Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SCREW COMPRESSOR ELEMENT AND MACHINE
Document Type and Number:
WIPO Patent Application WO/2019/186374
Kind Code:
A1
Abstract:
Screw compressor element provided with a housing wherein a rotor is rotatably arranged by way of two bearings, respectively being a cylinder bearing (3) and a ball bearing (4), each provided with an inner ring (5, 6) and an outer ring (7, 8), separated by respectively cylindrical, or ball-shaped rolling elements (9, 10) that contact the inner ring (5, 6) and the outer ring (7, 8) at the location of a raceway (11a, 11b, 12a, 12b), characte rised in that,next to the respective raceway (11a, 12a), the inner rings (5, 6) of the aforementioned bearings (3, 4) have a smaller outer diameter (B) than the respective raceway (11a, 12a) on the side facing the other bearing (3, 4) and in that next; to the respective raceway (11a, 12a), the inner rings (5, 6) of the bearings have a greater outer diameter (C, D) than the respective raceway (11a, lib) on the side facing away from the other bearing (3, 4).

More Like This:
Inventors:
DE BOCK, Simon (naamloze vennootschapBoomsesteenweg 957, 2610 Wilrijk, 2610, BE)
DE ROOSTER, Tom (Blaasveldstraat 56, 2811 Leest, 2811, BE)
Application Number:
IB2019/052420
Publication Date:
October 03, 2019
Filing Date:
March 26, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ATLAS COPCO AIRPOWER, NAAMLOZE VENNOOTSCHAP (Boomsesteenweg 957, 2610 Wilrijk, 2610, BE)
AKTIEBOLAGET SKF (Hornsgatan 1, Göteborg, 41550, SE)
International Classes:
F04C29/02; F01C21/02; F04C18/16
Foreign References:
EP2891764A12015-07-08
EP1845265A12007-10-17
DE202016106895U12016-12-28
DE102006015111A12007-10-04
EP2642145A12013-09-25
US5409359A1995-04-25
US4465446A1984-08-14
US5273413A1993-12-28
US20160312823A12016-10-27
Attorney, Agent or Firm:
VAN VARENBERG, Patrick et al. (Arenbergstraat 13, 2000 Antwerpen, 2000, BE)
Download PDF:
Claims:
Cl a ims ,

1. - Screw compressor element provided with a housing wherein 5 a rotor is rotatably arranged by way of two bearings, respectively being a cylinder bearing (3) and a ball bearing (4), each provided with an inner ring (5, 6) and an outer ring (7, 8) f separated by respectively cylindrical, or ball-shaped rolling elements (9, 10) that contact the inner0 ring (5, 6) and the outer ring (7, 8) at the location of a raceway {11a, lib, 12a, 12b), characterized in that next to the respective raceway (11a, 12a), the inner rings (5, 6) of the aforementioned bearings (3, 4) have a smaller outer diameter (B) than the respective raceway (11a, 12a) on the5 side facing the other bearing {3, 4) and in that next to the respective raceway (11a, 12a), the inner rings (5, 6) of the bearings have a greater outer diameter (C, D) than the respective raceway (11a, lib) on the side facing away from the other bearing (3, 4) .

v

Screw compressor element according to claim 1, in that next to the respective raceway (lib, 12b), the outer rings (7, 8) of the bearings (3, 4) have a smaller inner diameter (D, G) than the respective 5 raceway (I lb, 12b) both on the side facing the other bearing (3, 4) and on the side facing away from the other- bearing (3, 4) ,

3. - Screw compressor element according to claim 1 or 2,0 characterized in that the inner diameters (A) of the inner rings (5, 6} of the cylinder bearing (3) and of the ball bearing (4) are identical.

4. - Screw compressor element according to one or more of the previ ous claims , in that at least one nozzle

( 19 ) is arranged between the cy1inder hea ring (3) and the ball bearing (4) , this nozzle (19) being suitable for spraying a fluid into the cylinder bearing (3) and/or into the ball bearing (1) .

5.··· Screw compressor element according to one or more of the previous claims, characterised in that at least one nozzle (19} is arranged between the cylinder bearing (3) and the ball bearing (45 , this nozzle (19) being suitable for spraying a fluid in between the basket of the cylinder bearing (3) and the inner ring (5) and/or in between the basket of the ball bearing (4) and the inner ring (6) .

6. - Screw compressor element according to one or more of the previous claims, characterised in that the cylinder bearing (3) is provided with two fixed collars (13) on the outer ring (7) and one fixed collar (14) on the inner ring (5), or in that the cylinder bearing (3) is provided with two fixed collars (13) on the outer ring (7) and one loose collar (14) on the inner ring (7), or in that; the cylinder bearing (3) is provided with two fixed collars (13) on the outer ring (7) and one hook ring on the inner ring (5) .

7. - Screw compressor element according to one or more of the previous claims, characterised in that the difference between the diameter (E) of the rolling elements (9) of the cylinder bearing (3) and the diameter (Ft of the rolling elements (10) of the bail bearing (4) is not greater than 20%, preferably not greater than 10%, and yet preferably not greater than 5%.

8.- Screw compressor element according to one or more of the previous claims, characterised in that at least one of the rolling elements (9, 10) of the cylinder bearing (3) and/or the ball bearing (4) is made out of a ceramic material .

9. - Screw compressor element according to claim 8, character!seed in that all the rolling elements (9, 10) of the cylinder bearing (3) and/or ball bearing (A) are made out of a ceramic material .

10. - Screw compressor element according to one or more of the previous claims, characterized in that the cylinder bearing (3) and/or the ball bearing ( 4 ) are providea with a basket made out. of a polymer.

11. - Screw compressor element according to claim 10, characterized in that the polymer is fiber-reinforced.

12.- Screw compressor element according to one or more of the previous claims, characterized in that the outer ring (8) of the ball bearing (4) is provided with two raceways {12b, 12c).

13.- Screw compressor element according to claim 12, characteri ed in that the contact angles on the two raceways (12b, 12c) of the outer ring (8) of the ball bearing (4) are different .

14.- Screw compressor element according to one or more of the previous claims, characterised in that the bearings (3, 4) are suitable for being used at speeds higher than 1 * 106 ndm [millimeters x revolutions per minute] , preferably higher than 1,25 * 10s ndsn, and yet preferably higher than 1.5 * 10s ndra.

15. - Screw compressor element provided with a housing wherein a rotor is rotatably arranged by way of two bearings, respectively being a cylinder bearing (3) and a ball bearing {4} , each provided with an inner ring (5, 6) and an outer ring

{ 7 , 8), separated by respectively cylindrical, or ball-shaped rolling elements (9, 10) that contact the inner ring (5, 6) and the outer ring (7, 8) at the location of a raceway (11a, 11b, 12a, 12b) , characterized in that next to the respective raceway (11a, 12a) , the inner rings (5, 6) of the aforementioned bearings (3, 4) have a smaller outer diameter (B) than the respective raceway (11a, 12a) on the side facing away from the other bearing (3, 4) and in that next to the respective raceway (11a, 12a) , the inner rings (5, 6) of the bearings have a greater outer diameter (C, D) than the respective raceway (11a, lib) on the side facing the other bearing (3, 4 ) .

16.- Screw compressor element according to claim 15, characterized in that next to the respective raceway (lib,

12b), the outer rings (7, 8) of the bearings (3, 4) have a smaller inner diameter (D, G) than the respective raceway (lib, 12b) both on the side facing the other bearing (3, 4) and on the side facing away from the other bearing (3, 4) .

17.- Screw compressor element according to claim 15 or 16, characterised in that the inner diameters (A) of the inner rings (5, 6) of the cylinder bearing (3) and of the ball bearing (4) are identical,

18.- Screw compressor element according to one or more of the claims 15 to 17, characterised in that at least one nozzle {13} is arranged between the cylinder bearing {3} and the ball bearing (4), this nozzle (19) being suitable for spraying a fluid into the cylinder bearing (3) and/or into the ball bearing {4} ,

19.~ Screw compressor element according to one or more of the claims 15 to 18, characterised in that at least one nozzle (19) is arranged between the cylinder bearing (3) and the ball bearing (4), this nozzle (19) being suitable for spraying a fluid in between the basket of the cylinder bearing (3) and the inner ring (5) and/or in between the basket of the ball bearing (4) and the inner ring (6).

20.- Screw compressor element according to one or more of the claims 15 to 19, characterized in that the cylinder bearing (3) is provided with two fixed collars (13) on the outer ring (7) and one fixed collar (14) on the inner ring (5), or in that the cylinder bearing (3) is provided with two fixed collars (13) on the outer ring (7) and one loose collar (14) on the inner ring (7), or in that the cylinder bearing (3) is provided with two fixed collars (13) on the outer ring (7) and one hook ring on the inner ring (5) .

21.- Screw compressor element according to one or more of the claims 15 to 20, characterized in that the difference between the diameter (E) of the rolling elements (9} of the cylinder bearing (3) and the diameter (F) of the rolling elements (10) of the ball bearing (4) is not greater than 20%, preferably not greater than 10%, and yet preferably not greater than 5%.

22. Screw compressor element according to one or more of the claims 15 to 21, characterised in that at least one of the rolling elements (9, 10) of the cylinder bearing (3) and/or the ball bearing (4) is made out of a ceramic material .

23.- Screw compressor element according to claim 22, characterised in that ail the rolling elements (9, 10) of the cylinder bearing (3) and/or ball bearing (4) are made out of a ceramic material .

24.- Screw compressor element according to one or more of the claims 15 to 23, characterized in that the cylinder bearing (3} and/or the ball bearing (4) are provided with a basket made out of a polymer.

25.~ Screw compressor element according to claim 24, characterized in that the polymer is fiber-reinforced.

26.- Screw compressor element according to one or more of the claims 15 to 25, characterised in that the outer ring (8) of the bail bearing (4) is provided with two raceways (12b, 12c) . or element according to claim the contact angles on the rwo raceways {12b, 12c) of the outer ring (8) of the ball bearing (4) are different ,

28.- Screw compressor element according to one or more of the claims 15 to 27, characterised in that the bearings (3, 4) are suitable for being used at speeds higher than 1 * 106 ndm [millimeters x revolutions per minute] , preferably higher than 1.25 * 106 ndm, and yet preferably higher than 1.5 * 105 ndm. 29.- Machine provided with a housing wherein a rotor is rotatably arranged by way of two bearings, respectively being a cylinder bearing (3) and a ball bearing (4), each provided with an inner ring (5, 6) and an outer ring (7, 8), separated by respectively cylindrical, or ball-shaped rolling elements (9, IQ) that contact the inner ring (5, 6) and the outer ring (7, 8) at the location of a raceway (11a, lib, 12a, 12b) , characterised in that next to the respective raceway (11a, 12a) , the inner rings (5, 6) of the aforementioned bearings {3, 4) have a smaller outer diameter (B) than the respective raceway (11a, 12a) on the side facing the other- bearing (3, 4) and in that next to the respective raceway (11a, 12a), the inner rings (5, 6) of the bearings have a greater outer diameter (C, D) than the respective raceway (11a, lib) on the side facing away from the other bearing (3, 4) .

30. Machine according to claim 29, characterized in that the machine is a compressor, a blower, an expander, or a vacuum pum .

31. Machine according to claim 30, characterised in that the machine is an oil-free screw compressor, an oil-free blower, an oil-free expander, or an oil-free vacuum pump. 32.- Machine according to claim 31, characterised in that the machine is an oil-free compressor comprising a screw compressor element 15 according to one or more of the previous claims 1 to 28. 33.- Machine provided with a housing wherein a rotor is rotatably arranged by way of two bearings, respectively being a cylinder bearing (3) and a ball bearing (1), each provided with an inner ring (5, 6} and an outer ring (7, 8), separated by respectively cylindrical, or ball-shaped rolling elements (9, 10) that contact the inner ring (5, 6} and the outer ring (7, 8} at the location of a raceway (11a, lib, 12a, 12b) , characterized in that next to the respective raceway (11a, 12a) , the inner rings (5, 6) of the aforementioned bearings (3, 4) have a smaller outer diameter (B) than the respective raceway (11a, 12a) on the side facing away from the other bearing (3, 4) and in that nex to the respective raceway (lia, 12a), the inner rings (5, 6) of the bearings have a greater outer diameter (C, D) than the respective raceway {11a, lib) on the side facing the other bearing ( 3 , 4 ) .

34.- Machine according to claim 33, characterised in that the machine is a compressor, a blower, an expander, or a vacuum pump .

35.- Machine according to claim 34, characterized in that the machine is an oil-free screw compressor, an oil-free blower, an oil-free expander, or an oil-free vacuum pump.

5 36.- ichine according to claim 35, characterised in that the machine is an oil-free compressor comprising a screw compressor element 15 according to one or more of the previous claims 1 to 28.

0

5

0

5

U

Description:
Screw compressor element and machine.

The present invention relates to a screw compressor element, b

More specifically, the invention relates to a screw compressor element provided with a housing wherein a rotor is rotatably arranged by way of two bearings, respectively a cylinder bearing and a ball bearing, A cylinder bearing is also referred0 to as a roller bearing.

Preferably, the rotational speed of screw compressors is as high as possible in order to allow for the generation of as much compressed gas as possible. For oil-injected screw5 compressors, the rotational speed is still limited by the so-called hydraulic loss, but in oil-free screw compressors, no liquid enters the compression chamber, for which reason there is no hydraulic loss, and the highest possible rotational speed is desirable in order to generate a maximum0 output. The same applies to oil-free screw or roots blowers, oil-free screw or roots vacuum pumps, oil-free tooth compressors and tooth vacuum pumps.

During the compression of the gas, the so-called "gas forces" will exercise considerable forces on the rotors, in a radial as well as in an axial direction, ana therefore on the bearings .

One requirement for bearings that are used in a screw compressor is that they must have a considerable load-bearing capacity, and furthermore, that they must also be suitable for very high rotational speeds, specifically in case of oil-free screw compressors.

However, in order to make the load-bearing capacity as high as possible, bearings are preferably made as large as possible and comprise the largest possible rolling elements, whereas for high speed applications, bearings should be as small as possible, and comprise the smallest possible roiling elements. At higher speeds, it is harder to supply the oil to the hearing and drain it from it, in particular and mostly towards the raceways, and specifically towards the raceway on the inner- ring, where the oil is intended to provide lubrication and cooling. The rotating rolls or balls themselves, whether encased in a bearing cage or not, continuously interrupt the oil supply and thus generate swirling motions to such an extent that the oil is barely capable of reaching the bearings. Therefore, at very high rotational speeds, the lubrication of the bearing is not as good, with a resultant reduction of the load-bearing capacity,

It is known that every rotor needs a set of bearings at each end of a shaft, of which one ’fixed' set of bearings absorbs the full axial load and a part of the radial load, and one 'free' set of bearings absorbs the rest of the radial load but is otherwise axially free.

Since the compression of gas generates a great deal of heat, one set of bearings must be free in order to absorb the inevitable thermal expansion of the rotor. This implies that the fixed set of bearings must support a high axial load as well as a radial load. Since bearings are typic-ally suited to support either primarily a radial load or r.simarily an axial load, the fixed set of bearings will typic-allv consist of a minimum of two bearings.

A first possibility is a set of bearings consisting of one bearing for the radial load, which is preferably axially free, and one bearing for the axial load, which is preferably r dially free.

A second possibility is a set of bearings consisting of two bearings, each of which is capable of bearing a part; of the radial load and a part of the axial load. In this case, neither of the two bearings can be axially free, since the axial load is distributed over both bearings .

It is also possible to use a set of bearings consisting of three or more bearings, but such sets of bearings are generally more expensive and more complicated, and they tend to be used today only in specific cases, such as screw compressors for high or very high pressures.

There are two known embodiments of such fixed sets of bearings: a) a combination of a cylinder bearing, typically a single-row cylinder bearing of the NU or N type, and a four-point bearing;

b) two angular contact ball bearings, either positioned back-to-back, i„ e . in a so-called 0 configuration, or with their backs away from each other, e . m a so-called X configuration.

NO-type hearings have two fixed collars on the outer ring, and an inner ring without collars. N-fcype bearings have two fixed collars on the inner ring, and an outer ring without collars .

The known embodiments a) and b) of fixed sets of bearings all have disadvantages.

Even though in embodiment a) , the NU bearings are capable of bearing a large radial load and are capable of being well lubricated, a four-point bearing is much harder to lubricate at high speeds because the inner ring is provided with two hedges' . These 'edges' prevent the easy injection of lubrication fluid into the bearing.

In embodiment b) , the angular contact ball bearings must be installed very carefully with the correct pre-load, which makes the assembly very complex. Moreover, the radial load- bearing capacity is smaller than for a cylinder bearing. For the X configuration, lubrication is more laborious, since the lubrication fluid is preferably injected on the side on which the inner ring has no 'edges' , such that two nozzles are needed, on both sides of the set of bearings.

Another disadvantage is that for both embodiments, the axial load-bearing capacity is identical in both directions. During operation, the gas forces operate in only one direction, but under certain conditions, for instance during starting up, force may also be exercised in the opposite direction, However, this opposite force is much smaller, and it only exists buring very short periods. This means that in both embodiments , the axial load.-bearing capacity is chosen as a function of the gas forces, and is therefore over- dimensioned for the aforementioned opposite force

The result of this is not only a waste of capacity, and therefore of money, but it also unnecessarily limits the maximum possible rotational speed or the speed of the 10 bearing.

US 4,465,446 describes the traditional embodiment a) ,

US 5,273, 413 describes a variant of a fixed set of bearings according to embodiment b) in which the angular contact bearings have a different contact angle. Even though this is an improvement with respect to the traditional embodiment, this variant does not overcome all the aforernent1 oned di sadvantages .

20

The object of the present invention is to offer a solution to at least one of the aforementioned and/or other disadvantages .

For these purposes, the invention has as its subj ect a screw compressor provided with a housing in which a rotor is rotatably arranged by way of two bearings, respectively a cylinder bearing and a ball bearing, each provided with an inner ring and an outer ring with cylindrical, respectively ball-shaped roiling elements between them, which contact the

" V' inner ring and the outer ring at the location of a raceway, in particular characterized in that the inner rings of the bearings, next to the respective raceway on the side facing the other hearing, have a smaller outer diameter than the respective raceway, and in that the inner rings of the aforementioned bearings, next to the respective raceway on the side facing away from the other bearing, have a larger outer diameter than the respective raceway.

The raceway, also referred to as "race track", refers to the contact surface between the rolling elements and the bearing rings.

One advantage is that such a configuration of bearings has a satisfactorily high radial load-bearing capacity and an asymmetric axial load-bearing capacity. The cylinder bearing provides a relatively large radial load-bearing capacity, the ball bearing is capable of absorbing relatively large axial forces that operate in an axial direction from the ball bearing toward the cylinder bearing, and the cylinder bearing is capable of absorbing relatively small axial forces that operate in an axial direction from the cylinder bearing toward the ball bearing.

This way, the configuration of bearings according to the invention is able to provide the exact load-bearing capacity that is needed for the fixed bearing of a rotor in a screw compressor, which makes this configuration of bearings specifically suitable for high speed applications.

Since there are no collars or 'edges' next to the raceways on the inner bearing rings on the sides of the bearings facing each other, this will simplify the realization of good lubrication. Since the raceways are easily accessible due to the absence of collars or 'edges' between the two bearings, the raceways can be lubricated well, and used lubrication fluid can easily drain, which also allows for optimal cooling of the set of bearings, even at high speeds.

Nest to the respective raceway, the outer rings of the bearings preferably have a smaller inner diameter than the respective raceway, on the side facing the other bearing as well as on the side facing away from the other bearing.

In other words: the outer rings are provided with collars or 'edges' .

These will guide the rolling elements through the outer rings of the bearinas . in the cylinder bearing this is realized by the two collars on both sides of the cylindrical rolling elements.

In case of the ball bearing, the outer ring will have a raceway at the location of the two aforementioned edges, such that at high speeds, one of these raceways will limit the axial displacement of the ball-shaped rolling elements.

An additional advantage of the two collars on the outer rings is that an oil bath or oil reservoir is created in the outer ring between the two collars. When starting up the screw compressor element, lubrication of the balls will be provided immediately by way of the oil present in the aforementioned oil bath. Such an oil bath or oil reservoir does not exist or barely exists in case of an angular contact bearingg,. because its outer ring has only one collar. As a result , when starting up the machine, the lubrication of the bearing will not start immediately via an oil bath, but only after the oil is supply via one or more nozzles.

According to a preferred feature of the invention, at least one nozzle is arranged between the cylinder bearing and the ball bearing, such that the nozzle is suitable to direct one or more jets of fluid into the cylinder bearing and/or the ball bearing.

Since there are no collars or 'edges' next to the raceways on the inner bearing rings on the sides of the bearings facing each other, the jets of fluid will end up directly in the bearings.

This implies that the raceways will be well lubricated.

In one practical embodiment, the difference between the diameter of the rolling elements of the cylinder bearing and the diameter of the rolling elements of the ball bearing is not greater than 20%, preferably not greater than 10% and yet preferably not greater than 5%. For high speeds, it is better for the rolling elements to have the same size, since otherwise, one of the bearings may be subject to centrifugal forces to a greater degree than the other bearing, such that as a result, the first bearing 'will reduce the maximum speed.

This is obviously applicable only when both types of rolling elements are made of the same material or of materials with the same specific weight * If one of the types of rolling elements is made out of a lighter material, it is preferred that they be larger. In a preferred embodiment, at least one of the rolling elements of the cylinder bearing and/or the ball bearing is made out of a ceramic material , such as, for instance, silicon nitride, zirconium oxide, aluminum oxide, or tungsten carbide . It is obviously not impossible that all the rolling elements of the cylinder bearing and/or the ball bearing are made out of a ceramic materia .

The ceramic rolling element will recondition or ’repair' the raceway while rolling along the raceway, and possibly it will smoother minor damages to the raceway.

This results in a longer service life of the bearing, in a higher load-bearing capacity, and it increases the maximum speed of the bearing.

By making all the rolling elements out of a ceramic material, the centrifugal forces are reduced to a minimum, since ceramic material is usually much lighter than steel.

In order to make the bearing as light as possible, the cylinder bearing and/or the ball bearing are provided with a cage made out of a polymer. This polymer may, for instance, be PEEK (polyether ether ketone), polyamide (for instance polyamide 66 or po1yamide 4,6} or phenolic resin , This polymer is preferably fiber-reinforced, for instance with glass fiber or carbon fiber. This will not only ensure that the bearings are lighter because the polymer is lighter than the traditional materials used for the bearing cage, but the cage will also provide for a certain damping, which is advantageous in terms of absorbing vibrations that may occur at high speeds .

The invention also relates to a screw compressor element according to one of the claims 15 to 28, with similar benefits to those described above . The invention also relates to a machine according to one of the claims 29 to 36.

This machine may be a compressor, an expander, or a vacuum pump ,

This machine may also be an oil-free screw, tooth, or roots compressor or an oil-free blower .

In this case, the bearings are preferably mounted on a rotor shaft on the outlet side of the compressor or the blower.

In order to better demonstrate the features of the invention, some preferred embodiments are described hereinafter, in an exemplary manner and without any restrictive character, of a screw compressor element and of a machine according to the invention, with reference to the accompanying drawings, herein Figure 1 is a schematic representation of a part of a screw compressor element according to prior art;

Figure 2 is a schematic representation of a screw compressor according to the invention; and

Figure 3 is a schematic representation of the part that is marked in Figure 2 with reference marker F3 ,

The set of bearings 1 in a screw compressor element according to prior art as shown in Figure 1 relates to a fixed set of bearings 1, mounted on a shaft 2. The set of bearings 1 contains two bearings 3, 4: a cylinder bearing 3 and a ball bearing 4. Each bearing 3, 4 has an inner ring 5, 6 and an outer ring 7, 8, with cylindrical rolling elements 3 or ball-shaped rolling elements 10 between them, respectively.

The rolling elements 9, 10 contact the inner ring 5, 6 and the outer ring 7, S at the location of the raceway 11a, lib, 12a, 12b,

As shown in Figure 1, the nominal inner diameters Ά of the inner rings 5, 6 are equal. This means that the 'bore hole' of the inner rings 5, 6, i , e . the opening used to arrange the bearings 3, 4 on a shaft 2, is identical.

The cylinder bearing 3 is a bearing of the NJ type: the outer ring 7 is provided with two collars 13; the inner ring 5 is orovided with one collar 14. As shown in Figure 1, the collar 14 on the inner ring 5 faces away from the ball bearing 4.

By using an NJ bearing, the inner ring 5 has a smaller outer diameter B nest to the raceway 11a on the side facing the ball bearing 4, and a larger outer diameter C next to the raceway 11a on the other side.

Next to the raceway lib, the outer ring 7 of the cylinder bearing 3 also has on both sides of the raceway lib a smaller inner diameter D than the raceway lib, because the outer ring 7 is provided with two collars 13.

The ball bearing 4 in this case is an angular contact bearing, wherein next to the raceway 12a, on the side facing the cylinder bearing 3, the inner ring 6 has a smaller outer diameter B than the raceway 12a on the inner ring 6,

In other words: the inner ring 6 of the bail bearing 4 has no 'edge' on the side of the cylinder bearing 3.

Next to the raceway 12a, on the side facing away from the cylinder bearing 3, the inner ring 6 has a larger outer diameter G than the raceway 12a on the inner ring 6.

Figure 2 is a schematic representation of a screw compressor element 15 according to the invention,

The screw compressor element 15 is provided with a housing 16, in 'which a rotor 17 is rotatably arranged. In this case, two such rotors 17 are arranged, but this is not: necessary in terms of the invention. The rotors 17 are borne by way of their shaft 18 by bearings 3, 4 in the housing 16. Even though in the example shown, both ends of the shaft 18 of both rotors 17 are borne by way of two bearings 3, 4 in the housing 16, it is also possible that only one end of the shaft 18 or only one of the two rotors 17 is borne with two bearings 3, 4 in the housing 16.

Figure 3 shows a part of the screw compressor element 15 according to the invention from Figure 2, and more specifically an end of a shaft 18 of one of the rotors 17 with the two bearings 3, 4, As is clearly visible in this detail figure, the one bearing 3 is a cylinder bearing, and the other bearing 4 is a ball bearing.

In the shown example, the cylinder bearing 3 is the same as in Figure 1, but for this cylinder bearing 3, for instance, the following types may be used:

- an NJ bearing as shown in Figure 1, in which the cylinder bearing 3 has two fixed collars 13 on the outer ring 7 and one fixed collar 14 on the inner ring 5;

- an NJP bearing, in which the cylinder bearing 3 has two fixed collars 13 on the outer ring 7 and one loose collar 14 on the inner ring 5; or

an NU bearing with an angle ring, in which the cylinder bearing 3 has two fixed collars 13 on the outer ring 7 and an angle ring on the inner ring 5. The ball bearing · 4 is different from the one in the configuration shown in Figure 1. In this case, the ball bearing 4 is a three-point bearing, more specifically a bearing that has two raceways 12b and 12c on the outer ring 8 and one raceway 12a on the inner ring 6. The ball bearing 1 is therefore not an angular contact ball bearing.

An example of a suitable ball bearing 4 is described ;, for instance, in US 2016/0312823 A1 in the name of Aktiebolaqet

SKF. The description of this American patent application according to paragraphs [0022] to [0038] of US 2016/0312823 A1 is integrally incorporated by reference in the present application . Alternatively, the ball bearing 4 may consist of a four-point bearing, of which the inner ring 6 as well as the outer ring 8 have two raceways 12a, 12b, 12c,

In this case, though not necessarily, the contact angles of the two raceways 12b and 12c are different.

Whenever the speed increases, the rolling elements 10 will experience an outward radial centrifugal force. This will involve a certain axial displacement .

Due to the presence of the second raceway 12c, the roiling elements 10 will roll on the second raceway 12c at high speeds, and the aforementioned axial displacement will be reduced to a minimum.

This will ensure that the set of be rings 1 can function optimally despite the high speeds. Furthermore, the axial displacement of the rotor on which the set of bearings 1 is positioned as a fixed bearing will be limited, such that there will be little or no increase of the play at the tip, and therefore little or no extra losses in the screw compressor due to leakages.

Furthermore, next to the raceways 12b, 12c, on the side facing the cylinder bearing 3 as well as on the side facing away from the cylinder bearing 3, the outer ring 8 of the bail bearing 4 has a smaller inner diameter: G than the raceways 12b, 12c.

The diameter E of the cylindrical rolling elements 9 is equal in this case to the diameter F of the ball-shaped rolling elements 10.

Because both types of rolling elements 9, 10 are made of the same material, the centrifugal forces will be of a similar magnitude ,

However, a difference in diameter E, F between the rolling elements 9, 10 of the two bearings 3, 4 cannot be ruled out. This difference is preferably less than 20%, more preferably less than 10% and most preferably not greater than 5%, such that the difference in the centrifugal forces can be limited in as much as possible.

Even though Figure 3 does not show a bearing cage, it can obviously not be excluded that one or both of the two bearings 3, 4 has a bearing cage. As shown in Figure 3, a nozzle 19 is arranged between the ball bearing i ana the cylinder bearing 3.

This nozzle 19 can direct jets 20 of lubrication fluid into the cyfinder bearing 3 and/or the ball bearing t

In this case, the nozzle 19 will direct two jets 2G of fluid, one at the cylinder bearing 3 and one at the ball bearing 4, respectively .

For these purposes, the nozzle 19 has two openings 21.

It is obviously also possible that two nozzles 19 are provided: one for the cylinder bearing 3, and one for: the bail bearing 4, However, in this case, one nozzle 19 is enough.

In this case, the nozzle 19 directs a jet 20 of oil at. the bearings 3, 4, It can obviously not be ruled out that another liquid be used, for instance water,

If one or both bearings 3, 4 are provided with a bearing cage, preferably, at least one nozzle 19 is arranged between the cylinder bearing 3 and the ball bearing 4, wherein the noz le 19 is suited for aiming a jet 20 of lubrication fluid between the cage of the cylinder bearing 3 and the inner ring 5, and/or between the cage of the bail bearing 4 and the inner ring 6, such that a big part of the lubrication fluid ends up on raceways, preferably on the raceways 11a, 12a of the inner rings 5, 6.

The bearings 3 ana 4 from Figure 3, and by extension, any set of bearings 1 according to the ievention, are suited for being used at speeds higher than 1 * 10 6 nd m [millimeter x revolutions per minute] , preferably higher than 1,25 * 10 6 nd m , and more preferably higher than 1.5 * 10 6 rid » .

Due to the specific features of a set of bearings 1 according to the invention, the disadvantages of the known sets of bearings at high speeds will not occur, such that the set of bearings 1 may be used at such high speeds.

For further clarification: Some additional explanations are given below of the type of bearing that can be used as a ball bearing 4 in a screw compressor element 15 or in another machine according to the invention. This explanation is taken from US 2016/0312823 Ά1 in order to make it possible to include features such as those described therein in the claims of the present patent application, to the extent that such should turn out to be necessary in ligh of earlier publications of which the applicants are currently still unaware. After all, it was demonstrated that the specific application of a three- point bearing as described in US 2016/031282.3 A1 leads to surprisingly good results in the specific application of a screw compressor element 15. It is clear that the scope of protection of the present invention is not limited to this specific configuration, but rather, that it should be considered a preferred embodiment.

A preferred roller bearing 4 comprises an outer ring and an inner ring. Between the inner ring and the outer ring, a number of rolling elements are arranged. The outer ring contains at least one raceway for rolling elements more than the inner ring. The rolling elements are arranged in single row, they are embodied as balls and are preferably encased in a cage . In one embodiment, the outer ring contains an additional and/or second raceway on a radially inwards- facing surface on which the first raceway is arranged as well. The two raceways of the outer ring are preferably symmetrical with respect to each other. The outer ring may be embodied as the conventional outer ring of a four-point bearing or as an outer ring of a similar design. In a preferred embodiment, the inner ring comprises exactly one raceway- The raceway of the inner ring is preferably arranged diagonally with respect to the first raceway of the outer ring. The inner ring is arranged concentrically within the outer ring,

The outer ring may be provided with two circular arc segments on its radially inward-facing surface, each of these arc segments comprising one of the raceways of the outer ring. Ά curvature radius of the circular arc segments may, for instance, be larger than a factor 1,01; 1.02; 1.03; 1.04;

1.05; 1.06; 1.07; 1,08; 1,09, or 1.20 than a jet of the rolling element. At one point, the aforementioned radially inward facing surface may have a curve or a discontinuity, such that during operation, the rolling elements run only on the two raceways and have no further contact with that surface. This point may be, for instance, at the radially outermost position .

The two raceways on the outer ring may be spaced axially at a distance from each other, this distance being larger than zero. The raceways preferably extend along the entire outer ring in the circumferential direction. Even though ail the variants of the invention shown and described above feature a compressor element 15, it is not excluded that the invention relates to a different machine, wherein this machine is provided with a housing in which a rotor is rotatably arranged by way of two bearings 3, 4, respectively a cylinder bearing 3 and a bail bearing 4.

This machine may be an oil-free screw compressor, blower, expander, or vacuum pump,

The aforementioned oil-free screw compressor comprises one or more of the compressor elements 15 shown and described above. It is possible that in all the variants shown and described above, the bearings 3, 4 have mutually switched positions, such that collars or 'edges 1 ' are now located next to the raceways 11a, 12a on the inner bearing rings 5, 6 on the inward-facing side of the bearings 3, 4.

This means that the bearings 3, 4 have collars or 'edges' next to the raceways 11a, 12a on the inner bearing rings 5, 6 that are facing each other, such that next to the respective raceway 11a, 12a, the inner rings 5, 6 of the aforementioned bearings 3, 4 have a smaller outer diameter 3 than the respective raceway 11a, 12a on the side facing away from the other bearing 3, 4 and in that next to the respective raceway 11a, 12a, the inner rings 5, 6 of the bearings have a greater outer diameter C, D than the respective raceway 11a, lib on the side facing the other bearing 3, Thus, the bearings will be positioned 'back-to-back' rather than 'face-to-face' , as in Figure 3.

In such a 'back-to-back' configuration of the bearings 3, 4, preferably, two nozzles 19 are used, on either side of the set of bearings 1.

Thus, the nozzles IS can inject a fluid on the side of the bearings 3, 4 on which the inner ring 5, 6 has no collar or 'edge' .

The present invention is in no way limited to the ercbodiments described in the examples and shown in the figures, but a machine and/or a screw compressor element according to the invention may be realized in a variety of forms and dimensions without falling outside the scope of the invention ,