Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SCREW PUMP FOR TRANSPORTING EMULSIONS SUSCEPTIBLE TO MECHANICAL HANDLING
Document Type and Number:
WIPO Patent Application WO/2003/048579
Kind Code:
A2
Abstract:
A screw pump for transporting a viscous product is described comprising a cylindrical housing connected to a removable bottom piece in one end and a removable cap in the opposite end, a rotor having one or more screw blades connected to a driving motor, an inlet and an outlet wherein the cylindrical housing is provided with a jacket for supply or removal of heat, and the rotor is provided with means for supply or removal of heat Such a screw pump is suitable for pumping emulsion susceptible to mechanical or temperature damage. Using such a pump e.g. food emulsions manufactured with reduced or without addition of emulsifiers may be transported without mechanical damaging the emulsion.

More Like This:
WO/2006/061914INDUCER AND PUMP
JPH07217594PUMPING INSTALLATION
Inventors:
GERSTENBERG KNUD AAGE (DK)
Application Number:
PCT/DK2002/000808
Publication Date:
June 12, 2003
Filing Date:
December 02, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KAG HOLDING AS (DK)
GERSTENBERG KNUD AAGE (DK)
International Classes:
F04D3/02; (IPC1-7): F04C/
Domestic Patent References:
WO1998035135A11998-08-13
Foreign References:
US5601414A1997-02-11
GB1306185A1973-02-07
Attorney, Agent or Firm:
Rasmussen, Preben (Høje Taastrup Boulevard 23, Taastrup, DK)
Download PDF:
Claims:
PATENT CLAIMS
1. Screw pump for transporting a viscous prod uct susceptible to mechanical damage comprising a cy lindrical housing (1) connected to a removable bottom piece (2) in one end and a removable cap (3) in the opposite end, a rotor (9) having one or more screw blades (11) connected to a driving motor (5), an inlet (7) and an outlet (8), characterize d in that the cylindrical housing (1) is provided with a jacket (4) for supply or removal of heat, and the rotor (9) is provided with means for supply or removal of heat.
2. Screw pump according to claim 1, where the viscous product is an emulsion.
3. Screw pump according to claim 1 or 2, wherein the means for supply or removal of heat in the rotor (9) is one or more channels inside the ro tor connected to an inlet (14) and an outlet (15) for a heattransfer medium.
4. Screw pump according to any of claim 1 to 3, wherein the distance between the screw blades (11) and the cylindrical housing is between 0.01 and 1 mm.
5. Screw pump according to claim 4, wherein the distance between the screw blades (11) and the cylin drical housing is between 0.03 and 0.2 mm.
6. Screw pump according to any of claims 15, wherein the one or more screw blades (11) are formed as foldable screw blades.
7. Screw pump according to any of claims 16, wherein the edge of the one or more screw blades (11) are provided with cladding of a hard metal.
8. Screw pump according to any of claims 17, wherein the ratio of the diameter of the rotor (9) and the inner diameter of the cylindrical housing is in the range of 0.50. 95.
9. Screw pump according to claim 8, wherein said ratio is in the range of 0.650. 9.
10. Use of a screw pump according to any of claims 19 for transport of an emulsion susceptible to mechanical damage having a viscosity higher than 100 cP.
11. Use according to claim 10, where the emul sion is an emulsion comprising an edible fat and wa ter.
12. Use according to claim 10 or 11, where the emulsion further comprises a gas.
13. Use according to any of claims 1012, where the emulsion is selected among: dairy products, mar garine, spread, mayonnaise, dressing, toppings and dough.
14. Use according to any of the claims 10 to 13, where the product during the transport is kept at a temperature of between25 and 85°C.
15. Use according to claim 14, where the prod uct is kept at a temperature in the range of 050°C.
16. Use according to any of the claims 1015, where the rotor (9) rotates with a speed of rotation of 10 to 800 rpm.
Description:
SCREW PUMP FOR TRANSPORTING EMULSIONS SUSCEPTIBLE TO MECHANICAL HANDLING The invention relates to a screw pump for transport of emulsions susceptible to mechanical han- dling. In particular the invention relates to a par- ticular design of a screw pump that enables it to transport emulsions, such as emulsions used in the food manufacture, without damaging the emulsions due to the mechanical treatment of the emulsions.

Background for the invention Emulsions are mixtures of at least two immis- cible phases comprising a continuous phase and one or more discontinuous phases present as small spheres in the continuous phase.

Often the emulsions are composed of an oil/fat phase and a water phase and optionally a gas phase.

Emulsions are widely used within food industry in products such as butter, spread, dressings and toppings; as well as within the non-food industry in products such as lotions, cremes and ointments.

Even though emulsions inherently are inhomoge- neous on the microscopic level it is essential for the perception of the emulsions that they appear ho- mogeneous for the consumer both with respect to the visual appearance and the texture of the product.

For emulsions the properties are to a large ex- tend determined by the size of droplets of the dis- continuous phase (s) as well as the distribution. Both the visual appearance as well as properties as vis- cosity, texture, mouth feel, etc, often referred to as functional properties, is influenced by the size and distribution of the droplets of the discontinuous phase (s).

Because emulsions are composed of at least two immiscible phases there is a risk that an emulsion may break and the two different phases may emerge as visible different components in the product, or that droplets of the discontinuous phase coalesce forming larger droplets with the consequence that the proper- ties of the product changes. Breakdown of an emulsion may appear in different ways depending on the extent of the break down of the emulsion and the properties of the emulsion. Breakdown of the emulsion may appear as streaks having a changed colour in the product, parts of the product having different colour, altered texture of the product or a changed mouth feel of the product. Any of these different appearances of the breaking of the emulsion results in a lower quality product and should therefore be avoided if possible.

In the case of gas being on of the phases in said emulsion damages may appear as gas droplets of an unacceptable size such as above e. g. 1 mm across or more.

Because the different phases of the emulsions react different to changing physical parameters emul- sions are susceptible to influences of physical pa- rameters such as temperature and pressure with the consequence that the visible streaks or areas of the emulsion having changed properties emerge and the product becomes less palatable.

These properties of the emulsions require the process equipment to have little impact on the emul- sion after the formation during the manufacture of said emulsions in order to obtain an acceptable prod- uct. In particular influence on the emulsions by ex- cessive pressure and temperature have to be avoided.

In US 4,938, 660 a screw pump for pumping vis- cous fluids is described. The pump includes a stator and a rotor lying coaxially with each other and has respective surfaces, which lie seal-tight against each other.

WO 99/19630 and WO 99/19631 disclose screw vac- uum pumps where the rotors are provided with a cool- ing system inside the rotors.

In order to improve the stability of emulsions additives such as emulsifiers are often added to the emulsion, with the consequence that the risk for dam- aging the emulsion is reduced even though it may not be completely avoided.

In the last year's consumers'acceptance of ad- ditives, particular in food products has declined.

Therefore there is an increasing desire and demand for food products containing low amount of additives or even completely without additives. This has let to productions of food emulsions, such as dairy prod- ucts, butter, margarine products, margarine, spread, dressings and toppings containing smaller amounts of emulsifiers, preferably completely without additions of emulsifiers, with the consequence that these prod- ucts are very susceptible to temperature and pressure influences, which makes them difficult to handle us- ing existing process equipment without damaging of the products.

The object of the present invention is to pro- vide new improved screw pumps for susceptible emul- sions, which reduce the risk for damaging a suscepti- ble emulsion during pumping.

Short description of the invention The inventors have surprisingly realized that the above object may be met by a screw pump for transporting a viscous product comprising a cylindri- cal housing (1) connected to a removable bottom piece (2) in one end and a removable cap (3) in the oppo- site end, a rotor (9) having one or more screw blades

(11) connected to a driving motor (5), an inlet (7) and an outlet (8), wherein the cylindrical housing (1) is provided with a jacket (4) for supply or re- moval of heat, and the rotor (9) is provided with means for supply or removal of heat.

Such a screw pump according to the invention has shown to be able to transport of a viscous fluid in particular an emulsion in a gentle way without ex- cessive influences of heat or pressure to the prod- uct.

In one embodiment the screw pump according to the invention is used to transport of emulsions, in particular within the food industry.

The design and operation of the screw pump se- cures that the pressure of the product entering the pump is essentially maintained throughout the pump.

Further the jacket (4) surrounding the cylindrical housing and the means for supply or removal of heat inside the rotor (9) secures that the temperature of the product may be kept within narrow limits during the transport, which combined secures that said sus- ceptible emulsions may be transported in a gentle way using this pump with low risk for damaging the emul- sion.

Short description of the drawing In the drawing one embodiment of the screw pump according to the invention is shown. The cylindrical housing (1) is connected to a removable bottom piece (2) provided with an inlet for the product (7), and a removable cap (3) provided with an outlet for the product (8). The rotor (9) is connected to the driv- ing motor (5) via a shaft connected to the bottom piece via a common shaft seal (6). The rotor (9) is provided with two screw blades (11). Surrounding the

cylindrical housing (1) is a jacket (4) for supply of removal of heat provided with an inlet (12) and an outlet (13) for a heat transfer medium. The rotor is provided with an inlet (14) and an outlet (15) for a heat transfer medium connected via a channel inside the rotor, indicated in the figure by dashed lines.

Detailed description of the invention The term emulsion according to the invention is to be understood as emulsions in the general under- standing of the term. In particular the screw pump according to the present invention is useful for emulsions comprising an oil/fat phase and a water phase and optionally a gas phase. Such emulsions may in relation with transport be regarded as fluids hav- ing high viscosities.

As the person skilled in the art will appreci- ate pumping of a fluid depends on the rheological properties of said fluid.

The emulsions to be used in the pumps according to the invention are emulsions having viscosities higher than 100 cP, preferably higher that 500 cP and most preferred higher that 1000 cP.

Such emulsions usually have viscosities that are strongly dependent on the temperature, where the viscosity decreases when the temperature increases.

Further the emulsions often behave as non- Newtonian fluids, i. e. the viscosity is dependent of the shear force being applied to the emulsion.

The cylindrical housing (1) of the pump accord- ing to the invention has a circular cross section and a length determined by the distance the emulsion has to be transported. It is important that the inner

cross section of the cylindrical housing has same area in the complete length in order to secure that no excessive pressure increase or decrease occur. In some embodiments a small difference between the pres- sure at the inlet and the outlet of the screw pump may be acceptable. Preferably this difference is a decrease of pressure from the inlet to the outlet of the screw pump.

The inner surface of the cylindrical housing has to be smooth in order to avoid deposits of emul- sion in irregularities in the surface. Further such a smooth surface is easier to clean which is advanta- geous, particular within the food industry. Prefera- bly the inner surface is a highly polished surface, most preferred highly polished steel.

Dependent of the particular use the housing may have a length of several meters, such as in the range of 0.2-10 m, preferably 0.5-5 m.

The rotor is arranged concentrically in the housing. In principle the means for supply or removal of heat arranged inside the rotor may be any means that is capable of delivering of removing heat from the rotor. Several such means will be known for the person skilled in the art. Examples of such means in- clude electrical heating elements and channels for passage of a heat transfer medium. The means for sup- ply or removal of heat may be provided in only a part of the length of the rotor or it may be extended to the total length of the rotor. More that one means for supply or removal of heat may be provided in a rotor, for example in different sections of the rotor in order to be able to have different temperatures in different parts of the housing, or means for removal of heat as well as means for supply of heat may be provided.

One or more screw blades may be provided on the rotor. Even though there may not be an upper limit for the number of screw blades arranged on the rotor

it is preferred that the number of screw blades is in the range of 1-10, preferably 1-6, and most preferred 2-5. In the case that more that one screw blade is provided they are preferably placed equidistantly around the rotor, i. e. two screw blades are placed in an angle of 180°, three in an angle of 120°, four in an angle of 90° etc.

The screw blades may be designed in any known shape. It is preferred that the screw blades are formed in a way so that maximal force applied to the product being pumped is applied in the axial direc- tion and minimal force is applied in the radial di- rection.

A foldable screw blade is a preferred example of such a design. Foldable screw blades are designed so that the tangent to the screw line becomes propul- sion lines. Usually, only the part of the tangent from the point of contact to one of the points of in- tersection with the cylindrical housing is used. Such screw blades are further characterised in that they in any position have same inclination with planes perpendicular to the screw axis.

The distance between the screw blade (s) and the cylindrical housing is preferably low in order to se- cure that the amount of material being pumped that is able to escape the pumping between the screw blades and the cylindrical housing is low. The distance be- tween the screw blades and the cylindrical housing may be selected in the range of 0.01 mm and 2 mm, preferably in the range of 0.01 to 1 mm and even more preferred in the range of 0.03 and 0.2 mm.

The edges of the screw blades function to keep the inner surface of the cylindrical housing free of residual material. In one embodiment the edges of the screw blades are made of or provided with a cladding of a hard material, preferably a hard metal.

Channels for the product in the screw pump ac-

cording to the invention is delimited by the inner surface of the housing, the rotor and the screw blade (s). It is essential for the present invention that the area (s) of the cross section of these chan- nels are the same through the length of the screw pump. In this way it is avoided that pressure differ- ences between different sections of the screw pump arise.

The feature that the cross section of any chan- nel along the screw pump is constant is secured by the fact that the inner diameter of the cylindrical housing and the diameter of the rotor are constant as well as the design of the screw blades.

The height of the channels i. e. the difference between the inner radius of the cylindrical housing and the radius of the rotor is an important factor in determining the rate of heat transfer between the material in the centre of the channel and the heat transfer planes, i. e. the inner surface of the cylin- drical housing and the rotor. The person skilled in the art will appreciate that said rate of heat trans- fer will be higher for a low height compared to a higher height. Further the person skilled in the art will appreciate that for a fluid having a very high viscosity transport of heat will be slower that for fluids having a lower viscosity.

The inner diameter and the diameter of the ro- tor are preferably selected so that the height of the channels is sufficient low to secure a suitable heat transfer between the fluid and the heat transfer planes.

The ratio of the diameter of the rotor and the diameter of the inner surface of the cylindrical housing may be selected in the range of 0.25 to 0.98.

Preferably the ratio is selected in the range of 0.5 to 0.95, more preferred in the range of 0.65 to 0.9.

The driving force for the rotor is provided with a motor connected to the rotor via a shaft. Such

motors and shafts as well as bearings, gaskets seal- ing rings etc. for such a motor and shaft is well known within the area. Preferably the motor is an electrical motor.

A jacket is provided on the outside of the cy- lindrical housing in order to supply or remove heat.

The jacket may in principle be any type of such jack- ets known within the area that is able to provide the desired transport of heat. In operation a heat trans- fer medium is passing through the jacket via an inlet and an outlet. Even though the heat transfer via the cylindrical housing is explained mainly as a jacket passed by a heat transfer medium, the person skilled in the art will appreciate that other means for transfer of heat known within the art may also be ap- plicable according to the present invention.

The heat transfer medium may be any suitable medium for transfer of heat. It is preferred that the heat transfer medium is an aqueous medium, preferably water. The heat transfer medium used in the jacket on the cylindrical housing may be the same or a differ- ent medium than the medium used in the means for sup- ply of removal of heat provided in the rotor.

Screw pumps according to the present invention may in principle be used for pumping any emulsion that is susceptible to mechanical or temperature dam- age. The screw pump is particular suited for pumping emulsion comprising oil or fat, water and optional a gas. The dry matter in said emulsion may be found in the range of 0-90%.

As examples of such emulsions can be mentioned dairy products, butter, margarine, margarine prod- ucts, spread, mayonnaise, dressings, toppings, dough, creams, lotions, ointments etc. Preferably the emul- sion is a food.

Such emulsions are susceptible to damage by me- chanical handling or by exposure to high or low tem- peratures, particular if such emulsions are manufac-

tured having a low or no content of emulsifiers.

Further the rheological properties of such emulsions are highly dependent on the temperature, where a higher temperature generally leads to a lower viscosity.

Viscosities of the emulsions to be pumped by the screw pump according to the invention is gener- ally higher that 100 cP, preferably higher than 250 cP.

During operation the rotational speed of the rotor may be in the range of 10-800 rpm, preferably 25-500 rpm in order to secure a low mechanical bur- den on the product.

The temperature of the product is generally sufficient high to secures that the viscosity is suitable to enable pumping of the product, but suffi- cient low to avoid damaging the emulsion.

For food emulsions the temperature is generally within the range of-25 to 85°C, preferably 0 to 50°C, more preferred in the range of 10 to 40°C.

In one embodiment the screw pump according to the invention is operated so that the temperature in the proximity of the inner surface of the cylindrical housing is different from the temperature in the proximity of the rotor. By operating the screw pump according to the invention in this way different vis- cosities may be obtained at different locations in the pump.

For example may the temperature of the jacket be adjusted to be low in order to obtain a high vis- cosity reducing the amount of emulsion that escapes between the screw blades and housing, whereas the temperature of the rotor may be adjusted to a higher temperature in order to provide a lower viscosity of the emulsion next to the rotor and thereby facilitate transport of the emulsion.

The screw pump is operated so that essentially

no pressure gradient is formed between the inlet and the outlet.

The screw pump according to the invention is now described in further details in the following ex- amples, which are provided only for illustration of the invention and should not be understood as limit- ing in any way.

Examples For the examples a screw pump having an inner diame- ter of the cylindrical housing of 105 mm and a diame- ter of the rotor of 83 mm was used, provided with a jacket around the cylindrical housing and channels inside the rotor. Heat transfer medium was water for both the jacket and the channels in the rotor.

Example 1.

Water in oil emulsion.

Dry matter 84 % (w/w) Viscosity 560 cP Inlet temperature 24°C Outlet temperature 12°C Pressure 4.6 bar, absolute pressure Rotational speed 240 rpm The emulsion was pumped and simultaneously cooled without damaging of the appearance and the functional properties of the emulsion.

Example 2.

Water in oil emulsion.

Dry matter 75 % (w/w) Viscosity 820 cP Inlet temperature 30°C Outlet temperature 16°C Pressure 5.6 bar, absolute pressure Rotational speed 240 rpm The emulsion was pumped and simultaneously cooled without damaging of the appearance and the functional properties of the emulsion.

Example 3.

Water in oil emulsion.

Dry matter 42.69 % (w/w) Viscosity 350 cP Inlet temperature 38°C Outlet temperature 18°C Pressure 3.6 bar, absolute pressure Rotational speed 240 rpm The emulsion was pumped and simultaneously cooled without damaging of the appearance and the functional properties of the emulsion.

Example 4.

Water in oil emulsion containing gas.

Dry matter 84.38 % (w/w) Viscosity 176 cP Temperature 20°C N2 injected 13 g/kg emulsion Pressure 4 bar, absolute pressure Rotational speed 250 rpm The emulsion was pumped without damaging of the ap- pearance and the functional properties of the emul- sion.

Example 5.

Water in oil emulsion containing gas.

Dry matter 75.66 % (w/w) Viscosity 276 cP Temperature 20°C N2 injected 22 g/kg emulsion Pressure 4 bar, absolute pressure Rotational speed 250 rpm The emulsion was pumped without damaging of the ap- pearance and the functional properties of the emul- sion.

Example 6.

Water in oil emulsion containing gas.

Dry matter 55.18 % (w/w) Viscosity 460 cP Temperature 14°C N2 injected 28 g/kg emulsion Pressure 4 bar, absolute pressure

Rotational speed 250 rpm The emulsion was pumped without damaging of the ap- pearance and the functional properties of the emul- sion.




 
Previous Patent: DOUBLE ACTION PUMP

Next Patent: AUTO SUCTION HYBRID PUMP