Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SEED ABLATION
Document Type and Number:
WIPO Patent Application WO/2016/197184
Kind Code:
A1
Abstract:
The present invention relates to an apparatus and method for seed ablation. In accordance with the method of seed ablation, the apparatus is adapted to expose a heat source to a plurality of seeds while the seeds are in motion. Exposing of the heat source to the moving seed allows ablation of the seeds for de-awning and removing of the appendages of the seeds. In a particular arrangement the seeds are exposed to rotational movement within a centrifugal drum to form a rotating stream of seeds. A torch which reaches into the drum provides a flame directed to the stream of seeds for exposing the seeds to the flame. This allows the ablation of the seed awns and appendages over time as seeds enter into contact with the flame. Fig 2

Inventors:
LING KING (AU)
GUZZOMI ANDREW LOUIS (AU)
ERICKSON TODD (AU)
MERRITT DAVID (AU)
DIXON KINGSLEY WAYNE (AU)
Application Number:
PCT/AU2016/000202
Publication Date:
December 15, 2016
Filing Date:
June 10, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOTANICAL GARDENS AND PARKS AUTHORITY (AU)
UNIV WESTERN AUSTRALIA (AU)
International Classes:
A01C1/00; A01F12/42; A01F12/44; B02B3/00; D01B1/02
Foreign References:
US20020121047A12002-09-05
JP2006288245A2006-10-26
Attorney, Agent or Firm:
WRAYS PTY LTD (56 Ord StreetWest Perth, Western Australia 6005, AU)
Download PDF:
Claims:
Claims

1. A method for ablating seeds, the method comprises the step of exposing at least one seed to at least one heat source, wherein the seed is in motion.

2. A method according to claim 1 further comprising generating a moving stream of seeds.

3. A method according to claim 2 wherein the stream of seeds is exposed to the heat source.

4. A method according to claims 2 or 3 wherein a particular location of the stream of seeds is exposed to the heat source.

5. A method according to any one of the preceding claims wherein the heat source comprises a flame that comprises a pre-combustion zone, a main reaction zone and a post-combustion zone.

6. A method according to claim 5 wherein the flame is a pencil shaped flame directed at one point of the stream of seeds

7. A method according to claims 5 or 6 wherein the flame has a width of 15 mm.

8. A method according to claims 5 or 6 wherein the flame has width of 35 mm.

9. A method according to any one of claims 5 to 8 wherein the flame is a pencil shaped flame of about 38.1 mm to 50.8 mm long.

10. A method according to any one of claims 5 to 8 wherein the flame is a large volume flame.

11. A method according to any one of claims 5 to 10 wherein the flame comprises a cyclone flame.

12. A method according to any one of claims 5 to 11 wherein the particular location of the stream of seeds is exposed simultaneously to the pre-combustion zone, the main reaction zone and the post-combustion zone of the flame.

13. A method according to any one of claims 5 to 11 wherein the stream of seeds is exposed simultaneously to the main reaction zone and the post-combustion zone.

14. A method according to any one of claims 5 to 13 wherein the cross-sectional area of the flame is sufficient to expose the whole stream of seeds over multiple rotations of the seed mass to the main reaction zone.

15. A method according to claim 14 wherein the cross-sectional area of the flame is about 20mm x 20mm.

16. A method according to any one of claims 5 to 15 wherein the flame is generated by a torch.

17. A method according to claim 16 wherein the torch comprises a flame spreader.

18. A method according to claims 16 or 17 wherein the distance of the torch should be such that the contact between stream of seeds and combustion zone is maximised.

19. A method according to claim 18 wherein the distance between the torch tip and the outer surface of the stream of seeds is between about 2.5 cm to 5 cm.

20. A method according to any one of claims 5 to 19 wherein the seeds are exposed to the flame for .003 seconds or .009 seconds.

21. A method according to any one of claims 2 to 20 wherein the stream of seeds is generated in a rotating drum.

22. A method according to claim 21 wherein the drum has a diameter of 334 mm and a height of 200 mm.

23. A method according to claim 21 wherein the drum has a diameter of 883 mm and a height of 600 mm.

24. A method according to any one of claims 21 to 23 wherein the rotating speed of the drum can be adjusted to alter the flow and speed of the stream of seeds

25. A method according to claim 24 wherein the rotating speed of the 334mm diameter drum is between about 120 to 600 rpm.

26. A method according to claim 25 wherein the rotating speed of the drum is approximately 360 rpm, exposing the particular location of the stream of seeds to the flame for approximately 0.003 seconds.

27. A method according to claim 25 wherein the rotating speed of the drum is approximately 180 rpm, exposing the stream of seeds to the flame for approximately 0.009 seconds.

28. A method according to claim 24 wherein the rotating speed of the 883 mm diameter drum is between about 86 to 100 rpm.

29. A method according to any one of claims 2 to 28 wherein each seed of the stream of seeds, after the stream is exposed to the heat source for a set duration, is ablated sufficiently to allow greater coatability.

30. A method according to any one of claims 2 to 29 wherein each seed of the stream of seeds, is coated after the stream is exposed to the heat source.

31. A method according to any one of claims 5 to 30 wherein the seed stream is continuously exposed to the flaming for a particular period of time.

32. A method according to claim 31 wherein during a period of time of 1 minute the seed stream is continuously exposed to flaming.

33. A method according to claim 31 wherein during a period of time of 3 minutes the seed stream is continuously exposed to flaming.

34. A method according to any one of claims 5 to 30 wherein the seed stream is discontinuously exposed to the flaming for a particular period of time.

35. An apparatus for ablating seeds, the apparatus comprises a support surface adapted to receive at least one seed, and at least one heat source, wherein the surface is adapted to transfer motion to the seed for exposing the seed to the heat source while the seed is in motion.

36. An apparatus according to claim 35 wherein the support surface is adapted to receive a plurality of seeds for generating a moving stream of seeds to expose the stream of seeds to the heat source.

37. An apparatus according to claims 35 or 36 wherein the heat source is adapted to expose a particular location of the stream of seeds to the heat source.

38. An apparatus according to any one of claims 35 to 37 wherein the heat source comprises a torch for generating a flame.

39. An apparatus according to claim 38 wherein the torch comprises a flame spreader.

40. An apparatus according to claims 38 or 39 wherein the apparatus further comprises a fixture adapted to receive the torch.

41. An apparatus according to claim 40 wherein the fixture is adapted to receive the torch for maintaining the torch at a particular location from the surface.

42. An apparatus according to claims 40 or 41 wherein the fixture is adapted to orient the torch to a particular location of the support surface.

43. An apparatus according to any one of claims 40 to 42 wherein the fixture is adapted to vary the height of the torch with respect to the support surface.

44. An apparatus according to any one of claims 38 to 43 wherein there are provided a plurality of torches.

45. An apparatus according to claim 44 wherein at least one of the torches comprises a flame spreader.

46. An apparatus according to claims 44 or 45 wherein there are provided a fixture for supporting each torch within the apparatus.

47. An apparatus according to claim 46 wherein the fixture is adapted to orient the torch to a particular location of the support surface.

48. An apparatus according to claims 46 or 47 wherein the fixture is adapted to vary the height of the torch with respect to the support surface.

49. An apparatus according to any one of claims 35 to 48 wherein the apparatus further comprises a drum having a side wall, a first open end and a second open end.

50. An apparatus according to claim 49 wherein the apparatus comprises a beam attached to the first open end extending from one side of the drum to another side of the drum.

51. An apparatus according to claim 50 wherein the beam is adapted to receive each fixture.

52. An apparatus according to any one of claims 38 to 51 wherein each torch is adapted to generate a flame that comprises a pre-combustion zone, a main reaction zone and a post-combustion zone.

53. An apparatus according to claim 52 wherein the flame is a pencil shaped flame of about 38.1 mm to 50.8 mm long.

54. An apparatus according to claim 52 wherein the flame is a large volume flame.

55. An apparatus according to claim 52 wherein the torch is adapted to produce a cyclone flame.

56. An apparatus according to any one of claims 49 to 55 wherein the apparatus comprises a trolley having an upper surface for receiving the drum and a lower storage area for receiving a control system for operating the apparatus.

57. An apparatus according to any one of claims 49 to 56 wherein the side wall of the drum is of cylindrical configuration.

58. An apparatus according to any one of claims 49 to 57 wherein the drum has a diameter of 334 mm and a height of 200 mm.

59. An apparatus according to any one of claims 49 to 57 wherein the drum has a diameter of 883 mm and a height of 600 mm.

60. An apparatus according to any one of claims 49 to 59 wherein the second open end of the drum is adapted to receive a support surface.

61. An apparatus according to claim 60 wherein the support surface comprises a curved rim located adjacent the side wall of the drum defining a gap.

62. An apparatus according to claim 61 further comprising a fan system located below the drum for delivering an air flow through the gap.

63. An apparatus according to any one of claims 60 to 62 wherein the support surface comprises a disc.

64. An apparatus according to claim 63 wherein the disc is adapted to rotate around the longitudinal axis of the drum.

65. An apparatus according to any one of claims 49 to 64 wherein the fixture for receiving the torch is adapted to be attached to the first open end of the drum to allow the torch to reach into the drum.

66. An apparatus according to any one of claims 49 to 65 wherein the drum further comprises at least one mixing bar to provide agitation to the seeds mixing them together and assisting in achieving an even seed ablation and coating.

67. An apparatus according to any one of claims 49 to 66 wherein there are a plurality of mixing bars arranged in a spaced apart relationship with respect to each other around the inner surface of the drum.

68. An apparatus according to claims 66 or 67 wherein each the mixing bar abuts the inner surface of the side wall of the drum and extends along the longitudinal axis of the drum.

69. An apparatus according to claims 67or 68 wherein the mixing bars may be located at particular distances from the side wall.

70. An apparatus according to any one of claims 67 to 69 wherein the location of the mixing bars may be varied so as to vary the location at which the seed stream abuts the inner surface of the side wall of the drum.

71. An apparatus according to any one of claims 67 to 70 wherein mixing bars adapted to be rotated around their longitudinal axis.

Description:
SEED ABLATION TECHNICAL FIELD

[0001] The present invention relates to methods and apparatus to allow for pre- treating and pre-conditioning of seeds prior to use. When referring to seeds, this can be in the form of seeds or seeds contained in fruits, capsules or their natural dispersal unit (hereafter referred to as 'seed/s' unless stated otherwise).

[0002] The invention has been devised particularly, although not necessarily solely, in relation to a method and apparatus for removing appendages that enclose, encase, retain or are attached to seeds.

BACKGROUND ART

[0003] The following discussion of the background art is intended to facilitate an understanding of the present invention only. The discussion is not an acknowledgement or admission that any of the material referred to is or was part of the common general knowledge as at the priority date of the application.

[0004] Seeds are essential for food production, conservation of plant diversity, and for re-vegetation of areas of land that have been altered, for example, for farming, prospecting and mining, oil or gas production purposes. The process of obtaining, storing, and distributing the seeds is an essential part of food production, conservation, and re-vegetation processes.

[0005] The process for obtaining, storing, and distributing seeds can be an expensive exercise. This is typically true for large scale food production and re- vegetation of large areas of land that include, but not limited to, proper collection, handling, and transportation techniques.

[0006] Some particular types of seeds include dispersal unit appendages such as remnant floral bracts, awns, surface hairs and/or bristles. Seeds with these appendages are referred to being "bulky", "chaffy", and "fluffy" seeds (hereafter referred to as "bulky"). Examples of such seeds are commonly found in grass (Poaceae) seeds where they are enclosed in indehiscent floral bracts that can have many of the " above mentioned appendages.

[0007] Typically, bulky seeds when stored occupy a large volume; this is because of the presence of the appendages. Thus, storage of large quantities of bulky seeds can be cumbersome due to excessive storage areas that are required. The same problems arise during handling and transportation of the seeds. For instance, transportation of a relative large number of seeds can be made difficult due to the relative large volume that the bulky seeds occupy. Another disadvantage of bulky seeds is that these seeds are relatively difficult to disperse during sowing of the seeds both manually and through mechanised means; in particular, when sowing is conducted outdoors under adverse weather and field conditions (e.g. windy conditions).

[0008] Solutions have been developed to reduce or minimize the bulky characteristics of seeds. For instance, a solution to aid in dispersal is coating the seeds with filler materials and binders using seed coating and pelleting technologies. Coating or pelleting bulky seeds removes the detrimental effects of the appendages. Initial coating trials conducted on Trioa ' ia (spinifex) seeds encased in the natural dispersal unit using a rotary coafer showed that it appears to possess relatively large repeilency and general poor adhesion of the coating materia! to the seeds. Upon closer inspection of the seeds, it has been noted that the repeilency, poor adhesion and incompleteness of the coating/pellet is exasperated due to the appendages of the grass seeds; in particular, this repeilency, poor adhesion and incompleteness is noted on the hairs and awn tips of the seeds. This is because the hairs and awn tips protrude from the main seed unit and are flexible. Hence, successful coating on the hairs and awn tips of the seeds is problematic and reduce the final integrity of the coat. For example, the polymer seed coat is susceptible to cracking when the appendages flex under impacts during handling, storage, transportation and sowing of the seeds. Chips and cracks in the coating are particularly detrimental to the seed sowers as the seeds could entangle.

[0009] Due to the above-mentioned drawbacks of the coating process, an efficient method for de-awning and removal of the appendages of the seeds is required. This is particularly true because de-awning or awn-minimisation and appendage removal will remove the "bulky" characteristics of the seeds, increasing the coatability of the seeds. [0010] It is against this background thai the present invention has been deyelopecJr " SUMMARY OF INVENTION

[0011] According to a first aspect of the invention there is provided a method for ablating seeds, the method comprises the step of exposing at least one seed to at least one heat source, wherein the seed is in motion.

[0012] In a particular arrangement, the method further comprises generating a moving stream of seeds.

[0013] Preferably, the stream of seeds is exposed to the heat source.

[0014] Preferably, a particular location of the stream of seeds is exposed to the heat source.

[0015] Preferably, the heat source comprises a flame that comprises a pre- combustion zone, a main reaction zone and a post-combustion zone,

[0016] Preferably, the flame comprises a propane gas flame.

[0017] Alternatively, other fuel types and heat sources are also possible

[0018] Preferably, the flame is a pencil shaped flame directed at one point of the stream of seeds

[0019] In a particular arrangement, the flame has a width of 15 mm.

[0020] In another arrangement, the flame has width of 35 mm.

[0021] In a particular arrangement, the flame is a pencil shaped flame of about 38.1 mm to 50,8 mm long.

[0022] In another arrangement, the flame is a large volume flame. [0023] In a further arrangement, the flame comprises a cyclone flame. [0024] In one arrangement, the particular location of the stream of seeds is exposed " simultaneously to the pre-combustion zone, the main reaction zone and the post- combustion zone of the flame.

[0025] In another arrangement, the stream of seeds is exposed simultaneously to the main reaction zone and the post-combustion zone.

[0028] Preferably, the cross-sectional area of the flame is sufficient to expose the whole stream of seeds over multiple rotations of the seed mass to the main reaction zone.

[0027] Preferably, the cross-sectional area of the flame is about 20mm x 20mm.

[0028] Preferably, the flame is generated by a torch.

[0029] In a particular arrangement, the torch comprises a flame spreader.

[0030] Preferably, the distance of the torch should be such that the contact between stream of seeds and combustion zone is maximised.

[0031] Preferably, the distance between the torch tip and the outer surface of the stream of seeds is between about 2.5 cm to 5 cm.

[0032] Preferably, the seeds are exposed to the flame for .003 seconds or .009 seconds.

[0033] Preferably, the stream of seeds is generated in a rotating drum.

[0034] Preferably, the drum has a diameter of 334 mm and a height of 200 mm.

[0035] In an alternative arrangement, the drum has a diameter of 883 mm and a height of 800 mm.

[0036] Preferably, the rotating speed of the drum can be adjusted to alter the flow and speed of the stream of seeds [0037] Preferably, the rotating speed of the 334mm diameter drum is between about 120 to 600 rpm.

[0038] In an arrangement, the rotating speed of the drum is approximately 360 rpm, exposing the particular location of the stream of seeds to the flame for approximately 0,003 seconds.

[0039] In another arrangement, the rotating speed of the drum is approximately 180 rpm, exposing the stream of seeds to the flame for approximately 0.009 seconds.

[0040] Preferably, the rotating speed of the 883 mm diameter drum is between about 86 to 100 rpm.

[0041] Preferably, each seed of the stream of seeds, after the stream is exposed to the heat source for a set duration, is ablated sufficiently (e.g. removal of unwanted hairs and awns) to allow greater coa lability.

[0042] Preferably, each seed of the stream of seeds, is coated after the stream is exposed to the heat source

[0043] In an arrangement, the seed stream is continuously exposed to the flaming for a particular period of time. In particular, during a period of time of 1 minute the seed stream is continuously exposed to flaming. Alternatively, during a period of time of 3 minutes the seed stream is continuously exposed to flaming.

[0044] In this particular arrangement, the total weight of the seeds in the seed stream is 20 grams, the flame is a pencil shaped flame, the rotary speed of the lower base is 360 rpm, and the flaming distance is 5 cm.

[0045] In an alternative arrangement, the seed stream is discontinuously exposed to the flaming for a particular period of time.

[0046] In a particular arrangement, during a period of time greater than 1 minute (for example 3-6 minutes} the seed stream is continuously exposed to flaming for a set period (for example 1 minute) separated by a period of no flaming (for example, 15 to 60 seconds). [0047] In a first arrangement, during a period of time of 3.5 minutes, ifie seed " stream is exposed to flaming for three 1 minute long periods of time with 15 second long intervals of time where no flaming occurs between two 1 minute long periods of time.

[0048] In a second arrangement, during a period of time of 4 minutes, the seed stream is exposed to flaming for three 1 minute long periods of time with 30 second long intervals of time where no flaming occurs between two 1 minute long periods of time.

[0049] In a third arrangement, during a period of time of 5 minutes, the seed stream is exposed to flaming for three 1 minute long periods of time with 80 second long intervals of time where no flaming occurs between two 1 minute long periods of time.

[0050] In a fourth arrangement, during a period of time of 10 minutes, the seed stream is exposed to flaming for seventeen .35 minute long periods of time with 15 second long intervals of time where no flaming occurs between the .35 minute long periods of time

[0051] In a fifth arrangement, during a period of time of 8 minutes, the seed stream is exposed to flaming for five 1.2 minutes long periods of time with 30 second long intervals of time where no flaming occurs between the 1.2 minute long periods of time.

[0052] in a sixth arrangement, during a period of time of 7 minutes, the seed stream is exposed to flaming for three 2 minute long periods of time with 80 second long intervals of time where no flaming occurs between the 2 minute long periods of time.

[0053] In the first to sixth arrangements the total weight of the seeds in the seed stream was 20 grams, the flame is a pencil shaped flame, the rotary speed of the lower base is 360 rpm, and the flaming distance is 5 cm.

[0054] Alternatively, the rotary speed of the lower base may be 180 rpm, and the flaming distance may be 5 cm.

[0055] According to a second aspect of the invention there is provided an apparatus for ablating seeds, the apparatus comprises a support surface adapted to receive at least one seed, and at least one heat source, wherein the surface is adapted to transfer motion to the seed for exposing the seed to the heat source while the seed is in motion. [0056] Preferably, the support surface is adapted to receive a plurality of seeds " for generating a moving stream of seeds to expose the stream of seeds to the heat source.

[0057] Preferably, the heat source is adapted to expose a particular location of the stream of seeds to the heat source.

[0058] Preferably, the heat source comprises a torch for generating a flame.

[0059] In a particular arrangement, the torch comprises a flame spreader.

[0060] Preferably, the apparatus further comprises a fixture adapted to receive the torch.

[0061] Preferably, the fixture is adapted to receive the torch for maintaining the torch at a particular location from the surface.

[0062] Preferably, the fixture is adapted to orient the torch to a particular location of the support surface.

[0063] Preferably, the fixture is adapted to vary the height of the torch with respect to the support surface.

[0064] In an alternative arrangement, there are provided a plurality of torches.

[0065] Preferably, at least one of the torches comprises a flame spreader.

[0086] Preferably, there are provided a fixture for supporting each torch within the drum.

[0067] Preferably, the fixture is adapted to orient the torch to a particular location of the support surface.

[0068] Preferably, the fixture is adapted to vary the height of the torch with respect to the support surface.

[0069] Preferably, the apparatus comprises a beam extending from one side of the drum to another side of the drum. [0070] Preferably, the beam is adapted to receive each fixture.

[0071] Preferably, the torch is adapted to generate a flame that comprises a pre- combustion zone, a main reaction zone and a post-combustion zone.

[0072] Preferably, the flame comprises a propane flame.

[0073] Preferably, the flame is a pencil shaped flame of about 38.1 mm to 50.8 mm long,

[0074] in another arrangement, the flame is a large volume flame.

[0075] In a further arrangement the torch is adapted to produce a cyclone flame

[0076] Preferably, the apparatus further comprises a drum having a side wall, a first open end and a second open end.

[0077] Preferably, the apparatus comprises a trolley having an upper surface for receiving the drum and a lower storage area for receiving a control system for operating the apparatus.

[0078] Preferably, the side wall of the drum is of cylindrical configuration.

[0079] Preferably, the drum has a diameter of 334 mm and a height of 200 mm.

[0080] In an alternative arrangement, the drum has a diameter of 883 mm and a height of 600 mm.

[0081] Preferably, the second open end is adapted to receive the support surface.

[0082] Preferably, the support surface comprises a curved rim located adjacent the side wall of the drum defining a gap.

[0083] Preferably, apparatus comprises a fan system located below the drum for delivering an air flow through the gap to impede seeds from falling through the gap during operation of the apparatus. [0084] Preferably, the support surface comprises a disc.

[0085] Preferably, the disc is adapted to rotate around the longitudinal axis of the drum.

[0086] Preferably, the fixture for receiving the torch is adapted to be attached to the first end of the drum to allow the torch to reach into the drum to expose the flame to the particular location of the stream of seeds to the flame at the base of the support surface (for example, rotating disc).

[0087] Preferably, the drum further comprises at least one mixing bar for provide agitation to the seeds mixing them together and assisting in achieving an even seed ablation/coating.

[0088] Preferably, there are plurality of mixing bars arranged in a spaced apart relationship with respect to each other around the inner surface of the drum.

[0089] Preferably, the mixing bars abut the inner surface of the side wall of the drum and extend along the longitudinal axis of the drum.

[0090] In a particular arrangement, the mixing bars may be located at particular distances from the side wall.

[0091] Preferably, the location of the mixing bars may be varied so as to vary the location at which the seed stream abuts the inner surface of the side wall of the drum.

[0092] Preferably, the mixing bars are adapted to be rotated around their longitudinal axis.

BRIEF DESCRIPTION OF THE DRAWINGS

[0093] Further features of the present invention are more fully described in the following description of several non-limiting embodiments thereof. This description is included solely for the purposes of exemplifying the present invention. It should not be understood as a restriction on the broad summary, disclosure or description of the invention as set out above. The description will be made with reference ~ †d trie accompanying drawings in which:

Figure 1 is a perspective top view of a detail of the seed ablation apparatus in accordance with a first embodiment of the invention;

Figure 2 is a schematic cross-sectional view of the seed ablation apparatus shown in Figure 1 ;

Figure 3 is a schematic isometric view of the seed ablation apparatus shown in Figure 1 with the torch removed;

Figure 4 is a schematic perspective view of the torch fixture (used to clamp the torch which is not shown) of the seed ablation apparatus shown in Figure 1 ;

Figure 5 is an example of a particular coating recipe applied for use in relation to Triodia (spimfex) grass seeds which are indicative of Poaceae seeds and seeds with appendages that confound coating/pelleting;

Figure 6 is a perspective view of a seed ablation apparatus in accordance with a second embodiment of the invention:

Figure 7 is a perspective top view of a detail of the seed ablation apparatus shown in Figure 6;

Figure 8 is a perspective top view of a detail of the interior of the seed ablation apparatus shown in Figure 6 during operation thereof;

Figure 9 is a perspective top view of a detail of the interior of the seed ablation apparatus shown in Figure 6 showing one of the flames;

Figure 10 are photographic depictions of the progressive ablation process over 60 seconds for samples taken periodically from a flamed batch with a total seed weight of 10 grams;

Figure 11 are photographic depictions of treated (Batch B) and untreated (Batch A) Triodia (Spinifex) Seeds showing Florets on the left of the Batches B and A nad showing Caryopsis on the right of the Batches B and A; Figure 12 show the germination results of "Study X" in which the total heat treatment duration and interval is varied as outlined in figures 13 to 18:

Figure 13 shows the code labels for the "Study X" which results are shown in figure 12;

Figure 14 shows the germination comparison for different heating intervals for the "Study X" which results are shown in figure 12;

Figure 15 shows the germination comparison for different total heating durations for the "Study X" ' which results are shown in figure 12;

Figure 18 shows the overall germination comparison for flamed versus untreated seeds for the "Study X" which results are shown in figure 12;

Figure 17 shows the germination results of "Study Y" in which revolution per minute (RPM), flaming distance, flame profile are varied as outlined in figures 18 to 22;

Figure 18 shows the code labels for the "Study Y" which results are shown in figure 17;

Figure 19 shows the germination comparison for different rotational speeds for the "Study Y " which results are shown in figure 17;

Figure 20 shows the germination comparison for different flaming distances for the "Study Y" which results are shown in figure 17;

Figure 21 show the germination comparison for different flaming intensity for the "Study Y" which results are shown in figure 17;

Figure 22 shows the germination comparison for flamed seeds versus untreated seeds for the "Study Y" which results are shown in figure 17;

Figure 23 are photographic depictions of flamed (Batch B) and untreated (Batch A) of coated Triodia (Spinifex) Seeds under Leica microscope;

Figure 24 are photographic depictions of flamed (Batch B) and untreated (Batch A) of coated Triodia (Spinifex) Seeds under SEM; Figure 25 are photographic depictions of flamed (Batch 8) and u ntrea teir( Ba ich A) of coated Triodia (Spinifex) Seeds under X-Ray;

Figure 26 shows a table listing the physical properties of seeds before the flaming process;

Figure 27 shows a table listing the physical properties of seeds after a 3 minutes flaming process;

Figures 28 show a table listing the changes observed to seek bulk density of seeds undergone flaming process with the raw data used to calculate shown in figure 26 and 27; and

Figure 29 are photographic depictions of the progressive sampling process over 10 minutes for samples taken periodically at 4 minutes, 6 minutes, 8 minutes and 10 minutes from a flamed seed batch weighing 100 grams.

DESCRIPTION OF EfVlBODIMENT(S)

[0094] The Figures 1 to 4 show a particular arrangement of an apparatus for seed ablation 10 in accordance with an embodiment of the invention.

[0095] As will be described with reference to the method of seed ablation in accordance with an embodiment of the invention, a particular arrangement of the apparatus is adapted to expose a heat source to a plurality of seeds while the seeds are in motion.

[0096] Exposing of the heat source to the moving seed allows ablation of the seeds for de-awning and removing of the appendages of the seeds.

[0097] In the particular arrangement shown in Figure 1, the seeds are exposed to rotational movement within a drum 12. In this manner a stream 14 of moving seeds is generated. The seed stream 14 abut, a particular location of the side wall 20, which can be altered by moving the placement of mixing bars 56, and the speed of rotation of the lower base 22 of the apparatus 10. In an arrangement, the drum 12 has a diameter of 334 mm. [0098] A torch 18, which reaches into the drum 12, provides a flame 18. The torch " 18 is oriented in such a manner thai the flame 18 is directed to the particular location of the drum 12 allowing the stream of seeds 14 to be exposed to the flame 18. This allows the ablation of the seed awns and appendages over time as seeds enter into contact with the flame 18. This can be best appreciated in figure 2.

[0099] Preferably, the heat source comprises a flame that comprises a pre- combustion zone, a main reaction zone and a post-combustion zone.

[00100] For the stream of seeds 14 to be exposed to the main reaction zone and the post-combustion zone of the flame 18, the torch 18 is separated about 5 cm from the stream of seeds 14. Flame distance to the stream of seeds can be adjusted and is dependent on the seed type and quantities being ablated.

[00101] For the stream of seeds 14 to be exposed to the pre-combustion zone, a main reaction zone as well as the post-combustion zone, the torch 16 is separated about 2.5 cm from the stream of seeds 14.

[00102] The flame may be a pencil shaped flame. For example, the flame may be about 38.1 mm to 50.8 mm long. In another arrangement, the flame may be a large volume flame. The flame may comprise a propane flame. Other fuel types, heat sources and flame morphologies are also possible.

[00103] Figure 2 is a schematic cross-sectional view of the seed ablation apparatus 10 in accordance with the present embodiment of the invention.

[00104] As shown in Figure 2, the seed ablation apparatus 10 comprises a side wall 20 and a lower base 22 (also herein referred to as support surface) defining the drum 12. In the particular arrangement shown in Figure 2, the side wall 20 is configured as a cylindrical wall having open upper and lower ends (also herein referred to as first and second ends). The lower end is adapted to receive the lower base 22. The lower base 22 comprises a rim 24 surrounding the periphery of the lower base 22. The rim 24 is located adjacent to the inner surfaces of the side wall 20 defining a gap 25 between the rim 24 and the side wall 20. For this, the rim 24 is curved upwardly. [00105] The fact that a gap 25 is defined between the rim 234 and the side wall 20 Ts particularly advantageous. This is because it permits air to be blown from beneath the lower base 22 through the gap 25 impeding seeds exiting the drum 12 through the lower end of the drum 12. For this a fan system is provided below the drum to provide the air to be blown through the gap 25. The fan system may comprise ducted fan.

[00106] The lower base 22 is adapted to rotate around the longitudinal axis of the drum 12. For this, the lower base 22 may be operatively connected to a motor 28 to provide rotary motion to the lower base 22 as is shown in Figure 2. Other arrangements for providing rotary movement to the lower base 22 may be used.

[00107] The fact that the lower base 22 is adapted to rotate allows for the generation of the flow of seeds as well as to place the flow of seeds at the particular location depicted in Figure 2. The support plate 22, whose outer edge is curved upwards, rotates causing the seeds to be projected up the side wall as the centripetal acceleration overcomes the friction force between the seeds and the support plate upper surface. In this manner, the stream 14 of moving seeds is generated at the junction between the curved rim 24 of the lower base 22 and the lower section of the side wall 20 of the drum 12.

[00108] The drum 12 includes mixing bars 56 that provide agitation to the seeds mixing them together and assisting in achieving an even seed ablation/coating. In the particular arrangement there is a pair of mixing bars 56 located 180° apart with respect to each other. The mixing bars 56 abut the inner surface of the drum 12 and extend along the longitudinal axis of the drum 12. Other arrangements for mixing bars are possible.

[00109] As was mentioned earlier, to remove the bulky nature of seeds through ablation of the awns and the appendages a heat source is located adjacent the seed stream 14, In the particular arrangement of the figures, the heat source comprises a torch 16 that produces a flame 18. The torch 16 reaches into the drum 12 and is oriented in such a manner that the flame 18 is directed to the particularly region of the drum 12 allowing the flame 18 to engage with the stream 14 of moving seeds.

[00110] Figure 3 shows a particular arrangement of the drum 12 adapted to allow the torch 18 to reach into the drum 12 for orienting the flame 18 to the seed stream 14. As shown in Figure 3, the upper end 30 of the drum 12 is adapted to receive a torcTTfixfureT 32. The torch fixture 32 comprises two tabs 38 and 38 for fastening of the torch fixture 32 to the drum 12. For fastening of the fixture 32 to the drum 12, there is provided a plate section 34 for receiving the tab 36 of the fixture. The plate section 34 covers partially the upper end of the drum 12. Other arrangements may be provided for attaching the torch to the drum 12.

[00111] Furthermore, the torch fixture 32 is adapted to adjust the distance between the lower base 22 and the torch 18. The torch fixture 32 is also adapted to adjust the distance between the inner surface of the side wall 20 and the torch 18. This allows for orienting the flame 18 to the particular location for ablation of the seeds. This can be best seen in Figure 4.

[00112] Figure 4 shows an enlarged view of the torch fixture 32. As shown in Figure 4, the torch fixture 32 comprises a first plate 40 and a second plate 42.

[00113] The first plate 40 is adapted to be fastened to the upper end 30 of the drum 12 as was described above.

[00114] The second plate 42 is adapted for attachment to the first plate 40; in particular, the second plate 42 is attached to the first plate 40 to allow a rotational and linear movement of the second plate 42 with respect to the first plate 40.

[00115] The rotational movement is accomplished by fastening the second plate 42 via a pivot joint 44. The linear movement is accomplished via a slit 46 that extent longitudinally along the second plate 42.

[00116] The torch fixture 32 may include a handle 48 to facilitate pivotal movement of the first and second plate 40 and 42 with respect to each other.

[00117] The fact that the first and second plate 40 and 42 are adapted to move with respect to each other allows positioning the torch 16 at a particular distance and angle from the side wall 20 of the drum 12.

[00118] Further, the torch fixture 32 is also adapted to locate the torch 18 at a particular distance and angle with respect to the lower base 22 of the drum 12. For this, the torch fixture 32 comprises support means 50. The support means 50 cprn " pr1s.es " a base 52 adapted to receive the torch 16 and a rod 54. The rod 54 is slideably attached to the second plate 42 to adjust the distance between the torch 16 and the lower base 22.

[00119] The above described fixture 32 is particular useful because it allows positioning the torch 16 at specific locations within the drum 12 to allow the seed stream 14 to be exposed to the flame IS. The distance between the seed stream 14 and the flame 18 of the torch 16 may be varied depending, for example, on the particular seed type or quantity of seeds that are being ablated. The distance between the seed stream 14 and the flame 18 is also referred to herein as the "flaming distance".

[00120] Moreover, there are other parameters that may be varied to change the ablation conditions. These parameters may be flame intensity (the flame intensity is varied by varying the shape of the flame 18: for example, the flame 18 may be a pencil shaped flame or a large volume flame), rotational speed of the lower base 22. total time of continuous flame exposure to the seed stream 14 as well as the time of flaming intervals during discontinuous flame exposure.

[00121] Figures 6 to 9 show an apparatus according to a second embodiment of the invention. The apparatus according to the second embodiment is similar to the apparatus according to the first embodiment and similar reference numerals are used to identify similar parts.

[00122] Figure 6 shows an apparatus 10 for seed ablation in accordance with a second embodiment of the invention.

[00123] As shown in Figure 6, the apparatus 10 for seed ablation comprises a drum 12 for exposing the seeds to rotational movement and to flames for ablation of the seeds. As will be described below, the seed ablation apparatus 10 in accordance with the second embodiment of the invention comprises a plurality of torches 18 for exposing the rotating seeds to flames at more than one location of the stream 14 of rotating seeds - see Figure 7 and 8. [00124] The seed ablation apparatus 10 comprises a trolley 60 having an " ' upper platform 82 providing a surface for receiving the drum 12. The trolley 60 also comprises wheels 84 permitting transportation of the seed ablation apparatus 10.

[00125] Further, the trolley comprises a storage area 68 for receiving the control system 68. The control system 88 is operatsvely connected to the drum 12 and the torches 16 for conducting the seed ablation process. The torches 16 comprise valve means and regulators operatsvely connected to a fuel supply (e.g. gas cylinders) through hoses 17 - see Figure 1.

[00128] Furthermore, it was mentioned before during operation of the apparatus 10 air may be blown from beneath the lower base 22 of the drum 12 through a gap 25 defined between the rim 24 of the lower base 22 and the side wall 20 of the drum; this impedes seed material from falling through the gap 25. The air is generated by a fan system located under the drum 12. The fan system is operatsvely connected to the control system 68 for operation thereof,

[00127] Referring now to Figure 7. Figure 7 is a top view of the drum 12 of the seed ablation apparatus 10.

[00128] As shown in Figure 7, the seed ablation apparatus 10 comprises a side wall 20 and a lower base 22 (also herein referred to as support surface) defining the drum 12. In the particular arrangement shown in Figure 7, the side wall 20 is configured as a cylindrical wall having open upper and lower ends (also herein referred to as first and second ends). The lower end is adapted to receive the lower base 22. The lower base 22 comprises a rim 24 surrounding the periphery of the lower base 22. The rim 24 is spaced apart from the inner surfaces of the side wall 20 defining the gap 25. For this, the rim 24 is curved upwardly. This arrangement impedes from seeds exiting the drum 12 through the lower end of the drum 12.

[00129] As was described with reference to the first embodiment of the invention, in accordance to the second embodiment of the invention the lower base 22 is also adapted to rotate for generating the flow of seeds as well as to place the flow of seeds at the junction between the curved rim 24 of the lower base 22 and the lower section of the side wall 20 of the drum 12 as is depicted in Figure 8. [00130] As was mentioned before, the seed ablation apparatus 10 in accordaTice wW the second embodiment of the invention comprises a plurality of torches 18 for exposing the rotating seeds to flames at more than one location of the stream 14 of rotating

[00131] Figure 7 shows a particular arrangement of the drum 12 adapted to allow pair of torches 16a and 16b to reach into the daim 12 for orienting the flame 18 to the seed stream 14. As shown in Figure 7, the upper end 30 of the drum 12 is adapted to receive a support beam 70 for fastening a pair of torch fixtures 32, each one for supporting a torch 18.

[00132] Each of the fixtures 32 comprises the second plate 42 (mentioned above when describing the torch fixture 32 of the seed ablation apparatus in accordance with first embodiment of the invention). The second plate 42 is attached to the beam 70 to allow a rotational and linear movement of the second plate 42 with respect to the beam as described with reference to the torch fixture 32 of the seed ablation apparatus 10 in accordance with first embodiment of the invention.

[00133] By rotating and longitudinally moving the torch fixtures 32, the torches 16a and 18b may be located at locations around the inner periphery of the drum 12 and adjacent to the inner wall of the drum 12. As shown in Figure 7, the fixtures 32 have been arranged in such a manner that the rotating seed flow are exposed to the flames 18 generated by the torches 18a and 16b at two different locations.

[00134] Figures 8 and 9 show the interior of the drum depicting the torches 16a and 18 b.

[00135] Figure 8 shows the seed ablation apparatus 10 in operation with torch 16a directing the flame 18 towards the stream 14 of seeds.

[00136] As shown in Figure 9, the torch 18b comprises a flame spreader 80, In this particular arrangement only one of the torches 16 includes a flame spreader 80; in alternative arrangements, both torches 16a and 16b may include flame spreaders 80. [00137] Furthermore, as mentioned with reference to the seed ablation apparatus Ιϋ ' in accordance with the first embodiment of the invention the stream 14 of rotating seeds may be altered using mixing bars 58 located adjacent the inner walls of the drum 12,

[00138] In accordance with the second embodiment of the invention, the seed ablation apparatus 10 comprises a plurality of mixing bars 58. Each mixing bar 56 is located adjacent the inner walls of the drum 12 and underneath one of the ends the beam 70 that is attached to the wall 20 of the drum 12. In this manner, the mixing bars 58 are opposite to each other.

[00139] In the particular arrangement shown in the figures, there are two mixing bars 58. The mixing bars 56 are slideably attached to the beam 70 to permit varying the distance between each mixing bar 56 and the inner wall of the drum 12. The mixing bars 56 may also be adapted to be rotated around their longitudinal axis to change the orientation of the mixing bars with respect to the drum wall 20.

[00140] As shown in the particular arrangement of Figure 7, the beam 70 comprises, at each end, a slot 72 to which the upper end of a mixing bar 58 is slideably attached. This permits varying the distance between the mixing bars 56 and the inner surface of the side wall 20. .

[001413 The seed ablation apparatus comprises means for evacuating the processed seed material. For this, the drum 12 comprises a chute 76 (as per standard drum coalers) and a handle 78. The handle 78 controls a toggle clamp attached to a hinged door. During operation, with the base rotating, a container may be placed under the chute for the processed seed material to fall into the container by opening the door using the handle 78.

[00142] Furthermore, in accordance with a particular arrangement of the second embodiment of the invention, the seed ablation apparatus 10 comprises torches adapted to provide cyclone flames.

[00143] In a particular arrangement, the width of the flame is about 15mm; in another arrangement the width of the flame is about 35 mm. [00144] Moreover, in a particular arrangement of the seed ablation apparatus 10 In accordance with the second embodiment of the invention, the drum 12 comprises a diameter of 883 mm and a height of 600 mm. The drum 12 is adapted to rotate at rotational speeds of 86 rpm to 100 rpm.

[00145] A trial was conducted using this particular arrangement of seed ablation apparatus 10 using 3000ml (286 grams) of floret material. The trial consisted in rotating the drum 12, containing the seed material, at a speed of 98 rpm. The torches 16 were positioned so that the tip of each flame contacted the stream 14 of seeds and the seeds were subject at an initial flaming time of 20 minutes After trial the volume of the seed material decreased 33% to 2000ml and decreased in weight by 15%.

[00146] The present embodiment of the invention also relates to a method for conditioning seeds; in particular, the method comprises applying a heat source to a stream of seeds, while the seeds are in motion so as to flash flame seeds.

[00147] In a particular arrangement of the method, the method includes the steps of: generating a moving stream of seeds 14 and applying a flame 13 to the moving seed stream for ablation of awnings and appendages from the seeds.

[00148] The method further comprises the steps of varying the time period that the seed stream will be exposed to the flaming such that the particular location of the seed stream 14 may be periodically exposed for a particular period of time to the heat source. Variations in the time period and exposure to flaming are dependent on the seed type and quantifies being ablated.

[00149] In an arrangement, the seed stream is continuously exposed to the flaming for a particular period of time. In particular, during a period of time of 1 minute the seed stream is continuously exposed to flaming. Alternatively, during a period of time of 3 minutes the seed stream is continuously exposed to flaming.

[00150] In this particular arrangement the total weight of the seeds in the seed stream 14 is 20 grams, the flame 18 is a pencil shaped flame, the rotary speed of the lower base is 360 rpm, and the flaming distance is 5 cm. [00151] In this arrangement, the particular location of the stream of seeds ' 14 ' 7s exposed .00318 seconds to the flame 18.

[00152] In an alternative arrangement, the seed stream is discontinuously exposed to the flaming for a particular period of time.

[00153] In a first arrangement, during a period of time of 3.5 minutes, the seed stream is exposed to flaming for three 1 minute long periods of time with 15 second long intervals of time where no flaming occurs between two 1 minute long periods of time.

[00154] In a second arrangement, during a period of time of 4 minutes, the seed stream is exposed to flaming for three 1 minute long periods of time with 30 second long intervals of time where no flaming occurs between two 1 minute long periods of time.

[00155] In a third arrangement, during a period of time of 5 minutes, the seed stream is exposed to flaming for three 1 minute long periods of time with 80 second long intervals of time where no flaming occurs between two 1 minute long periods of time.

[00156] In a fourth arrangement, during a period of time of 10 minutes, the seed stream is exposed to flaming for seventeen .35 minute long periods of time with 15 second long intervals of time where no flaming occurs between the .35 minute long periods of time

[00157] In a fifth arrangement, during a period of time of 8 minutes, the seed stream is exposed to flaming for five 1.2 minutes long periods of time with 30 second long intervals of time where no flaming occurs between the 1.2 minute long periods of time.

[00158] In a sixth arrangement, during a period of time of 7 minutes, the seed stream is exposed to flaming for three 2 minute long periods of time with 80 second long intervals of time where no flaming occurs between the 2 minute long periods of time.

[00159] In the first to sixth arrangements the total weight of the seeds in the seed stream 14 was 20 grams, the flame is a pencil shaped flame, the rotary speed of the lower base is 360 rpm, and the flaming distance is 5 cm. [00180] Alternatively, the rotary speed of the lower base may be 180 rpm^ndlheT flaming distance may be 5 cm. In this arrangement the particular location of the stream of seeds is exposed .00953 seconds to the flame.

[0016] ] The method may further comprise the steps of coating the ablated seeds.

[00182] In an arrangement, the seed coating method comprises a two-step process of progressive seed bulking (Table 1 of Figure 5), This particular coating process (though the ablated seed could be adapted to other coating and pelleting processes) includes applying (1 ) a polymer binder first in both of the two steps of the two-step process and (2) a filler material. More specifically, the first step (Step 1) is known as the base coat and involves typical seed coating methods whereby after complete application of the binder, the filler material is added, allowing the filler to adhere to the seeds. The second step (Step 2} involves, while continually adding the binder amount at a known rate, the addition of filler material in short bursts until both the binder and filler are completely applied. Coated seeds are then dried to complete the seed bulking process. Table 1 of Figure 5 shows an example of a particular coating recipe applied for use in relation to Triodia (spinifex) grass seeds.

[00163] The following paragraphs disclose the Results and Discussions of particular methods of seed ablation.

RESULTS AMD DISCUSSIONS

VISUAL INSPECTION

[00164] The progressive ablation process for samples taken periodically from a flamed batch with a total seed weight of 10 grams is shown in Figure 10. Seeds for the different heating durations were scanned, with SEM images taken of that represented the majority.

1 ) Control (0 seconds): Untreated Seed under SEM, shows significant

presence of appendages (surface hairs and awns), making the seed shape very irregular

2) Treated (30 seconds): After 30 seconds, significant reductions in hair

length when compared to control occurs. However, awn length still relatively unchanged 3) Treated (45 seconds): After 45 seconds, significant overall and uniform reduction in both hair and awn length is shown

4) Treated (60 seconds); After 80 seconds, a very uniform and clean finish in relation to both awn and hair length is achieved

[00165] Visual inspection under the Leica microscope was conducted and compared for flamed and untreated seeds (Figure 11). Examination of the specimens revealed the following:

1 ) Florets (outer husk): Comparing the control (A) and the flamed (B)

florets, significant and uniform ablation of surface hairs and awn tips have been achieved using the Votary flaming' method. This directly contrasts the findings in the initial flaming trials which showed uneven ablation of appendages and severe charring and blackening of the floret.

2) Caryopsis (internal seed/grain): Even with a relatively long heating duration (8-minutes), there were no differences in visual appearance for the caryopsis of the control (A) and the flamed (B) seeds. Once again this directly contrasts the findings in the initial flaming trials where severe

blackening and charring of the caryopsis was present.

[00166] From the preceding, it is clear that with the 'rotary flaming' method, significant appendage removal for Triodia (Spinifex) seeds is possible. The treatment resulted in the complete and uniform ablation of hairs, the shortening of the awns and overall, simplification of the seed geometry. The uniformity of the ablation can be accredited to the natural mixing and agitation effect provided by the inbuilt mixing bars of the rotary coater, which ensures even flame exposures for the total heating duration. As seeds collide with the mixing bars, these light impact forces are likely to also remove singed appendages, as they would be brittle due to charring effects.

[00167] Another key finding from visual inspection was that, unlike the initial trial, misting of water onto the seeds was not a requirement for the Votary flaming' method as the seeds did not instantaneously combust on contact with the flame. This can be accredited to the extremely low flame exposure times for the method. Using the lowest practical rotational speed of 120 RPM, the following measure of flame exposure were calculated: 1 ) Seeds experience an instantaneous seed flame exposure time per revolution of approx.

0.00953 seconds

GERMINATION TESTING

[00168] Germination results for the study are shown in Figure 12 ("Study X") and Figure 17 ("Study Y"). To facilitate understanding and explanation of the graphs, refer to the following;

1 ) On the X-axis you have the different heat treatments, starting with the control "Ctrl" on the left, followed by digits which are code labels for the different tests conducted as displayed in the tables under the respective graphs

2) There are two variations of tests for each heat treatment, "H20" - blue bars and "KAR" - red bars, referring to the different germination media used

3) The Y-axis shows the germination percent, and for each germination

media there are two bars representing the germination per cent in weeks 1 and 2 respectively.

This is represented as an accumulation of germination since day 0, hence germination percent in week 2 will always be greater than or equal to germination percent in week 1.

[00169] As "Study X" focused on evaluating the effects of varying heating intervals and total heating durations on germination potential, germination values were averaged and compared for the different heating intervals and durations as shown in Figure 14 and Figure 15; respectively.

[00170] For heating intervals, the general trend inferred was that increasing heating interval time decreases average germination potential. However, surprisingly all of the interval times tested up to 80 seconds performed very well when compared to the control, with the 3-minute continuous treatment being the only one that performed poorly against the control. [00171] For heating durations, the general trend shown was that increasing heating duration increases average germination potential. Once again, this was a surprising result given that detrimental effects on viability were expected, as the heating durations that performed very well (3 and 6 minutes) were very long given the amount of seed flamed (20 grams),

[00172] The overall germination comparison for flamed and untreated seeds is shown in Figure 16 Results from "Study X" indicate that flamed seeds performed 3 31 times better than the control after two weeks of germination when using only water as the germination media and 1 ,95 times better than the control when Kamikinolide solution is used.

[00173] Comparisons for the different parameters tested for "Study Y" are shown in Figure 19, Figure 20,, and Figure 21.

[00174] With the different rotary speeds, on average the results are inconclusive, with 180 RPIV1 outperforming 380 RPM when water is germination media whilst being outperformed when the germination media is a Karrikinolide solution. However, flamed seeds are still consistently outperforming the control untreated seeds in terms of germination potential.

[00175] Results from comparing germination results from varying flaming distance indicate no major differences, with identical results when water is the germination media with a slight edge given to the further flaming distance (5 cm) when the germination media is the Karrikinolide solution.

[00176] For flame intensity, results are inconclusive (similar to conclusion reached for rotary speed) as the flame profiles outperformed each other in different germination media.

[00177] Overall, similar to "Study X", the very surprising yet remarkably consistent result was that overall seed germination potential is enhanced significantly when the seeds are flamed. Taking an average over the two studies, flamed seeds performed 3.34 times better than the control after two weeks of germination when using only water as the germination media and 2.48 times better than the control when Karrikino!Tde solution is used. Through consultation with seed scientists at Kings Park and Botanic Gardens, the following deductions on the results were made (Erickson, 2014b, Merrit, 2014):

1 ) Significant increases in germination due to flaming is likely due to the

flaming reducing some form of physiological dormancy present in the Triodia florets - most likely weakening the floret structure to reduce the mechanical resistance of the floret, allowing a higher proportion of seeds to germination

2) Potential that the direct flaming treatment provides a 'smoke' treatment which further stimulates germination - similar to the effect of using

Karrikinolide

COATING RESULTS

[00178] Coating results for flamed and untreated seeds are compared in Figure 23 (Leica), Figure 24 (SEM), and Figure 25 (X-ray).

[00179] Collectively, the figures show that seed coating adhesion is on a much higher level for flamed seeds. In reference to Figure 24, we can see that the coated flamed seed (B) when compared to the coated untreated seed (A) is considerably more uniformly shaped and coated. Conveniently, (B) also shows that the main flaw in the coating is located at where the remainder of the hairs are still present. This confirms our initial hypothesis, being that the appendages for the Triodia (Spinifex) seeds hinder coating attempts by introducing stress concentrations to the coat. Therefore, through effective and uniform removal of the appendages with application of the rotary flaming technique, we have alleviated seed coating repellency and have essentially made seed coating a viable technique for Triodia (Spinifex) seeds.

CHANGES IN PHYSICAL PROPERTIES

[00180] Resulting changes to seed bulk density with flaming is summarised in Figure 28 , with the raw data used to calculate the changes shown in Figure 26 and Figure 27. Major findings indicate that the flaming method produces an average increase in bulk density by 43.4%, through reducing seed volume and weight on average by 35.9% and 8.1% respectively,

PROCESSING RATE

[00181] Periodic samples taken from a 100 g batch of seeds is shown in Figure 29.

[00182] Satisfactory ablation of appendages was found to occur at the 1 G-minute mark. Therefore seed processing rate was determined to be 100 grams per 12 minutes (including cooling time) or 500 grams per hour with the current set up. Potential processing rates with use of larger equipment is estimated based on scaling processing rate with ratio of heating capacity (BTU/hour). For example, given that the heating capacity (BTU/hour) equals 2.534 for the UL2317 propane torch (test-rig torch), an alternate torch (such as Sievert's 3348 soft flame burner) with a heating capacity

(BTU/hour) value of 88,000 (Companion Brands, 2014) would be estimated to have a processing rate that is 88,000/2,534 = 34.7 times more than the processing rate calculated from the test-rig. Therefore, an estimated processing rate with the Sievert 3348 torch would be 17.4 kg/hour. Although this is relatively low when compared to processing rates reported for brushing machines of 50 to 80 kg/hour (Loch ef aL 1996), with the use of large commercial rotary drums, the potential to use multiple burners to flame seeds all at once is a real possibility.

[00183] Modifications and variations as would be apparent to a skilled addressee are deemed to be within the scope of the present invention.

[00184] Further, it should be appreciated that the scope of the invention is not limited to the scope of the embodiments disclosed. By way of example, the apparatus in accordance with the present embodiment of the invention has been described as incorporating a single torch 16 for generating of the flame 18. In other arrangements, the apparatus may include a plurality of torches 16 that are, for example, arranged in a spaced apart relationship with respect to each other. In alternative arrangements, the flame 18 or flames 18 may include particular morphologies (broad, diffused etc.).

[00185] Furthermore, the apparatus in accordance with the present embodiment of the invention has been described as comprising a drum 12 as depicted in the herein attached Figure 1 , In accordance with alternative embodiment, the apparatus Tor seed " ablation may comprise a cylindrical body having upper and lower open ends, wherein the upper end being adapted to receive the unprocessed seeds and the lower end being adapted to discharge the ablated seeds. Also, the cylindrical body may be diagonally oriented and adapted to rotate around its longitudinal axis to allow the formation of a stream of seeds that flow around the inner surface of the cylindrical body and exit an open end of the cylindrical body for collection of the processed seeds. Such an arrangement may, for example, use an Archimedes Screw principle, in this particular embodiment, there may be provided one or more torches 18 adapted to generate flames oriented towards the inner surface of the cylindrical body to enter in contact with the stream of seeds that is traversing the cylindrical body. For example, there may be provided a central mast traversing the cylindrical body and secured to the cylindrical body so that the mast rotates with the cylindrical body, wherein one or more of the torches are arranged in a spaced apart relationship with respect to each onto the mast.

[00186] Throughout this specification, unless the context requires otherwise, the word "comprise" or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.