Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SECURITY THREAD OR STRIPE COMPRISING ORIENTED MAGNETIC PARTICLES IN INK, AND METHOD AND MEANS FOR PRODUCING SAME
Document Type and Number:
WIPO Patent Application WO/2011/107527
Kind Code:
A1
Abstract:
The present invention concerns a security thread or stripe for the incorporation into or onto a value-document or currency substrate, as well as a method and means of making such thread or stripe. The thread or stripe comprises a plastic foil which carries a hardened coating comprising oriented magnetic or magnetizable pigment particles, the orientation of said pigment particles representing graphic information. Preferred are optically variable magnetic or magnetizable pigment particles. Said hardened coating may also be comprised between a first and a second plastic foil. Said graphic information is a repetitive seamless pattern of suitable repetition length, which is produced using a magnetic orienting cylinder having a corresponding repetitive seamless magnetic field pattern. A magnetic orienting cylinder and a process for process for producing such magnetic orienting cylinder are also disclosed. The process comprises the coating of a cylindrical support body with a polymer material comprising a high-coercivity permanent-magnetic powder as a filler material, and magnetizing or engraving the seamless outer cylinder surface to form on the cylinder a repetitive seamless magnetic field pattern.

Inventors:
DEGOTT PIERRE (CH)
DESPLAND CLAUDE-ALAIN (CH)
SCHMID MATHIEU (CH)
RITTER GEBHARD (CH)
MUELLER EDGAR (CH)
Application Number:
PCT/EP2011/053148
Publication Date:
September 09, 2011
Filing Date:
March 03, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SICPA HOLDING SA (CH)
DEGOTT PIERRE (CH)
DESPLAND CLAUDE-ALAIN (CH)
SCHMID MATHIEU (CH)
RITTER GEBHARD (CH)
MUELLER EDGAR (CH)
International Classes:
B41M1/12; B41M3/00; B41M3/14; B42D15/00; D21H21/42
Domestic Patent References:
WO1990008367A11990-07-26
WO1992011142A11992-07-09
WO1996004143A11996-02-15
WO1996039685A11996-12-12
WO1998019866A11998-05-14
WO2002073250A22002-09-19
WO2003000801A22003-01-03
WO2007131833A12007-11-22
WO2002090002A22002-11-14
WO2003000801A22003-01-03
WO2005002866A12005-01-13
WO2008046702A12008-04-24
WO2008009569A22008-01-24
Foreign References:
DE102007043052A12009-03-12
US4652015A1987-03-24
US5068008A1991-11-26
US5324079A1994-06-28
EP0021350A11981-01-07
EP0185396A21986-06-25
EP0303725A11989-02-22
EP0319157A21989-06-07
EP0518740A11992-12-16
EP0608078A11994-07-27
EP0635431A11995-01-25
EP1498545A12005-01-19
US4838648A1989-06-13
EP0686675A11995-12-13
US6838166B22005-01-04
US2418479A1947-04-08
US2570856A1951-10-09
US3791864A1974-02-12
DE2006848A11971-09-02
US3676273A1972-07-11
US5364689A1994-11-15
US6103361A2000-08-15
US20040051297A12004-03-18
US20040009309A12004-01-15
EP0710508A11996-05-08
US20020160194A12002-10-31
FR1135734A1957-05-03
JPS56851A1981-01-07
US3785286A1974-01-15
US3900595A1975-08-19
US4054685A1977-10-18
US3011436A1961-12-05
Other References:
H.S. GOKTURK ET AL., ANTEC '92; ANNUAL TECHNICAL CONFERENCE OF THE SOCIETY OF PLASTICS ENGINEERS, May 1992 (1992-05-01), pages 491 - 494
JOURNAL OFAPPLIED POLYMER SCIENCE, vol. 50, 1993, pages 1891 - 1901
H. STÄBLEIN: "Ferromagnetic Materials", vol. 3, 1982, NORTH-HOLLAND PUBLISHING COMPANY, article "Hard Ferrites and Plastoferrites", pages: 441 - 602
T. SAKAI ET AL., INTERN. POLYMER PROCESSING, vol. 6, 1991, pages 26 - 34
Attorney, Agent or Firm:
BUBLAK, Wolfgang (Galileiplatz 1, München, DE)
Download PDF:
Claims:
Thread or stripe, preferably for the incorporation into or onto a value-document or currency substrate, comprising a plastic foil which carries a hardened coating comprising oriented magnetic or magnetizable pigment particles, the orientation of said pigment particles representing graphic information, the security thread or stripe being characterized in that said graphic information is a repetitive seamless pattern of suitable repetition length.

Security thread or stripe according to claim l, wherein said magnetic or magnetizable pigment particles are chosen from the group consisting of the plate- and the needle-shaped particles.

Security thread or stripe according to one of claims l to 2, wherein said magnetic or magnetizable pigment particles are chosen from the group consisting of the optical interference pigments.

Security thread or stripe according to claim 3, wherein said magnetic or magnetizable pigment particles are chosen from the group consisting of the optically variable magnetic thin-layer interference pigments.

Security thread or stripe according to one of claims 1 to 4, wherein said hardened coating is a structured coating in the form of indicia.

Security thread or stripe according to one of claims 1 to 5, wherein said hardened coating is an ink applied by a printing process selected from the group consisting of rotogravure printing using a seamless engraved printing cylinder, screen- printing using a seamless rotary screen, and flexographic printing using Anilox roller / doctor blade inking.

Security thread or stripe according to one of claims l to 6, wherein said repetition length is smaller than cm, preferably smaller than 3.5 cm, most preferably smaller than 2 cm.

Security thread or stripe according to one of claims 1 to 7, wherein said hardened coating is associated with a colored, dark, or metallized background coating.

Security thread or stripe according to one of claims 1 to 8, wherein said hardened coating is comprised between a first and a second plastic foil. Security thread or stripe according to one of claims 1 to 9, wherein the security thread or stripe is a laminated thread or stripe, obtained by laminating in register a first plastic foil carrying a first imprinting onto a second plastic foil carrying a second imprinting complementary to the first imprinting.

Security thread or stripe according to one of claims 1 to 10, wherein said hardened coating comprising magnetic or magnetizable pigment particles comprises additional security materials selected from the group consisting of the luminescent dyes and pigments, the infrared-absorbing dyes and pigments, and the metallic, magnetic, and interference pigments.

Security thread or stripe according to one of claims 1 to 11, wherein the security thread or stripe comprises additional security materials selected from the group consisting of the luminescent dyes and pigments, the infrared-absorbing dyes pigments, and the metallic, magnetic, and interference pigments comprised in at least one separate coating layer.

13. Security thread or stripe according to one of claims 1 to 12,

wherein the security thread or stripe further comprises a layer of micro-lenses or a holographic layer selected from the volume holograms and the metallized, demetallized, or partially demetallized (indicia) surface holograms.

14. Security thread or stripe according to one of claims 1 to 13,

wherein the security thread or stripe has a width comprised in between 0.5 mm and 30 mm.

15. Method for producing a security thread or stripe for the

incorporation into a value document or a currency substrate, comprising the steps of

a) coating a plastic foil with a coating composition comprising magnetic or magnetizable pigment particles;

b) orienting the magnetic or magnetizable pigment particles in the coating on the plastic foil through the application of a correspondingly structured magnetic field, such that the orientation of said pigment particles represents graphic information;

c) hardening the coating comprising the oriented magnetic or magnetizable pigment particles, such as to fix the optically variable magnetic or magnetizable pigment particles in their respective positions and orientations;

y) optionally applying an adhesive coating on at least one

surface of the plastic foil;

z) slicing the plastic foil carrying said hardened coating

comprising oriented optically variable magnetic or magnetizable pigment particles into threads or stripes; the method being characterized in that said graphic information is produced using a magnetic orienting cylinder having a repetitive seamless magnetic field pattern of suitable repetition length.

16. Method according to claim 15, wherein said magnetic or

magnetizable pigment particles are chosen from the group consisting of the plate- and the needle-shaped particles.

17. Method according to one of claims 15 to 16, wherein said

magnetic or magnetizable pigment particles are chosen from the group consisting of the optical interference pigments.

18. Method according to claim 17, wherein said magnetic or

magnetizable pigment particles are chosen from the group consisting of the optically variable magnetic thin-layer interference pigments.

19. Method according to one of claims 15 to 18, comprising the

additional step of

d) applying a colored, dark, or metallized background coating onto the hardened coating of step c) comprising the oriented magnetic or magnetizable pigment particles.

20. Method according to one of claims 15 to 19, wherein additional security materials selected from the group consisting of the luminescent dyes and pigments, of the infrared-absorbing dyes and pigments, as well as of the metallic, magnetic, and interference pigments are applied in at least one separate coating layer.

21. Method according to one of claims 15 to 20, wherein a further layer of micro-lenses or a holographic layer selected from the volume holograms and the metallized, demetallized, or partially demetallized (indicia) surface holograms is applied.

22. Method according to one of claims 15 to 21, comprising the

alternative or additional step of

e) laminating a second plastic foil onto the coated plastic foil, to produce a laminated structure wherein said hardened coating comprising oriented magnetic or magnetizable pigment particles is comprised between a first and a second plastic foil.

23. Method according to one of claims 15 to 22, wherein the plastic foil is chosen from the group consisting of polyethylene- terephthalate (PET, polyester) foils the polypropylene (PP) foils, the polyvinylchloride (PVC) foils, and the form-stable varieties of polyethylene (PE) foils.

24. Method according to one of claims 15 to 23, wherein the second plastic foil carries a second imprinting complementary to the first imprinting on the first plastic foil.

25. Method according to one of claims 15 to 24, wherein the

imprinting operation is performed with a printing method selected from the group consisting of rotogravure printing using a seamless engraved printing cylinder, screen-printing using a seamless rotary screen, and flexographic printing using Anilox roller / doctor blade inking.

26. Method according to one of claims 15 to 25, wherein the

orienting of the magnetic or magnetizable pigment particles in the imprinted coating is carried out by the means of an

engraved, permanent-magnetic cylinder.

27. Method according to one of claims 15 to 26, wherein the hardening of the imprinted coating on the substrate is carried out by a method chosen from physical drying by evaporation of solvent, and curing by irradiation with electron beam or UV- light.

28. Use of a security thread or stripe according to one of claims 1 to 14 in or on a paper or polymer substrate for making currency, value-documents, ID-documents, transportation tickets, and tax stamps.

29. Magnetic orienting cylinder for producing a security thread or stripe according to one of claims 1 to 13 through the orienting of magnetic or magnetizable pigment particles in a coating by the application of a correspondingly structured magnetic field, such that the orientation of said pigment particles represents repetitive seamless graphic information of suitable repetition length, characterized in that the cylinder comprises a flexible, magnetically inscribed, permanent-magnetic plate, wrapped around a cylindrical support body, so as to result in a seamless repetitive magnetization pattern around the circumference of the magnetic orienting cylinder.

30. Magnetic orienting cylinder according to claim 29, wherein the magnetized permanent-magnetic plate is an engraved permanent magnetic plate.

31. Magnetic orienting cylinder for producing a security thread or stripe according to one of claims 1 to 13 through the orienting of magnetic or magnetizable pigment particles in a coating by the application of a correspondingly structured magnetic field, such that the orientation of said pigment particles represents repetitive seamless graphic information of suitable repetition length, characterized in that the cylinder is seamless coated with a "plastic magnet" coating in which the seamless repetitive magnetization pattern is inscribed.

Magnetic orienting cylinder according to claim 31, wherein the outer cylinder surface is engraved and magnetized.

Magnetic orienting cylinder according to one of claims 29 to 32, wherein the cylinder additionally comprises permanent magnets or electromagnets disposed inside the cylindrical support body.

Process for producing a magnetic orienting cylinder for producing a security thread or stripe according to one of claims 1 to 13, having a repetitive seamless magnetic field pattern of suitable repetition length, the process being characterized by the steps of

a) coating a cylindrical support body with a polymer material comprising a high-coercivity permanent-magnetic powder as a filler material and hardening the polymer material, so as to obtain a coated cylinder;

b) optionally rectifying the outer surface of the coated cylinder to obtain a standard cylinder diameter;

c) magnetizing the outer cylinder surface of step a) or step b) to inscribe on the cylinder a repetitive seamless magnetic field pattern.

35. Process according to claim 34, wherein said coating and

hardening of step a) is performed by applying a hot, molten thermoplastic composition and cooling down to solidify the composition.

36. Process according to claim 34, wherein said coating and

hardening of step a) is performed by applying a Plastisol precursor composition and heat-curing so as to form and solidify the Plastisol.

37. Process according to claim 36, wherein the Plastisol comprises polyvinyl chloride (PVC).

38. Process according to one of claim 34 to 37, wherein the high- coercivity permanent-magnetic powder is chosen from the group comprising the "hexaferrites" of the formula MFei20i9, the "hard ferrites" of the formula MFe204, the samarium-cobalt alloys, and the rare-earth-iron-boron alloys (RE2Fei4B); M being a bivalent metal ion or a mixture of such ions, and RE is a trivalent rare earth ion or a mixture of such ions.

39. Process according to claim 38 wherein the high-coercivity

permanent-magnetic powder is chosen from the group comprising strontium hexaferrite (SrO*6Fe203), barium hexaferrite (BaO*6Fe203), cobalt ferrite (CoFe204), magnetite (Fe304), and neodymium-iron-boron (Nd2Fei4B).

40. Process according to one of claim 34 to 39, wherein the process step c) comprises an engraving step:

c) engraving the outer surface of the coated cylinder of step a) or step b) with a repetitive seamless pattern, and

magnetizing the cylinder.

41. Process according to one of claims 34 to 40, wherein additional permanent magnets or electromagnets are disposed inside the cylindrical support body.

42. Use of a seamless magnetic orienting cylinder according to one of claims 29 to 33 for orienting optically variable magnetic or magnetizable pigment particles in a unhardened coating, such that the orientation of said pigment particles represents graphic information in the form of a repetitive seamless pattern of suitable repetition length.

Description:
Security thread or stripe comprising oriented magnetic particles in ink, and method and means for producing same

Field of the invention

The present invention is in the field of security threads or stripes, to be incorporated into or onto value-document or currency substrates. It discloses a security thread or stripe comprising features implemented through a particular orientation of magnetic or magnetizable pigment particles, in particular optically variable pigment particles, in a coating comprised on said thread or stripe, as well as a method and a device for producing such thread or stripe.

Technical background

Security threads embedded in the substrate are known to the skilled person as an efficient means for the protection of security documents and banknotes against imitation. Reference is made to US 0,964,014; US 4,652,015; US 5,068,008; US 5,324,079; WO 90/08367; WO 92/11142; WO 96/04143; WO 96/39685; WO 98/19866; EP-A o 021 350; EP-A o 185 396; EP-A o 303 725; EP-A o 319 157; EP-A o 518 740; EP-A o 608 078; EP-A o 635 431; and EP-A 1498 545 as well as the references cited therein. A security thread is a metal- or plastic-filament, which is incorporated during the manufacturing process into the substrate serving for printing security documents or banknotes. The security thread may hereby be completely embedded within the substrate sheet, or it may be partly embedded and partly exposed at the surface of the substrate ("window- thread"), or it may even be affixed to the surface of the substrate or bridge two separate parts of the substrate sheet; such threads are also called stripes. A security thread or stripe may, and does in general, carry particular security elements, serving for the public and/or machine-authentication of the security document, in particular for banknotes. Suitable security elements for such purpose are e.g. a metallization, a luminescent compound (incorporated into, or printed onto the thread or stripe), a micro-text, a magnetic feature, etc.

Due to the technical constraints of industrial manufacturing, the security thread or stripe must be incorporated from a reel into an endless sheet of substrate material, such as currency paper, being several hundred meters in length. Such thread or stripe is generally produced through a corresponding slicing of a web of a particularly treated (i.e. metalized, imprinted, laminated, etc.) plastic foil (such as a mono- or bi-oriented polypropylene (PP), a polyvinylchloride (PVC), or a polyethylene-terephthalate (PET) foil), to yield the required reels of security thread or stripe.

In a common embodiment, said plastic foil is metallized and/or imprinted on a single side. The metallization may furthermore be present in the form of indicia in positive or negative writing. In a more sophisticated

embodiment, said plastic foil is a laminated structure, consisting of two foils which are laminated together, enclosing security elements such as a printed feature and/or a metallization, between two plastic foils.

Optically variable magnetic pigment (OVMP®) and optically variable magnetic inks (OVMI®) comprising OVMP® are known to the skilled person from e.g. US 4,838,648; WO 02/073250; EP 686 675; WO

03/00801; US 6,838,166; and WO 2007/131833. Such inks can be applied or printed in the form of plain coatings (i.e. covering a whole surface) or in the form of structured coatings (i.e. indicia).

The optically variable pigment particles in an optically variable magnetic coating can be oriented after printing, while the coating is still "wet", i.e. unhardened, through the application of an appropriate unstructured or structured magnetic field, and then fixed in their respective positions and orientations through a hardening of the coating composition on the substrate. Materials and technology for the orienting of magnetic or magnetisable particles in a coating composition, and corresponding combined printing/magnetic orienting processes have been disclosed in US 2,418,479; US 2,570,856; US 3,791,864; DE 2006848-A; US 3,676,273; US 5,364,689; US 6,103,361; US 2004/0051297; US 2004/0009309; EP-A- 710508, WO 02/090002; WO 03/000801; WO 2005/002866, and US 2002/0160194, as well as WO 2008/046702 of the same applicant.

Items comprising magnetically oriented particles in a hardened coating on a transparent or opaque substrate are known in the art, e.g. from WO 2008/009569. However, a particular technical problem arises in the case of security threads or stripes, in that they must i) display a seamless repetitive pattern in their elongated direction, and ii) the repetition length (period) of said pattern must be smaller than the width, preferably smaller than the half width of the banknote or the security document into which they are incorporated. These requirements assure that i) there is no need for cutting away parts of the security document substrate, nor for aligning the banknote or security document printing with the information present on the thread or stripe, because the latter is continuous (without jumps) along the security thread or stripe, and that ii) at least one whole period of the information present on the thread or stripe is actually present on/in each banknote or security document, allowing for an unambiguous authentication of the latter.

These requirements have not been previously resolved for magnetically oriented particles in a hardened coating on a substrate. Description of the invention

The thread or stripe according to the present invention, preferably for the incorporation into or onto a value document or currency substrate, comprises a plastic foil which carries a hardened coating comprising oriented magnetic or magnetizable pigment particles, the orientation of said pigment particles representing graphic information, and the security thread or stripe being characterized in that said graphic information is a repetitive seamless pattern of suitable repetition length. "Hardened" in the context of the present disclosure means that the optically variable magnetic or magnetizable pigment particles are fixed in their respective positions and orientations within the coating.

A "suitable repetition length" (period) means one that is smaller than the width, preferably smaller than the half width of the document into which the thread or stripe is to be incorporated.

Preferred magnetic or magnetizable pigment particles for embodying the present inventions are plate- or needle-shaped particles, because they orient well in a magnetic field and show a pronounced change in optical aspect as a function of their orientation in the coating.

Even more preferable are optical interference pigments, which exhibit a variation of reflection or transmission color as a function of their

orientation in the coating.

The most preferred pigment particles for embodying the present invention are optically variable magnetic thin-layer interference pigments of the A/D/M/D/A 5-lyer type, such as disclosed in US 4,838,648, and of the A/D/R/M/R/D/A 7-layer type, such as disclosed in WO 02/073250.

Herein, A stands for an absorber layer, typically a chromium layer; D stands for a dielectric layer, typically magnesium fluoride (MgF 2 ) or silicon dioxide (SiO 2 ); M stands for a magnetic layer, typically nickel (Ni) or iron (Fe) or cobalt (Co) or one of their alloys, and R stands for a reflector layer, typically aluminum (Al).

In the context of the present disclosure, the term "magnetic" refers to a material which is itself a source of a magnetic field. The term

"magnetizable" refers to a material which reacts to a magnetic field in the sense of ferro- or ferri-magnetism, without being a source of it.

Oriented magnetic or magnetizable pigment (OVMP) particles, in the context of the present description, means pigment particles which are present in the coating in an orientation which is different from the one they would adopt as the result of a simple printing process.

"Graphic information" means indicia, patterns, images, and any other type of information which can be visually identified.

According to the present invention, graphic information is embodied in the coating through the orienting of the magnetic or magnetizable pigment particles comprised in the coating.

In a preferred embodiment of the present invention, the hardened coating is a structured coating in the form of indicia, and is applied using an ink and a corresponding printing process. The magnetic-orientation-borne graphic information is generally different from the printed indicia of the structured coating; however it could also be chosen the same.

It is thus possible, according to the present invention, to impart on the security thread or stripe two different security elements, i.e. the printed visible indicia and the magnetic-orientation-borne graphic information, in a single pass on the printing machine, using a single printing ink, which increases the security level of the security thread or stripe whilst

maintaining enhanced production efficiency.

The visible, magnetic-orientation-borne graphic information is also machine-readable, because the particularly disposed magnetic or magnetizable particles in the printed and hardened coating composition produce or interact with magnetic fields, and their local repartition and orientation can thus be detected and exploited by corresponding

equipment.

An essential feature of the security thread or stripe according to the present invention is that the magnetic-orientation-borne graphic information and, if present, the printed visible indicia, are present as an seamless repetitive pattern of suitable repetition length (period) along the extended dimension of the security thread or stripe.

Given the constraints imposed by the conditions of banknote

manufacturing (i.e. the substrate manufacturing and the printing) and use (i.e. the authentication of the security thread or stripe in automatic banking machines), security threads or stripes must be incorporated lengthwise into the substrate web, but should appear across the width of the banknote, which is generally smaller than 10 cm, and typically of the order of 7 cm. The period of the repetitive pattern should thus not exceed 7 cm, preferably not exceed 3.5 cm, and even more preferably not exceed 2 cm.

The seamless imprinting of plastic foils with repetitive patterns of optically variable magnetic ink under the constraint of such small repetition lengths requires particular production (i.e. printing) means and techniques. It was found that rotogravure (gravure) printing using a specially engraved, seamless gravure cylinder is one of the suitable printing techniques for properly transferring an ink liquid containing magnetic or magnetizable pigment particles onto a flat plastic substrate. The rotogravure cells in the gravure cylinder must noteworthy be large enough such as to cope with the extended size of the magnetic or magnetizable pigment particles, which in particular can be flakes, having a diameter comprised between 5 and 50 micrometers and a thickness of the order of 1 micrometer. A cell size of at least twice the mean diameter of the pigment particles is typically used.

Screen-printing using a seamless rotary screen (such as obtainable from Stork Prints BV, Boxmeer, Netherlands) was found to be another suitable printing technique for the imprinting of plastic foils with seamless repetitive patterns of an ink containing magnetic or magnetizable pigment particles under the constraint of small repetition lengths. Also here, a screen mesh size of at least twice the mean diameter of the pigment particles is typically used.

As a further process, flexographic printing using Anilox roller / doctor blade inking can be used. The Anilox roller has rotogravure cells, which meter the ink liquid onto the endless flexographic relief plate, which is a flexible typographic printing surface which transfers the ink to the substrate to be imprinted. Flexographic printing performs well if the pigment particles are not large in size, and less well in case of pronounced plate-like pigment particles, which do not easily transfer from one surface to another. For the Anilox roller, a cell size of at least twice the mean diameter of the pigment particles is typically used.

In all cases, the printing surface must be structured such as to represent an seamless repetitive pattern; in other words, the circumference of the printing cylinder or of the endless flexographic relief plate must be an exact multiple of the repetition length (period) of the repetitive pattern to be printed.

In a preferred embodiment, the hardened coating comprising optically variable magnetic or magnetizable pigment particles is associated with a colored, dark, or metallized background coating. Said background coating may be applied or printed in a previous, following, or separate step.

If the security thread or stripe is to be viewed through the plastic foil, the background coating must be applied as a second coating, after the application (and hardening) of the optically variable magnetic ink.

Further coatings may be applied as a function of the technical and esthetic needs, such as pigmented coatings to provide color and/or opacity, or adhesive coatings, to fix the thread or stripe into or onto the value document or banknote substrate.

According to a further particular embodiment of the present invention, the security thread or stripe is a laminated thread or stripe, comprising a hardened coating, produced with an ink comprising optically variable magnetic or magnetizable pigment particles, which is comprised between a first and a second plastic foil.

In still a further embodiment, the security thread or stripe according to the present invention is a laminated thread or stripe obtained by laminating in register a first plastic foil carrying a first imprinting onto a second plastic foil carrying a second imprinting which is complementary to the first imprinting. Laminating together in register two foils having mutually complementary imprintings requires high-precision printing and laminating equipment, which provides enhanced counterfeit resistance to the so produced thread or stripe. The security thread or stripe according to the present invention, comprising the hardened coating produced with an ink comprising magnetic or magnetizable pigment particles, may also comprise additional security materials selected from the group consisting of the luminescent dyes and pigments, of the infrared-absorbing dyes and pigments, as well as of the metallic, magnetic, and interference pigments. Said additional security materials may furthermore be comprised in said same coating or in at least one separate coating layer.

The security thread or stripe according to the present invention may further comprise a layer of micro-lenses or a holographic layer, which latter may be a volume hologram or a metallized, demetallized, or partially demetallized (indicia) surface hologram.

The security thread or stripe according to the present invention may comprise an adhesive coating as known in the art on at least one of its surfaces, to provide adherence to the security substrate. Thermo-activate- able adhesives, which glue to the paper fibers at the end of the paper dewatering and drying process, are typically used to this purpose.

The preferred security thread or stripe according to the present invention has a width comprised in between 0.5 mm and 30 mm. It is obtained by slicing the web of imprinted, coated and if the case laminated plastic foil into threads of appropriate width and winding them onto reels.

Disclosed is further a method for producing a security thread or stripe for the incorporation into a value document or a currency substrate,

comprising the steps of

a) coating a plastic foil with a coating composition comprising magnetic or magnetizable pigment particles; b) orienting the magnetic or magnetizable pigment particles in the coating on the plastic foil through the application of a correspondingly structured magnetic field, such that the orientation of said pigment particles represents graphic information; c) hardening the coating comprising the oriented magnetic or magnetizable pigment particles, such as to fix the optically variable magnetic or magnetizable pigment particles in their respective positions and orientations;

y) optionally applying an adhesive coating on at least one

surface of the plastic foil;

z) slicing the plastic foil carrying said hardened coating comprising oriented optically variable magnetic or magnetizable pigment particles into threads or stripes;

the method being characterized in that said graphic information is produced using a magnetic orienting cylinder having a repetitive seamless magnetic field pattern of suitable repetition length.

Preferred magnetic or magnetizable pigment particles to be comprised in the coating composition are selected from the plate- or needle-shaped particles; particularly preferred are magnetic optical interference pigments, which exhibit a variation of reflection or transmission color as a function of their orientation in the coating; and most preferred are optically variable magnetic thin-layer interference pigments of the 5-lyer type, such as disclosed in US 4,838,648, and of the 7-layer type, such as disclosed in WO 02/073250; see above.

The plastic foil is preferably a polyethylene-terephthalate (PET, polyester) foil. However, other plastic materials can be used as well, such as mono- or bi-oriented polypropylene (PP), polyvinylchloride (PVC), or form-stable varieties of polyethylene (PE)).

Imprinting the plastic foil with a coating composition comprising magnetic or magnetizable pigment particles, followed by orienting said pigment particles in the coating through the application of a correspondingly structured magnetic field and hardening the printed and "oriented" ink can be performed in a one-step industrial operation, capable to impart two independent "layers of information" (printed indicia and magnetic- orientation-borne graphic information) using a single ink.

The method may comprise the application of more than one printed layers. In a preferred embodiment, the method comprises the additional step of:

d) applying a colored, dark, or metallized background coating onto the hardened coating of step c) comprising the oriented optically variable magnetic or magnetizable pigment particles.

Said background coating can be applied by a variety of coating processes known to the skilled in the art, such as imprinting with an ink comprising colored or dark pigments or dyes, or by high-vacuum coating with metals (preferably aluminum); such high -vacuum coating step may optionally be followed by a selective demetallization step (e.g. according to Crane, US 4,652,015), so as to produce indicia in the metal coating.

Additional security materials selected from the group consisting of the luminescent dyes and pigments, of the infrared-absorbing dyes and pigments, as well as of the metallic, magnetic, and interference pigments can be applied, either in said same coating or in at least one separate coating layer.

A layer of micro-lenses or a holographic layer, which may be a volume hologram or a metallized, demetallized, or partially demetallized (indicia) surface hologram can also be applied.

An adhesive coating as known in the art may be applied on at least one of the surfaces of the plastic foil, to provide adherence to the security substrate upon incorporation of the thread or strip into or onto the latter.

The method may further comprise the alternative or additional step of e) laminating a second plastic foil onto the coated plastic foil, to produce a laminated structure wherein said hardened coating comprising oriented optically variable magnetic or magnetizable pigment particles is comprised between a first and a second plastic foil.

Step e) may be carried out either in place of step d), or, alternatively, following step d). The second plastic foil may carry a coating on the lamination surface, such as to facilitate the laminating operation. In particular, said coating may be a colored, dark, or metallized background coating.

In a preferred embodiment of the method, the second plastic foil carries a second imprinting, which is complementary to the first imprinting on the first plastic foil. Complementary means that the second imprinting completes the first, such that both imprintings only together display the full information. The separate printing of complementary indicia on two foils, which are to be laminated together in exact register, requires high-precision printing and laminating equipment, which results in enhanced counterfeit resistance of the so produced threads or stripes.

In a preferred method according to the present invention, the imprinting of the first plastic foil with an ink comprising magnetic or magnetizable pigment particles is performed with a printing process selected from the group consisting of rotogravure printing using a seamless engraved printing cylinder, screen-printing using a seamless rotary screen, and flexographic printing using an Anilox roller / doctor blade inking unit, wherein the printing surface represents an seamless repetitive pattern, i.e. the circumference of the printing cylinder or of the endless flexographic relief plate is an exact multiple of the repetition length (period) of the repetitive pattern to be printed. In a preferred method according to the present invention, the orienting of the magnetic or magnetizable pigment particles in the imprinted coating, such that the orientation of said pigment particles represents graphic information, is carried out using a magnetic orienting cylinder whose outer surface is an engraved permanent-magnetic plate, such as disclosed in WO 2005/002866 and in WO 2008/046702.

In a preferred method according to the present invention, the hardening of the imprinted coating on the substrate is carried out by a method chosen from physical drying by evaporation of solvent, and, most preferably, curing by irradiation with electron beam or with UV-light. Radiation-curing has the advantage of an almost instantaneous solidification of the ink, preventing the oriented magnetic particles from rearranging in the ink.

Particularly preferred is curing by direct UV-irradiation on the magnetic orienting cylinder, such that the orienting of the magnetic or magnetizable pigment particles in the coating and the initiating of the hardening of the coating occur concomitantly. After UV-irradiation, the coating solidifies in less than one second. Direct UV-irradiation on the magnetic orienting cylinder ensures thus a maximum retention of the graphic information imparted in the magnetic orienting step.

In the last step of the method (step z)), the web of foil so obtained is finally sliced into security threads or stripes, the threads or stripes having a width comprised in between 0.5 mm and 30 mm, and the security threads or stripes are wound onto reels for further use.

The security threads or stripes can be incorporated into or applied onto any type of substrates to be protected against counterfeit, in particular paper and polymer substrates used to make currency, value-documents, ID- documents, transportation tickets, or tax stamps. Disclosed is further a device for magnetically orienting the magnetic or magnetizable pigment particles in the imprinted coating on the plastic foil used to make security threads or stripes.

The device for magnetically orienting the magnetic or magnetizable pigment particles in the imprinted coating is a cylinder having a

magnetized outer surface, wherein the magnetization is structured such as to represent a repetitive seamless pattern of suitable repetition length; in other words, the circumference of the cylinder is an exact multiple of the period (repetition length) of the repetitive pattern.

The magnetic orienting cylinder can be produced by wrapping a flexible, magnetically inscribed, permanent-magnetic plate (e.g. of "Plastoferrite") around a cylindrical support body and fixing it in such position, so as to result in a seamless repetitive magnetization pattern around the

circumference of the magnetic orienting cylinder. The magnetized permanent-magnetic plate may be an engraved permanent magnetic plate, such as disclosed in WO 2005/002866 and in WO 2008/046702.

In a preferred embodiment, the magnetic orienting cylinder is seamless coated with a "plastic magnet" coating, in which the seamless repetitive magnetization pattern is inscribed. Alternatively the outer cylinder surface of the seamless coated cylinder can be engraved with a seamless repetitive pattern, and magnetized as disclosed in WO 2005/002866.

Such seamless coated magnetic orienting cylinder turns out to be of advantage for producing the security thread or stripe of the present invention when combined with a corresponding seamless rotogravure cylinder or a seamless rotary screen cylinder operated in register with the magnetic orienting cylinder, because of the mechanical stability of the seamless coating and the hereof resulting possibility to print and orient at high speed. The magnetic orienting cylinder according to the invention may

additionally comprise permanent magnets or electromagnets disposed inside the cylindrical support body, in order to produce the effects disclosed in WO 2008/046702 of the same applicant. Particularly preferred are magnet arrangements which are mechanically hold in positions against the inherent magnetic forces working between them.

Further disclosed is a process for producing a seamless coated magnetic orienting cylinder; the process being characterized by the steps of

a) coating a cylindrical support body with a polymer material

comprising a high-coercivity permanent-magnetic powder as a filler material and hardening the polymer material, so as to obtain a seamless coated cylinder;

b) optionally rectifying the outer surface of the coated cylinder to obtain a standard cylinder diameter;

c) magnetizing the outer cylinder surface of step a) or step b) to

inscribe on the cylinder a repetitive seamless magnetic field pattern.

Said coating and hardening can be performed either by applying a hot, molten thermoplastic composition and cooling down to solidify the composition, or by applying a Plastisol precursor composition and heat- curing so as to form and solidify the Plastisol.

The polymer material can be chosen from the thermoplastic materials which are commonly used to make "plastic magnets", such as polyethylene or a polyamide. Low Density Poly-Ethylene (LDPE) is hot-meltable and can be used to formulate plastic magnet compositions (H.S. Gokturk et al. A TEC '92; Annual Technical Conference of the Society of Plastics

Engineers, Detroit, MI, May 1992; pages 491-494; Journal of Applied Polymer Science, Vol 50, 1891-1901, (1993)). Plastic and rubber magnets were first disclosed in French Patent FR1135734 (M.J. Dedek; 1955). JP56000851A2 (Komeno Hiroshi; 1981) discloses a plastic magnet composition on the basis of thermoplastic polyamide resin. See also H. Stablein, "Hard Ferrites and Plastoferrites", in Ferromagnetic Materials, Vol. 3, ed. E.P. Wohlfarth, North-Holland Publishing company, 1982, chapter 7, pages 441-602.

The coating of the cylindrical support body can then be performed, e.g. in analogy to T. Sakai et al., Intern. Polymer Processing, 6, 26-34 (i99i) > who disclose a plastics magnet manufacturing process, relying on Nylon 6 as thermoplastic binder and strontium hexaferrite (SrO*6Fe 2 0 3 ) powder of 1.1-1.2 micrometer particle size as a high-coercivity permanent-magnetic filler material.

Alternatively, the coating of the cylindrical support body can be performed according to US 3,785,286, US 3,900,595, and US 4,054,685, who disclose a Plastisol coating process, using polyvinyl chloride (PVC) in conjunction with one or more plasticisers and a stabilizer. The Plastisol composition, including the permanent-magnetic filler material, is formulated and applied onto the cylindrical support body at temperatures of 40°C to 50°C, and hardened at temperatures of 200°C to 250°C. The Plastisol coating is applied in several layers, each having a thickness between 0.3 and 1 mm, up to a total thickness of 2 to 3.5 mm.

Examples of high-coercivity permanent-magnetic powders, which are useful as filler materials, are the "hexaferrites" of the formula MFei 2 0i 9 , such as strontium hexaferrite (SrO*6Fe 2 0 3 ) or barium hexaferrite

(BaO*6Fe 2 0 3 ), and the "hard ferrites" of the formula MFe 2 0 4 , such as cobalt ferrite (CoFe 2 0 4 ) or magnetite (Fe 3 0 4 ), wherein M is a bivalent metal ion, as well as their isostructural substitution derivatives; further the samarium-cobalt alloys, and the rare-earth-iron-boron alloys (RE 2 Fei 4 B, e.g. "neodymium magnets" Nd 2 Fei 4 B), wherein RE is a trivalent rare earth ion or a mixture of trivalent rare earth ions. Preferably, the high-coercivity permanent-magnetic powders are used in the composition in a demagnetized state, such as to prevent a magnetic agglomeration of the magnetic powder particles. The demagnetization ("degaussing") of magnetic materials is an operation known to the skilled person. Preferably, a magnetization is only applied after the composition is in place and hardened.

The optional rectification step is a simple mechanical ablation operation on a lath. It serves to establish precise mechanical dimension, in order to provide that the circumference of the cylinder is an exact multiple of the period (repetition length) of the repetitive magnetization pattern.

The structured magnetization of the cylinder surface can be performed as known to the skilled person, e.g. by applying a magnetic stylus according to US 3,011,436 (Berry) or in electromagnetic and mechanical analogy to Berry's disclosure, by inscribing the required repetitive magnetization pattern with a mechanically driven electromagnetic stylus.

In a particularly preferred embodiment of the process, step c comprises an engraving step:

c) engraving the outer surface of the coated cylinder of step a) or step b) with a repetitive seamless pattern, and magnetizing the cylinder.

The engraving and magnetization of the outer cylinder surface can be performed as disclosed in WO 2005/002866. In particular, the engraving can be performed using ablative tools selected from the group comprising mechanical ablation tools, gaseous or liquid jet ablation tools, and laser ablation tools.

The magnetization can be applied before or after the engraving step.

Magnetic fields orthogonal to the cylinder surface, as well as fields in oblique directions with respect to the cylinder surface, or even in directions within the cylinder surface may be applied.

The magnetization of the outer surface of the cylinder may furthermore be combined with the disposition of magnets inside the cylindrical support body, as disclosed in WO 2008/046702; said magnets may further be permanent magnets or electromagnets.

The invention is now further explained with reference to the figures and to exemplary embodiments.

Description of the figures

Fig. 1: schematically depicts the cross-section of a first embodiment of a security thread or foil according to the present invention;

Fig. 2: schematically depicts the cross-section of a second

embodiment of a security thread or foil according to the present invention;

Fig. 3: schematically depicts the cross-section of a third embodiment of a security thread or foil according to the present invention;

Fig. 4: schematically depicts the cross-section of a fourth

embodiment of a security thread or foil according to the present invention;

In Fig. 1 to Fig. 4, the different layers are as follows:

la: Polyethylene terephthalate (PET) film

2a: Ink layer containing magnetically oriented pigments

3a: Black ink layer

4a: White ink layer

5a, c: Thermo-adhesive layers

5b: Lamination-adhesive layer

6a: Invisible fluorescent ink layer Fig. 5: Schematic view of a dedicated foil web printing press for producing security threads and stripes according to the present invention.

Description of the different machine parts:

Si: Screen printing unit

Gi, 2, 3: Gravure printing units

M, R: Magnetic orienting units (cylinders)

The magnetic orienting can be produced on one or the other of these cylinders, depending upon which printing unit is used for applying the ink comprising the magnetic or magnetizable particles.

Hi, 2, 3, 4: Hot-air dryer units

Ui, 2, 3, 4: UV dryer units Fig. 6A: Face view of a sample of the web produced in example 1

(before the slicing process)

Fig. 6B: Banknote specimen printed on a substrate carrying a window thread produced according to example 1

Example l

In the first example, the description of an optically variable magnetic security thread according to the present invention is given. The security thread has a schematic cross-section as described in Fig. 1. It can be produced by imprinting a plastic foil on a dedicated printing press, such as is schematically depicted in Fig. 5, combining gravure (Gi, G2 and G3), screen (Si) printing, and magnetic orienting (M, R) units, and slicing the imprinted foil, according to the following steps:

a) A 15 μηι thick PET film (la) is imprinted on the screen printing unit (Si) with a UV curing ink containing optically variable magnetic pigments (layer 2a), as described in Example 2 (base formula) of WO 2007/131833. The screen is chosen such as to deposit a dry ink layer of typically 18 μηι. The freshly printed ("wet") ink layer is exposed to the magnetic fields of the magnetic orientation cylinder (M). This cylinder has a 2 mm thick magnetic coating of

polyethylene comprising 75 wt% of strontium hexaferrite. The surface of this magnetic coating is magnetized with a helical pattern of alternating polarities in the form of 1.5 mm wide tracks; the distance between tracks of same polarity being 3 mm, and the angle of the tracks with respect to the printing direction being of 45 0 . The optically variable magnetic pigments comprised in the printed ink are hereby oriented and a specific graphic information pattern is produced in this layer, such as shown in Fig. 6A. The ink is hardened as the web passes under the hot air (Hi) and the UV (Ui) dryer units.

b) A solvent based black ink (layer 3a) layer is then applied over the oriented and cured magnetic ink layer, using the following gravure printing unit Gi. The ink layer is dried with the hot air dryer unit H2. The gravure cylinder is chosen such as to deposit a dried ink layer of typically 3 μηι.

c) A solvent based white ink (layer 4a) is then applied over the black ink on the following gravure printing unit G2 and dried with the hot air dryer unit H3. The gravure cylinder is chosen in such a way as to deposit a dried ink layer of typically 3 μηι.

d) A solvent based thermo-adhesive layer (5c) is then applied over the white ink on the following gravure printing unit G3 and dried with the hot air dryer unit H4. The gravure cylinder is chosen in such a way as to deposit an adhesive layer of typically 4 μηι. Care must be taken to ensure that the temperature of the web stays below the activation temperature of the adhesive.

e) In an additional pass in the press, a solvent based thermo-adhesive layer (5a) is applied on the other side of the PET film, using the gravure printing unit G3, and dried with the hot air dryer unit H4. The gravure cylinder is chosen in such a way as to deposit an adhesive layer of typically 4 μηι. Care must be taken to ensure that the temperature of the web stays below the activation temperature of the adhesive.

f) The web is finally sliced into 3 mm wide threads, which are put onto reels for incorporation as window-thread into cotton based security paper (during the paper production process). Fig. 6B shows a banknote specimen printed on a substrate carrying a window thread produced as described above.

Example 2

In the second example, the description of a security thread comprising an optically variable magnetic ink layer between two plastic foils is given. The security thread has a schematic cross-section as depicted in Fig. 2. The first part, composed of layers la to 4a, is produced according to the sequence a) to c) described in the previous example, except that a 12 μηι thick PET film (la) is used in place of the 15 μηι film, to reduce the overall thickness of the final structure. The first part consisting of layers la to 4a is then laminated onto a second part consisting of an 8 μηι thick PET film (lb) coated with a 4 μηι thick lamination adhesive layer (5b). This lamination adhesive is a solvent based polyutrethane system deposited onto the second PET film (lb) by gravure printing. In the final step, thermo-adhesive layers (5a and 5c) are applied on each side of the laminate by gravure printing (dry deposit of typically 4 μΐη). The web is finally sliced into 3 mm wide threads, which are put onto reels, to be incorporated as window-thread during the production of cotton based security paper.

Example 3

In the third example, the description of an optically variable magnetic security thread combining luminescence properties is given. The security thread has a schematic cross-section as depicted in Fig. 3. The security thread is produced in the same was as the one described in Example 1, except that a fluorescent solvent based gravure ink layer (6a) is applied first onto the PET film. The gravure cylinder is chosen such as to deposit a dried ink layer of typically 2 μηι. The fluorescent pigment must be chosen such as to withstand the subsequent thermal treatment occurring during the incorporation of the thread into the security substrate. Its light scattering should further be low when incorporated into the ink matrix, for not to negatively interfere with the optical effect layer (2a). A solvent based ink formulation comprising 3% of Lumilux CD 382 (Honeywell), Polyurethane (PU) and polyvinylbutyral (PVB) resins fulfills these requirements.

The web is finally sliced into 3 mm wide threads, which is put onto reels for incorporation as a window-thread during the production of cotton based security paper. Further to the optical color-shifting effect, this thread shows a yellow luminescence under a 366 nm UV excitation.

Example 4

In the fourth example, the description of an optically variable magnetic foil according to the present invention is given. The security foil has a schematic cross-section as depicted in Fig. 4. The foil is produced according to steps a) to d) described in Example 1. The web is finally sliced into 8 mm wide foil stripes, which can be hot-stamped onto reels of security substrate.

Example 5

This example describes the same thread as described in example 1, but produced with an alternative printing method. The dedicated press as schematically depicted in Fig. 5 is used in an alternative configuration, in which the magnetic orientation is performed using cylinder R. In this case, the ink layer containing magnetically orientable pigments is applied by the gravure printing unit Gi and is hardened as the web passes under the hot air (Hi) and the UV (Ui) dryer units. The ink is prepared according to formulation 2b given in example 2 of WO 2007/131833. An adequate gravure cylinder must be used in order to reach a typical dried ink thickness of 18 μηι. The subsequent layers are applied in further steps using the gravure units G2 and G3.