Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SELECTIVE HYDROGENATION METHOD USING A CATALYST OBTAINED BY COMULLING COMPRISING A SPECIFIC SUPPORT
Document Type and Number:
WIPO Patent Application WO/2019/011566
Kind Code:
A1
Abstract:
A method for selective hydrogenating of polyunsaturated compounds containing at least 2 carbon atoms per molecule, contained in a hydrocarbon feedstock having a final boiling point less than or equal to 300°C in the presence of a catalyst comprising an oxide matrix having a calcined alumina content greater than or equal to 90% by weight with respect to the total weight of said matrix, and an active phase comprising nickel, said active phase being comulled within said largely calcined aluminised oxide matrix, the content of nickel being between 1 and 65% by weight of said element with respect to the total weight of the catalyst, the nickel particles having a diameter less than 15 nm, said catalyst having a median mesoporous diameter between 3 and 25 nm, a macroporous median diameter between 50 and 300 nm, a mesoporous volume measured by mercury porosimetry greater than or equal to 0.40 mL/g and a total porous volume measured by mercury porosimetry greater than or equal to 0.45 mL/g.

Inventors:
BOUALLEG MALIKA (FR)
DUBREUIL ANNE-CLAIRE (FR)
Application Number:
PCT/EP2018/065726
Publication Date:
January 17, 2019
Filing Date:
June 13, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
IFP ENERGIES NOW (FR)
International Classes:
C10G45/36; B01J21/04; B01J35/10; B01J37/03; C10G70/02
Domestic Patent References:
WO2015189193A12015-12-17
WO2015189191A12015-12-17
WO2011080515A22011-07-07
WO2004098774A12004-11-18
Foreign References:
US4273680A1981-06-16
US8518851B22013-08-27
US20100116717A12010-05-13
US5478791A1995-12-26
EP0466567A11992-01-15
US5153163A1992-10-06
FR2676184A11992-11-13
EP0707890A11996-04-24
Other References:
Z.ZHOU; T. ZENG; Z. CHENG; W. YUAN, AICHE JOURNAL, vol. 57, no. 8, 2011, pages 2198 - 2206
JEAN CHARPIN ET BERNARD RASNEUR, TECHNIQUES DE L'INGÉNIEUR, TRAITÉ ANALYSE ET CARACTÉRISATION, pages 1050 - 1055
F. ROUQUÉROL; J. ROUQUÉROL; K. SING: "Adsorption by powders and porous solids. Principles, methodology and applications", 1999, ACADEMIC PRESS
THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309
D.R. LIDE: "CRC Handbook of Chemistry and Physics", 2000, CRC PRESS
J. I. LANGFORD; A. J. C. WILSON: "Scherrer after sixty years: A survey and some new results in the détermination of crystallite size", APPL. CRYST., vol. 11, 1978, pages 102 - 113
J. I. LANGFORD; A. J. C. WILSON: "Appl. Cryst.", vol. 11, 1978, article "Scherrer after sixty years: A survey and some new results in the détermination of crystallite size", pages: 102 - 113
Download PDF:
Claims:
REVENDICATIONS

1 . Procédé d'hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, contenus dans une charge d'hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h"1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et

40000 h"1 lorsque le procédé est réalisé en phase gazeuse, en présence d'un catalyseur comprenant une matrice oxyde ayant une teneur en alumine calcinée supérieure ou égale à 90% poids par rapport au poids total de ladite matrice, et une phase active comprenant du nickel, ladite phase active étant comalaxée au sein de ladite matrice oxyde majoritairement aluminique calcinée, la teneur en nickel étant comprise entre 1 et

65 % poids dudit élément par rapport au poids total du catalyseur, ladite phase active ne comprenant pas de métal du groupe VIB, les particules de nickel ayant un diamètre inférieur à 15 nm, ledit catalyseur ayant un diamètre médian mésoporeux compris entre 3 et 25 nm, un diamètre médian macroporeux compris entre 50 et 300 nm, un volume mésoporeux mesuré par porosimétrie au mercure supérieur ou égal à 0,40 ml_/g et un volume poreux total mesuré par porosimétrie au mercure supérieur ou égal à 0,45 ml_/g.

2. Procédé selon la revendication 1 , dans lequel le catalyseur comprend un volume macroporeux compris entre 0,05 et 0,3 ml_/g.

3. Procédé selon les revendications 1 ou 2, dans lequel la teneur en nickel est comprise entre 5 et 55% en poids par rapport au poids total du catalyseur.

4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le catalyseur comprend un volume mésoporeux compris entre 0,45 et 0,65 ml_/g.

5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le catalyseur comprend un diamètre médian mésoporeux compris entre 4 et 23 nm. 6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le catalyseur comprend un diamètre médian macroporeux compris entre 80 et 250 nm. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel le catalyseur ne comprend pas de micropores.

Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le catalyseur comprend une matrice oxyde constitué d'alumine.

Procédé selon l'une quelconque des revendications 1 à 8, dans lequel ledit catalyseur est préparé par au moins les étapes suivantes :

a) au moins une première étape de précipitation d'alumine, en milieu réactionnel aqueux, d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique, et l'acide nitrique, dans laquelle au moins l'un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de ladite première étape compris entre 40 et 100%, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al203 lors de ladite première étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape c) du procédé de préparation, ladite première étape de précipitation opérant à une température comprise entre 10 et 50 °C, et pendant une durée comprise entre 2 minutes et 30 minutes ;

b) une étape de traitement thermique de la suspension chauffée à une température comprise entre 50 et 200°C pendant une durée comprise entre 30 minutes et 5 heures permettant l'obtention d'un gel d'alumine ;

c) une étape de filtration de la suspension obtenue à l'issue de l'étape b) de traitement thermique, suivie d'au moins une étape de lavage du gel obtenu ;

d) une étape de séchage du gel d'alumine obtenu à l'issue de l'étape c) pour obtenir une poudre ;

e) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape d) à une température comprise entre 500 et 1000°C, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau, pour obtenir un oxyde poreux aluminique calciné ;

f) une étape de malaxage de l'oxyde poreux aluminique calciné obtenu à l'étape e) avec une solution comprenant au moins un précurseur de nickel pour obtenir une pâte ;

g) une étape de mise en forme de la pâte obtenue ; h) une étape de séchage de la pâte mise en forme à une température comprise entre 15 et 250°C pour obtenir un catalyseur séché.

10. Procédé selon la revendication 9, dans lequel dans le cas où le taux d'avancement obtenu à l'issue de la première étape a) de précipitation est inférieur à 100%, ledit procédé de préparation comprend une deuxième étape de précipitation a') après la première étape de précipitation a).

1 1 . Procédé selon les revendications 9 ou 10, dans lequel la teneur en soufre du gel d'alumine obtenu à l'issue de l'étape b) est comprise entre 0,001 % et 2% poids par rapport au poids total du gel d'alumine, et la teneur en sodium dudit gel d'alumine est comprise entre 0,001 % et 2 % poids par rapport au poids total dudit gel d'alumine.

12. Procédé selon l'une quelconque des revendications 9 à 1 1 , dans lequel on effectue au moins une étape i) de traitement thermique du catalyseur séché obtenu à l'issue de l'étape h) à une température comprise entre 250 et 1000°C, en présence ou non d'eau.

13. Procédé selon l'une quelconque des revendications 9 à 12, dans lequel on effectue au moins une étape de traitement réducteur j) en présence d'un gaz réducteur après les étapes h) ou i) de manière à obtenir un catalyseur comprenant du nickel au moins partiellement sous forme métallique.

14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la charge est choisie parmi une coupe C2 de vapocraquage ou une coupe C2-C3 de vapocraquage, et dans lequel procédé le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est compris entre 0,5 et 1000, la température est comprise entre 0 et 300°C, la vitesse volumique horaire (V.V.H.) est comprise entre 100 et 40000 h"1 , et la pression est comprise entre 0,1 et 6,0 MPa.

15. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la charge est choisie parmi les essences de vapocraquage et dans lequel procédé le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est compris entre 0,5 et 10, la température est comprise entre 0 et 200°C, la vitesse volumique horaire (V.V.H.) est comprise entre 0,5 et 100 h"1 , et la pression est comprise entre 0,3 et 8,0 MPa.

Description:
PROCEDE D'HYDROGENATION SELECTIVE METTANT EN ŒUVRE UN CATALYSEUR OBTENU PAR COMALAXAGE COMPRENANT UN SUPPORT SPECIFIQUE

Domaine technique

L'invention a pour objet un procédé d'hydrogénation sélective de composés polyinsaturés dans une charge hydrocarbonée, notamment dans les coupes C2-C5 de vapocraquage et les essences de vapocraquage, en présence d'un catalyseur à base de nickel supporté sur un support en alumine présentant une porosité très connectée, c'est-à-dire présentant un nombre de pores adjacents très important.

Etat de la technique Les catalyseurs les plus actifs dans des réactions d'hydrogénation sont classiquement à base de métaux nobles tels que le palladium ou le platine. Ces catalyseurs sont utilisés industriellement en raffinage et en pétrochimie pour la purification de certaines coupes pétrolières par hydrogénation, notamment dans des réactions d'hydrogénation sélective de molécules polyinsaturées telles que les dioléfines, les acétyléniques ou les alcénylaromatiques. Il est souvent proposé de substituer le palladium par le nickel, métal moins actif que le palladium qu'il est donc nécessaire de disposer en plus grande quantité dans le catalyseur. Ainsi, les catalyseurs à base de nickel ont généralement une teneur en métal entre 5 et 60% pds de nickel par rapport au catalyseur.

La vitesse de la réaction d'hydrogénation est gouvernée par plusieurs critères, tels que la diffusion des réactifs à la surface du catalyseur (limitations diffusionnelles externes), la diffusion des réactifs dans la porosité du support vers les sites actifs (limitations diffusionnelles internes) et les propriétés intrinsèques de la phase active telles que la taille des particules métalliques et la répartition de la phase active au sein du support.

En ce qui concerne les limitations diffusionnelles internes, il est important que la distribution poreuse des macropores et mésopores soit adaptée à la réaction souhaitée afin d'assurer la diffusion des réactifs dans la porosité du support vers les sites actifs ainsi que la diffusion des produits formés vers l'extérieur. L'importance d'une distribution poreuse adaptée et notamment la présence de macropores dans une réaction d'hydrogénation sélective d'une essence de pyrolyse dans le cas d'un catalyseur à base de palladium a par exemple été décrite par Z.Zhou, T. Zeng, Z. Cheng, W. Yuan, dans AICHE Journal, 201 1 , Vol. 57, No.8, pages 2198-2206.

En ce qui concerne la taille des particules métalliques, il est généralement admis que le catalyseur est d'autant plus actif que la taille des particules métalliques est petite. De plus, il est important d'obtenir une répartition en taille des particules centrée sur la valeur optimale ainsi qu'une répartition étroite autour de cette valeur.

La teneur souvent importante de nickel dans les catalyseurs d'hydrogénation nécessite des voies de synthèse particulières.

La voie la plus classique de préparation de ces catalyseurs est l'imprégnation du support par une solution aqueuse d'un précurseur de nickel, suivie généralement d'un séchage et d'une calcination. Avant leur utilisation dans des réactions d'hydrogénation ces catalyseurs sont généralement réduits afin de permettre d'obtenir la phase active qui est sous forme métallique (c'est-à-dire à l'état de valence zéro). Les catalyseurs à base de nickel sur alumine préparés par une seule étape d'imprégnation permettent généralement d'atteindre des teneurs en nickel comprises entre 12 et 15 % poids de nickel environ, selon le volume poreux de l'alumine utilisée. Lorsqu'on souhaite préparer des catalyseurs ayant une teneur en nickel plus élevée, plusieurs imprégnations successives sont souvent nécessaires pour obtenir la teneur en nickel souhaitée, suivie d'au moins une étape de séchage, puis éventuellement d'une étape de calcination entre chaque imprégnation. Ainsi, le document WO201 1/080515 décrit un catalyseur à base de nickel sur alumine actif en hydrogénation notamment des aromatiques, ledit catalyseur ayant une teneur en nickel supérieure à 35% poids, et une grande dispersion du nickel métallique sur la surface d'une alumine à porosité très ouverte et à surface spécifique élevée. Le catalyseur est préparé par au moins quatre imprégnations successives. La préparation de catalyseurs de nickel ayant une teneur en nickel élevée par la voie d'imprégnation implique ainsi un enchaînement de nombreuses étapes ce qui augmente les coûts de fabrication associés.

Une autre voie de préparation également utilisée pour obtenir des catalyseurs à forte teneur en nickel est la coprécipitation. La coprécipitation consiste généralement en une coulée simultanée dans un réacteur batch à la fois d'un sel d'aluminium (le nitrate d'aluminium par exemple) et d'un sel du nickel (le nitrate de nickel par exemple). Les deux sels précipitent simultanément. Puis une calcination à haute température est nécessaire pour faire la transition du gel d'alumine (boehmite par exemple) vers l'alumine. Par cette voie de préparation, des teneurs jusqu'à 70% pds en nickel sont atteintes. Des catalyseurs préparés par coprécipitation sont par exemple décrits dans les documents US 4 273 680, US 8 518 851 et US 2010/01 16717.

Enfin, on connaît également la voie de préparation par comalaxage. Le comalaxage consiste généralement en un mélange d'un sel de nickel avec un gel d'alumine tel que la boehmite, ledit mélange étant par la suite mis en forme, généralement par extrusion, puis séché et calciné. Le document US 5 478 791 décrit un catalyseur à base de nickel sur alumine ayant une teneur en nickel comprise entre 10 et 60% pds et une taille de particules de nickel comprise entre 15 et 60 nm, préparé par comalaxage d'un composé de nickel avec un gel d'alumine, suivi d'une mise en forme, d'un séchage et d'une réduction.

La demanderesse a découvert qu'un catalyseur préparé par comalaxage d'une phase active de nickel avec une alumine résultante de la calcination d'un gel d'alumine particulier préparé selon le procédé de préparation décrit ci-après, permet l'obtention d'un catalyseur qui présente une distribution poreuse ainsi qu'une taille de particules de nickel particulièrement adaptées aux réactions d'hydrogénation sélective de molécules polyinsaturées telles que les dioléfines, les acétyléniques et/ou les alcénylaromatiques. La distribution poreuse résultante du procédé de préparation par comalaxage d'une matrice oxyde majoritairement aluminique calcinée issue d'un gel d'alumine spécifique, et notamment la présence de macropores, permet de fournir une porosité particulièrement adaptée à favoriser la diffusion des réactifs dans le milieu poreux puis leur réaction avec la phase active. En effet, en plus de la réduction du nombre d'étapes et donc du coût de fabrication, l'intérêt d'un comalaxage comparativement à une imprégnation est qu'on évite tout risque de diminution du volume poreux, voire de bouchage partiel de la porosité du support lors du dépôt de la phase active et donc l'apparition des limitations diffusionnelles internes.

Le catalyseur utilisé dans le cadre du procédé d'hydrogénation sélective selon l'invention présente la particularité de pouvoir contenir des quantités élevées de phase active. En effet, le fait de préparer le catalyseur selon l'invention par comalaxage permet de pouvoir fortement charger ce catalyseur en phase active en une seule passe.

Γ est important de souligner que le catalyseur utilisé dans le cadre du procédé d'hydrogénation sélective selon l'invention se distingue structurellement d'un catalyseur obtenu par simple imprégnation d'un précurseur de métal sur le support d'alumine dans lequel l'alumine forme le support et la phase active est introduite dans les pores de ce support. Sans vouloir être lié par une quelconque théorie, il apparaît que le procédé de préparation du catalyseur utilisé dans le procédé d'hydrogénation sélective selon l'invention par comalaxage d'un oxyde poreux aluminique particulier avec un ou plusieurs précurseurs de nickel de la phase active permet d'obtenir un composite dans lequel les particules de nickel et l'alumine sont intimement mélangées formant ainsi la structure même du catalyseur avec une porosité et une teneur en phase active adaptées aux réactions souhaitées.

Objets de l'invention La présente invention a pour objet un procédé d'hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, contenus dans une charge d'hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h "1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h "1 lorsque le procédé est réalisé en phase gazeuse, en présence d'un catalyseur comprenant une matrice oxyde ayant une teneur en alumine calcinée supérieure ou égale à 90% poids par rapport au poids total de ladite matrice, et une phase active comprenant du nickel, ladite phase active étant comalaxée au sein de ladite matrice oxyde majoritairement aluminique calcinée, la teneur en nickel étant comprise entre 1 et 65 % poids dudit élément par rapport au poids total du catalyseur, ladite phase active ne comprenant pas de métal du groupe VIB, les particules de nickel ayant un diamètre inférieur à 15 nm, ledit catalyseur ayant un diamètre médian mésoporeux compris entre 3 et 25 nm, un diamètre médian macroporeux compris entre 50 et 300 nm, un volume mésoporeux mesuré par porosimétrie au mercure supérieur ou égal à 0,40 ml_/g et un volume poreux total mesuré par porosimétrie au mercure supérieur ou égal à 0,45 ml_/g.

Avantageusement, le catalyseur comprend un volume macroporeux compris entre 0,05 et 0,3 mIJg.

De préférence, la teneur en nickel est comprise entre 5 et 55% en poids par rapport au poids total du catalyseur.

Avantageusement, le catalyseur comprend un volume mésoporeux compris entre 0,45 et 0,65 mL/g.

De préférence, le catalyseur comprend un diamètre médian mésoporeux compris entre 4 et 23 nm.

Avantageusement, le catalyseur comprend un diamètre médian macroporeux compris entre 80 et 250 nm.

Avantageusement, le catalyseur ne comprend pas de micropores.

De préférence, le catalyseur comprend une matrice oxyde constitué d'alumine.

De préférence, le catalyseur utilisé dans le cadre du procédé d'hydrogénation selon l'invention est préparé par au moins les étapes suivantes :

a) au moins une première étape de précipitation d'alumine, en milieu réactionnel aqueux, d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique, et l'acide nitrique, dans laquelle au moins l'un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de ladite première étape compris entre 40 et 100%, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al 2 0 3 lors de ladite première étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape c) du procédé de préparation, ladite première étape de précipitation opérant à une température comprise entre 10 et 50 °C, et pendant une durée comprise entre 2 minutes et 30 minutes ;

b) une étape de traitement thermique de la suspension chauffée à une température comprise entre 50 et 200°C pendant une durée comprise entre 30 minutes et 5 heures permettant l'obtention d'un gel d'alumine ;

c) une étape de filtration de la suspension obtenue à l'issue de l'étape b) de traitement thermique, suivie d'au moins une étape de lavage du gel obtenu ;

d) une étape de séchage du gel d'alumine obtenu à l'issue de l'étape c) pour obtenir une poudre ;

e) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape d) à une température comprise entre 500 et 1000°C, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau, pour obtenir un oxyde poreux aluminique calciné ;

f) une étape de malaxage de l'oxyde poreux aluminique calciné obtenu à l'étape e) avec une solution comprenant au moins un précurseur de nickel pour obtenir une pâte ;

g) une étape de mise en forme de la pâte obtenue ;

h) une étape de séchage de la pâte mise en forme à une température comprise entre 15 et 250°C pour obtenir un catalyseur séché.

Dans un mode de réalisation selon l'invention, dans lequel dans le cas où le taux d'avancement obtenu à l'issue de la première étape a) de précipitation est inférieur à 100%, ledit procédé de préparation comprend une deuxième étape de précipitation a') après la première étape de précipitation a).

Avantageusement, la teneur en soufre du gel d'alumine obtenu à l'issue de l'étape b) est comprise entre 0,001 % et 2% poids par rapport au poids total du gel d'alumine, et la teneur en sodium dudit gel d'alumine est comprise entre 0,001 % et 2 % poids par rapport au poids total dudit gel d'alumine.

De préférence, on effectue au moins une étape i) de traitement thermique du catalyseur séché obtenu à l'issue de l'étape h) à une température comprise entre 250 et 1000°C, en présence ou non d'eau. Avantageusement, on effectue au moins une étape de traitement réducteur j) en présence d'un gaz réducteur après les étapes h) ou i) de manière à obtenir un catalyseur comprenant du nickel au moins partiellement sous forme métallique.

Dans un mode de réalisation selon l'invention, la charge est choisie parmi une coupe C2 de vapocraquage ou une coupe C2-C3 de vapocraquage, et dans lequel procédé le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est compris entre 0,5 et 1000, la température est comprise entre 0 et 300°C, la vitesse volumique horaire (V.V.H.) est comprise entre 100 et 40000 h "1 , et la pression est comprise entre 0,1 et 6,0 MPa.

Dans un autre mode de réalisation selon l'invention, la charge est choisie parmi les essences de vapocraquage et dans lequel procédé le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est compris entre 0,5 et 10, la température est comprise entre 0 et 200°C, la vitesse volumique horaire (V.V.H.) est comprise entre 0,5 et 100 h "1 , et la pression est comprise entre 0,3 et 8,0 MPa. Description détaillée de l'invention

1 . Définitions

Par « macropores », on entend des pores dont l'ouverture est supérieure à 50 nm.

Par « mésopores », on entend des pores dont l'ouverture est comprise entre 2 nm et 50 nm, bornes incluses. Par « micropores », on entend des pores dont l'ouverture est inférieure à 2 nm.

On entend par volume poreux total du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », pages 1050-1055, écrit par Jean Charpin et Bernard Rasneur.

Afin d'obtenir une meilleure précision, la valeur du volume poreux total correspond à la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur l'échantillon moins la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa).

Le volume des macropores et des mésopores est mesuré par porosimétrie par intrusion de mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. On fixe à 0,2 MPa la valeur à partir de laquelle le mercure remplit tous les vides intergranulaires, et on considère qu'au-delà le mercure pénètre dans les pores de l'échantillon.

Le volume macroporeux du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 0,2 MPa et 30 MPa, correspondant au volume contenu dans les pores de diamètre apparent supérieur à 50 nm.

Le volume mésoporeux du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 30 MPa et 400 MPa, correspondant au volume contenu dans les pores de diamètre apparent compris entre 2 et 50 nm.

Le volume des micropores est mesuré par porosimétrie à l'azote. L'analyse quantitative de la microporosité est effectuée à partir de la méthode "t" (méthode de Lippens-De Boer, 1965) qui correspond à une transformée de l'isotherme d'adsorption de départ comme décrit dans l'ouvrage « Adsorption by powders and porous solids. Principles, methodology and applications » écrit par F. Rouquérol, J. Rouquérol et K. Sing, Académie Press, 1999.

On définit également le diamètre médian mésoporeux comme étant le diamètre tel que tous les pores, parmi l'ensemble des pores constituant le volume mésoporeux, de taille inférieure à ce diamètre constituent 50% du volume mésoporeux total déterminé par intrusion au porosimètre à mercure.

On définit également le diamètre médian macroporeux comme étant le diamètre tel que tous les pores, parmi l'ensemble des pores constituant le volume macroporeux, de taille inférieure à ce diamètre constituent 50% du volume macroporeux total déterminé par intrusion au porosimètre à mercure. On entend par la surface spécifique du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention, la surface spécifique B.E.T. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique « The Journal of American Society », 60, 309, (1938). Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. 2. Description

Procédé d'hydrogénation sélective

La présente invention concerne un procédé d'hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, aussi appelés styréniques, contenus dans une charge d'hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h "1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h "1 lorsque le procédé est réalisé en phase gazeuse, en présence d'un catalyseur tel que décrit ci-après dans la description, ledit catalyseur étant préparé par un procédé de préparation spécifique tel que décrit ci-après dans la description.

Les composés organiques mono-insaturés tels que par exemple l'éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono-insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1 -2-butadiène et le 1 -3- butadiène, le vinylacétylène et l'éthylacétylène, et d'autres composés polyinsaturés dont le point d'ébullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes. L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l'hydrogénation des noyaux aromatiques.

La charge d'hydrocarbures traitée dans le procédé d'hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique.

Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+.

La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent.

La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition moyenne suivante : de l'ordre de 90 % poids de propylène, de l'ordre de 1 à 8 % poids de propadiène et de méthylacétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent.

Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l'ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l'ordre de 30 % poids d'éthylène, de l'ordre de 5 % poids de propylène, le reste étant essentiellement du méthane, de l'éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4.

La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1 ,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent. La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes.

L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10 et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha- méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante: 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre.

De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective selon l'invention est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une essence de vapocraquage.

Le procédé d'hydrogénation sélective selon l'invention vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière à ce que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l'hydrogénation des noyaux aromatiques.

La mise en œuvre technologique du procédé d'hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l'hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs réinjections) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d'hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation d'au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.

L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d'abaisser le coût énergétique et d'augmenter la durée de cycle du catalyseur.

D'une manière générale, l'hydrogénation sélective d'une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0,1 et 200 h "1 pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire V.V.H. comprise entre 100 et 40000 h "1 pour un procédé réalisé en phase gazeuse.

Dans un mode de réalisation selon l'invention, lorsqu'on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1 ,0 et 2,0, la température est comprise entre 0 et 200°C, de préférence entre 20 et 200 °C et de manière encore plus préférée entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 et 100 h "1 , de préférence entre 1 et 50 h "1 et la pression est généralement comprise entre 0,3 et 8,0 MPa, de préférence entre 1 ,0 et 7,0 MPa et de manière encore plus préférée entre 1 ,5 et 4,0 MPa. Plus préférentiellement, on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20 et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h "1 et la pression est comprise entre 1 ,0 et 7,0 MPa.

Encore plus préférentiellement, on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 1 ,0 et 2,0, la température est comprise entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h "1 et la pression est comprise entre 1 ,5 et 4,0 MPa.

Le débit d'hydrogène est ajusté afin d'en disposer en quantité suffisante pour hydrogéner théoriquement l'ensemble des composés polyinsaturés et de maintenir un excès d'hydrogène en sortie de réacteur.

Dans un autre mode de réalisation selon l'invention, lorsqu'on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0 et 300°C, de préférence entre 15 et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 et 40000 h "1 , de préférence entre 500 et 30000 h "1 et la pression est généralement comprise entre 0,1 et 6,0 MPa, de préférence entre 0,2 et 5,0 MPa.

Caractéristiques du catalyseur

Le catalyseur selon l'invention se présente sous la forme d'un composite comprenant une matrice oxyde ayant une teneur en alumine calcinée supérieure ou égale à 90% poids par rapport au poids total de ladite matrice, au sein duquel est réparti la phase active comprenant du nickel. Les caractéristiques du gel ayant conduit à l'obtention de l'alumine contenue dans ladite matrice oxyde, ainsi que les propriétés texturales obtenues avec la phase active confèrent au catalyseur ses propriétés spécifiques.

Plus particulièrement, ledit catalyseur comprend une matrice oxyde ayant une teneur en alumine calcinée supérieure ou égale à 90% poids par rapport au poids total de ladite matrice, et une phase active comprenant du nickel, ladite phase active étant comalaxée au sein de ladite matrice oxyde, la teneur en nickel étant comprise entre 1 et 65 % poids dudit élément par rapport au poids total du catalyseur, ladite phase active ne comprenant pas de métal du groupe VIB, les particules de nickel ayant un diamètre inférieur à 15 nm, ledit catalyseur ayant un diamètre médian mésoporeux compris entre 3 et 25 nm, un diamètre médian macroporeux compris entre 50 et 300 nm, un volume mésoporeux mesuré par porosimétrie au mercure supérieur ou égal à 0,40 mL/g et un volume poreux total mesuré par porosimétrie au mercure supérieur ou égal à 0,45 ml_/g.

La teneur en nickel est comprise entre 1 et 65% poids dudit élément par rapport au poids total du catalyseur, de préférence comprise entre 5 et 55% poids, de manière préférée entre 8 et 40% poids, de manière plus préférée entre 10 et 35% poids, et de manière particulièrement préférée entre 12 et 30% poids. La teneur en Ni est mesurée par fluorescence X.

La taille des particules de nickel dans le catalyseur selon l'invention est inférieure à 15 nm, de préférence comprise entre 1 ,5 et 12 nm, et de manière préférée comprise entre 2 et 10 nm. On comprend par « taille des particules de nickel » le diamètre des cristallites de nickel sous forme oxyde. Le diamètre des cristallites de nickel sous forme oxyde est déterminé par diffraction des rayons X, à partir de la largeur de la raie de diffraction située à l'angle 2thêta=43° (c'est-à-dire selon la direction cristallographique [200]) à l'aide de la relation de Scherrer. Cette méthode, utilisée en diffraction des rayons X sur des poudres ou échantillons polycristallins qui relie la largeur à mi-hauteur des pics de diffraction à la taille des particules, est décrite en détail dans la référence : Appl. Cryst. (1978), 1 1 , 102-1 13 « Scherrer after sixty years: A survey and some new results in the détermination of crystallite size », J. I. Langford and A. J. C. Wilson.

La phase active du catalyseur ne comprend pas de métal du groupe VIB. Il ne comprend notamment pas de molybdène ou de tungstène.

Sans vouloir se lier à aucune théorie, il semble que le catalyseur utilisé dans le cadre du procédé d'hydrogénation sélective selon l'invention présente un bon compromis entre un volume poreux élevé, un volume macroporeux élevé, une petite taille de particules de nickel permettant ainsi d'avoir des performances en hydrogénation en terme d'activité au moins aussi bonnes que les catalyseurs connus de l'état de l'art.

Le catalyseur comprend en outre une matrice oxyde ayant une teneur en alumine calcinée supérieure ou égale à 90% poids par rapport au poids total de ladite matrice, éventuellement complétée par de la silice et/ou du phosphore à une teneur totale d'au plus 10% poids en équivalent Si0 2 et/ou P 2 0 5 , de préférence inférieure à 5% poids, et de manière très préférée inférieure à 2% poids par rapport au poids total de ladite matrice. La silice et/ou le phosphore peuvent être introduits par toute technique connue de l'Homme du métier, lors de la synthèse du gel d'alumine ou lors du comalaxage. De manière encore plus préférée, la matrice oxyde est constituée d'alumine.

De manière préférée, l'alumine présente dans ladite matrice est une alumine de transition telle qu'une alumine gamma, delta, thêta, chi, rho ou êta, seule ou en mélange. De manière plus préférée, l'alumine est une alumine de transition gamma, delta ou thêta, seule ou en mélange.

Ledit catalyseur à phase active comalaxée est généralement présenté sous toutes les formes connues de l'Homme du métier, par exemple sous forme de billes (ayant généralement un diamètre compris entre 1 et 8 mm), d'extrudés, de tablettes, de cylindres creux. De préférence, il est constitué d'extrudés de diamètre généralement compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1 ,0 et 2,5 mm et de longueur moyenne comprise entre 0,5 et 20 mm. On entend par « diamètre moyen » des extrudés le diamètre moyen du cercle circonscrit à la section droite de ces extrudés. Le catalyseur peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur.

Le catalyseur présente un volume poreux total d'au moins 0,45 ml_/g, de préférence d'au moins 0,48 mL/g, et de préférence compris entre 0,50 et 0,95 ml_/g.

Le catalyseur présente avantageusement un volume macroporeux compris entre 0,05 et 0,3 mL/g, de préférence compris entre 0,05 et 0,25 mL/g. Le volume mésoporeux du catalyseur est d'au moins 0,40 ml_/g, de préférence d'au moins 0,45 mL/g, et de manière particulièrement préférée compris entre 0,45 mL/g et 0,65 ml_/g.

Le diamètre médian mésoporeux est compris entre 3 nm et 25 nm, et de préférence entre 4 et 23 nm, et de manière particulièrement préférée compris entre 6 et 20 nm.

Le catalyseur présente un diamètre médian macroporeux compris entre 50 et 300 nm, de préférence entre 80 et 250 nm, de manière encore plus préférée compris entre 90 et 200 nm.

Le catalyseur présente une surface spécifique B.E.T. d'au moins 3 m 2 /g, de préférence d'au moins 15 m 2 /g, de manière préférée comprise entre 20 et 300 m 2 /g, et de manière encore plus préférée entre 30 et 250 m 2 /g.

De préférence, le catalyseur présente une faible microporosité, de manière très préférée il ne présente aucune microporosité. Procédé de préparation du catalyseur

Le catalyseur utilisé dans le cadre du procédé d'hydrogénation sélective selon l'invention est préparé à partir d'un gel d'alumine spécifique. La distribution poreuse particulière observée dans le catalyseur est notamment due au procédé de préparation à partir du gel d'alumine spécifique.

Le catalyseur utilisé dans le cadre du procédé d'hydrogénation sélective selon la présente invention est avantageusement préparé selon le procédé de préparation comprenant au moins les étapes suivantes :

a) au moins une première étape de précipitation d'alumine, en milieu réactionnel aqueux, d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique, et l'acide nitrique, dans laquelle au moins l'un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de ladite première étape compris entre 40 et 100%, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al 2 0 3 lors de ladite première étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue de l'étape c) du procédé de préparation, ladite première étape de précipitation opérant à une température comprise entre 10 et 50 °C, et pendant une durée comprise entre 2 minutes et 30 minutes ;

b) une étape de traitement thermique de la suspension chauffée à une température comprise entre 50 et 200°C pendant une durée comprise entre 30 minutes et 5 heures permettant l'obtention d'un gel d'alumine ;

c) une étape de filtration de la suspension obtenue à l'issue de l'étape b) de traitement thermique, suivie d'au moins une étape de lavage du gel obtenu ;

d) une étape de séchage du gel d'alumine obtenu à l'issue de l'étape c) pour obtenir une poudre ;

e) une étape de traitement thermique de la poudre obtenue à l'issue de l'étape d) à une température comprise entre 500 et 1000°C, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau, pour obtenir un oxyde poreux aluminique calciné ;

f) une étape de malaxage de l'oxyde poreux aluminique calciné obtenu à l'étape e) avec une solution comprenant au moins un précurseur de nickel pour obtenir une pâte ;

g) une étape de mise en forme de la pâte obtenue à l'étape f); h) une étape de séchage de la pâte mise en forme obtenue à l'étape g) à une température comprise entre 15 et 250°C pour obtenir un catalyseur séché ;

i) éventuellement, une étape de traitement thermique du catalyseur séché obtenue à l'étape h) à une température comprise entre 250 et 1000°C en présence ou non d'eau.

De manière générale, on entend par « taux d'avancement » de la n-ième étape de précipitation le pourcentage d'alumine formé en équivalent Al 2 0 3 dans ladite n-ième étape, par rapport à la quantité totale d'alumine formée à l'issue de l'ensemble des étapes de précipitation et plus généralement à l'issue des étapes de préparation du gel d'alumine. Dans le cas où le taux d'avancement de ladite étape a) de précipitation est de 100%, ladite étape a) de précipitation permet généralement l'obtention d'une suspension d'alumine ayant une concentration en Al 2 0 3 comprise entre 20 et 100 g/L, de préférence entre 20 et 80 g/L, de manière préférée entre 20 et 50 g/L. Etape a) de précipitation

Le mélange dans le milieu réactionnel aqueux d'au moins un précurseur basique et d'au moins un précurseur acide nécessite soit, qu'au moins le précurseur basique ou le précurseur acide comprenne de l'aluminium, soit que les deux précurseurs basique et acide comprennent de l'aluminium.

Les précurseurs basiques comprenant de l'aluminium sont l'aluminate de sodium et l'aluminate de potassium. Le précurseur basique préféré est l'aluminate de sodium.

Les précurseurs acides comprenant de l'aluminium sont le sulfate d'aluminium, le chlorure d'aluminium et le nitrate d'aluminium. Le précurseur acide préféré est le sulfate d'aluminium. De préférence, le milieu réactionnel aqueux est de l'eau.

De préférence, ladite étape a) opère sous agitation.

De préférence, ladite étape a) est réalisée en l'absence d'additif organique.

Les précurseurs acide et basique, qu'ils contiennent de l'aluminium ou pas, sont mélangés, de préférence en solution, dans le milieu réactionnel aqueux, dans des proportions telles que le pH de la suspension résultante est compris entre 8,5 et 10,5.

Conformément à l'invention, c'est le débit relatif des précurseurs acide et basique qu'ils contiennent de l'aluminium ou pas, qui est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5. Dans le cas préféré où les précurseurs basique et acide sont respectivement l'aluminate de sodium et le sulfate d'aluminium, le ratio massique dudit précurseur basique sur ledit précurseur acide est avantageusement compris entre 1 ,6 et 2,05.

Pour les autres précurseurs basique et acide, qu'ils contiennent de l'aluminium ou pas, les ratios massiques base/acide sont établis par une courbe de neutralisation de la base par l'acide. Une telle courbe est obtenue aisément par l'Homme du métier.

De préférence, ladite étape a) de précipitation est réalisée à un pH compris entre 8,5 et 10 et de manière très préférée entre 8,7 et 9,9. Les précurseurs acide et basique sont également mélangés dans des quantités permettant d'obtenir une suspension contenant la quantité désirée d'alumine, en fonction de la concentration finale en alumine à atteindre. En particulier, ladite étape a) permet l'obtention de 40 à 100% poids d'alumine par rapport à la quantité totale d'alumine formée à l'issue de de la ou les étapes de précipitation et plus généralement à l'issue des étapes de préparation du gel d'alumine et de préférence à l'issue de l'étape c) du procédé de préparation.

Conformément à l'invention, c'est le débit du ou des précurseurs acide et basique contenant de l'aluminium qui est réglé de manière à obtenir un taux d'avancement de la première étape compris entre 40 et 100%. De préférence, le taux d'avancement de ladite étape de précipitation a) est compris entre 40 et 99%, de préférence entre 45 et 90 % et de manière préférée entre 50 à 85%. Dans le cas où le taux d'avancement obtenu à l'issue de l'étape a) de précipitation est inférieur à 100%, une deuxième étape de précipitation est nécessaire de manière à augmenter la quantité d'alumine formée. Dans ce cas, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al 2 0 3 lors de ladite étape a) de précipitation par rapport à la quantité totale d'alumine formée à l'issue des deux étapes de précipitation du procédé de préparation selon l'invention ou plus généralement à l'issue de l'étape c) du procédé de préparation de l'alumine.

Ainsi, en fonction de la concentration en alumine visée à l'issue de la ou des étapes de précipitation, de préférence comprise entre 20 et 100 g/l, les quantités d'aluminium devant être apportées par les précurseurs acide et/ou basique sont calculées et le débit des précurseurs est réglé en fonction de la concentration desdits précurseurs en aluminium ajoutés, de la quantité d'eau ajouté dans le milieu réactionnel et du taux d'avancement requis pour la ou les étapes de précipitation. Les débits du ou des précurseurs acide et/ou basique contenant de l'aluminium dépendent de la dimension du réacteur utilisé et ainsi de la quantité d'eau ajoutée dans le milieu réactionnel. De préférence, ladite étape a) de précipitation est réalisée à une température comprise entre

10 et 45°C, de manière préférée entre 15 et 45 °C, de manière plus préférée entre 20 et 45°C et de manière très préférée entre 20 et 40°C.

11 est important que ladite étape a) de précipitation opère à basse température. Dans le cas où ledit procédé de préparation selon l'invention comprend deux étapes de précipitation, l'étape a) de précipitation est avantageusement réalisée à une température inférieure à la température de la deuxième étape de précipitation.

De préférence, ladite étape a) de précipitation est réalisée pendant une durée comprise entre 5 et 20 minutes, et de manière préférée de 5 à 15 minutes.

Etape b) de traitement thermique

Conformément à l'invention, ledit procédé de préparation comprend une étape b) de traitement thermique de la suspension obtenue à l'issue de l'étape a) de précipitation, ladite étape de traitement thermique opérant à une température comprise entre 50 et 200°C pendant une durée comprise entre 30 minutes et 5 heures, pour obtenir le gel d'alumine. De préférence, ladite étape b) de traitement thermique est une étape de mûrissement.

De préférence, ladite étape b) de traitement thermique opère à une température comprise entre 65 et 150°C, de préférence entre 65 et 130°C, de manière préférée entre 70 et 1 10°C, de manière très préférée entre 70 et 95°C.

De préférence, ladite étape b) de traitement thermique est mise en œuvre pendant une durée comprise entre 40 minutes et 5 heures, de préférence entre 40 minutes et 3 heures et de manière préférée entre 45 minutes et 2 heures.

Deuxième étape a') de précipitation (optionnelle)

Selon un mode de réalisation préféré, dans le cas où le taux d'avancement obtenu à l'issue de l'étape a) de précipitation est inférieur à 100%, ledit procédé de préparation comprend de préférence, une deuxième étape de précipitation a') après la première étape de précipitation.

Ladite deuxième étape de précipitation permet d'augmenter la proportion d'alumine produite.

Ladite deuxième étape de précipitation a') est avantageusement mise en œuvre entre ladite première étape de précipitation a) et l'étape b) de traitement thermique. Dans le cas où une deuxième étape de précipitation est mise en œuvre, une étape de chauffage de la suspension obtenue à l'issue de l'étape a) de précipitation est avantageusement mise en œuvre entre les deux étapes de précipitation a) et a'). De préférence, ladite étape de chauffage de la suspension obtenue à l'issue de l'étape a), mise en œuvre entre ladite étape a) et la deuxième étape de précipitation a') opère à une température comprise entre 20 et 90°C, de préférence entre 45 et 80°C, de manière préférée entre 50 et 70°C. De préférence, ladite étape de chauffage est mise en œuvre pendant une durée comprise entre 7 et 45 minutes et de préférence entre 7 et 35 minutes.

Ladite étape de chauffage est avantageusement mise en œuvre selon toutes les méthodes de chauffage connues de l'Homme du métier. Selon ledit mode de réalisation préféré, ledit procédé de préparation comprend une deuxième étape de précipitation de la suspension obtenue à l'issue de l'étape de chauffage, ladite deuxième étape opérant par ajout dans ladite suspension d'au moins un précurseur basique choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium et d'au moins un précurseur acide choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique, et l'acide nitrique, dans laquelle au moins l'un des précurseurs basique ou acide comprend de l'aluminium, le débit relatif des précurseurs acide et basique est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5 et le débit du ou des précurseurs acide et basique contenant de l'aluminium est réglé de manière à obtenir un taux d'avancement de la deuxième étape compris entre 0 et 60%, le taux d'avancement étant défini comme étant la proportion d'alumine formée en équivalent Al 2 0 3 lors de ladite deuxième étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue des deux étapes de précipitation, plus généralement à l'issue des étapes de préparation du gel d'alumine et de préférence à l'issue de l'étape c) du procédé de préparation selon l'invention, ladite étape opérant à une température comprise entre 20 et 90 °C, et pendant une durée comprise entre 2 minutes et 50 minutes.

De même que dans la première étape de précipitation a), l'ajout dans la suspension chauffée, d'au moins un précurseur basique et d'au moins un précurseur acide nécessite soit, qu'au moins le précurseur basique ou le précurseur acide comprenne de l'aluminium, soit que les deux précurseurs basique et acide comprennent de l'aluminium. Les précurseurs basiques comprenant de l'aluminium sont l'aluminate de sodium et l'aluminate de potassium. Le précurseur basique préféré est l'aluminate de sodium.

Les précurseurs acides comprenant de l'aluminium sont le sulfate d'aluminium, le chlorure d'aluminium et le nitrate d'aluminium. Le précurseur acide préféré est le sulfate d'aluminium. De préférence, ladite deuxième étape de précipitation opère sous agitation.

De préférence, ladite deuxième étape est réalisée en l'absence d'additif organique.

Les précurseurs acide et basique, qu'ils contiennent de l'aluminium ou pas, sont mélangés, de préférence en solution, dans le milieu réactionnel aqueux, dans des proportions telles que le pH de la suspension résultante est compris entre 8,5 et 10,5.

De même que dans l'étape a) de précipitation, c'est le débit relatif des précurseurs acide et basique qu'ils contiennent de l'aluminium ou pas, qui est choisi de manière à obtenir un pH du milieu réactionnel compris entre 8,5 et 10,5.

Dans le cas préféré où les précurseurs basique et acide sont respectivement l'aluminate de sodium et le sulfate d'aluminium, le ratio massique dudit précurseur basique sur ledit précurseur acide est avantageusement compris entre 1 ,6 et 2,05.

Pour les autres précurseurs basique et acide, qu'ils contiennent de l'aluminium ou pas, les ratios massiques base/acide sont établis par une courbe de neutralisation de la base par l'acide. Une telle courbe est obtenue aisément par l'Homme du métier.

De préférence, ladite deuxième étape de précipitation est réalisée à un pH compris entre 8,5 et 10 et de manière préférée entre 8,7 et 9,9.

Les précurseurs acide et basique sont également mélangés dans des quantités permettant d'obtenir une suspension contenant la quantité désirée d'alumine, en fonction de la concentration finale en alumine à atteindre. En particulier, ladite deuxième étape de précipitation permet l'obtention de 0 à 60% poids d'alumine en équivalent Al 2 0 3 par rapport à la quantité totale d'alumine formée à l'issue des deux étapes de précipitation.

De même que dans l'étape a) de précipitation, c'est le débit du ou des précurseurs acide et basique contenant de l'aluminium qui est réglé de manière à obtenir un taux d'avancement de la deuxième étape compris entre 0 et 60%, le taux d'avancement étant défini comme étant la proportion d'alumine formée lors de ladite deuxième étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue des deux étapes de précipitation du procédé de préparation. De préférence, le taux d'avancement de ladite deuxième étape de précipitation a') est compris entre 10 et 55 % et de préférence entre 15 à 55%, le taux d'avancement étant défini comme étant la proportion d'alumine formée lors de ladite deuxième étape de précipitation par rapport à la quantité totale d'alumine formée à l'issue des deux étapes de précipitation du procédé de préparation de l'alumine.

Ainsi, en fonction de la concentration en alumine visée à l'issue de la ou des étapes de précipitation, de préférence comprise entre 20 et 100 g/l, les quantités d'aluminium devant être apportées par les précurseurs acide et/ou basique sont calculées et le débit des précurseurs est réglé en fonction de la concentration desdits précurseurs en aluminium ajoutés, de la quantité d'eau ajoutée dans le milieu réactionnel et du taux d'avancement requis pour chacune des étapes de précipitation.

De même que dans l'étape a) de précipitation, les débits du ou des précurseurs acide et/ou basique contenant de l'aluminium dépendant de la dimension du réacteur utilisé et ainsi de la quantité d'eau ajoutée dans le milieu réactionnel. A titre d'exemple, si on travaille dans un réacteur de 3 I et que l'on vise 1 1 de suspension d'alumine de concentration finale en Al 2 0 3 de 50 g/1, le taux d'avancement ciblé est de 50% en équivalent Al 2 0 3 pour la première étape de précipitation. Ainsi, 50% de l'alumine totale doit être apportée lors de l'étape a) de précipitation. Les précurseurs d'alumines sont l'aluminate de sodium à une concentration de 155 g/l en Al 2 0 3 et le sulfate d'aluminium à une concentration de 102 g/l en Al 2 0 3. Le pH de précipitation de la première étape est fixé à 9,5 et la deuxième à 9. La quantité d'eau ajoutée dans le réacteur est de 622 ml.

Pour la première étape a) de précipitation opérant à 30°C et pendant 8 minutes, le débit de sulfate d'aluminium doit être de 10,5 ml/min et le débit d'aluminate de sodium est de 13,2 ml/min. Le ratio massique d'aluminate de sodium sur sulfate d'aluminium est donc de 1 ,91 . Pour la deuxième étape de précipitation, opérant à 70°C, pendant 30 minutes, le débit de sulfate d'aluminium doit être de 2,9 ml/min et le débit d'aluminate de sodium est de 3,5 ml/min. Le ratio massique d'aluminate de sodium sur sulfate d'aluminium est donc de 1 ,84.

De préférence, la deuxième étape de précipitation est réalisée à une température compris entre 20 et 90 °C, de manière préférée entre 45 et 80°C et de manière très préférée entre 50 et 70°C.

De préférence, la deuxième étape de précipitation est réalisée pendant une durée comprise entre 5 et 45 minutes, et de manière préférée de 7 à 40 minutes. La deuxième étape de précipitation permet généralement l'obtention d'une suspension d'alumine ayant une concentration en Al 2 0 3 comprise entre 20 et 100 g/l, de préférence entre 20 et 80 g/l, de manière préférée entre 20 et 50 g/l. Dans le cas où ladite deuxième étape de précipitation est mise en œuvre, ledit procédé de préparation comprend également avantageusement une deuxième étape de chauffage de la suspension obtenue à l'issue de ladite deuxième étape de précipitation à une température comprise entre 50 et 95°C et de préférence entre 60 et 90°C.

De préférence, ladite deuxième étape de chauffage est mise en œuvre pendant une durée comprise entre 7 et 45 minutes.

Ladite deuxième étape de chauffage est avantageusement mise en œuvre selon toutes les méthodes de chauffage connues de l'Homme du métier.

Ladite deuxième étape de chauffage permet d'augmenter la température du milieu réactionnel avant de soumettre la suspension obtenue à l'étape b) de traitement thermique.

Etape c) de filtration

Conformément à l'invention, le procédé de préparation du catalyseur utilisé dans le cadre du procédé d'hydrogénation sélective selon l'invention comprend également une étape c) de filtration de la suspension obtenue à l'issue de l'étape b) de traitement thermique, suivie d'au moins une étape de lavage du gel obtenu. Ladite étape de filtration est réalisée selon les méthodes connues de l'Homme du métier.

La filtrabilité de la suspension obtenue à l'issue de l'étape a) de précipitation ou des deux étapes de précipitation a) et a') est améliorée par la présence de ladite étape b) de traitement thermique finale de la suspension obtenue, ladite étape de traitement thermique favorisant la productivité du procédé de préparation ainsi qu'une extrapolation du procédé au niveau industriel.

Ladite étape de filtration est avantageusement suivie d'au moins une étape de lavage à l'eau et de préférence d'une à trois étapes de lavage, avec une quantité d'eau égale à la quantité de précipité filtré.

L'enchaînement des étapes a) b) et c) et éventuellement de la deuxième étape a') de précipitation, et de la deuxième étape de chauffage, permet l'obtention d'un gel d'alumine spécifique présentant un indice de dispersibilité supérieur à 70%, une taille de cristallites comprise entre 1 à 35 nm, ainsi qu'une teneur en soufre comprise entre 0,001 % et 2% poids et une teneur en sodium comprise entre 0,001 % et 2 % poids, les pourcentages poids étant exprimés par rapport à la masse totale de gel d'alumine.

Le gel d'alumine ainsi obtenu, aussi appelé boehmite, présente un indice de dispersibilité compris entre 70 et 100%, de manière préférée entre 80 et 100%, de manière très préférée entre 85 et 100% et de manière encore plus préférée entre 90 et 100%. De préférence, le gel d'alumine ainsi obtenu présente une taille de cristallites comprise entre 2 à 35 nm.

De préférence, le gel d'alumine ainsi obtenu comprend une teneur en soufre comprise entre 0,001 et 1 % poids, de manière préférée entre 0,001 et 0,40% poids, de manière très préférée entre 0,003 et 0,33% poids, et de manière plus préférée entre 0,005 et 0,25% poids. La teneur en soufre est mesurée par fluorescence X.

De préférence, le gel d'alumine ainsi obtenu comprend une teneur en sodium comprise entre 0,001 et 1 % poids, de manière préférée entre 0,001 et 0,15% poids, de manière très préférée entre 0,0015 et 0,10% poids, et 0,002 et 0,040% poids. La teneur en sodium est mesurée par spectrométrie à plasma à couplage inductif (ICP).

En particulier, le gel d'alumine ou la boehmite sous forme de poudre selon l'invention est composé de cristallites dont la taille, obtenue par la formule de Scherrer en diffraction des rayons X selon les directions cristallographiques [020] et [120] sont respectivement comprise entre 1 et 20 nm et entre 1 et 35 nm.

De préférence, le gel d'alumine selon l'invention présente une taille de cristallites selon la direction cristallographique [020] comprise entre 1 à 15 nm et une taille de cristallite selon la direction cristallographique [120] comprise entre 1 à 35 nm. La diffraction des rayons X sur les gels d'alumine ou boehmites a été effectuée en utilisant la méthode classique des poudres au moyen d'un diffractomètre.

La formule de Scherrer est une formule utilisée en diffraction des rayons X sur des poudres ou échantillons polycristallins qui relie la largeur à mi-hauteur des pics de diffraction à la taille des cristallites. Elle est décrite en détail dans la référence : Appl. Cryst. (1978). 1 1 , 102-1 13 Scherrer after sixty years: A survey and some new results in the détermination of crystallite size, J. I. Langford and A. J. C. Wilson.

Etape d) de séchage

Conformément à l'invention, le gel d'alumine obtenu à l'issue de l'étape c) de filtration, est séché dans une étape d) de séchage pour obtenir une poudre.

Ladite étape de séchage est avantageusement mise en œuvre à une température comprise entre 20 et 250°C, de préférence entre 50 et 200°C, pendant une durée comprise entre 1 jour et 3 semaines, de préférence entre 2 heures et 1 semaine et encore plus préférentiellement entre 5 heures et 48 heures. Cette étape de séchage est avantageusement effectuée par toute technique connue de l'homme du métier. Étape e) Traitement thermique

Conformément à l'invention, la poudre obtenue à l'issue de l'étape d) de séchage subit ensuite une étape e) de traitement thermique à une température comprise entre 500 et 1000°C, pendant une durée avantageusement comprise entre 2 et 10 heures, en présence ou non d'un flux d'air contenant jusqu'à 60% en volume d'eau, pour obtenir un oxyde poreux aluminique calciné.

Ledit traitement thermique peut être effectué en présence d'un flux d'air contenant jusqu'à 60% en volume d'eau, aussi appelé traitement thermique hydrothermique. On entend par « traitement thermique ou hydrothermique » le traitement en température respectivement sans présence ou en présence d'eau. Dans ce dernier cas, le contact avec la vapeur d'eau peut se dérouler à pression atmosphérique ou en pression autogène. Plusieurs cycles combinés de traitements thermiques ou hydrothermiques peuvent être réalisés. La température desdits traitements est comprise entre 500 et 1000°C, de préférence entre 540 et 850°C. En cas de présence d'eau, la teneur en eau est de préférence comprise entre 150 et 900 grammes par kilogramme d'air sec, et de manière encore plus préférée, entre 250 et 650 grammes par kilogramme d'air sec.

Ladite étape e) de traitement thermique permet la transition de la boehmite vers l'oxyde poreux aluminique calciné. L'alumine présente une structure cristallographique du type alumine de transition gamma, delta, thêta, chi, rho ou êta, seule ou en mélange. De manière plus préférée, l'alumine est une alumine de transition gamma, delta ou thêta, seule ou en mélange. L'existence des différentes structures cristallographiques est liée aux conditions de mises en œuvre de l'étape e) de traitement thermique.

Etape f) Comalaxaqe

Dans cette étape, l'oxyde poreux aluminique calciné obtenu à l'étape e) est malaxé avec une solution comprenant au moins un précurseur de nickel pour obtenir une pâte.

La phase active est apportée par une ou plusieurs solutions contenant au moins du nickel. La(les)dite(s) solution(s) peu(ven)t être aqueuse(s) ou constituée(s) d'un solvant organique ou bien d'un mélange d'eau et d'au moins un solvant organique (par exemple l'éthanol ou le toluène). De préférence, la solution est aqueuse. Le pH de cette solution pourra être modifié par l'ajout éventuel d'un acide. Selon une autre variante préférée, la solution aqueuse peut contenir de l'ammoniaque ou des ions d'ammonium NH 4 + . De manière préférée, ledit précurseur de nickel est introduit en solution aqueuse, par exemple sous forme de nitrate, de carbonate, d'acétate, de chlorure, d'hydroxyde, d'hydroxycarbonate, d'oxalate, de complexes formés par un polyacide ou un acide-alcool et ses sels, de complexes formés avec les acétylacétonates, ou de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit oxyde poreux aluminique calciné. De manière préférée, on utilise avantageusement comme précurseur de nickel, le nitrate de nickel, le chlorure de nickel, l'acétate de nickel ou le hydroxycarbonate de nickel. De manière très préférée, le précurseur de nickel est le nitrate de nickel ou le hydroxycarbonate de nickel.

Selon une autre variante préférée, ledit précurseur de nickel est introduit en solution ammoniacale en introduisant un sel de nickel, par exemple l'hydroxyde de nickel ou le carbonate de nickel dans une solution ammoniacale ou dans une solution de carbonate d'ammonium ou d'hydrogénocarbonate d'ammonium.

Les quantités du ou des précurseurs de nickel introduites dans la solution sont choisies de telle manière que la teneur totale en nickel est comprise entre 1 et 65% poids dudit élément par rapport au poids total du catalyseur, de préférence comprise entre 5 et 55% poids, de manière préférée entre 8 et 40% poids, de manière plus préférée entre 10 et 35% poids, et de manière particulièrement préférée entre 12 et 30% poids. Les teneurs en nickel sont généralement adaptées à la réaction d'hydrogénation visée tel que décrit ci-dessus dans le paragraphe de la description du catalyseur.

Tout autre élément supplémentaire peut être introduit dans la cuve de malaxage pendant l'étape de comalaxage ou dans la solution contenant le ou les sels métalliques des précurseurs de la phase active.

Lorsqu'on souhaite introduire de la silice dans la matrice, une solution ou une émulsion de précurseur silicique peut être introduite.

Lorsqu'on souhaite introduire du phosphore dans la matrice, une solution d'acide phosphorique peut être introduite.

Le comalaxage se déroule avantageusement dans un malaxeur, par exemple un malaxeur de type "Brabender" bien connu de l'Homme du métier. La poudre d'alumine calcinée obtenue à l'étape e). Ensuite la solution comprenant au moins un précurseur de nickel, et éventuellement de l'eau permutée est ajoutée à la seringue ou avec tout autre moyen pendant une durée de quelques minutes, typiquement environ 2 minutes à une vitesse de malaxage donnée. Après l'obtention d'une pâte, le malaxage peut être poursuivi pendant quelques minutes, par exemple environ 15 minutes à 50 tr/min. La solution comprenant au moins un précurseur de nickel peut également être ajoutée en plusieurs fois durant cette phase de comalaxage.

Etape g) Mise en forme

La pâte obtenue à l'issue de l'étape de comalaxage f) est ensuite mise en forme selon toute technique connue de l'Homme du métier, par exemple les méthodes de mise en forme par extrusion, par pastillage, par la méthode de la goutte d'huile (égouttage) ou par granulation au plateau tournant.

De préférence, la pâte est mise en forme par extrusion sous forme d'extrudés de diamètre généralement compris entre 0,5 et 10 mm, de préférence 0,8 et 3,2 mm, et de manière très préférée entre 1 ,0 et 2,5 mm. Celui-ci peut être avantageusement présenté sous la forme d'extrudés cylindriques, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée.

De manière très préférée, ladite étape f) de comalaxage et ladite étape g) de mise en forme sont réunies en une seule étape de malaxage-extrusion. Dans ce cas, la pâte obtenue à l'issue du malaxage peut être introduite dans une extrudeuse piston au travers d'une filière ayant le diamètre souhaité, typiquement entre 0,5 et 10 mm.

Etape h) Séchage de la pâte mise en forme

Conformément à l'invention, la pâte mise en forme subit un séchage h) à une température comprise entre 15 et 250°C, de préférence comprise entre 15 et 240°C, plus préférentiellement entre 30 et 220°C, encore plus préférentiellement entre 50 et 200°C, et de manière encore plus préférentielle entre 70 et 180°C, pendant une durée typiquement comprise entre 10 minutes et 24 heures. Des durées plus longues ne sont pas exclues, mais n'apportent pas nécessairement d'amélioration.

L'étape de séchage peut être effectuée par toute technique connue de l'Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l'oxygène ou sous un mélange de gaz inerte et d'oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d'air ou d'azote.

Etape i) Traitement thermigue du catalyseur séché (optionnelle)

Le catalyseur ainsi séché peut ensuite subir une étape complémentaire de traitement thermique ou hydrothermique i) à une température comprise entre 250 et 1000°C et de préférence entre 250 et 750°C, pendant une durée typiquement comprise entre 15 minutes et 10 heures, sous une atmosphère inerte ou sous une atmosphère contenant de l'oxygène, en présence d'eau ou non. Des durées de traitement plus longues ne sont pas exclues, mais n'apportent pas nécessaire d'amélioration.. Plusieurs cycles combinés de traitements thermiques ou hydrothermiques peuvent être réalisés. Après ce ou ces traitement(s), le précurseur de catalyseur comprend du nickel sous forme oxyde, c'est-à-dire sous forme NiO. Dans le cas où de l'eau serait ajoutée, le contact avec la vapeur d'eau peut se dérouler à pression atmosphérique ou en pression autogène. La teneur en eau est de préférence comprise entre 150 et 900 grammes par kilogramme d'air sec, et de manière encore plus préférée, entre 250 et 650 grammes par kilogramme d'air sec.

Etape i) Réduction par un gaz réducteur (optionnelle)

Préalablement à l'utilisation du catalyseur dans le réacteur catalytique et la mise en œuvre d'un procédé d'hydrogénation, on effectue avantageusement au moins une étape de traitement réducteur j) en présence d'un gaz réducteur après les étapes h) ou i) de manière à obtenir un catalyseur comprenant du nickel au moins partiellement sous forme métallique.

Ce traitement permet d'activer ledit catalyseur et de former des particules métalliques, en particulier du nickel à l'état zéro valent. Ledit traitement réducteur peut être réalisé in-situ ou ex-situ c'est-à-dire après ou avant le chargement du catalyseur dans le réacteur d'hydrogénation. Ladite étape j) de traitement réducteur peut être mise en œuvre sur le catalyseur ayant été soumis ou non à l'étape k) de passivation, décrite par la suite.

Le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène/azote, hydrogène/argon, hydrogène/méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables.

Ledit traitement réducteur est réalisé à une température comprise entre 120 et 500°C, de préférence entre 150 et 450°C. Lorsque le catalyseur ne subit pas de passivation, ou subit un traitement réducteur avant passivation, le traitement réducteur est effectué à une température comprise entre 180 et 500°C, de préférence entre 200 et 450°C, et encore plus préférentiellement entre 350 et 450°C. Lorsque le catalyseur a subi au préalable une passivation, le traitement réducteur est généralement effectué à une température comprise entre 120 et 350°C, de préférence entre 150 et 350°C

La durée du traitement réducteur est généralement comprise entre 2 et 40 heures, de préférence entre 3 et 30 heures. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1 et 10°C/min, de préférence entre 0,3 et 7°C/min. Le débit d'hydrogène, exprimé en L/heure/gramme de catalyseur est compris entre 0,01 et 100 L/heure/gramme de catalyseur, de préférence entre 0,05 et 10 L/heure/gramme de catalyseur, de façon encore plus préférée entre 0,1 et 5 L/heure/gramme de catalyseur.

Etape k) Passivation (optionnelle)

Préalablement à sa mise en œuvre dans le réacteur catalytique, le catalyseur selon l'invention peut éventuellement subir une étape de passivation (étape k) par un composé soufré ou oxygéné ou par le C0 2 avant ou après l'étape de traitement réducteur j). Cette étape de passivation peut être effectuée ex-situ ou in-situ. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier. L'étape de passivation par le soufre permet d'améliorer la sélectivité des catalyseurs et d'éviter les emballements thermiques lors des démarrages de catalyseurs neufs (« run away » selon la terminologie anglo-saxonne). La passivation consiste généralement à empoisonner irréversiblement par le composé soufré les sites actifs les plus virulents du nickel qui existent sur le catalyseur neuf et donc à atténuer l'activité du catalyseur en faveur de sa sélectivité. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier et notamment, à titre d'exemple par la mise en œuvre de l'une des méthodes décrites dans les documents de brevets EP0466567, US5153163, FR2676184, WO2004/098774, EP0707890. Le composé soufré est par exemple choisi parmi les composés suivants: thiophène, thiophane, alkylmonosulfures tels que diméthylsulfure, diéthylsulfure, dipropylsulfure et propylméthylsulfure ou encore un disulfure organique de formule HO-R S-S-R 2 -OH tel que le di-thio-di-éthanol de formule HO-C 2 H4-S-S-C 2 H4-OH (appelé souvent DEODS). La teneur en soufre est généralement comprise entre 0,1 et 2 % poids dudit élément par rapport à la masse du catalyseur.

L'étape de passivation par un composé oxygéné ou par le C0 2 est généralement effectuée après un traitement réducteur au préalable à température élevée, généralement comprise entre 350 et 500°C, et permet de préserver la phase métallique du catalyseur en présence d'air. Un deuxième traitement réducteur à température plus basse généralement entre 120 et 350°C, est ensuite généralement effectué. Le composé oxygéné est généralement l'air ou tout autre flux contenant de l'oxygène.

L'invention est illustrée par les exemples qui suivent. Exemples

Exemple 1 : Préparation d'une solution aqueuse de précurseurs de Ni

La solution aqueuse de précurseurs de Ni (solution S) utilisée pour la préparation des catalyseurs A, B, et C est préparée en dissolvant 46,1 g de nitrate de nickel (NiN0 3 , fournisseur Strem Chemicals®) dans un volume de 13 mL d'eau distillée. On obtient la solution S dont la concentration en NiO est de 20,1 % pds (par rapport à la masse de la solution).

Exemple 2 : Préparation du catalyseur comalaxé A (conforme au procédé selon l'invention)

Le catalyseur A est préparé par comalaxage d'une alumine A1 et de la solution S de précurseurs de Ni.

Etape a) : On réalise dans un premier temps la synthèse d'une alumine A1 dans un réacteur de 7L et une suspension finale de 5L en 3 étapes, deux étapes de précipitation suivie d'une étape de mûrissement.

La concentration finale en alumine visée est de 45g/L. La quantité d'eau ajoutée dans le réacteur est de 3267mL. L'agitation est de 350 tours par minute (tr/min) tout au long de la synthèse.

Une première étape de co-précipitation dans de l'eau, de sulfate d'aluminium AI 2 (S0 4 ) et d'aluminate de sodium NaAIOO est réalisée à 30°C et pH=9,5 pendant une durée de 8 minutes. Les concentrations des précurseurs d'aluminium utilisées sont les suivantes : AI 2 (S0 4 ) à 102g/L en Al 2 0 3 et NaAIOO à 155g/L en Al 2 0 3 .

Une solution de sulfate d'aluminium AI 2 (S0 4 ) est ajoutée en continu pendant 8 minutes à un débit de 69,6 mL/min à une solution d'aluminate de sodium NaAIOO à un débit de 84,5 mL/min selon un ratio massique base/acide = 1 ,84 de manière à ajuster le pH à une valeur de 9,5. La température du milieu réactionnel est maintenue à 30°C.

Une suspension contenant un précipité d'alumine est obtenue.

La concentration finale en alumine visée étant de 45g/L, les débits des précurseurs sulfate d'aluminium AI 2 (S0 4 ) et aluminate de sodium NaAIOO introduits dans la première étape de précipitation sont respectivement de 69,6 mL/min et 84,5 mL/min.

Ces débits de précurseurs acide et basique contenant de l'aluminium permettent d'obtenir à l'issue de la première étape de précipitation un taux d'avancement de 72%.

La suspension obtenue est ensuite soumise à une montée en température de 30 à 65°C en 15 minutes.. Une deuxième étape de co-précipitation de la suspension obtenue est ensuite réalisée par ajout de sulfate d'aluminium AI 2 (S0 4 ) à une concentration de 102 g/L en Al 2 0 3 et d'aluminate de sodium NaAIOO à une concentration de 155g/L en Al 2 0 3 . Une solution de sulfate d'aluminium AI 2 (S0 4 ) est donc ajoutée en continu à la suspension chauffée obtenue à l'issue de la première étape de précipitation pendant 30 minutes à un débit de 7,2 mL/min à une solution d'aluminate de sodium NaAIOO selon un ratio massique base/acide = 1 ,86 de manière à ajuster le pH à une valeur de 9. La température du milieu réactionnel dans la deuxième étape est maintenue à 65°C.

Une suspension contenant un précipité d'alumine est obtenue.

La concentration finale en alumine visée étant de 45g/L, les débits des précurseurs sulfate d'aluminium AI 2 (S0 4 ) et aluminate de sodium NaAIOO introduits dans la deuxième étape de précipitation sont respectivement de 7,2 mL/min et de 8,8 mL/min.

Ces débits de précurseurs acide et basique contenant de l'aluminium permettent d'obtenir à l'issue de la deuxième étape de précipitation un taux d'avancement de 28%.

La suspension obtenue est ensuite soumise à une montée en température de 65 à 90°C.

Etape b) : La suspension subit ensuite une étape de traitement thermique dans laquelle elle est maintenue à 90°C pendant 60 minutes. Etape c) : La suspension obtenue est ensuite filtrée par déplacement d'eau sur un outil type Buchner fritté et le gel d'alumine obtenu est lavé 3 fois avec 5 L d'eau distillée.

Les caractéristiques du gel d'alumine ainsi obtenu sont résumées dans le tableau 1 ci-après. Tableau 1 : Caractéristiques du gel d'alumine obtenu dans l'exemple 2.

Un gel présentant un indice de dispersibilité de 100% est ainsi obtenu.

Etape d) : Le gel d'alumine obtenu est ensuite séché à l'étuve pendant 16 heures à 200 °C. Etape e) : La poudre obtenue à l'issue de l'étape de séchage est ensuite calcinée à 750 °C pendant 2 heures pour obtenir la transition de la boehmite vers l'alumine. On obtient alors l'alumine A1 .

Le catalyseur A est ensuite préparé à partir de l'alumine A1 et de la solution S de précurseurs de Ni, préparées ci-dessus, selon les quatre étapes suivantes :

Etape f) Comalaxage : On utilise un malaxeur "Brabender" avec une cuve de 80 mL et une vitesse de malaxage de 30 tr/min. La poudre d'alumine A1 est placée dans la cuve du malaxeur. Puis la solution S de précurseurs de Ni est ajoutée à la seringue pendant environ 2 minutes à 15 tr/min. Après l'obtention d'une pâte, le malaxage est maintenu 15 minutes à 50 tr/min.

Etape g) Extrusion : La pâte ainsi obtenue est introduite dans une extrudeuse piston et est extrudée au travers d'une filière de diamètre 2,1 mm à 50 mm/min.

Etape h) Séchage : Les extrudés ainsi obtenus sont ensuite séchés à l'étuve à 80 °C pendant 16 heures. On obtient un catalyseur séché.

Etape i) Traitement thermique : Le catalyseur séché est ensuite calciné en four tubulaire, sous un flux d'air de 1 L/h/g de catalyseur, à 450 °C pendant 2 heures (rampe de montée en température de 5 °C/min). On obtient alors le catalyseur calciné A.

Les caractéristiques du catalyseur calciné A ainsi obtenu sont reportées dans le tableau 3 ci- après. Exemple 3 : Préparation du catalyseur comalaxé B, à partir de boehmite (non conforme au procédé selon l'invention)

Le catalyseur B est préparé par comalaxage de la boehmite (gel d'alumine non calciné) et de la solution S de précurseurs de Ni.

La synthèse de la boehmite est réalisée dans un réacteur de laboratoire d'une capacité de 5L en suivant les cinq premières étapes, étapes a) à d), de l'exemple 2 décrit ci-dessus.

Les conditions opératoires des cinq étapes a) à d) sont strictement identiques à celles décrites dans l'exemple 2 ci-dessus. A l'issue de l'étape d), on obtient une poudre de boehmite B1 . Cette poudre de boehmite B1 est ensuite malaxée avec la solution S de précurseurs de Ni (décrite dans l'exemple 1 ). Aucune calcination n'intervient entre l'étape d) et l'étape de comalaxage.

Le catalyseur B est ensuite préparé selon les quatre étapes f) à i) décrites dans l'exemple 2. Les conditions opératoires sont strictement identiques, à l'exception des deux points suivants :

- dans l'étape f) de comalaxage, la poudre de boehmite B1 est malaxée avec la solution S de précurseurs de Ni ;

- dans l'étape i) de calcination, la calcination est effectuée à 750 °C afin de transformer la boehmite en alumine. Cette calcination à haute température a engendré des phases réfractaires de type aluminate de nickel.

Les caractéristiques du catalyseur calciné B ainsi obtenu sont reportées dans le tableau 2 ci- après.

Par rapport au catalyseur A, le volume macroporeux est plus élevé, le volume mésoporeux et le diamètre médian mésoporeux sont beaucoup plus faibles. Le catalyseur B présente aussi de la microporosité, contrairement au catalyseur A. Le catalyseur B présente également des cristallites de NiO beaucoup plus grosses que celles du catalyseur A.

Exemple 4 : Préparation du catalyseur comalaxé C, à partir d'une alumine (non conforme au procédé selon l'invention)

Le catalyseur C est préparé par comalaxage d'une alumine C1 et de la solution S de précurseurs de Ni.

La synthèse de l'alumine C1 est réalisée dans un réacteur en 5L en six étapes, nommées ci- dessous a) à e). La concentration des précurseurs acide et basique d'aluminium est la suivante : sulfate d'aluminium AI 2 (S0 4 )3 à 102 g/L en Al 2 0 3 et aluminate de sodium NaAIOO à 155 g/L en Al 2 0 3. On cherche à obtenir une concentration finale en alumine de 45 g/L dans la suspension obtenue à l'issue de la deuxième étape c) de précipitation.

Les étapes a) à e) sont décrites ci-dessous :

a) on réalise une première précipitation du sulfate d'aluminium AI 2 (S0 4 ) 3 et de l'aluminate de sodium NaAIOO en 8 minutes à 40 °C, pH=9,1 et avec un taux d'avancement est de 20 %.

Le taux d'avancement correspond à la proportion d'alumine formée lors de la première étape ;

b) on réalise une montée en température de 40 °C à 60 °C en 20 à 30 minutes ; a') on réalise une deuxième précipitation du sulfate d'aluminium AI 2 (S0 4 ) 3 et de l'aluminate de sodium NaAIOO en 30 minutes à 60 °C, pH=9,1 et avec un taux d'avancement de 80 %. Le taux d'avancement correspond à la proportion d'alumine formée lors de la deuxième étape de précipitation.

Les caractéristiques du gel d'alumine ainsi obtenu sont résumées dans le tableau 2 ci-après

Tableau 2 : Caractéristiques du gel d'alumine pour la préparation du support C1

Un gel présentant un indice de dispersibilité de 60% est ainsi obtenu. c) on réalise une filtration de la suspension obtenue à l'issue de l'étape a') par déplacement sur un outil de type Buchner fritté P4, suivie de trois lavages successifs avec 5L d'eau distillée ;

d) on réalise un séchage du gel d'alumine pendant 16 heures à 200 °C ;

e) on réalise une calcination sous flux d'air de la poudre obtenue à l'issue de l'étape d) à 750°C pendant 2 heures. On obtient l'alumine C1 .

Le catalyseur C est ensuite préparé par comalaxage de l'alumine C1 et de la solution S de précurseurs de Ni décrite dans l'exemple 1 selon les quatre étapes f) à i) décrites dans l'exemple 2. Les conditions opératoires sont strictement identiques. A l'issue de l'étape i), on obtient alors le catalyseur calciné C.

Les caractéristiques du catalyseur calciné C ainsi obtenu sont reportées dans le tableau 3 ci- après. Ce catalyseur présente un volume macroporeux beaucoup plus élevé que celui du catalyseur A ainsi qu'un volume mésoporeux et un diamètre moyen mésoporeux beaucoup plus faibles que ceux du catalyseur A. Il présente également des cristallites de NiO de taille plus grosse que celles du catalyseur A. Tableau 3 : Propriétés des catalyseurs A, B et C

Exemple 5 : Évaluation des propriétés catalytiques des catalyseurs A, B, et C en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène

Les catalyseurs A, B, et C décrits dans les exemples ci-dessus sont testés vis-à-vis de la réaction d'hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène.

La composition de la charge à hydrogéner sélectivement est la suivante : 8 %poids styrène (fournisseur Sigma Aldrich®, pureté 99%), 8 %poids isoprène (fournisseur Sigma Aldrich®, pureté 99%), 84 %poids n-heptane (solvant) (fournisseur VWR®, pureté > 99% chromanorm HPLC). Cette charge contient également des composés soufrés en très faible teneur : 10 ppm poids de soufre introduits sous forme de pentanethiol (fournisseur Fluka®, pureté > 97%) et 100 ppm poids de soufre introduits sous forme de thiophène (fournisseur Merck®, pureté 99%). Cette composition correspond à la composition initiale du mélange réactionnel. Ce mélange de molécules modèles est représentatif d'une essence de pyrolyse. La réaction d'hydrogénation sélective est opérée dans un autoclave de 500 mL en acier inoxydable, muni d'une agitation mécanique à entraînement magnétique et pouvant fonctionner sous une pression maximale de 100 bar (10 MPa) et des températures comprises entre 5°C et 200°C. Préalablement à son introduction dans l'autoclave, une quantité de 3 mL de catalyseur est réduite ex situ sous un flux d'hydrogène de 1 L/h/g de catalyseur, à 400 °C pendant 16 heures (rampe de montée en température de 1 °C/min), puis elle est transvasée dans l'autoclave, à l'abri de l'air. Après ajout de 214 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l'autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d'hydrogène, et porté à la température du test égale à 30°C. Au temps t=0, environ 30 g d'un mélange contenant du styrène, de l'isoprène, du n-heptane, du pentanethiol et du thiophène sont introduits dans l'autoclave. Le mélange réactionnel a alors la composition décrite ci-dessus et l'agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l'autoclave à l'aide d'une bouteille réservoir située en amont du réacteur.

L'avancement de la réaction est suivi par prélèvement d'échantillons du milieu réactionnel à intervalles de temps réguliers : le styrène est hydrogéné en éthylbenzène, sans hydrogénation du cycle aromatique, et l'isoprène est hydrogéné en méthyl-butènes. Si la réaction est prolongée plus longtemps que nécessaire, les méthyl-butènes sont à leur tour hydrogénés en isopentane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L'activité catalytique est exprimée en moles de H 2 consommées par minute et par gramme de Ni.

Les activités catalytiques mesurées pour les catalyseurs A, B, et C sont reportées dans le tableau 3 ci-dessous. Elles sont rapportées à l'activité catalytique mesurée pour le catalyseur

Tableau 3 : Comparaison des performances en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène (A H YD)

Catalyseur Conforme ? AHYD (%)

A Oui 100

B Non 32

C Non 67 Ceci montre bien les performances améliorées du procédé d'hydrogénation sélective en présence du catalyseur A et en particulier l'impact de ses propriétés texturales spécifiques. La préparation par comalaxage d'alumine permet d'obtenir des cristallites de NiO de plus petite taille et donc des performances catalytiques améliorées (comparaison avec le catalyseur C). Au contraire, la préparation par comalaxage de boehmite (catalyseur B) conduit à une diminution très importante des performances catalytiques du fait de la présence de gros cristallites de NiO et de phases réfractaires (de type aluminate de nickel) formées lors de la calcination à haute température.