. In some embodiments, R 2 is -OPO(NR2)2. In some embodiments, R 2 is -SiR3. In some embodiments, R 2 is -SFs.

[0068] In some embodiments, R 2 is methyl. In some embodiments, R 2 is chloro. In some In some embodiments, In some embodiments, R 2 is -OH.

[0069] In some embodiments, R 2 is selected from those depicted in Table 1, below.

[0070] As defined generally above, each R A is independently an optionally substituted group selected from Ci- 6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur.

[0071] In some embodiments, R A is a Ci- 6 aliphatic. In some embodiments, R A is a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring. In some embodiments, R A is phenyl. In some embodiments, R A is a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R A is a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur.

[0072] In some embodiments, R A is selected from those depicted in Table 1, below.

[0073] As defined generally above, m is 0, 1, 2, 3, or 4.

[0074] In some embodiments, m is 0. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3. In some embodiments, m is 4.

[0075] In some embodiments, m is selected from those depicted in Table 1, below. [0076] In some embodiments, the present invention provides a compound of formula I, wherein X is -NH-NH- as shown, to provide a compound of formula I-a: or a pharmaceutically acceptable salt thereof, wherein R 1 is as defined above and described in embodiments herein.

[0077] In some embodiments, the present invention provides a compound of formula I, wherein X is -NH-NH-CO- as shown, to provide a compound of formula I-b: or a pharmaceutically acceptable salt thereof, wherein R 1 is as defined above and described in embodiments herein.

[0078] In some embodiments, the present invention provides a compound of formula I, wherein X is -NH-NH-CONH- as shown, to provide a compound of formula I-c: I-c or a pharmaceutically acceptable salt thereof, wherein R 1 is as defined above and described in embodiments herein.

[0079] In some embodiments, the present invention provides a compound of formula I, wherein X is -NH-CH2-CONH- as shown, to provide a compound of formula I-d: or a pharmaceutically acceptable salt thereof, wherein R 1 is as defined above and described in embodiments herein. [0080] Exemplary compounds of the invention are set forth in Table 1, below.

Table 1. Exemplary Compounds

[0081] In some embodiments, the present invention provides a compound as depicted in Table 1, above, or a pharmaceutically acceptable salt thereof.

[0082] The compounds of this invention can be prepared or isolated in general by synthetic and/or semi-synthetic methods known to those skilled in the art for analogous compounds and by methods described in detail in the Examples, herein. In some embodiments, the present invention provides an intermediate compound described in the Examples, or a salt thereof.

4. Pharmaceutical Compositions of the Present Compounds [0083] According to another embodiment, the invention provides a composition comprising a provided compound or a pharmaceutically acceptable derivative thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle. The compounds and compositions thereof can be administered using any amount and any route of administration effective for treating or lessening the severity of a disease (e.g., cancer). The exact amount required varies from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease or condition, the particular agent, its mode of administration, and the like. Compounds of the invention are preferably formulated in dosage unit form for ease of administration and uniformity of dosage. The expression “dosage unit form” as used herein refers to a physically discrete unit of agent appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention is decided by the attending physician within the scope of sound medical judgment. The specific effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed, and like factors well known in the medical arts. The terms “patient” or “subject,” as used herein, means an animal, preferably a mammal, and most preferably a human.

[0084] Pharmaceutically acceptable compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), buccally, as an oral or nasal spray, or the like, depending on the severity of the disease or disorder being treated. In certain embodiments, the compounds of the invention can be administered orally or parenterally at dosage levels of about 0.01 mg/kg to about 50 mg/kg and preferably from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect.

[0085] Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

[0086] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer’s solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.

[0087] Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.

[0088] In order to prolong the effect of a compound of the present invention, it is often desirable to slow the absorption of the compound from subcutaneous or intramuscular injection. This may be accomplished using a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the compound then depends upon its rate of dissolution that, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered compound form is accomplished by dissolving or suspending the compound in an oil vehicle. Injectable depot forms are made by forming microencapsulate matrices of the compound in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of compound to polymer and the nature of the particular polymer employed, the rate of compound release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the compound in liposomes or microemulsions that are compatible with body tissues.

[0089] Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.

[0090] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.

[0091] Solid compositions of a similar type can also be employed as fillers in soft and hard- filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They can optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions of a similar type can also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.

[0092] The active compounds can also be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g ., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.

[0093] Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, and eye drops are also contemplated as being within the scope of this invention. Additionally, the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.

5. Uses of the Present Compounds and Pharmaceutical Compositions in Therapy [0094] A therapeutically effective amount of the agent will depend upon a number of factors including, for example, the age and weight of the subject, the precise condition requiring treatment and its severity, the nature of the formulation, and the route of administration, and will ultimately be at the discretion of the attendant physician or veterinarian. In particular, the subject to be treated is a mammal, particularly a human.

[0095] The agent may be administered in a daily dose. This amount may be given in a single dose per day or more usually in a number (e.g., two, three, four, five, or six) of sub-doses per day such that the total daily dose is the same.

[0096] Suitably, the amount of the compound of the present invention administered may be an amount selected from 0.01 mg to 10 g per day (calculated as the free or unsalted compound).

[0097] In some embodiments, a provided compound or a pharmaceutically acceptable salt thereof may be employed alone or in combination with other therapeutic agents. A provided compound or a pharmaceutically acceptable salt thereof and the other pharmaceutically active agent(s) may be administered together or separately and, when administered separately, administration may occur simultaneously or sequentially, in any order, by any convenient route in separate or combined pharmaceutical compositions. The amounts of a provided compound or a pharmaceutically acceptable salt thereof and the other pharmaceutically active agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect. A provided compound or a pharmaceutically acceptable salt thereof and further therapeutic agent(s) may be employed in combination by administration simultaneously in a unitary pharmaceutical composition including both compounds. Alternatively, the combination may be administered separately in separate pharmaceutical compositions, each including one of the compounds in a sequential manner wherein, for example, the compound of the present invention is administered first and the other second and vice versa. Such sequential administration may be close in time (e.g., simultaneously) or remote in time. Furthermore, it does not matter if the compounds are administered in the same dosage form, e.g., one compound may be administered topically and the other compound may be administered orally. Suitably, both compounds are administered orally.

[0098] The combinations may be presented as a combination kit. By the term “combination kit” “or kit of parts” as used herein is meant the pharmaceutical composition or compositions that are used to administer the combination according to the present invention. When both compounds are administered simultaneously, the combination kit can contain both compounds in a single pharmaceutical composition, such as a tablet, or in separate pharmaceutical compositions. When the compounds are not administered simultaneously, the combination kit will contain each compound in separate pharmaceutical compositions either in a single package or in separate pharmaceutical compositions in separate packages. The combination kit can also be provided by instruction, such as dosage and administration instructions. Such dosage and administration instructions can be of the kind that are provided to a doctor, for example by a drug product label, or they can be of the kind that are provided by a doctor, such as instructions to a patient.

[0099] When the combination is administered separately in a sequential manner wherein one is administered first and the other second or vice versa, such sequential administration may be close in time or remote in time. For example, administration of the other agent several minutes to several dozen minutes after the administration of the first agent, and administration of the other agent several hours to several days after the administration of the first agent are included, wherein the lapse of time is not limited. For example, one agent may be administered once a day, and the other agent may be administered 2 or 3 times a day, or one agent may be administered once a week, and the other agent may be administered once a day and the like. It will be clear to a person skilled in the art that, where appropriate, the other therapeutic ingredients(s) may be used in the form of salts, for example as alkali metal or amine salts or as acid addition salts, or prodrugs, or as esters, for example lower alkyl esters, or as solvates, for example hydrates, to optimize the activity and/or stability and/or physical characteristics, such as solubility, of the therapeutic ingredient. It will be clear also that, where appropriate, the therapeutic ingredients may be used in optically pure form. [0100] When combined in the same composition it will be appreciated that the two compounds must be stable and compatible with each other and the other components of the composition and may be formulated for administration. When formulated separately they may be provided in any convenient composition, conveniently, in such a manner as known for such compounds in the art.

[0101] When a provided compound or a pharmaceutically acceptable salt thereof is used in combination with a second therapeutic agent active against the same disease, condition, or disorder, the dose of each compound may differ from that when the compound is used alone. Appropriate doses will be readily appreciated by those skilled in the art.

[0102] A “pharmaceutically acceptable derivative” means any non-toxic salt, ester, salt of an ester or other derivative of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof. As used herein, the term "inhibitorily active metabolite or residue thereof means that a metabolite or residue thereof of the provided compounds is also active in the present methods and uses.

[0103] As used herein, the terms “treatment,” “treat,” and “treating” refer to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed. In other embodiments, treatment may be administered in the absence of symptoms. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example to prevent or delay their recurrence.

Cancer

[0104] The cancer or proliferative disorder or tumor to be treated using the compounds and methods and uses described herein include, but are not limited to, a hematological cancer, a lymphoma, a myeloma, a leukemia, a neurological cancer, skin cancer, breast cancer, a prostate cancer, a colorectal cancer, lung cancer, head and neck cancer, a gastrointestinal cancer, a liver cancer, a pancreatic cancer, a genitourinary cancer, a bone cancer, renal cancer, and a vascular cancer.

[0105] In one embodiment, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of diseases and conditions in which inhibiting the phosphorylation of beta catenin is beneficial. In some embodiments, the present invention provides a method of inhibiting the phosphorylation of beta catenin in a patient or biological sample comprising administering to the patient or contacting the biological sample with a provided compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof. In some embodiments, the method of inhibiting the phosphorylation of beta catenin in the patient is beneficial for treating cancer (e.g., breast cancer).

[0106] In one embodiment, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of diseases and conditions in which inhibiting a regulator of angiogenesis, invasion, or metastasis is beneficial. In some embodiments, the regulator of angiogenesis, invasion, or metastasis is selected from vascular endothelial growth factor (VEGF), c-myc, and MMP-9. In some embodiments, the present invention provides a method of inhibiting a regulator of angiogenesis, invasion, or metastasis in a patient or biological sample comprising administering to the patient or contacting the biological sample with a provided compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof. In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are used to inhibit VEGF to prevent differentiating endothelial cells from forming tube-like structures in a supporting matrix. In some embodiments, the method of inhibiting a regulator of angiogenesis, invasion, or metastasis in the patient is beneficial for treating cancer (e.g., breast cancer).

[0107] In one embodiment, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of diseases and conditions in which inhibiting the expression of anti-apoptotic proteins, such as one or more of Bcl-xL, Bcl-2, Mcl-1, survivin, caspase 3, and poly (ADP-ribose) polymerase (PARP), is beneficial. In some embodiment, the present invention provides a method of inhibiting the expression of anti-apoptotic proteins, such as one or more of Bcl-xL, Bcl-2, Mcl-1, survivin, caspase 3, and poly (ADP- ribose) polymerase (PARP), in a patient or biological sample comprising administering to the patient or contacting the biological sample with a provided compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof. In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are potent cytotoxic agents and are effective at killing cancer cell lines, such as breast cancer cell lines (e.g., MDA-MB- 231, MDA-MB-468, MDA-MB-431, Hs578T, ZR75, MCF-7, etc.). In some embodiments, the method of inhibiting the expression of anti-apoptotic proteins, such as one or more of Bel- xL, Bcl-2, Mcl-1, survivin, caspase 3, and poly (ADP-ribose) polymerase (PARP), in the patient is beneficial for treating cancer (e.g., breast cancer).

[0108] In some embodiments of the methods and uses described herein, a cancer is treated by inhibiting or reducing or decreasing or arresting further growth or spread of the cancer or tumor. In some embodiments of the methods and uses described herein, a cancer is treated by inhibiting or reducing the size (e.g., volume or mass) of the cancer or tumor by at least 5%, at least 10%, at least 25%, at least 50%, at least 75%, at least 90% or at least 99% relative to the size of the cancer or tumor prior to treatment. In some embodiments of the methods and uses described herein, a cancer is treated by reducing the quantity of the cancers or tumors in the patient by at least 5%, at least 10%, at least 25%, at least 50%, at least 75%, at least 90% or at least 99% relative to the quantity of the cancers or tumors prior to treatment.

[0109] In some embodiments of the methods and uses described herein, the cancer is lung cancer, thyroid cancer, ovarian cancer, colorectal cancer, prostate cancer, cancer of the pancreas, cancer of the esophagus, liver cancer, breast cancer, skin cancer, or mesothelioma. In some embodiments, the cancer is mesothelioma, such as malignant mesothelioma. In some embodiments, cancer includes, without limitation, leukemias (e.g, acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute monocytic leukemia, acute erythroleukemia, chronic leukemia, chronic myelocytic leukemia, chronic lymphocytic leukemia), polycythemia vera, lymphoma (e.g, Hodgkin’s disease or non-Hodgkin’s disease), Waldenstrom's macroglobulinemia, multiple myeloma, heavy chain disease, and solid tumors such as sarcomas and carcinomas (e.g, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing’s tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, uterine cancer, testicular cancer, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, glioblastoma multiforme (GBM, also known as glioblastoma), medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, schwannoma, neurofibrosarcoma, meningioma, melanoma, neuroblastoma, and retinoblastoma).

[0110] In some embodiments, the cancer is breast cancer. In some embodiments, the breast cancer is selected from ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC), invasive lobular cancer (ILC), inflammatory breast cancer (IBC), triple negative breast cancer (TNBC), and metastatic breast cancer. In some embodiments, the cancer is DCIS. In some embodiments, the cancer is IDS. In some embodiments, the cancer is ILC. In some embodiments, the cancer is IBC. In some embodiments, the cancer is TNBC. In some embodiments, the cancer is metastatic breast cancer.

[0111] In some embodiments, the cancer is glioma, astrocytoma, glioblastoma multiforme (GBM, also known as glioblastoma), medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, schwannoma, neurofibrosarcoma, meningioma, melanoma, neuroblastoma, or retinoblastoma.

[0112] In some embodiments, the cancer is acoustic neuroma, astrocytoma ( e.g ., Grade I - Pilocytic Astrocytoma, Grade II - Low-grade Astrocytoma, Grade III - Anaplastic Astrocytoma, or Grade IV - Glioblastoma (GBM)), chordoma, CNS lymphoma, craniopharyngioma, brain stem glioma, ependymoma, mixed glioma, optic nerve glioma, subependymoma, medulloblastoma, meningioma, metastatic brain tumor, oligodendroglioma, pituitary tumors, primitive neuroectodermal (PNET) tumor, or schwannoma. In some embodiments, the cancer is a type found more commonly in children than adults, such as brain stem glioma, craniopharyngioma, ependymoma, juvenile pilocytic astrocytoma (JPA), medulloblastoma, optic nerve glioma, pineal tumor, primitive neuroectodermal tumors (PNET), or rhabdoid tumor. In some embodiments, the patient is an adult human. In some embodiments, the patient is a child or pediatric patient.

[0113] Cancer includes, in another embodiment, without limitation, mesothelioma, hepatobilliary (hepatic and billiary duct), bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular melanoma, ovarian cancer, colon cancer, rectal cancer, cancer of the anal region, stomach cancer, gastrointestinal (gastric, colorectal, and duodenal), uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin’s Disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, prostate cancer, testicular cancer, chronic or acute leukemia, chronic myeloid leukemia, lymphocytic lymphomas, cancer of the bladder, cancer of the kidney or ureter, renal cell carcinoma, carcinoma of the renal pelvis, non-Hodgkins’ s lymphoma, spinal axis tumors, brain stem glioma, pituitary adenoma, adrenocortical cancer, gall bladder cancer, multiple myeloma, cholangiocarcinoma, fibrosarcoma, neuroblastoma, retinoblastoma, or a combination of one or more of the foregoing cancers.

[0114] In some embodiments, the cancer is selected from hepatocellular carcinoma, ovarian cancer, ovarian epithelial cancer, or fallopian tube cancer; papillary serous cystadenocarcinoma or uterine papillary serous carcinoma (UPSC); prostate cancer; testicular cancer; gallbladder cancer; hepatocholangiocarcinoma; soft tissue and bone synovial sarcoma; rhabdomyosarcoma; osteosarcoma; chondrosarcoma; Ewing sarcoma; anaplastic thyroid cancer; adrenocortical adenoma; pancreatic cancer; pancreatic ductal carcinoma or pancreatic adenocarcinoma; gastrointestinal/stomach (GIST) cancer; lymphoma; squamous cell carcinoma of the head and neck (SCCHN); salivary gland cancer; glioma, or brain cancer; neurofibromatosis- 1 associated malignant peripheral nerve sheath tumors (MPNST); Waldenstrom’s macroglobulinemia; or medulloblastoma.

[0115] In some embodiments, the cancer is selected from hepatocellular carcinoma (HCC), hepatoblastoma, colon cancer, rectal cancer, ovarian cancer, ovarian epithelial cancer, fallopian tube cancer, papillary serous cystadenocarcinoma, uterine papillary serous carcinoma (UPSC), hepatocholangiocarcinoma, soft tissue and bone synovial sarcoma, rhabdomyosarcoma, osteosarcoma, anaplastic thyroid cancer, adrenocortical adenoma, pancreatic cancer, pancreatic ductal carcinoma, pancreatic adenocarcinoma, glioma, neurofibromatosis- 1 associated malignant peripheral nerve sheath tumors (MPNST), Waldenstrom’s macroglobulinemia, or medulloblastoma.

[0116] In some embodiments, a cancer is a solid tumor, such as a sarcoma, carcinoma, or lymphoma. Solid tumors generally comprise an abnormal mass of tissue that typically does not include cysts or liquid areas. In some embodiments, the cancer is selected from renal cell carcinoma, or kidney cancer; hepatocellular carcinoma (HCC) or hepatoblastoma, or liver cancer; melanoma; breast cancer; colorectal carcinoma, or colorectal cancer; colon cancer; rectal cancer; anal cancer; lung cancer, such as non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC); ovarian cancer, ovarian epithelial cancer, ovarian carcinoma, or fallopian tube cancer; papillary serous cystadenocarcinoma or uterine papillary serous carcinoma (UPSC); prostate cancer; testicular cancer; gallbladder cancer; hepatocholangiocarcinoma; soft tissue and bone synovial sarcoma; rhabdomyosarcoma; osteosarcoma; chondrosarcoma; Ewing sarcoma; anaplastic thyroid cancer; adrenocortical carcinoma; pancreatic cancer; pancreatic ductal carcinoma or pancreatic adenocarcinoma; gastrointestinal/stomach (GIST) cancer; lymphoma; squamous cell carcinoma of the head and neck (SCCHN); salivary gland cancer; glioma, or brain cancer; neurofibromatosis- 1 associated malignant peripheral nerve sheath tumors (MPNST); Waldenstrom’s macroglobulinemia; or medulloblastoma.

[0117] In some embodiments, the cancer is selected from renal cell carcinoma, hepatocellular carcinoma (HCC), hepatoblastoma, colorectal carcinoma, colorectal cancer, colon cancer, rectal cancer, anal cancer, ovarian cancer, ovarian epithelial cancer, ovarian carcinoma, fallopian tube cancer, papillary serous cystadenocarcinoma, uterine papillary serous carcinoma (UPSC), hepatocholangiocarcinoma, soft tissue and bone synovial sarcoma, rhabdomyosarcoma, osteosarcoma, chondrosarcoma, anaplastic thyroid cancer, adrenocortical carcinoma, pancreatic cancer, pancreatic ductal carcinoma, pancreatic adenocarcinoma, glioma, brain cancer, neurofibromatosis- 1 associated malignant peripheral nerve sheath tumors (MPNST), Waldenstrom’s macroglobulinemia, or medulloblastoma. [0118] In some embodiments, the cancer is hepatocellular carcinoma (HCC). In some embodiments, the cancer is hepatoblastoma. In some embodiments, the cancer is colon cancer. In some embodiments, the cancer is rectal cancer. In some embodiments, the cancer is ovarian cancer, or ovarian carcinoma. In some embodiments, the cancer is ovarian epithelial cancer. In some embodiments, the cancer is fallopian tube cancer. In some embodiments, the cancer is papillary serous cystadenocarcinoma. In some embodiments, the cancer is uterine papillary serous carcinoma (UPSC). In some embodiments, the cancer is hepatocholangiocarcinoma. In some embodiments, the cancer is soft tissue and bone synovial sarcoma. In some embodiments, the cancer is rhabdomyosarcoma. In some embodiments, the cancer is osteosarcoma. In some embodiments, the cancer is anaplastic thyroid cancer. In some embodiments, the cancer is adrenocortical carcinoma. In some embodiments, the cancer is pancreatic cancer, or pancreatic ductal carcinoma. In some embodiments, the cancer is pancreatic adenocarcinoma. In some embodiments, the cancer is glioma. In some embodiments, the cancer is malignant peripheral nerve sheath tumors (MPNST). In some embodiments, the cancer is neurofibromatosis- 1 associated MPNST. In some embodiments, the cancer is Waldenstrom’s macroglobulinemia. In some embodiments, the cancer is medulloblastoma. [0119] In some embodiments, a cancer is a viral-associated cancer, including human immunodeficiency virus (HIV) associated solid tumors, human papilloma virus (HPV)-16 positive incurable solid tumors, and adult T-cell leukemia, which is caused by human T-cell leukemia virus type I (HTLV-I) and is a highly aggressive form of CD4+ T-cell leukemia characterized by clonal integration of HTLV-I in leukemic cells (See https://clinicaltrials.gov/ct2/show/study/ NCT02631746); as well as virus-associated tumors in gastric cancer, nasopharyngeal carcinoma, cervical cancer, vaginal cancer, vulvar cancer, squamous cell carcinoma of the head and neck, and Merkel cell carcinoma. (See https://clinicaltrials.gov/ct2/show/study/NCT02488759; see also https://clinicaltrials.gov/ct2/show/study/NCT0240886; https://clinicaltrials.gov/ct2/show/ NCT02426892).

[0120] In some embodiments, the present invention provides a method of treating breast cancer in a patient in need thereof, comprising administering a compound of the present invention, or a pharmaceutically acceptable salt thereof.

[0121] In some embodiments, the present invention provides a method of treating triple negative breast cancer (TNBC) in a patient in need thereof, comprising administering a compound of the present invention, or a pharmaceutically acceptable salt thereof.

Other Uses

[0122] In one embodiment, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of disorders that involve a microbiological infection or disorders that respond to treatment with an antibiotic agent. In some embodiments, the microbiological infection or disorders comprises an infection selected from a bacterial infection, a fungal infection, a yeast infection, a viral infection, and a parasitic infection.

[0123] In one embodiment, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of Gram-positive bacterial infections, including, for example, methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, and Mycobacterium tuberculosis.

[0124] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of a variety of dermatological disorders, including dermatological pain, dermatological inflammation, acne, acne vulgaris, inflammatory acne, non-inflammatory acne, acne fulminans, nodular papulopustular acne, acne conglobata, dermatitis, bacterial skin infections, fungal skin infections, viral skin infections, parasitic skin infections, skin neoplasia, skin neoplasms, pruritis, cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, rashes, erythrasma, impetigo, eethyma, yeast skin infections, warts, molluscum contagiosum, trauma or injury to the skin, post-operative or post-surgical skin conditions, scabies, pediculosis, creeping eruption, eczemas, psoriasis, pityriasis rosea, lichen planus, pityriasis rubra pilaris, edematous, erythema multiforme, erythema nodosum, grannuloma annulare, epidermal necrolysis, sunburn, photosensitivity, pemphigus, bullous pemphigoid, dermatitis herpetiformis, keratosis pilaris, callouses, corns, ichthyosis, skin ulcers, ischemic necrosis, miliaria, hyperhidrosis, moles, Kaposi's sarcoma, melanoma, malignant melanoma, basal cell carcinoma, squamous cell carcinoma, poison ivy, poison oak, contact dermatitis, atopic dermatitis, rosacea, purpura, moniliasis, candidiasis, baldness, alopecia, Behcet's syndrome, cholesteatoma, Dercum disease, ectodermal dysplasia, gustatory sweating, nail patella syndrome, lupus, hives, hair loss, Hailey-Hailey disease, chemical or thermal skin burns, scleroderma, aging skin, wrinkles, sun spots, necrotizing fasciitis, necrotizing myositis, gangrene, scarring, and vitiligo.

[0125] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of a dermatitis including contact dermatitis, atopic dermatitis, seborrheic dermatitis, nummular dermatitis, chronic dermatitis of the hands and feet, generalized exfoliative dermatitis, stasis dermatitis, lichen simplex chronicus, and diaper rash.

[0126] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of bacterial infections including cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, staphylococcal scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, and erythrasma.

[0127] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of fungal Infections including dermatophyte infections, yeast Infections; parasitic Infections including scabies, pediculosis, and creeping eruption. [0128] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of viral Infections, including, but not limited to herpes genitalis and herpes labialis.

[0129] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of disorders of hair follicles and sebaceous glands including acne, rosacea, perioral dermatitis, hypertrichosis (hirsutism), alopecia, including male pattern baldness, alopecia greata, alopecia universalis and alopecia totalis; pseudofolliculitis barbae, and keratinous cyst.

[0130] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of scaling papular diseases including psoriasis, pityriasis rosea, lichen planus, and pityriasis rubra pilaris.

[0131] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of benign tumors including moles, dysplastic nevi, skin tags, lipomas, angiomas, pyogenic granuloma, seborrheic keratoses, dermatofibroma, keratoacanthoma, and keloid.

[0132] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of malignant tumors including basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease of the nipples, and Kaposi's sarcoma.

[0133] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of reactions to sunlight including sunburn, chronic effects of sunlight, and photosensitivity.

[0134] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of bullous diseases including pemphigus, bullous pemphigoid, dermatitis herpetiformis, and linear immunoglobulin A disease.

[0135] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of pigmentation disorders including hypopigmentation such as vitiligo, albinism and postinflammatory hypopigmentation and hyperpigmentation such as melasma (chloasma), drug-induced hyperpigmentation, and postinflammatory hyperpigmentation; disorders of comification including ichthyosis, keratosis pilaris, calluses and corns, and actinic keratosis.

[0136] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of pressure sores.

[0137] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of disorders of sweating.

[0138] In some embodiments, the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of inflammatory reactions including drug eruptions, toxic epidermal necrolysis; erythema multiforme, erythema nodosum, and granuloma annulare. Co-Administration with One or More Other Therapeutic Agent(s)

[0139] Depending upon the particular condition, or disease, to be treated, additional therapeutic agents that are normally administered to treat that condition, can also be present in the compositions of this invention. As used herein, additional therapeutic agents that are normally administered to treat a particular disease, or condition, are known as “appropriate for the disease, or condition, being treated.”

[0140] In some embodiments, the present invention provides a method of treating a disclosed disease or condition comprising administering to a patient in need thereof an effective amount of a compound disclosed herein or a pharmaceutically acceptable salt thereof and co administering simultaneously or sequentially an effective amount of one or more additional therapeutic agents, such as those described herein. In some embodiments, the method includes co-administering one additional therapeutic agent. In some embodiments, the method includes co-administering two additional therapeutic agents. In some embodiments, the combination of the disclosed compound and the additional therapeutic agent or agents acts synergistically.

[0141] A compound of the current invention can also be used in combination with known therapeutic processes, for example, the administration of hormones or radiation. In certain embodiments, a provided compound is used as a radiosensitizer, especially for the treatment of tumors which exhibit poor sensitivity to radiotherapy.

[0142] A compound of the current invention can be administered alone or in combination with one or more other therapeutic compounds, possible combination therapy taking the form of fixed combinations or the administration of a compound of the invention and one or more other therapeutic compounds being staggered or given independently of one another, or the combined administration of fixed combinations and one or more other therapeutic compounds. A compound of the current invention can besides, or in addition, be administered especially for tumor therapy in combination with chemotherapy, radiotherapy, immunotherapy, phototherapy, surgical intervention, or a combination of these. Long-term therapy is equally possible, as is adjuvant therapy in the context of other treatment strategies, as described above. Other possible treatments are therapy to maintain the patient's status after tumor regression, or even chemopreventive therapy, for example in patients at risk.

[0143] One or more other therapeutic agent(s) can be administered separately from a compound or composition of the invention, as part of a multiple dosage regimen. Alternatively, one or more other therapeutic agent(s) may be part of a single dosage form, mixed together with a compound of this invention in a single composition. If administered as a multiple dosage regime, one or more other therapeutic agent(s) and a compound or composition of the invention can be administered simultaneously, sequentially or within a period of time from one another, for example within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 20, 21, 22, 23, or 24 hours from one another. In some embodiments, one or more other therapeutic agent(s) and a compound or composition of the invention are administered as a multiple dosage regimen within greater than 24 hours apart.

[0144] As used herein, the term “combination,” “combined,” and related terms refers to the simultaneous or sequential administration of therapeutic agents in accordance with this invention. For example, a compound of the present invention can be administered with one or more other therapeutic agent(s) simultaneously or sequentially in separate unit dosage forms or together in a single unit dosage form. Accordingly, the present invention provides a single unit dosage form comprising a compound of the current invention, one or more other therapeutic agent(s), and a pharmaceutically acceptable carrier, adjuvant, or vehicle.

[0145] The amount of a compound of the invention and one or more other therapeutic agent(s) (in those compositions which comprise an additional therapeutic agent as described above) that can be combined with the carrier materials to produce a single dosage form varies depending upon the host treated and the particular mode of administration. Preferably, a composition of the invention should be formulated so that a dosage of between 0.01 - 100 mg/kg body weight/day of a compound of the invention can be administered.

[0146] In those compositions which comprise one or more other therapeutic agent(s), the one or more other therapeutic agent(s) and a compound of the invention can act synergistically. Therefore, the amount of the one or more other therapeutic agent(s) in such compositions may be less than that required in a monotherapy utilizing only that therapeutic agent. In such compositions a dosage of between 0.01 - 1,000 pg/kg body weight/day of the one or more other therapeutic agent(s) can be administered.

[0147] The amount of one or more other therapeutic agent(s) present in the compositions of this invention may be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent. Preferably the amount of one or more other therapeutic agent(s) in the presently disclosed compositions ranges from about 50% to 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent. In some embodiments, one or more other therapeutic agent(s) is administered at a dosage of about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95% of the amount normally administered for that agent. As used herein, the phrase “normally administered” means the amount an FDA approved therapeutic agent is provided for dosing per the FDA label insert.

[0148] The compounds of this invention, or pharmaceutical compositions thereof, can also be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents and catheters. Vascular stents, for example, have been used to overcome restenosis (re-narrowing of the vessel wall after injury). However, patients using stents or other implantable devices risk clot formation or platelet activation. These unwanted effects may be prevented or mitigated by pre-coating the device with a pharmaceutically acceptable composition comprising a kinase inhibitor. Implantable devices coated with a compound of this invention are another embodiment of the present invention.

Exemplary Other Therapeutic Agents

[0149] In some embodiments, one or more other therapeutic agent is a Poly ADP ribose polymerase (PARP) inhibitor. In some embodiments, a PARP inhibitor is selected from olaparib (LYNPARZA®, AstraZeneca); rucaparib (RUBRACA®, Clovis Oncology); niraparib (ZEJULA®, Tesaro); talazoparib (MDV3800/BMN 673/LT00673, Medivation/Pfizer/Biomarin); veliparib (ABT-888, Abb Vie); and BGB-290 (BeiGene, Inc.). [0150] In some embodiments, one or more other therapeutic agent is a histone deacetylase (HDAC) inhibitor. In some embodiments, an HDAC inhibitor is selected from vorinostat (ZOLINZA®, Merck); romidepsin (ISTODAX®, Celgene); panobinostat (FARYDAK®, Novartis); belinostat (BELEODAQ®, Spectrum Pharmaceuticals); entinostat (SNDX-275, Syndax Pharmaceuticals) (NCT00866333); and chidamide (EPIDAZA®, HBI-8000, Chipscreen Biosciences, China).

[0151] In some embodiments, one or more other therapeutic agent is a CDK inhibitor, such as a CDK4/CDK6 inhibitor. In some embodiments, a CDK 4/6 inhibitor is selected from palbociclib (IBRANCE®, Pfizer); ribociclib (KISQALI®, Novartis); abemaciclib (Ly2835219, Eli Lilly); and trilaciclib (G1T28, G1 Therapeutics).

[0152] In some embodiments, one or more other therapeutic agent is a phosphatidylinositol 3 kinase (PI3K) inhibitor. In some embodiments, a PI3K inhibitor is selected from idelalisib (ZYDELIG®, Gilead), alpelisib (BYL719, Novartis), taselisib (GDC-0032, Genentech/Roche); pictilisib (GDC-0941, Genentech/Roche); copanlisib (BAY806946, Bayer); duvelisib (formerly IPI-145, Infinity Pharmaceuticals); PQR309 (Piqur Therapeutics, Switzerland); and TGR1202 (formerly RP5230, TG Therapeutics).

[0153] In some embodiments, one or more other therapeutic agent is a platinum-based therapeutic, also referred to as platins. Platins cause cross-linking of DNA, such that they inhibit DNA repair and/or DNA synthesis, mostly in rapidly reproducing cells, such as cancer cells. In some embodiments, a platinum-based therapeutic is selected from cisplatin (PLATINOL®, Bristol-Myers Squibb); carboplatin (PARAPLATIN®, Bristol-Myers Squibb; also, Teva; Pfizer); oxaliplatin (ELOXITIN® Sanofi-Aventis); nedaplatin (AQUPLA®, Shionogi), picoplatin (Poniard Pharmaceuticals); and satraplatin (JM-216, Agennix).

[0154] In some embodiments, one or more other therapeutic agent is a taxane compound, which causes disruption of microtubules, which are essential for cell division. In some embodiments, a taxane compound is selected from paclitaxel (TAXOL®, Bristol-Myers Squibb), docetaxel (TAXOTERE®, Sanofi-Aventis; DOCEFREZ®, Sun Pharmaceutical), albumin-bound paclitaxel (ABRAXANE®; Abraxis/Celgene), cabazitaxel (JEVTANA®, Sanofi-Aventis), and SID530 (SK Chemicals, Co.) (NCT00931008).

[0155] In some embodiments, one or more other therapeutic agent is a nucleoside inhibitor, or a therapeutic agent that interferes with normal DNA synthesis, protein synthesis, cell replication, or will otherwise inhibit rapidly proliferating cells.

[0156] In some embodiments, a nucleoside inhibitor is selected from trabectedin (guanidine alkylating agent, YONDELIS®, Janssen Oncology), mechlorethamine (alkylating agent, VALCHLOR®, Aktelion Pharmaceuticals); vincristine (ONCOVIN®, Eli Lilly; VINCASAR®, Teva Pharmaceuticals; MARQIBO®, Talon Therapeutics); temozolomide (prodrug to alkylating agent 5-(3-methyltriazen-l-yl)-imidazole-4-carboxamide (MTIC) TEMODAR®, Merck); cytarabine injection (ara-C, antimetabolic cytidine analog, Pfizer); lomustine (alkylating agent, CEENU®, Bristol-Myers Squibb; GLEOSTINE®, NextSource Biotechnology); azacitidine (pyrimidine nucleoside analog of cytidine, VIDAZA®, Celgene); omacetaxine mepesuccinate (cephalotaxine ester) (protein synthesis inhibitor, SYNRIBO®; Teva Pharmaceuticals); asparaginase Erwinia chrysanthemi (enzyme for depletion of asparagine, ELSPAR®, Lundbeck; ERWIN AZE®, EUSA Pharma); eribulin mesylate (microtubule inhibitor, tubulin-based antimitotic, HALAVEN®, Eisai); cabazitaxel (microtubule inhibitor, tubulin-based antimitotic, JEVTANA®, Sanofi-Aventis); capacetrine (thymidylate synthase inhibitor, XELODA®, Genentech); bendamustine (bifunctional mechlorethamine derivative, believed to form interstrand DNA cross-links, TREANDA®, Cephalon/Teva); ixabepilone (semi-synthetic analog of epothilone B, microtubule inhibitor, tubulin-based antimitotic, IXEMPRA®, Bristol-Myers Squibb); nelarabine (prodrug of deoxyguanosine analog, nucleoside metabolic inhibitor, ARRANON®, Novartis); clorafabine (prodrug of ribonucleotide reductase inhibitor, competitive inhibitor of deoxycytidine, CLOLAR®, Sanofi-Aventis); and trifluridine and tipiracil (thymidine-based nucleoside analog and thymidine phosphorylase inhibitor, LONSURF®, Taiho Oncology).

[0157] In some embodiments, one or more other therapeutic agent is a kinase inhibitor or VEGF-R antagonist. Approved VEGF inhibitors and kinase inhibitors useful in the present invention include: bevacizumab (AVASTIN®, Genentech/Roche) an anti-VEGF monoclonal antibody; ramucirumab (CYRAMZA®, Eli Lilly), an anti-VEGFR-2 antibody and ziv- aflibercept, also known as VEGF Trap (ZALTRAP®; Regeneron/Sanofi). VEGFR inhibitors, such as regorafenib (STIVARGA®, Bayer); vandetanib (CAPRELSA®, AstraZeneca); axitinib (INLYTA®, Pfizer); and lenvatinib (LENVIMA®, Eisai); Raf inhibitors, such as sorafenib (NEXAVAR®, Bayer AG and Onyx); dabrafenib (TAFINLAR®, Novartis); and vemurafenib (ZELBORAF®, Genentech/Roche); MEK inhibitors, such as cobimetanib (COTELLIC®, Exelexis/Genentech/Roche); trametinib (MEKINIST®, Novartis); Bcr-Abl tyrosine kinase inhibitors, such as imatinib (GLEEVEC®, Novartis); nilotinib (TASIGNA®, Novartis); dasatinib (SPRYCEL®, BristolMyersSquibb); bosutinib (BOSULIF®, Pfizer); and ponatinib (INCLUSIG®, Ariad Pharmaceuticals); Her2 and EGFR inhibitors, such as gefitinib (IRES S A®, AstraZeneca); erlotinib (TARCEEVA®, Genentech/Roche/Astellas); lapatinib (TYKERB®, Novartis); afatinib (GILOTRIF®, Boehringer Ingelheim); osimertinib (targeting activated EGFR, TAGRISSO®, AstraZeneca); and brigatinib (ALUNBRIG®, Ariad Pharmaceuticals); c-Met and VEGFR2 inhibitors, such as cabozanitib (COMETRIQ®, Exelexis); and multikinase inhibitors, such as sunitinib (SUTENT®, Pfizer); pazopanib (VOTRIENT®, Novartis); ALK inhibitors, such as crizotinib (XALKORI®, Pfizer); ceritinib (ZYKADIA®, Novartis); and alectinib (ALECENZa®, Genentech/Roche); Bruton’s tyrosine kinase inhibitors, such as ibrutinib (IMBRUVICA®, Pharmacyclics/Janssen); and Flt3 receptor inhibitors, such as midostaurin (RYDAPT®, Novartis).

[0158] Other kinase inhibitors and VEGF-R antagonists that are in development and may be used in the present invention include tivozanib (Aveo Pharmaecuticals); vatalanib (Bayer/Novartis); lucitanib (Clovis Oncology); dovitinib (TKI258, Novartis); Chiauanib (Chipscreen Biosciences); CEP-11981 (Cephalon); linifanib (Abbott Laboratories); neratinib (HKI-272, Puma Biotechnology); radotinib (SUPECT®, IY5511, Il-Yang Pharmaceuticals, S. Korea); ruxolitinib (JAKAFI®, Incyte Corporation); PTC299 (PTC Therapeutics); CP- 547,632 (Pfizer); foretinib (Exelexis, GlaxoSmithKline); quizartinib (Daiichi Sankyo) and motesanib (Amgen/Takeda).

[0159] In some embodiments, one or more other therapeutic agent is an mTOR inhibitor, which inhibits cell proliferation, angiogenesis and glucose uptake. In some embodiments, an mTOR inhibitor is everolimus (AFINITOR®, Novartis); temsirolimus (TORISEL®, Pfizer); and sirolimus (RAPAMUNE®, Pfizer).

[0160] In some embodiments, one or more other therapeutic agent is a proteasome inhibitor. Approved proteasome inhibitors useful in the present invention include bortezomib (VELCADE®, Takeda); carfilzomib (KYPROLIS®, Amgen); and ixazomib (NINLARO®, Takeda).

[0161] In some embodiments, one or more other therapeutic agent is a growth factor antagonist, such as an antagonist of platelet-derived growth factor (PDGF), or epidermal growth factor (EGF) or its receptor (EGFR). Approved PDGF antagonists which may be used in the present invention include olaratumab (LARTRUVO®; Eli Lilly). Approved EGFR antagonists which may be used in the present invention include cetuximab (ERBITUX®, Eli Lilly); necitumumab (PORTRAZZA®, Eli Lilly), panitumumab (VECTIBIX®, Amgen); and osimertinib (targeting activated EGFR, TAGRISSO®, AstraZeneca).

[0162] In some embodiments, one or more other therapeutic agent is an aromatase inhibitor. In some embodiments, an aromatase inhibitor is selected from exemestane (AROMASIN®, Pfizer); anastazole (ARIMIDEX®, AstraZeneca) and letrozole (FEMARA®, Novartis).

[0163] In some embodiments, one or more other therapeutic agent is an antagonist of the hedgehog pathway. Approved hedgehog pathway inhibitors which may be used in the present invention include sonidegib (ODOMZO®, Sun Pharmaceuticals); and vismodegib (ERIVEDGE®, Genentech), both for treatment of basal cell carcinoma.

[0164] In some embodiments, one or more other therapeutic agent is a folic acid inhibitor. Approved folic acid inhibitors useful in the present invention include pemetrexed (ALIMTA®, Eli Lilly).

[0165] In some embodiments, one or more other therapeutic agent is a CC chemokine receptor 4 (CCR4) inhibitor. CCR4 inhibitors being studied that may be useful in the present invention include mogamulizumab (POTELIGEO®, Kyowa Hakko Kirin, Japan). [0166] In some embodiments, one or more other therapeutic agent is an isocitrate dehydrogenase (IDH) inhibitor. IDH inhibitors being studied which may be used in the present invention include AG120 (Celgene; NCT02677922); AG221 (Celgene,

NCT02677922; NCT02577406); BAY1436032 (Bayer, NCT02746081); IDH305 (Novartis, NCT02987010).

[0167] In some embodiments, one or more other therapeutic agent is an arginase inhibitor. Arginase inhibitors being studied which may be used in the present invention include AEB1102 (pegylated recombinant arginase, Aeglea Biotherapeutics), which is being studied in Phase 1 clinical trials for acute myeloid leukemia and myelodysplastic syndrome (NCT02732184) and solid tumors (NCT02561234); and CB-1158 (Calithera Biosciences). [0168] In some embodiments, one or more other therapeutic agent is a glutaminase inhibitor. Glutaminase inhibitors being studied which may be used in the present invention include CB- 839 (Calithera Biosciences).

[0169] In some embodiments, one or more other therapeutic agent is an antibody that binds to tumor antigens, that is, proteins expressed on the cell surface of tumor cells. Approved antibodies that bind to tumor antigens which may be used in the present invention include rituximab (RITUXAN®, Genentech/Biogenldec); ofatumumab (anti-CD20, ARZERRA®, GlaxoSmithKline); obinutuzumab (anti-CD20, GAZYVA®, Genentech), ibritumomab (anti- CD20 and Yttrium-90, ZEVALIN®, Spectrum Pharmaceuticals); daratumumab (anti-CD38, DARZALEX®, Janssen Biotech), dinutuximab (anti-glycolipid GD2, UNITUXIN®, United Therapeutics); trastuzumab (anti-HER2, HERCEPTIN®, Genentech); ado-trastuzumab emtansine (anti-HER2, fused to emtansine, KADCYLA®, Genentech); and pertuzumab (anti- HER2, PERJETA®, Genentech); and brentuximab vedotin (anti-CD30-drug conjugate, ADCETRIS®, Seattle Genetics).

[0170] In some embodiments, one or more other therapeutic agent is a topoisomerase inhibitor. Approved topoisomerase inhibitors useful in the present invention include irinotecan (ONIVYDE®, Merrimack Pharmaceuticals); topotecan (HYCAMTIN®, GlaxoSmithKline). Topoisomerase inhibitors being studied which may be used in the present invention include pixantrone (PIXUVRI®, CTI Biopharma).

[0171] In some embodiments, one or more other therapeutic agent is an inhibitor of anti- apoptotic proteins, such as BCL-2. Approved anti-apoptotics which may be used in the present invention include venetoclax (VENCLEXTA®, AbbVie/Genentech); and blinatumomab (BLINCYTO®, Amgen). Other therapeutic agents targeting apoptotic proteins which have undergone clinical testing and may be used in the present invention include navitoclax (ABT-263, Abbott), a BCL-2 inhibitor (NCT02079740).

[0172] In some embodiments, one or more other therapeutic agent is an androgen receptor inhibitor. Approved androgen receptor inhibitors useful in the present invention include enzalutamide (XTANDI®, Astellas/Medivation); approved inhibitors of androgen synthesis include abiraterone (ZYTIGA®, Centocor/Ortho); approved antagonist of gonadotropin releasing hormone (GnRH) receptor (degaralix, FIRMAGON®, Ferring Pharmaceuticals). [0173] In some embodiments, one or more other therapeutic agent is a selective estrogen receptor modulator (SERM), which interferes with the synthesis or activity of estrogens. Approved SERMs useful in the present invention include raloxifene (EVISTA®, Eli Lilly). [0174] In some embodiments, one or more other therapeutic agent is an inhibitor of bone resorption. An approved therapeutic which inhibits bone resorption is Denosumab (XGEVA®, Amgen), an antibody that binds to RANKL, prevents binding to its receptor RANK, found on the surface of osteoclasts, their precursors, and osteoclast-like giant cells, which mediates bone pathology in solid tumors with osseous metastases. Other approved therapeutics that inhibit bone resorption include bisphosphonates, such as zoledronic acid (ZOMETA®, Novartis).

[0175] In some embodiments, one or more other therapeutic agent is an inhibitor of interaction between the two primary p53 suppressor proteins, MDMX and MDM2. Inhibitors of p53 suppression proteins being studied which may be used in the present invention include ALRN-6924 (Aileron), a stapled peptide that equipotently binds to and disrupts the interaction of MDMX and MDM2 with p53. ALRN-6924 is currently being evaluated in clinical trials for the treatment of AML, advanced myelodysplastic syndrome (MDS) and peripheral T-cell lymphoma (PTCL) (NCT02909972; NCT02264613).

[0176] In some embodiments, one or more other therapeutic agent is an inhibitor of transforming growth factor-beta (TGF-beta or TGFB). Inhibitors of TGF-beta proteins being studied which may be used in the present invention include NIS793 (Novartis), an anti-TGF- beta antibody being tested in the clinic for treatment of various cancers, including breast, lung, hepatocellular, colorectal, pancreatic, prostate and renal cancer (NCT 02947165). In some embodiments, the inhibitor of TGF-beta proteins is fresolimumab (GC1008; Sanofi- Genzyme), which is being studied for melanoma (NCT00923169); renal cell carcinoma (NCT00356460); and non-small cell lung cancer (NCT02581787). Additionally, in some embodiments, the additional therapeutic agent is a TGF-beta trap, such as described in Connolly et al. (2012) Int’l J. Biological Sciences 8:964-978. One therapeutic compound currently in clinical trials for treatment of solid tumors is M7824 (Merck KgaA - formerly MSB0011459X), which is a bispecific, anti-PD-Ll/TGF-b trap compound (NCT02699515); and (NCT02517398). M7824 is comprised of a fully human IgGl antibody against PD-L1 fused to the extracellular domain of human TGF-beta receptor II, which functions as a TGF- P“trap.”

[0177] In some embodiments, one or more other therapeutic agent is selected from glembatumumab vedotin-monomethyl auristatin E (MMAE) (Celldex), an anti-glycoprotein NMB (gpNMB) antibody (CR011) linked to the cytotoxic MMAE. gpNMB is a protein overexpressed by multiple tumor types associated with cancer cells’ ability to metastasize. [0178] In some embodiments, one or more other therapeutic agents is an antiproliferative compound. Such antiproliferative compounds include, but are not limited to aromatase inhibitors; anti estrogens; topoisomerase I inhibitors; topoisomerase II inhibitors; microtubule active compounds; alkylating compounds; histone deacetylase inhibitors; compounds which induce cell differentiation processes; cyclooxygenase inhibitors; MMP inhibitors; mTOR inhibitors; antineoplastic antimetabolites; platin compounds; compounds targeting/decreasing a protein or lipid kinase activity and further anti-angiogenic compounds; compounds which target, decrease or inhibit the activity of a protein or lipid phosphatase; gonadorelin agonists; anti-androgens; methionine aminopeptidase inhibitors; matrix metalloproteinase inhibitors; bisphosphonates; biological response modifiers; antiproliferative antibodies; heparanase inhibitors; inhibitors of Ras oncogenic isoforms; telomerase inhibitors; proteasome inhibitors; compounds used in the treatment of hematologic malignancies; compounds which target, decrease or inhibit the activity of Flt-3; Hsp90 inhibitors such as 17-AAG (17- allylaminogeldanamycin, NSC330507), 17-DMAG (17-dimethylaminoethylamino-17- demethoxy-geldanamycin, NSC707545), IPI-504, TEMODAL CNFIOIO, CNF2024, CNF 1010 from Conforma Therapeutics; temozolomide (TEMODAL ® ); kinesin spindle protein inhibitors, such as SB715992 or SB743921 from GlaxoSmithKline, or pentamidine/chlorpromazine from CombinatoRx; MEK inhibitors such as ARRY142886 from Array BioPharma, AZd 6 244 from AstraZeneca, PD 181461 from Pfizer and leucovorin. [0179] The term “aromatase inhibitor” as used herein relates to a compound which inhibits estrogen production, for instance, the conversion of the substrates androstenedione and testosterone to estrone and estradiol, respectively. The term includes, but is not limited to steroids, especially atamestane, exemestane and formestane and, in particular, non-steroids, especially aminoglutethimide, roglethimide, pyridoglutethimide, trilostane, testolactone, ketokonazole, vorozole, fadrozole, anastrozole and letrozole. Exemestane is marketed under the trade name AROMASIN™ Formestane is marketed under the trade name LENTARON™. Fadrozole is marketed under the trade name AFEMA™. Anastrozole is marketed under the trade name ARIMIDEX™. Letrozole is marketed under the trade names FEMARA™ or FEMAr™. Aminoglutethimide is marketed under the trade name ORIMETEN™. A combination of the invention comprising a chemotherapeutic agent which is an aromatase inhibitor is particularly useful for the treatment of hormone receptor positive tumors, such as breast tumors.

[0180] The term "antiestrogen" as used herein relates to a compound which antagonizes the effect of estrogens at the estrogen receptor level. The term includes, but is not limited to tamoxifen, fulvestrant, raloxifene and raloxifene hydrochloride. Tamoxifen is marketed under the trade name NOLVADEX™. Raloxifene hydrochloride is marketed under the trade name EVISTA™. Fulvestrant can be administered under the trade name FASLODEX™. A combination of the invention comprising a chemotherapeutic agent which is an antiestrogen is particularly useful for the treatment of estrogen receptor positive tumors, such as breast tumors.

[0181] The term "anti-androgen" as used herein relates to any substance which is capable of inhibiting the biological effects of androgenic hormones and includes, but is not limited to, bicalutamide (CASODEX™). The term "gonadorelin agonist" as used herein includes, but is not limited to abarelix, goserelin, and goserelin acetate. Goserelin can be administered under the trade name ZOLADEX™.

[0182] The term "topoisom erase I inhibitor" as used herein includes, but is not limited to topotecan, gimatecan, irinotecan, camptothecian and its analogues, 9-nitrocamptothecin and the macromolecular camptothecin conjugate PNU-166148. Irinotecan can be administered, e.g ., in the form as it is marketed, e.g. , under the trademark CAMPTOSAR™. Topotecan is marketed under the trade name HYCAMPTIN™.

[0183] The term "topoisom erase II inhibitor" as used herein includes, but is not limited to the anthracyclines such as doxorubicin (including liposomal formulation, such as CAELYX™), daunorubicin, epirubicin, idarubicin and nemorubicin, the anthraquinones mitoxantrone and losoxantrone, and the podophillotoxines etoposide and teniposide. Etoposide is marketed under the trade name ETOPOPHOS™. Teniposide is marketed under the trade name VM 26- Bristol Doxorubicin is marketed under the trade name ACRIBLASTIN™ or ADRIAMYCIN™. Epirubicin is marketed under the trade name FARMORUBICIN™. Idarubicin is marketed under the trade name ZAVEDOS™. Mitoxantrone is marketed under the trade name NOVANTRON™.

[0184] The term "microtubule active agent" relates to microtubule stabilizing, microtubule destabilizing compounds and microtublin polymerization inhibitors including, but not limited to taxanes, such as paclitaxel and docetaxel; vinca alkaloids, such as vinblastine or vinblastine sulfate, vincristine or vincristine sulfate, and vinorelbine; discodermolides; cochicine and epothilones and derivatives thereof. Paclitaxel is marketed under the trade name TAXOL™. Docetaxel is marketed under the trade name TAXOTERE™. Vinblastine sulfate is marketed under the trade name VINBLASTIN R.P™. Vincristine sulfate is marketed under the trade name FARMISTIN™.

[0185] The term "alkylating agent" as used herein includes, but is not limited to, cyclophosphamide, ifosfamide, melphalan or nitrosourea (BCNU or Gliadel). Cyclophosphamide is marketed under the trade name CYCLOSTIN™. Ifosfamide is marketed under the trade name HOLOXAN™.

[0186] The term "histone deacetylase inhibitors" or "HDAC inhibitors" relates to compounds which inhibit the histone deacetylase and which possess antiproliferative activity. This includes, but is not limited to, suberoylanilide hydroxamic acid (SAHA).

[0187] The term "antineoplastic antimetabolite" includes, but is not limited to, 5-fluorouracil or 5-FU, capecitabine, gemcitabine, DNA demethylating compounds, such as 5-azacytidine and decitabine, methotrexate and edatrexate, and folic acid antagonists such as pemetrexed. Capecitabine is marketed under the trade name XELODA™. Gemcitabine is marketed under the trade name GEMZAR™.

[0188] The term "platin compound" as used herein includes, but is not limited to, carboplatin, cis-platin, cisplatinum and oxaliplatin. Carboplatin can be administered, e.g ., in the form as it is marketed, e.g. , under the trademark CARBOPLAT™. Oxaliplatin can be administered, e.g. , in the form as it is marketed, e.g. under the trademark ELOXATIN™.

[0189] The term "compounds targeting/decreasing a protein or lipid kinase activity; or a protein or lipid phosphatase activity; or further anti-angiogenic compounds" as used herein includes, but is not limited to, protein tyrosine kinase and/or serine and/or threonine kinase inhibitors or lipid kinase inhibitors, such as a) compounds targeting, decreasing or inhibiting the activity of the platelet-derived growth factor-receptors (PDGFR), such as compounds which target, decrease or inhibit the activity of PDGFR, especially compounds which inhibit the PDGF receptor, such as an N-phenyl-2-pyrimidine-amine derivative, such as imatinib, SU101, SU6668 and GFB-111; b) compounds targeting, decreasing or inhibiting the activity of the fibroblast growth factor-receptors (FGFR); c) compounds targeting, decreasing or inhibiting the activity of the insulin-like growth factor receptor I (IGF-IR), such as compounds which target, decrease or inhibit the activity of IGF-IR, especially compounds which inhibit the kinase activity of IGF-I receptor, or antibodies that target the extracellular domain of IGF-I receptor or its growth factors; d) compounds targeting, decreasing or inhibiting the activity of the Trk receptor tyrosine kinase family, or ephrin B4 inhibitors; e) compounds targeting, decreasing or inhibiting the activity of the Axl receptor tyrosine kinase family; f) compounds targeting, decreasing or inhibiting the activity of the Ret receptor tyrosine kinase; g) compounds targeting, decreasing or inhibiting the activity of the Kit/SCFR receptor tyrosine kinase, such as imatinib; h) compounds targeting, decreasing or inhibiting the activity of the C-kit receptor tyrosine kinases, which are part of the PDGFR family, such as compounds which target, decrease or inhibit the activity of the c-Kit receptor tyrosine kinase family, especially compounds which inhibit the c-Kit receptor, such as imatinib; i) compounds targeting, decreasing or inhibiting the activity of members of the c-Abl family, their gene-fusion products ( e.g ., BCR-Abl kinase) and mutants, such as compounds which target decrease or inhibit the activity of c-Abl family members and their gene fusion products, such as an N-phenyl-2-pyrimidine-amine derivative, such as imatinib or nilotinib (AMN107); PD180970; AG957; NSC 680410; PD173955 from ParkeDavis; or dasatinib (BMS-354825); j) compounds targeting, decreasing or inhibiting the activity of members of the protein kinase C (PKC) and Raf family of serine/threonine kinases, members of the MEK, SRC, JAK/pan-JAK, FAR, PDK1, PKB/Akt, Ras/MAPK, PI3K, SYK, TYK2, BTK and TEC family, and/or members of the cyclin-dependent kinase family (CDK) including staurosporine derivatives, such as midostaurin; examples of further compounds include UCN- 01, safmgol, BAY 43-9006, Bryostatin 1, Perifosine; llmofosine; RO 318220 and RO 320432; GO 6976; Isis 3521; LY333531/LY379196; isochinoline compounds; FTIs; PD 184352 or QAN697 (a P13K inhibitor) or AT7519 (CDK inhibitor); k) compounds targeting, decreasing or inhibiting the activity of protein-tyrosine kinase inhibitors, such as compounds which target, decrease or inhibit the activity of protein-tyrosine kinase inhibitors include imatinib mesylate (GLEEVEC™) or tyrphostin such as Tyrphostin A23/RG-50810; AG 99; Tyrphostin AG 213; Tyrphostin AG 1748; Tyrphostin AG 490; Tyrphostin B44; Tyrphostin B44 (+) enantiomer; Tyrphostin AG 555; AG 494; Tyrphostin AG 556, AG957 and adaphostin (4- {[(2,5- dihydroxyphenyl)methyl]amino}-benzoic acid adamantyl ester; NSC 680410, adaphostin); 1) compounds targeting, decreasing or inhibiting the activity of the epidermal growth factor family of receptor tyrosine kinases (EGFRi ErbB2, ErbB3, ErbB4 as homo- or heterodimers) and their mutants, such as compounds which target, decrease or inhibit the activity of the epidermal growth factor receptor family are especially compounds, proteins or antibodies which inhibit members of the EGF receptor tyrosine kinase family, such as EGF receptor, ErbB2, ErbB3 and ErbB4 or bind to EGF or EGF related ligands, CP 358774, ZD 1839, ZM 105180; trastuzumab (HERCEPTIN™), cetuximab (ERBITUX™), Iressa, Tarceva, OSI-774, Cl-1033, EKB-569, GW-2016, El.l, E2.4, E2.5, E6.2, E6.4, E2.11, E6.3 or E7.6.3, and 7H-pyrrolo-[2,3-d]pyrimidine derivatives; m) compounds targeting, decreasing or inhibiting the activity of the c-Met receptor, such as compounds which target, decrease or inhibit the activity of c-Met, especially compounds which inhibit the kinase activity of c-Met receptor, or antibodies that target the extracellular domain of c-Met or bind to HGF, n) compounds targeting, decreasing or inhibiting the kinase activity of one or more JAK family members (JAK1/JAK2/JAK3/TYK2 and/or pan-JAK), including but not limited to PRT-062070, SB-1578, baricitinib, pacritinib, momelotinib, VX-509, AZD-1480, TG- 101348, tofacitinib, and ruxolitinib; o) compounds targeting, decreasing or inhibiting the kinase activity of PI3 kinase (PI3K) including but not limited to ATU-027, SF-1126, DS- 7423, PBI-05204, GSK-2126458, ZSTK-474, buparlisib, pictrelisib, PF-4691502, BYL-719, dactolisib, XL-147, XL-765, and idelalisib; and; and q) compounds targeting, decreasing or inhibiting the signaling effects of hedgehog protein (Hh) or smoothened receptor (SMO) pathways, including but not limited to cyclopamine, vismodegib, itraconazole, erismodegib, and IPI-926 (saridegib).

[0190] The term “PI3K inhibitor” as used herein includes, but is not limited to compounds having inhibitory activity against one or more enzymes in the phosphatidylinositol-3 -kinase family, including, but not limited to RI3Ka, RI3Kg, RBKd, RI3Kb, PI3K-C2a, PI3K-C2p, PI3K-C2y, Vps34, pl l0-a, pi 10-b, r110-g, pi 10-d, p85-a, r85-b, r55-g, pl50, plOl, and p87. Examples of PI3K inhibitors useful in this invention include but are not limited to ATU-027, SF-1126, DS-7423, PBI-05204, GSK-2126458, ZSTK-474, buparlisib, pictrelisib, PF-4691502, BYL-719, dactolisib, XL-147, XL-765, and idelalisib.

[0191] The term “Bcl-2 inhibitor” as used herein includes, but is not limited to compounds having inhibitory activity against B-cell lymphoma 2 protein (Bcl-2), including but not limited to ABT-199, ABT-731, ABT-737, apogossypol, Ascenta’s pan-Bcl-2 inhibitors, curcumin (and analogs thereof), dual Bcl-2/Bcl-xL inhibitors (Infinity Pharmaceuticals/Novartis Pharmaceuticals), Genasense (G3139), HA14-1 (and analogs thereof; see W02008118802), navitoclax (and analogs thereof, see US7390799), NH-1 (Shenayng Pharmaceutical University), obatoclax (and analogs thereof, see W02004106328), S-001 (Gloria Pharmaceuticals), TW series compounds (Univ. of Michigan), and venetoclax. In some embodiments the Bcl-2 inhibitor is a small molecule therapeutic. In some embodiments the Bcl-2 inhibitor is a peptidomimetic.

[0192] The term “BTK inhibitor” as used herein includes, but is not limited to compounds having inhibitory activity against Bruton’s Tyrosine Kinase (BTK), including, but not limited to AVL-292 and ibrutinib.

[0193] The term “SYK inhibitor” as used herein includes, but is not limited to compounds having inhibitory activity against spleen tyrosine kinase (SYK), including but not limited to PRT-062070, R-343, R-333, Excellair, PRT-062607, and fostamatinib.

[0194] Further examples of BTK inhibitory compounds, and conditions treatable by such compounds in combination with compounds of this invention can be found in

W02008039218 and WO2011090760, the entirety of which are incorporated herein by reference.

[0195] Further examples of SYK inhibitory compounds, and conditions treatable by such compounds in combination with compounds of this invention can be found in

W02003063794, W02005007623, and W02006078846, the entirety of which are incorporated herein by reference.

[0196] Further examples of PI3K inhibitory compounds, and conditions treatable by such compounds in combination with compounds of this invention can be found in

W02004019973, W02004089925, W02007016176, US8138347, W02002088112,

W02007084786, W02007129161, W02006122806, W02005113554, and W02007044729 the entirety of which are incorporated herein by reference.

[0197] Further examples of JAK inhibitory compounds, and conditions treatable by such compounds in combination with compounds of this invention can be found in

W02009114512, W02008109943, W02007053452, W02000142246, and W02007070514, the entirety of which are incorporated herein by reference.

[0198] Further anti-angiogenic compounds include compounds having another mechanism for their activity, e.g ., unrelated to protein or lipid kinase inhibition e.g. , thalidomide (THALOMID™) and TNP-470. [0199] Examples of proteasome inhibitors useful for use in combination with compounds of the invention include, but are not limited to bortezomib, disulfiram, epigallocatechin-3- gallate (EGCG), salinosporamide A, carfilzomib, ONX-0912, CEP-18770, and MLN9708. [0200] Compounds which target, decrease or inhibit the activity of a protein or lipid phosphatase are e.g. inhibitors of phosphatase 1, phosphatase 2A, or CDC25, such as okadaic acid or a derivative thereof.

[0201] Compounds which induce cell differentiation processes include, but are not limited to, retinoic acid, a- g- or d- tocopherol or a- g- or d-tocotrienol.

[0202] The term cyclooxygenase inhibitor as used herein includes, but is not limited to, Cox- 2 inhibitors, 5-alkyl substituted 2-arylaminophenylacetic acid and derivatives, such as celecoxib (CELEBREX™), rofecoxib (VIOXX™), etoricoxib, valdecoxib or a 5-alkyl-2- arylaminophenylacetic acid, such as 5-methyl-2-(2'-chloro-6'-fluoroanilino)phenyl acetic acid, lumiracoxib.

[0203] The term "bisphosphonates" as used herein includes, but is not limited to, etridonic, clodronic, tiludronic, pamidronic, alendronic, ibandronic, risedronic and zoledronic acid. Etridonic acid is marketed under the trade name DIDRONEL™. Clodronic acid is marketed under the trade name BONEFOS™. Tiludronic acid is marketed under the trade name Skelid™. Pamidronic acid is marketed under the trade name AREDIA™. Alendronic acid is marketed under the trade name FOSAMAX™. Ibandronic acid is marketed under the trade name BONDRANAT™. Risedronic acid is marketed under the trade name ACTONEL™. Zoledronic acid is marketed under the trade name ZOMETA™. The term "mTOR inhibitors" relates to compounds which inhibit the mammalian target of rapamycin (mTOR) and which possess antiproliferative activity such as sirolimus (RAPAMUNE®), everolimus (CERTICAN™), CCI-779 and ABT578.

[0204] The term "heparanase inhibitor" as used herein refers to compounds which target, decrease or inhibit heparin sulfate degradation. The term includes, but is not limited to, PI-88. The term "biological response modifier" as used herein refers to a lymphokine or interferons. [0205] The term "inhibitor of Ras oncogenic isoforms", such as H-Ras, K-Ras, or N-Ras, as used herein refers to compounds which target, decrease or inhibit the oncogenic activity of Ras; for example, a "famesyl transferase inhibitor" such as L-744832, DK8G557 or R115777 (ZARNESTRA™). The term "telomerase inhibitor" as used herein refers to compounds which target, decrease or inhibit the activity of telomerase. Compounds which target, decrease or inhibit the activity of telomerase are especially compounds which inhibit the telomerase receptor, such as telomestatin.

[0206] The term "methionine aminopeptidase inhibitor" as used herein refers to compounds which target, decrease or inhibit the activity of methionine aminopeptidase. Compounds which target, decrease or inhibit the activity of methionine aminopeptidase include, but are not limited to, bengamide or a derivative thereof.

[0207] The term "proteasome inhibitor" as used herein refers to compounds which target, decrease or inhibit the activity of the proteasome. Compounds which target, decrease or inhibit the activity of the proteasome include, but are not limited to, Bortezomib (VELCADE™) and MLN 341.

[0208] The term "matrix metalloproteinase inhibitor" or ("MMP" inhibitor) as used herein includes, but is not limited to, collagen peptidomimetic and nonpeptidomimetic inhibitors, tetracycline derivatives, e.g ., hydroxamate peptidomimetic inhibitor batimastat and its orally bioavailable analogue marimastat (BB-2516), prinomastat (AG3340), metastat (NSC 683551) BMS-279251, BAY 12-9566, TAA211 , MMI270B or AAJ996.

[0209] The term "compounds used in the treatment of hematologic malignancies" as used herein includes, but is not limited to, FMS-like tyrosine kinase inhibitors, which are compounds targeting, decreasing or inhibiting the activity of FMS-like tyrosine kinase receptors (Flt-3R); interferon, I-b-D-arabinofuransylcytosine (ara-c) and bisulfan; and ALK inhibitors, which are compounds which target, decrease or inhibit anaplastic lymphoma kinase.

[0210] Compounds which target, decrease or inhibit the activity of FMS-like tyrosine kinase receptors (Flt-3R) are especially compounds, proteins or antibodies which inhibit members of the Flt-3R receptor kinase family, such as PKC412, midostaurin, a staurosporine derivative, SU11248 and MLN518.

[0211] The term "HSP90 inhibitors" as used herein includes, but is not limited to, compounds targeting, decreasing or inhibiting the intrinsic ATPase activity of HSP90; degrading, targeting, decreasing or inhibiting the HSP90 client proteins via the ubiquitin proteosome pathway. Compounds targeting, decreasing or inhibiting the intrinsic ATPase activity of HSP90 are especially compounds, proteins or antibodies which inhibit the ATPase activity of HSP90, such as 17-allylamino,17-demethoxygeldanamycin (17AAG), a geldanamycin derivative; other geldanamycin related compounds; radicicol and HD AC inhibitors. [0212] The term "antiproliferative antibodies" as used herein includes, but is not limited to, trastuzumab (HERCEPTIN™), Trastuzumab-DMl, erbitux, bevacizumab (AVASTIN™), rituximab (RITUXAN ® ), PR064553 (anti-CD40) and 2C4 Antibody. By antibodies is meant intact monoclonal antibodies, polyclonal antibodies, multispecific antibodies formed from at least 2 intact antibodies, and antibodies fragments so long as they exhibit the desired biological activity.

[0213] For the treatment of acute myeloid leukemia (AML), compounds of the current invention can be used in combination with standard leukemia therapies, especially in combination with therapies used for the treatment of AML. In particular, compounds of the current invention can be administered in combination with, for example, farnesyl transferase inhibitors and/or other drugs useful for the treatment of AML, such as Daunorubicin, Adriamycin, Ara-C, VP- 16, Teniposide, Mitoxantrone, Idarubicin, Carboplatinum and PKC412.

[0214] Other anti-leukemic compounds include, for example, Ara-C, a pyrimidine analog, which is the 2 -alpha-hydroxy ribose (arabinoside) derivative of deoxycytidine. Also included is the purine analog of hypoxanthine, 6-mercaptopurine (6-MP) and fludarabine phosphate. Compounds which target, decrease or inhibit activity of histone deacetylase (HDAC) inhibitors such as sodium butyrate and suberoylanilide hydroxamic acid (SAHA) inhibit the activity of the enzymes known as histone deacetylases. Specific HDAC inhibitors include MS275, SAHA, FK228 (formerly FR901228), Trichostatin A and compounds disclosed in US 6,552,065 including, but not limited to, N-hydroxy-3-[4-[[[2-(2-methyl-lH-indol-3-yl)- ethyl]- amino]methyl]phenyl]-2E-2-propenamide, or a pharmaceutically acceptable salt thereof and N-hydroxy-3-[4-[(2-hydroxyethyl){2-(lH-indol-3-yl)ethyl]- amino]methyl]phenyl]-2E-2- propenamide, or a pharmaceutically acceptable salt thereof, especially the lactate salt. Somatostatin receptor antagonists as used herein refer to compounds which target, treat or inhibit the somatostatin receptor such as octreotide, and SOM230. Tumor cell damaging approaches refer to approaches such as ionizing radiation. The term "ionizing radiation" referred to above and hereinafter means ionizing radiation that occurs as either electromagnetic rays (such as X-rays and gamma rays) or particles (such as alpha and beta particles). Ionizing radiation is provided in, but not limited to, radiation therapy and is known in the art. See Heilman, Principles of Radiation Therapy, Cancer, in Principles and Practice of Oncology, Devita et ak, Eds., 4 th Edition, Vol. 1 , pp. 248-275 (1993). [0215] Also included are EDG binders and ribonucleotide reductase inhibitors. The term “EDG binders” as used herein refers to a class of immunosuppressants that modulates lymphocyte recirculation, such as FTY720. The term “ribonucleotide reductase inhibitors” refers to pyrimidine or purine nucleoside analogs including, but not limited to, fludarabine and/or cytosine arabinoside (ara-C), 6-thioguanine, 5-fluorouracil, cladribine, 6- mercaptopurine (especially in combination with ara-C against ALL) and/or pentostatin. Ribonucleotide reductase inhibitors are especially hydroxyurea or 2-hydroxy-lH-isoindole-l ,3-dione derivatives.

[0216] Also included are in particular those compounds, proteins or monoclonal antibodies of VEGF such as l-(4-chloroanilino)-4-(4-pyridylmethyl)phthalazine or a pharmaceutically acceptable salt thereof, l-(4-chloroanilino)-4-(4-pyridylmethyl)phthalazine succinate; AN GIO S T ATIN™ ; ENDOSTATIN™; anthranilic acid amides; ZD4190; Zd 6 474; SU5416; SU6668; bevacizumab; or anti-VEGF antibodies or anti-VEGF receptor antibodies, such as rhuMAb and RHEIFab, VEGF aptamer such as Macugon; FLT-4 inhibitors, FLT-3 inhibitors, VEGFR-2 IgGI antibody, Angiozyme (RPI 4610) and Bevacizumab (AVASTIN™).

[0217] Photodynamic therapy as used herein refers to therapy which uses certain chemicals known as photosensitizing compounds to treat or prevent cancers. Examples of photodynamic therapy include treatment with compounds, such as VISEiDYNE™ and porfimer sodium. [0218] Angiostatic steroids as used herein refers to compounds which block or inhibit angiogenesis, such as, e.g ., anecortave, triamcinolone, hydrocortisone, 11-a-epihydrocotisol, cortexolone, 17a-hydroxyprogesterone, corticosterone, desoxy corticosterone, testosterone, estrone and dexamethasone.

[0219] Implants containing corticosteroids refers to compounds, such as fluocinolone and dexamethasone.

[0220] Other chemotherapeutic compounds include, but are not limited to, plant alkaloids, hormonal compounds and antagonists; biological response modifiers, preferably lymphokines or interferons; antisense oligonucleotides or oligonucleotide derivatives; shRNA or siRNA; or miscellaneous compounds or compounds with other or unknown mechanism of action. [0221] The structure of the active compounds identified by code numbers, generic or trade names may be taken from the actual edition of the standard compendium "The Merck Index" or from databases, e.g. , Patents International (e.g, IMS World Publications). Exemplary l mmuno-0 neology agents

[0222] In some embodiments, one or more other therapeutic agent is an immuno-oncology agent. As used herein, the term “an immuno-oncology agent” refers to an agent which is effective to enhance, stimulate, and/or up-regulate immune responses in a subject. In some embodiments, the administration of an immuno-oncology agent with a compound of the invention has a synergic effect in treating a cancer.

[0223] An immuno-oncology agent can be, for example, a small molecule drug, an antibody, or a biologic or small molecule. Examples of biologic immuno-oncology agents include, but are not limited to, cancer vaccines, antibodies, and cytokines. In some embodiments, an antibody is a monoclonal antibody. In some embodiments, a monoclonal antibody is humanized or human.

[0224] In some embodiments, an immuno-oncology agent is (i) an agonist of a stimulatory (including a co- stimulatory) receptor or (ii) an antagonist of an inhibitory (including a co- inhibitory) signal on T cells, both of which result in amplifying antigen-specific T cell responses.

[0225] Certain of the stimulatory and inhibitory molecules are members of the immunoglobulin super family (IgSF). One important family of membrane-bound ligands that bind to co-stimulatory or co-inhibitory receptors is the B7 family, which includes B7-1, B7-2, B7-H1 (PD-L1), B7-DC (PD-L2), B7-H2 (ICOS-L), B7-H3, B7-H4, B7-H5 (VISTA), and B7-H6. Another family of membrane bound ligands that bind to co-stimulatory or co- inhibitory receptors is the TNF family of molecules that bind to cognate TNF receptor family members, which includes CD40 and CD40L, OX-40, OX-40L, CD70, CD27L, CD30, CD30L, 4-1BBL, CD137 (4-1BB), TRAIL/Apo2-L, TRAILR1/DR4, TRAILR2/DR5, TRAILR3, TRAILR4, OPG, RANK, RANKL, TWEAKR/Fnl4, TWEAK, BAFFR, EDAR, XEDAR, TACI, APRIL, BCMA, LTpR, LIGHT, DcR3, HVEM, VEGETL1A, TRAMP/DR3, EDAR, EDA1, XEDAR, EDA2, TNFR1, Lymphotoxin o/TNFp, TNFR2, TNF a, LTpR, Lymphotoxin a1b2, FAS, FASL, RELT, DR6, TROY, NGFR.

[0226] In some embodiments, an immuno-oncology agent is a cytokine that inhibits T cell activation ( e.g ., IL-6, IL-10, TGF-b, VEGF, and other immunosuppressive cytokines) or a cytokine that stimulates T cell activation, for stimulating an immune response.

[0227] In some embodiments, a combination of a compound of the invention and an immuno-oncology agent can stimulate T cell responses. In some embodiments, an immuno- oncology agent is: (i) an antagonist of a protein that inhibits T cell activation (e.g., immune checkpoint inhibitors) such as CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, TIM-3, Galectin 9, CEACAM-1, BTLA, CD69, Galectin-1, TIGIT, CD113, GPR56, VISTA, 2B4, CD48, GARP, PD1H, LAIR1, TIM-1, and TIM-4; or (ii) an agonist of a protein that stimulates T cell activation such as B7-1, B7-2, CD28, 4-1BB (CD137), 4-1BBL, ICOS, ICOS-L, 0X40, OX40L, GITR, GITRL, CD70, CD27, CD40, DR3 and CD28H.

[0228] In some embodiments, an immuno-oncology agent is an antagonist of inhibitory receptors on NK cells or an agonist of activating receptors on NK cells. In some embodiments, an immuno-oncology agent is an antagonist of KIR, such as lirilumab.

[0229] In some embodiments, an immuno-oncology agent is an agent that inhibits or depletes macrophages or monocytes, including but not limited to CSF-1R antagonists such as CSF-1R antagonist antibodies including RG7155 (WOl 1/70024, WOl 1/107553, WOl 1/131407, W013/87699, W013/119716, WO13/132044) or FPA-008 (WOl 1/140249; W013169264; WO14/036357).

[0230] In some embodiments, an immuno-oncology agent is selected from agonistic agents that ligate positive costimulatory receptors, blocking agents that attenuate signaling through inhibitory receptors, antagonists, and one or more agents that increase systemically the frequency of anti-tumor T cells, agents that overcome distinct immune suppressive pathways within the tumor microenvironment ( e.g ., block inhibitory receptor engagement (e.g., PD- Ll/PD-1 interactions), deplete or inhibit Tregs (e.g. , using an anti-CD25 monoclonal antibody (e.g, daclizumab) or by ex vivo anti-CD25 bead depletion), inhibit metabolic enzymes such as IDO, or reverse/prevent T cell energy or exhaustion) and agents that trigger innate immune activation and/or inflammation at tumor sites.

[0231] In some embodiments, an immuno-oncology agent is a CTLA-4 antagonist. In some embodiments, a CTLA-4 antagonist is an antagonistic CTLA-4 antibody. In some embodiments, an antagonistic CTLA-4 antibody is YERVOY (ipilimumab) or tremelimumab.

[0232] In some embodiments, an immuno-oncology agent is a PD-1 antagonist. In some embodiments, a PD-1 antagonist is administered by infusion. In some embodiments, an immuno-oncology agent is an antibody or an antigen-binding portion thereof that binds specifically to a Programmed Death-1 (PD-1) receptor and inhibits PD-1 activity. In some embodiments, a PD-1 antagonist is an antagonistic PD-1 antibody. In some embodiments, an antagonistic PD-1 antibody is OPDIVO (nivolumab), KEYTRUDA (pembrolizumab), or MEDI-0680 (AMP-514; WO2012/145493). In some embodiments, an immuno-oncology agent may be pidilizumab (CT-011). In some embodiments, an immuno-oncology agent is a recombinant protein composed of the extracellular domain of PD-L2 (B7-DC) fused to the Fc portion of IgGl, called AMP-224.

[0233] In some embodiments, an immuno-oncology agent is a PD-L1 antagonist. In some embodiments, a PD-L1 antagonist is an antagonistic PD-L1 antibody. In some embodiments, a PD-L1 antibody is MPDL3280A (RG7446; WO2010/077634), durvalumab (MEDI4736), BMS-936559 (W02007/005874), and MSB0010718C (WO2013/79174).

[0234] In some embodiments, an immuno-oncology agent is a LAG-3 antagonist. In some embodiments, a LAG-3 antagonist is an antagonistic LAG-3 antibody. In some embodiments, a LAG3 antibody is BMS-986016 (W010/19570, WO14/08218), or IMP-731 or IMP-321 (W008/132601, WO009/44273).

[0235] In some embodiments, an immuno-oncology agent is a CD137 (4-1BB) agonist. In some embodiments, a CD137 (4-1BB) agonist is an agonistic CD137 antibody. In some embodiments, a CD137 antibody is urelumab or PF-05082566 (W012/32433).

[0236] In some embodiments, an immuno-oncology agent is a GITR agonist. In some embodiments, a GITR agonist is an agonistic GITR antibody. In some embodiments, a GITR antibody is BMS-986153, BMS-986156, TRX-518 (WO006/105021, W0009/009116), or MK-4166 (WOl 1/028683).

[0237] In some embodiments, an immuno-oncology agent is an indoleamine (2,3)- dioxygenase (IDO) antagonist. In some embodiments, an IDO antagonist is selected from epacadostat (INCB024360, Incyte); indoximod (NLG-8189, NewLink Genetics Corporation); capmanitib (INC280, Novartis); GDC-0919 (Genentech/Roche); PF-06840003 (Pfizer); BMS:F001287 (Bristol-Myers Squibb); Phy906/KD108 (Phytoceutica); an enzyme that breaks down kynurenine (Kynase, Ikena Oncology, formerly known as Kyn Therapeutics); and NLG-919 (W009/73620, WO009/1156652, WOl 1/56652, W012/142237).

[0238] In some embodiments, an immuno-oncology agent is an 0X40 agonist. In some embodiments, an 0X40 agonist is an agonistic 0X40 antibody. In some embodiments, an 0X40 antibody is MEDI-6383 or MEDI-6469.

[0239] In some embodiments, an immuno-oncology agent is an OX40L antagonist. In some embodiments, an OX40L antagonist is an antagonistic 0X40 antibody. In some embodiments, an OX40L antagonist is RG-7888 (WO06/029879).

[0240] In some embodiments, an immuno-oncology agent is a CD40 agonist. In some embodiments, a CD40 agonist is an agonistic CD40 antibody. In some embodiments, an immuno-oncology agent is a CD40 antagonist. In some embodiments, a CD40 antagonist is an antagonistic CD40 antibody. In some embodiments, a CD40 antibody is lucatumumab or dacetuzumab.

[0241] In some embodiments, an immuno-oncology agent is a CD27 agonist. In some embodiments, a CD27 agonist is an agonistic CD27 antibody. In some embodiments, a CD27 antibody is varlilumab.

[0242] In some embodiments, an immuno-oncology agent is MGA271 (to B7H3) (WO 11/109400).

[0243] In some embodiments, an immuno-oncology agent is abagovomab, adecatumumab, afutuzumab, alemtuzumab, anatumomab mafenatox, apolizumab, atezolimab, avelumab, blinatumomab, BMS-936559, catumaxomab, durvalumab, epacadostat, epratuzumab, indoximod, inotuzumab ozogamicin, intelumumab, ipilimumab, isatuximab, lambrolizumab, MED14736, MPDL3280A, nivolumab, obinutuzumab, ocaratuzumab, ofatumumab, olatatumab, pembrolizumab, pidilizumab, rituximab, ticilimumab, samalizumab, or tremelimumab.

[0244] In some embodiments, an immuno-oncology agent is an immunostimulatory agent. For example, antibodies blocking the PD-1 and PD-L1 inhibitory axis can unleash activated tumor-reactive T cells and have been shown in clinical trials to induce durable anti-tumor responses in increasing numbers of tumor histologies, including some tumor types that conventionally have not been considered immunotherapy sensitive. See, e.g ., Okazaki, T. el al. (2013) Nat. Immunol. 14, 1212-1218; Zou et al. (2016) Sci. Transl. Med. 8. The anti-PD- 1 antibody nivolumab (OPDIVO ® , Bristol-Myers Squibb, also known as ONO-4538, MDXl 106 and BMS-936558), has shown potential to improve the overall survival in patients with RCC who had experienced disease progression during or after prior anti-angiogenic therapy.

[0245] In some embodiments, the immunomodulatory therapeutic specifically induces apoptosis of tumor cells. Approved immunomodulatory therapeutics which may be used in the present invention include pomalidomide (POMALYST®, Celgene); lenalidomide (REVLIMID®, Celgene); ingenol mebutate (PICATO®, LEO Pharma).

[0246] In some embodiments, an immuno-oncology agent is a cancer vaccine. In some embodiments, the cancer vaccine is selected from sipuleucel-T (PROVENGE®, Dendreon/Valeant Pharmaceuticals), which has been approved for treatment of asymptomatic, or minimally symptomatic metastatic castrate-resistant (hormone-refractory) prostate cancer; and talimogene laherparepvec (IMLYGIC®, BioVex/ Amgen, previously known as T-VEC), a genetically modified oncolytic viral therapy approved for treatment of unresectable cutaneous, subcutaneous and nodal lesions in melanoma. In some embodiments, an immuno-oncology agent is selected from an oncolytic viral therapy such as pexastimogene devacirepvec (PexaVec/JX-594, SillaJen/formerly Jennerex Biotherapeutics), a thymidine kinase- (TK-) deficient vaccinia virus engineered to express GM-CSF, for hepatocellular carcinoma (NCT02562755) and melanoma (NCT00429312); pelareorep (REOLYSIN®, Oncolytics Biotech), a variant of respiratory enteric orphan virus (reovirus) which does not replicate in cells that are not RAS-activated, in numerous cancers, including colorectal cancer (NCT01622543); prostate cancer (NCT01619813); head and neck squamous cell cancer (NCT01166542); pancreatic adenocarcinoma (NCT00998322); and non-small cell lung cancer (NSCLC) (NCT 00861627); enadenotucirev (NG-348, PsiOxus, formerly known as ColoAdl), an adenovirus engineered to express a full length CD80 and an antibody fragment specific for the T-cell receptor CD3 protein, in ovarian cancer (NCT02028117); metastatic or advanced epithelial tumors such as in colorectal cancer, bladder cancer, head and neck squamous cell carcinoma and salivary gland cancer (NCT02636036); ONCOS-102 (Targovax/formerly Oncos), an adenovirus engineered to express GM-CSF, in melanoma (NCT03003676); and peritoneal disease, colorectal cancer or ovarian cancer (NCT02963831); GL-ONC1 (GLV-lh68/GLV-lhl53, Genelux GmbH), vaccinia viruses engineered to express beta-galactosidase (beta-gal)/beta-glucoronidase or beta-gal/human sodium iodide symporter (hNIS), respectively, were studied in peritoneal carcinomatosis (NCT01443260); fallopian tube cancer, ovarian cancer (NCT 02759588); or CG0070 (Cold Genesys), an adenovirus engineered to express GM-CSF, in bladder cancer (NCT02365818). [0247] In some embodiments, an immuno-oncology agent is selected from JX-929 (SillaJen/formerly Jennerex Biotherapeutics), a TK- and vaccinia growth factor-deficient vaccinia virus engineered to express cytosine deaminase, which is able to convert the prodrug 5-fluorocytosine to the cytotoxic drug 5-fluorouracil; TG01 and TG02 (Targovax/formerly Oncos), peptide-based immunotherapy agents targeted for difficult-to-treat RAS mutations; and TILT-123 (TILT Biotherapeutics), an engineered adenovirus designated: Ad5/3-E2F- delta24-hTNFa-IRES-hIL20; and VSV-GP (ViraTherapeutics) a vesicular stomatitis virus (VSV) engineered to express the glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV), which can be further engineered to express antigens designed to raise an antigen- specific CD8 + T cell response. [0248] In some embodiments, an immuno-oncology agent is a T-cell engineered to express a chimeric antigen receptor, or CAR. The T-cells engineered to express such chimeric antigen receptor are referred to as a CAR-T cells.

[0249] CARs have been constructed that consist of binding domains, which may be derived from natural ligands, single chain variable fragments (scFv) derived from monoclonal antibodies specific for cell-surface antigens, fused to endodomains that are the functional end of the T-cell receptor (TCR), such as the CD3-zeta signaling domain from TCRs, which is capable of generating an activation signal in T lymphocytes. Upon antigen binding, such CARs link to endogenous signaling pathways in the effector cell and generate activating signals similar to those initiated by the TCR complex.

[0250] For example, in some embodiments the CAR-T cell is one of those described in U.S. Patent 8,906,682 (June et al. hereby incorporated by reference in its entirety), which discloses CAR-T cells engineered to comprise an extracellular domain having an antigen binding domain (such as a domain that binds to CD 19), fused to an intracellular signaling domain of the T cell antigen receptor complex zeta chain (such as CD3 zeta). When expressed in the T cell, the CAR is able to redirect antigen recognition based on the antigen binding specificity. In the case of CD 19, the antigen is expressed on malignant B cells. Over 200 clinical trials are currently in progress employing CAR-T in a wide range of indications. [https://clinicaltrials.gov/ct2/results?term=chimeric+antige n+receptors&pg=l].

[0251] In some embodiments, an immunostimulatory agent is an activator of retinoic acid receptor-related orphan receptor g (RORyt). RORyt is a transcription factor with key roles in the differentiation and maintenance of Type 17 effector subsets of CD4+ (Thl7) and CD8+ (Tcl7) T cells, as well as the differentiation of IL-17 expressing innate immune cell subpopulations such as NK cells. In some embodiments, an activator of RORyt is LYC- 55716 (Lycera), which is currently being evaluated in clinical trials for the treatment of solid tumors (NCT02929862).

[0252] In some embodiments, an immunostimulatory agent is an agonist or activator of a toll like receptor (TLR). Suitable activators of TLRs include an agonist or activator of TLR9 such as SD-101 (Dynavax). SD-101 is an immunostimulatory CpG which is being studied for B-cell, follicular and other lymphomas (NCT02254772). Agonists or activators of TLR8 which may be used in the present invention include motolimod (VTX-2337, VentiRx Pharmaceuticals) which is being studied for squamous cell cancer of the head and neck (NCT02124850) and ovarian cancer (NCT02431559). [0253] Other immuno-oncology agents that can be used in the present invention include urelumab (BMS-663513, Bristol-Myers Squibb), an anti-CD137 monoclonal antibody; varlilumab (CDX-1127, Celldex Therapeutics), an anti-CD27 monoclonal antibody; BMS- 986178 (Bristol-Myers Squibb), an anti-OX40 monoclonal antibody; lirilumab (IPH2102/BMS-986015, Innate Pharma, Bristol-Myers Squibb), an anti-KIR monoclonal antibody; monalizumab (IPH2201, Innate Pharma, AstraZeneca) an anti-NKG2A monoclonal antibody; andecaliximab (GS-5745, Gilead Sciences), an anti-MMP9 antibody; MK-4166 (Merck & Co.), an anti-GITR monoclonal antibody.

[0254] In some embodiments, an immunostimulatory agent is selected from elotuzumab, mifamurtide, an agonist or activator of a toll-like receptor, and an activator of RORyt.

[0255] In some embodiments, an immunostimulatory therapeutic is recombinant human interleukin 15 (rhIL-15). rhIL-15 has been tested in the clinic as a therapy for melanoma and renal cell carcinoma (NCT01021059 and NCT01369888) and leukemias (NCT02689453). In some embodiments, an immunostimulatory agent is recombinant human interleukin 12 (rhlL- 12). In some embodiments, an IL-15 based immunotherapeutic is heterodimeric IL-15 (hetIL-15, Novartis/ Admune), a fusion complex composed of a synthetic form of endogenous IL-15 complexed to the soluble IL-15 binding protein IL-15 receptor alpha chain (IL15:sIL- 15RA), which has been tested in Phase 1 clinical trials for melanoma, renal cell carcinoma, non-small cell lung cancer and head and neck squamous cell carcinoma (NCT02452268). In some embodiments, a recombinant human interleukin 12 (rhIL-12) is NM-IL-12 (Neumedicines, Inc.), NCT02544724, or NCT02542124.

[0256] In some embodiments, an immuno-oncology agent is selected from those descripted in Jerry L. Adams et al ., “Big opportunities for small molecules in immuno-oncology,” Cancer Therapy 2015, Vol. 14, pages 603-622, the content of which is incorporated herein by reference in its entirety. In some embodiments, an immuno-oncology agent is selected from the examples described in Table 1 of Jerry L. Adams et al. In some embodiments, an immuno-oncology agent is a small molecule targeting an immuno-oncology target selected from those listed in Table 2 of Jerry L. Adams et al. In some embodiments, an immuno- oncology agent is a small molecule agent selected from those listed in Table 2 of Jerry L. Adams et al.

[0257] In some embodiments, an immuno-oncology agent is selected from the small molecule immuno-oncology agents described in Peter L. Toogood, “Small molecule immuno- oncology therapeutic agents,” Bioorganic & Medicinal Chemistry Letters 2018, Vol. 28, pages 319-329, the content of which is incorporated herein by reference in its entirety. In some embodiments, an immuno-oncology agent is an agent targeting the pathways as described in Peter L. Toogood.

[0258] In some embodiments, an immuno-oncology agent is selected from those described in Sandra L. Ross et al., “Bispecific T cell engager (BITE® ) antibody constructs can mediate bystander tumor cell killing”, PLoS ONE 12(8): e0183390, the content of which is incorporated herein by reference in its entirety. In some embodiments, an immuno-oncology agent is a bispecific T cell engager (BITE®) antibody construct. In some embodiments, a bispecific T cell engager (BITE®) antibody construct is a CD19/CD3 bispecific antibody construct. In some embodiments, a bispecific T cell engager (BITE®) antibody construct is an EGFR/CD3 bispecific antibody construct. In some embodiments, a bispecific T cell engager (BITE®) antibody construct activates T cells. In some embodiments, a bispecific T cell engager (BITE®) antibody construct activates T cells, which release cytokines inducing upregulation of intercellular adhesion molecule 1 (ICAM-1) and FAS on bystander cells. In some embodiments, a bispecific T cell engager (BITE®) antibody construct activates T cells which result in induced bystander cell lysis. In some embodiments, the bystander cells are in solid tumors. In some embodiments, the bystander cells being lysed are in proximity to the BITE®-activated T cells. In some embodiments, the bystander cells comprises tumor- associated antigen (TAA) negative cancer cells. In some embodiment, the bystander cells comprise EGFR-negative cancer cells. In some embodiments, an immuno-oncology agent is an antibody which blocks the PD-L1/PD1 axis and/or CTLA4. In some embodiments, an immuno-oncology agent is an ex vivo expanded tumor-infiltrating T cell. In some embodiments, an immuno-oncology agent is a bispecific antibody construct or chimeric antigen receptors (CARs) that directly connect T cells with tumor-associated surface antigens (TAAs).

Exemplary Immune Checkpoint Inhibitors

[0259] In some embodiments, an immuno-oncology agent is an immune checkpoint inhibitor as described herein.

[0260] The term “checkpoint inhibitor” as used herein relates to agents useful in preventing cancer cells from avoiding the immune system of the patient. One of the major mechanisms of anti-tumor immunity subversion is known as “T-cell exhaustion,” which results from chronic exposure to antigens that has led to up-regulation of inhibitory receptors. These inhibitory receptors serve as immune checkpoints in order to prevent uncontrolled immune reactions.

[0261] PD-1 and co-inhibitory receptors such as cytotoxic T-lymphocyte antigen 4 (CTLA-4, B and T Lymphocyte Attenuator (BTLA; CD272), T cell Immunoglobulin and Mucin domain-3 (Tim-3), Lymphocyte Activation Gene-3 (Lag-3; CD223), and others are often referred to as a checkpoint regulators. They act as molecular “gatekeepers” that allow extracellular information to dictate whether cell cycle progression and other intracellular signaling processes should proceed.

[0262] In some embodiments, an immune checkpoint inhibitor is an antibody to PD-1. PD-1 binds to the programmed cell death 1 receptor (PD-1) to prevent the receptor from binding to the inhibitory ligand PDL-1, thus overriding the ability of tumors to suppress the host anti tumor immune response.

[0263] In some embodiments, the checkpoint inhibitor is a biologic therapeutic or a small molecule. In some embodiments, the checkpoint inhibitor is a monoclonal antibody, a humanized antibody, a fully human antibody, a fusion protein or a combination thereof. In some embodiments, the checkpoint inhibitor inhibits a checkpoint protein selected from CTLA-4, PDL1, PDL2, PD1, B7-H3, B7-H4, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD 160, CGEN- 15049, CHK 1, CHK2, A2aR, B-7 family ligands or a combination thereof. In some embodiments, the checkpoint inhibitor interacts with a ligand of a checkpoint protein selected from CTLA-4, PDL1, PDL2, PD1, B7-H3, B7-H4, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD160, CGEN-15049, CHK 1, CHK2, A2aR, B-7 family ligands or a combination thereof. In some embodiments, the checkpoint inhibitor is an immunostimulatory agent, a T cell growth factor, an interleukin, an antibody, a vaccine or a combination thereof. In some embodiments, the interleukin is IL-7 or IL-15. In some embodiments, the interleukin is glycosylated IL-7. In an additional aspect, the vaccine is a dendritic cell (DC) vaccine.

[0264] Checkpoint inhibitors include any agent that blocks or inhibits in a statistically significant manner, the inhibitory pathways of the immune system. Such inhibitors can include small molecule inhibitors or can include antibodies, or antigen binding fragments thereof, that bind to and block or inhibit immune checkpoint receptors or antibodies that bind to and block or inhibit immune checkpoint receptor ligands. Illustrative checkpoint molecules that can be targeted for blocking or inhibition include, but are not limited to, CTLA-4, PDL1, PDL2, PD1, B7-H3, B7-H4, BTLA, HVEM, GAL9, LAG3, TIM3, VISTA, KIR, 2B4 (belongs to the CD2 family of molecules and is expressed on all NK, gd, and memory CD8 + (ab) T cells), CD160 (also referred to as BY55), CGEN-15049, CHK 1 and CHK2 kinases, A2aR, and various B-7 family ligands. B7 family ligands include, but are not limited to, B7- 1, B7-2, B7-DC, B7-H1, B7-H2, B7-H3, B7-H4, B7-H5, B7-H6 and B7-H7. Checkpoint inhibitors include antibodies, or antigen binding fragments thereof, other binding proteins, biologic therapeutics, or small molecules, that bind to and block or inhibit the activity of one or more of CTLA-4, PDL1, PDL2, PD1, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD 160 and CGEN-15049. Illustrative immune checkpoint inhibitors include, but are not limited to, Tremelimumab (CTLA-4 blocking antibody), anti- 0X40, PD-L1 monoclonal Antibody (Anti-B7-Hl; MEDI4736), MK-3475 (PD-1 blocker), Nivolumab (anti-PDl antibody), CT-011 (anti-PDl antibody), BY55 monoclonal antibody, AMP224 (anti-PDLl antibody), BMS- 936559 (anti-PDLl antibody), MPLDL3280A (anti- PDL1 antibody), MSB0010718C (anti-PDLl antibody), and ipilimumab (anti-CTLA-4 checkpoint inhibitor). Checkpoint protein ligands include, but are not limited to PD-L1, PD- L2, B7-H3, B7-H4, CD28, CD86 and TIM-3.

[0265] In certain embodiments, the immune checkpoint inhibitor is selected from a PD-1 antagonist, a PD-L1 antagonist, and a CTLA-4 antagonist. In some embodiments, the checkpoint inhibitor is selected from the group consisting of nivolumab (OPDIVO®), ipilimumab (YERVOY®), and pembrolizumab (KEYTRUDA®). In some embodiments, the checkpoint inhibitor is selected from nivolumab (anti-PD-1 antibody, OPDIVO®, Bristol- Myers Squibb); pembrolizumab (anti-PD-1 antibody, KEYTRUDA®, Merck); ipilimumab (anti-CTLA-4 antibody, YERVOY®, Bristol-Myers Squibb); durvalumab (anti-PD-Ll antibody, IMFINZI®, AstraZeneca); and atezolizumab (anti-PD-Ll antibody, TECENTRIQ®, Genentech).

[0266] In some embodiments, the checkpoint inhibitor is selected from the group consisting of lambrolizumab (MK-3475), nivolumab (BMS-936558), pidilizumab (CT-011), AMP -224, MDX-1105, MED 14736, MPDL3280A, BMS-936559, ipilimumab, lirlumab, IPH2101, pembrolizumab (KEYTRUDA®), and tremelimumab.

[0267] In some embodiments, an immune checkpoint inhibitor is REGN2810 (Regeneron), an anti-PD-1 antibody tested in patients with basal cell carcinoma (NCT03132636); NSCLC (NCT03088540); cutaneous squamous cell carcinoma (NCT02760498); lymphoma (NCT02651662); and melanoma (NCT03002376); pidilizumab (CureTech), also known as CT-011, an antibody that binds to PD-1, in clinical trials for diffuse large B-cell lymphoma and multiple myeloma; avelumab (BAVENCIO®, Pfizer/Merck KGaA), also known as MSB0010718C), a fully human IgGl anti-PD-Ll antibody, in clinical trials for non-small cell lung cancer, Merkel cell carcinoma, mesothelioma, solid tumors, renal cancer, ovarian cancer, bladder cancer, head and neck cancer, and gastric cancer; or PDR001 (Novartis), an inhibitory antibody that binds to PD-1, in clinical trials for non-small cell lung cancer, melanoma, triple negative breast cancer and advanced or metastatic solid tumors. Tremelimumab (CP-675,206; Astrazeneca) is a fully human monoclonal antibody against CTLA-4 that has been in studied in clinical trials for a number of indications, including: mesothelioma, colorectal cancer, kidney cancer, breast cancer, lung cancer and non-small cell lung cancer, pancreatic ductal adenocarcinoma, pancreatic cancer, germ cell cancer, squamous cell cancer of the head and neck, hepatocellular carcinoma, prostate cancer, endometrial cancer, metastatic cancer in the liver, liver cancer, large B-cell lymphoma, ovarian cancer, cervical cancer, metastatic anaplastic thyroid cancer, urothelial cancer, fallopian tube cancer, multiple myeloma, bladder cancer, soft tissue sarcoma, and melanoma. AGEN-1884 (Agenus) is an anti-CTLA4 antibody that is being studied in Phase 1 clinical trials for advanced solid tumors (NCT02694822).

[0268] In some embodiments, a checkpoint inhibitor is an inhibitor of T-cell immunoglobulin mucin containing protein-3 (TIM-3). TIM-3 inhibitors that may be used in the present invention include TSR-022, LY3321367 and MBG453. TSR-022 (Tesaro) is an anti-TIM-3 antibody which is being studied in solid tumors (NCT02817633). LY3321367 (Eli Lilly) is an anti-TIM-3 antibody which is being studied in solid tumors (NCT03099109). MBG453 (Novartis) is an anti-TIM-3 antibody which is being studied in advanced malignancies (NCT02608268).

[0269] In some embodiments, a checkpoint inhibitor is an inhibitor of T cell immunoreceptor with Ig and ITIM domains, or TIGIT, an immune receptor on certain T cells and NK cells. TIGIT inhibitors that may be used in the present invention include BMS-986207 (Bristol- Myers Squibb), an anti-TIGIT monoclonal antibody (NCT02913313); OMP-313M32 (Oncomed); and anti-TIGIT monoclonal antibody (NCT03119428).

[0270] In some embodiments, a checkpoint inhibitor is an inhibitor of Lymphocyte Activation Gene-3 (LAG-3). LAG-3 inhibitors that may be used in the present invention include BMS-986016 and REGN3767 and IMP321. BMS-986016 (Bristol-Myers Squibb), an anti-LAG-3 antibody, is being studied in glioblastoma and gliosarcoma (NCT02658981). REGN3767 (Regeneron), is also an anti-LAG-3 antibody, and is being studied in malignancies (NCT03005782). IMP321 (Immutep S.A.) is an LAG-3-Ig fusion protein, being studied in melanoma (NCT02676869); adenocarcinoma (NCT02614833); and metastatic breast cancer (NCT00349934).

[0271] Checkpoint inhibitors that can be used in the present invention include 0X40 agonists. 0X40 agonists that are being studied in clinical trials include PF-04518600/PF- 8600 (Pfizer), an agonistic anti-OX40 antibody, in metastatic kidney cancer (NCT03092856) and advanced cancers and neoplasms (NCT02554812; NCT05082566); GSK3174998 (Merck), an agonistic anti-OX40 antibody, in Phase 1 cancer trials (NCT02528357); MEDI0562 (Medimmune/AstraZeneca), an agonistic anti-OX40 antibody, in advanced solid tumors (NCT02318394 and NCT02705482); MEDI6469, an agonistic anti-OX40 antibody (Medimmune/AstraZeneca), in patients with colorectal cancer (NCT02559024), breast cancer (NCT01862900), head and neck cancer (NCT02274155) and metastatic prostate cancer (NCT01303705); and BMS-986178 (Bristol-Myers Squibb) an agonistic anti-OX40 antibody, in advanced cancers (NCT02737475).

[0272] Checkpoint inhibitors that can be used in the present invention include CD137 (also called 4-1BB) agonists. CD137 agonists that are being studied in clinical trials include utomilumab (PF-05082566, Pfizer) an agonistic anti-CD137 antibody, in diffuse large B-cell lymphoma (NCT02951156) and in advanced cancers and neoplasms (NCT02554812 and NCT05082566); urelumab (BMS-663513, Bristol-Myers Squibb), an agonistic anti-CD137 antibody, in melanoma and skin cancer (NCT02652455) and glioblastoma and gliosarcoma (NCT02658981); and CTX-471 (Compass Therapeutics), an agonistic anti-CD137 antibody in metastatic or locally advanced malignancies (NCT03881488).

[0273] Checkpoint inhibitors that can be used in the present invention include CD27 agonists. CD27 agonists that are being studied in clinical trials include varlilumab (CDX- 1127, Celldex Therapeutics) an agonistic anti-CD27 antibody, in squamous cell head and neck cancer, ovarian carcinoma, colorectal cancer, renal cell cancer, and glioblastoma (NCT02335918); lymphomas (NCT01460134); and glioma and astrocytoma (NCT02924038).

[0274] Checkpoint inhibitors that can be used in the present invention include glucocorticoid- induced tumor necrosis factor receptor (GITR) agonists. GITR agonists that are being studied in clinical trials include TRX518 (Leap Therapeutics), an agonistic anti-GITR antibody, in malignant melanoma and other malignant solid tumors (NCT01239134 and NCT02628574); GWN323 (Novartis), an agonistic anti-GITR antibody, in solid tumors and lymphoma (NCT 02740270); INCAGN01876 (Incyte/Agenus), an agonistic anti-GITR antibody, in advanced cancers (NCT02697591 and NCT03126110); MK-4166 (Merck), an agonistic anti-GITR antibody, in solid tumors (NCT02132754) and MEDI1873 (Medimmune/AstraZeneca), an agonistic hexameric GITR-ligand molecule with a human IgGl Fc domain, in advanced solid tumors (NCT02583165).

[0275] Checkpoint inhibitors that can be used in the present invention include inducible T- cell co-stimulator (ICOS, also known as CD278) agonists. ICOS agonists that are being studied in clinical trials include MEDI-570 (Medimmune), an agonistic anti-ICOS antibody, in lymphomas (NCT02520791); GSK3359609 (Merck), an agonistic anti-ICOS antibody, in Phase 1 (NCT02723955); JTX-2011 (Jounce Therapeutics), an agonistic anti-ICOS antibody, in Phase 1 (NCT02904226).

[0276] Checkpoint inhibitors that can be used in the present invention include killer IgG-like receptor (KIR) inhibitors. KIR inhibitors that are being studied in clinical trials include lirilumab (IPH2102/BMS-986015, Innate Pharma/Bristol-Myers Squibb), an anti -KIR antibody, in leukemias (NCT01687387, NCT02399917, NCT02481297, NCT02599649), multiple myeloma (NCT02252263), and lymphoma (NCT01592370); IPH2101 (1-7F9, Innate Pharma) in myeloma (NCT01222286 and NCT01217203); and IPH4102 (Innate Pharma), an anti-KIR antibody that binds to three domains of the long cytoplasmic tail (KIR3DL2), in lymphoma (NCT02593045).

[0277] Checkpoint inhibitors that can be used in the present invention include CD47 inhibitors of interaction between CD47 and signal regulatory protein alpha (SIRPa). CD47/SIRPa inhibitors that are being studied in clinical trials include ALX-148 (Alexo Therapeutics), an antagonistic variant of (SIRPa) that binds to CD47 and prevents CD47/SIRPa-mediated signaling, in phase 1 (NCT03013218); TTI-621 (SIRPa-Fc, Trillium Therapeutics), a soluble recombinant fusion protein created by linking the N-terminal CD47- binding domain of SIRPa with the Fc domain of human IgGl, acts by binding human CD47, and preventing it from delivering its “do not eat” signal to macrophages, is in clinical trials in Phase 1 (NCT02890368 and NCT02663518); CC-90002 (Celgene), an anti-CD47 antibody, in leukemias (NCT02641002); and Hu5F9-G4 (Forty Seven, Inc.), in colorectal neoplasms and solid tumors (NCT02953782), acute myeloid leukemia (NCT02678338) and lymphoma (NCT02953509).

[0278] Checkpoint inhibitors that can be used in the present invention include CD73 inhibitors. CD73 inhibitors that are being studied in clinical trials include MEDI9447 (Medimmune), an anti-CD73 antibody, in solid tumors (NCT02503774); and BMS-986179 (Bristol-Myers Squibb), an anti-CD73 antibody, in solid tumors (NCT02754141).

[0279] Checkpoint inhibitors that can be used in the present invention include agonists of stimulator of interferon genes protein (STING, also known as transmembrane protein 173, or TMEM173). Agonists of STING that are being studied in clinical trials include MK-1454 (Merck), an agonistic synthetic cyclic dinucleotide, in lymphoma (NCT03010176); and ADU-S100 (MIW815, Aduro Biotech/Novartis), an agonistic synthetic cyclic dinucleotide, in Phase 1 (NCT02675439 and NCT03172936).

[0280] Checkpoint inhibitors that can be used in the present invention include CSF1R inhibitors. CSF1R inhibitors that are being studied in clinical trials include pexidartinib (PLX3397, Plexxikon), a CSF1R small molecule inhibitor, in colorectal cancer, pancreatic cancer, metastatic and advanced cancers (NCT02777710) and melanoma, non-small cell lung cancer, squamous cell head and neck cancer, gastrointestinal stromal tumor (GIST) and ovarian cancer (NCT02452424); and IMC-CS4 (LY3022855, Lilly), an anti-CSF-lR antibody, in pancreatic cancer (NCT03153410), melanoma (NCT03101254), and solid tumors (NCT02718911); and BLZ945 (4-[2((lR,2R)-2-hydroxycyclohexylamino)- benzothiazol-6-yloxyl]-pyridine-2-carboxylic acid methylamide, Novartis), an orally available inhibitor of CSF1R, in advanced solid tumors (NCT02829723).

[0281] Checkpoint inhibitors that can be used in the present invention include NKG2A receptor inhibitors. NKG2A receptor inhibitors that are being studied in clinical trials include monalizumab (IPH2201, Innate Pharma), an anti-NKG2A antibody, in head and neck neoplasms (NCT02643550) and chronic lymphocytic leukemia (NCT02557516).

[0282] In some embodiments, the immune checkpoint inhibitor is selected from nivolumab, pembrolizumab, ipilimumab, avelumab, durvalumab, atezolizumab, or pidilizumab.

EXAMPLES

[0283] The following Examples provide syntheses of the provided compounds and their in vitro activity. The examples are intended to illustrate the invention and are not to be construed as being limitations thereon. All starting materials, building blocks, reagents, acids, bases, dehydrating agents, solvents, and catalysts utilized to synthesis the compounds of the present invention were either commercially available or can be produced by organic synthesis methods known to one of ordinary skill in the art (Houben-Weyl 4th Ed. 1952, Methods of Organic Synthesis, Thieme, Volume 21). Further, the compounds of the present invention can be produced by organic synthesis methods known to one of ordinary skill in the art as shown in the following examples.

[0284] The following list provides definitions of certain abbreviations as used herein. It will be appreciated that the list is not exhaustive, but the meaning of those abbreviations not herein below defined will be readily apparent to those skilled in the art: CDI is 1,1’- carbonyldiimidazole; DBU is l,8-diazabicyclo[5.4.0]undec-7-ene; DCM is dichloromethane; DIAD is diisopropyl azodicarboxylate; DIPA is diisopropylamine; DIPEA is N,N- diisopropylethylamine; DMAP is 4-(dimethylamino)pyridine; DMF is N,N- dimethylformamide; DMSO is dimethyl sulfoxide; EA is ethyl acetate; EDCI is -Ethyl-3-(3- dimethylaminopropyl)carbodiimide; Et 2 0 is diethyl ether; EtOH is ethanol; HC1 is hydrochloric acid; HOAc is acetic acid; HOBt is hydroxybenzotriazole; HPLC is high performance liquid chromatography; MeCN is acetonitrile; MeOH is methanol; MS is mass spectrometer or mass spectrum; NaOH is sodium hydroxide; PE is petroleum ether; PMB is 4-methoxybenzyl; PPI1 3 is triphenylphosphine; prep-HPLC is preparative high performance liquid chromatography; prep-TLC is preparative thin-layer chromatography; Py is pyridine; TBTU is 2-(lH-benzotriazole-l-yl)-l,l,3,3-tetramethylaminium tetrafluoroborate; TEA is triethylamine; TFA is trifluoroacetic acid; THF is tetrahydrofuran; THP is tetrahydropyranyl; TLC is thin-layer chromatography; and TSA is / oluenesulfonic acid monohydrate.

Example 1. General Method A. Synthesis of Salinomycin Diacyl Hydrazine Derivatives yield 56-74%

[0285] To a stirred solution of salinomycin sodium (1.0 equiv.) in DMF at 0 °C, were added diisopropylethylamine (2.0 equiv.), HOBt (1.1 equiv.), and EDCI (1.1 equiv.) and the mixture was stirred at same temperature further for 30 min. To this mixture was then added an appropriate acid hydrazide (1.0 equiv.) in one portion and the mixture was stirred at room temperature for 12 to 14 h. Upon completion (as confirmed by TLC), the solvent was removed under reduced pressure and the resulting residue was diluted with water to precipitation the product. The solid product was filtered and washed thoroughly with cold water and purified using silica gel column chromatography (ethyl acetate/hexanes) to afford the purified product salinomycin derivative.

[0286] The following compounds in Table 2 were prepared according to Example 1 using the shown hydrazide. Table 2. Salinomycin Diacyl Hydrazine Derivatives Prepared by General Method A

Example 2. Synthesis of Synthesis of Salinomycin Monoacyl Hydrazine Derivatives [0287] The following compound in Table 3 was prepared according to General Method A of Example 1 using the shown hydrazine. Table 3. Salinomycin Monoacyl Hydrazine Derivatives Prepared by General Method A Example 3. General Method B. Synthesis of Salinomycin Glycin Derivatives

Overall yield for two steps 76-81%

Synthesis of 1-17 by General Method B.

[0288] Step 1. To a stirred solution of Boc-glycine (1.0 mmol) in DMF (10.0 mL) at 0 °C was added N,N-diisopropylethylamine (2.0 mmol) followed by TBTU (1.1 mmol) and the reaction mixture was stirred at 0 °C for 30 min. 2-Amino-l,3,4-Thiadiadiazole (1.0 mmol) was then added in one portion and the resulting reaction mixture was stirred at room temperature overnight. Upon completion (as confirmed by TLC), the reaction mixture was then diluted with cold water to precipitate the product. The solid product was then filtered and washed with cold water (3x) to afford desired amide intermediate that was used directly in the next step.

[0289] Step 2. To a stirred solution of the amide intermediate (1.0 mmol) in dichloromethane (10.0 mL) at 0 °C, 4N HCl/dioxane (6.0 mL) was added drop wise and the reaction mixture was stirred at room temperature for 4 to 5 h. Upon completion (as confirmed by TLC), the reaction mixture was concentrated in vacuo and the resulting slurry was dissolved in toluene and concentrated in vacuo. The resulting solid was dissolved in a minimum amount of methanol and diluted with diethylether to precipitate the product. The resulting solid product was filtered and dried in vacuo to afford the desired ammonium salt. 79% yield: white solid; mp 215 - 218 °C; ¾NMR (400 MHz, DMSO- e) d (ppm) 9.22 (s, 1H), 8.56 (br s, 3H), 5.50 (br s, 1H), 3.92 (q, J= 5.7 Hz, 2H); 13 C NMR (101 MHz, DMS0 ): d (ppm) 166.2, 158.4, 149.9, 41.1; ESIMS: m/z calculated for C4H7N4OS (M) + 159.03, found 159.23. [0290] Step 3. To a stirred solution of salinomycin sodium (1.0 equiv.) in DMF at 0 °C, diisopropylethylamine (2.0 equiv.), HOBt (1.1 equiv.), and EDCI (1.1 equiv.) were added and the mixture was stirred at 0 °C for 30 min. To this mixture, the above synthesized ammonium salt (1.0 equiv.) was added in one portion and the resulting mixture was stirred at room temperature for 12 to precipitate the product. The solid product was filtered and washed thoroughly with cold water and purified using silica gel column chromatography (EtOAc/Heptane) to afford the purified product. Yield: 75%; white solid; mp 200 - 203 °C; ¾ NMR (400 MHz, CDCh): d (ppm) 11.83 (brs, 1H), 8.77 (s, 1H), 7.41 (t, J= 5.4 Hz, 1H), 6.07 (d, J= 10.7 Hz, 1H), 5.97 (d, J= 10.7 Hz, 1H), 4.47 - 4.63 (m, 2H), 4.12 (d, J= 9.4 Hz, 1H), 3.90 - 4.02 (m, 3H), 3.81 (dd, J= 6.4, 13.2 Hz, 1H), 3.71 (d, J= 9.9 Hz, 1H), 3.65 (d, J = 9.4 Hz, 2H), 2.88 - 2.99 (m, 1H), 2.76 - 2.85 (m, 1H), 2.54 (d, J= 8.3 Hz, 1H), 2.28 - 2.39 (m, 1H), 2.14 (t, J= 10.5 Hz, 1H), 0.78 - 1.97 (m, 46H), 0.75 (d, J= 7.0 Hz, 3H), 0.67 (d, J = 6.8 Hz, 3H); 13 C NMR (101 MHz, CDCh): d (ppm) 215.1, 176.3, 168.6, 158.6, 147.5, 132.8, 121.0, 106.4, 98.9, 88.7, 78.7, 76.8, 75.7, 74.2, 71.4, 70.9, 69.1, 66.9, 60.4, 54.6, 48.9, 47.6, 43.4, 40.4, 38.4, 36.6, 36.2, 32.9, 30.6, 30.5, 29.0, 28.0, 26.5, 25.7, 22.1, 21.9, 20.4, 18.0, 17.5, 15.6, 14.6, 13.8, 11.9, 11.5, 7.6, 6.3; ESIMS: m/z calculated for C 46 H 74 N 4 O 11 S (M-H 2 0+H) + 873.50, found 873.72. HPLC purity 94.6% (FIG. 1).

[0291] Compounds 1-18, 1-19, 1-20, 1-21, 1-22, 1-23, and 1-24 were prepared according to General Method B.

Example 4. Biology Assay

[0292] The activity of salinomycin and its derivatives of the present invention was examined in the context of (i) beta catenin mediated signaling which play critical role in breast cancer growth and resistance; (ii) their effect on tumor growth, microenvironment, refraction and relapse; and (iii) their ability to inhibit angiogenesis.

Salinomycin and its derivatives suppress the phosphorylation of beta-catenin [0293] The interaction of salinomycin and its derivatives of the present invention with beta- catenin and whether they inhibit the phosphorylation of beta catenin was investigated. As shown in FIG.2, salinomycin and its derivatives 1-17 and 1-18 inhibit phosphorylation of beta-catenin at Ser675.

Salinomycin and its derivatives suppress the protein expression involved in angiogenesis, invasion, and metastasis

[0294] VEGF, c-myc, and MMP-9 regulate angiogenesis, invasion and metastasis. Whether Salinomycin and its derivatives 1-17 and 1-18 can inhibit these markers and eventually inhibit the angiogenesis, invasion and metastasis was investigated. MDA-MB-231 breast cancer cells showed constitutive VEGF, c-myc, and MMP-9 expression and treatment of cells with salinomycin and its derivatives inhibited the expression in a dose dependent manner (FIG. 2). Salinomycin and its derivatives suppress the in-vitro HUVEC tube formation [0295] The tumor microenvironment is highly heterogeneous and is comprised of numerous tissue types including epithelial cancer cells, stromal cells, immune cells and endothelial cells. Endothelial cells in particular, play a vital role in angiogenesis for the supply of nutrients and oxygen throughout the rapidly dividing tumor. Since salinomycin derivatives were found to inhibit expression of VEGF above, which is a marker of angiogenesis, the ability of salinomycin derivatives to inhibit the tube forming ability of endothelial cells was investigated in a widely employed in vitro model of HUVEC cells. The capability of endothelial cells to divide and migrate in response to angiogenic signals was measured. Specifically, in the in vitro HUVEC model, angiogenic factors such as vascular endothelial growth factor (VEGF) are used to induce and differentiate endothelial cells to form tube-like structures on a supporting matrix. Here, salinomycin derivative 1-17 was shown to inhibit tube formation at non-toxic concentrations and may be working through inhibition of angiogenesis and related processes (FIG. 4).

Salinomycin and its derivatives inhibit cell proliferation and induce the apoptosis [0296] The cytotoxic potential of salinomycin and its derivatives in various breast cancer cells was examined in a MTT assay. As shown in Table 4, salinomycin and its derivatives I- 17 and 1-18 inhibit the growth of breast cancer cells.

Table 4. ICso of Salinomycin and its Derivatives in Breast Cancer Cells (mM)

[0297] Whether salinomycin and its derivatives can induce the apoptosis by inhibiting the expression of anti-apoptotic proteins such as Bcl-xL was investigated. Results show that salinomycin and its derivatives inhibit expression of Bcl-xL (FIG. 5).

[0298] All publications, patents, patent applications and other documents cited in this application are hereby incorporated by reference in their entireties for all purposes to the same extent as if each individual publication, patent, patent application or other document were individually indicated to be incorporated by reference for all purposes.

[0299] While various specific embodiments have been illustrated and described, it will be appreciated that various changes can be made without departing from the spirit and scope of the invention(s).