Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SELECTIVE HYDROGENATION METHOD USING A NICKEL-BASED CATALYST PRODUCED USING AN ADDITIVE COMPRISING AN ALCOHOL FUNCTION
Document Type and Number:
WIPO Patent Application WO/2018/114398
Kind Code:
A1
Abstract:
The invention relates to a method for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, contained in a hydrocarbon feedstock having a final boiling point less than or equal to 300°C in the presence of a catalyst comprising an alumina substrate and an active phase consisting of nickel. The catalyst is produced using a method comprising at least: i) a step of bringing the substrate into contact with at least one solution containing at least one nickel precursor; ii) a step of bringing the substrate into contact with at least one solution containing at least one organic compound comprising at least one alcohol function, said organic compound comprising between 1 and 20 carbon atoms; iii) a step of drying the impregnated substrate at a temperature below 250°C; steps i) and ii) being carried out separately, in any order, or simultaneously.

Inventors:
DUBREUIL ANNE-CLAIRE (FR)
MARTEL AGATHE (FR)
Application Number:
PCT/EP2017/082025
Publication Date:
June 28, 2018
Filing Date:
December 08, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
IFP ENERGIES NOW (FR)
International Classes:
C10G45/36; B01J21/04; B01J23/755; B01J37/02
Domestic Patent References:
WO2004098774A12004-11-18
Foreign References:
FR2963344A12012-02-03
FR2664610A11992-01-17
FR2664507A11992-01-17
FR3035008A12016-10-21
FR2984761A12013-06-28
FR2963344A12012-02-03
EP0466567A11992-01-15
US5153163A1992-10-06
FR2676184A11992-11-13
EP0707890A11996-04-24
Other References:
"CRC Handbook of Chemistry and Physics", 2000
F. ROUQUÉROL; J. ROUQUÉROL; K. SING: "Adsorption by powders and porous solids. Principles, methodology and applications", 1999, ACADEMIC PRESS
THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309
J. I. LANGFORD; A. J. C. WILSON: "Scherrer after sixty years: A survey and some new results in the détermination of crystallite size", APPL. CRYST., vol. 11, 1978, pages 102 - 113
Download PDF:
Claims:
REVENDICATIONS

Procédé d'hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, contenus dans une charge d'hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h"1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h"1 lorsque le procédé est réalisé en phase gazeuse, en présence d'un catalyseur comprenant un support en alumine et une phase active constituée de nickel, ledit catalyseur étant préparé par un procédé comprenant au moins :

i) une étape de mise en contact dudit support avec au moins une solution contenant au moins un précurseur de nickel ;

ii) une étape de mise en contact dudit support avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction alcool, ledit composé organique comprenant entre 1 et 20 atomes de carbone ;

iii) une étape de séchage dudit support imprégné à une température inférieure à 250°C ; les étapes i) et ii) étant réalisées séparément, dans un ordre indifférent, ou simultanément.

Procédé selon la revendication 1 , caractérisé en ce qu'il comprend en outre une étape iv) de calcination dudit catalyseur séché obtenu à l'étape iii) à une température comprise entre 250 et 1000°C.

Procédé selon les revendications 1 ou 2, caractérisé en ce que les étapes i) et ii) sont réalisées simultanément.

Procédé selon les revendications 1 ou 2, caractérisé en ce que l'étape i) est réalisée avant l'étape ii).

Procédé selon les revendications 1 ou 2, caractérisé en ce que l'étape ii) est réalisée avant l'étape i).

Procédé selon les revendications 1 ou 2, caractérisé en ce que les étapes i) et/ou ii) est (sont) réalisée(s) par imprégnation à sec.

7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la teneur en élément nickel est comprise entre 10 et 35% en poids par rapport au poids total du catalyseur.

8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit composé organique comprend une seule fonction alcool.

9. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit composé organique comprend au moins deux fonctions alcool.

10. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit composé organique est un composé organique aromatique comprenant au moins deux fonctions alcools.

1 1 . Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit composé organique est choisi parmi le diéthylène glycol, le triéthylène glycol, le tétraéthylène glycol, ou un polyéthylène glycol répondant à la formule H(OC2H4)nOH avec n supérieur à 4 et ayant une masse molaire moyenne inférieure à 20000 g/mol. 12. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit composé organique est un monosaccharide de formule brute Cn(H20)p avec n compris entre 3 et 12.

13. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit composé organique comprend au moins une fonction alcool, au moins une fonction cétone et au moins un hétérocyclique insaturé.

14. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit composé organique est un disaccharide ou un trisaccharide, ou un dérivé d'un monosaccharide.

15. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que la charge est choisie parmi une coupe C2 de vapocraquage ou une coupe C2-C3 de vapocraquage, et dans lequel procédé le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est compris entre 0,5 et 1000, la température est comprise entre 0 et 300°C, la vitesse volumique horaire (V.V.H.) est comprise entre 100 et 40000 h"1 , et la pression est comprise entre 0,1 et 6,0 MPa.

16. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que la charge est choisie parmi les essences de vapocraquage et dans lequel procédé le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est compris entre 0,5 et 10, la température est comprise entre 0 et 200°C, la vitesse volumique horaire (V.V.H.) est comprise entre 0,5 et 100 h"1 , et la pression est comprise entre 0,3 et 8,0 MPa.

Description:
PROCEDE D'HYDROGENATION SELECTIVE METTANT EN ŒUVRE UN CATALYSEUR A BASE DE NICKEL PREPARE AU MOYEN D'UN ADDITIF COMPRENANT UNE

FONCTION ALCOOL

Domaine de l'invention L'invention a pour objet un procédé d'hydrogénation sélective de composés polyinsaturés dans une charge hydrocarbonée, notamment dans les coupes C2-C5 de vapocraquage et les essences de vapocraquage, en présence d'un catalyseur à base de nickel supporté sur un support en alumine préparé au moyen d'un additif organique comprenant au moins une fonction de type alcool. Etat de la technique

Les catalyseurs d'hydrogénation sélective de composés polyinsaturés sont généralement à base de métaux du groupe VIII de la classification périodique des éléments tel que le nickel. Le métal se présente sous la forme de particules métalliques nanométriques déposées sur un support qui peut être un oxyde réfractaire. La teneur en métal du groupe VIII, la présence éventuelle d'un deuxième élément métallique, la taille des particules de métal et la répartition de la phase active dans le support ainsi que la nature et distribution poreuse du support sont des paramètres qui peuvent avoir une importance sur les performances des catalyseurs.

La vitesse de la réaction d'hydrogénation est gouvernée par plusieurs critères, tels que la diffusion des réactifs vers la surface du catalyseur (limitations diffusionnelles externes), la diffusion des réactifs dans la porosité du support vers les sites actifs (limitations diffusionnelles internes) et les propriétés intrinsèques de la phase active telles que la taille des particules métalliques et la répartition de la phase active au sein du support.

En ce qui concerne la taille des particules métalliques, il est généralement admis que le catalyseur est d'autant plus actif que la taille des particules métalliques est petite. De plus, il est important d'obtenir une répartition en taille des particules centrée sur la valeur optimale ainsi qu'une répartition étroite autour de cette valeur.

En vue d'obtenir de meilleures performances catalytiques, notamment une meilleure sélectivité et/ou activité, il est connu dans l'état de la technique de procéder à l'utilisation d'additifs de type composés organiques pour la préparation de catalyseurs métalliques d'hydrogénation sélective. Par exemple, la demande FR2984761 divulgue un procédé de préparation d'un catalyseur d'hydrogénation sélective comprenant un support et une phase active comprenant un métal du groupe VIII, ledit catalyseur étant préparé par un procédé comprenant une étape de d'imprégnation d'une solution contenant un précurseur du métal du groupe VIII et un additif organique, plus particulièrement un composé organique présentant une à trois fonctions acides carboxyliques, une étape de séchage du support imprégné, et une étape de calcination du support séché afin d'obtenir le catalyseur.

Le brevet FR2963344 enseigne l'utilisation de composés organiques bien particuliers comprenant un oligosaccharide cyclique composés d'au moins 6 sous-unités glucopyranose liées en a-(1 ,4).

Dans ce contexte, un des objectifs de la présente invention est de proposer un procédé d'hydrogénation sélective de composés polyinsaturés tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques en présence d'un catalyseur supporté à phase active de nickel, préparé au moyen d'un additif organique particulier permettant l'obtention de performances en hydrogénation en terme d'activité au moins aussi bonnes, voire meilleures, que les procédés de l'art antérieur que les procédés connus de l'état de la technique.

La demanderesse a découvert qu'un catalyseur à base de nickel supporté sur alumine préparé au moyen d'un additif organique de type alcool comprenant entre 1 et 20 atomes de carbone, présente, lorsqu'il est mis en œuvre dans un procédé d'hydrogénation sélective, des performances catalytiques améliorées, en terme d'activité catalytique. Il en résulte une meilleure conversion de la charge dans des conditions opératoires identiques.

Objets de l'invention La présente invention concerne un procédé d'hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, contenus dans une charge d'hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h "1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h "1 lorsque le procédé est réalisé en phase gazeuse, en présence d'un catalyseur comprenant un support en alumine et une phase active constituée de nickel, ledit catalyseur étant préparé par un procédé comprenant au moins :

i) une étape de mise en contact dudit support avec au moins une solution contenant au moins un précurseur de nickel ; ii) une étape de mise en contact dudit support avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction alcool, ledit composé organique comprenant entre 1 et 20 atomes de carbone ;

iii) une étape de séchage dudit support imprégné à une température inférieure à 250°C ; les étapes i) et ii) étant réalisées séparément, dans un ordre indifférent, ou simultanément.

Selon un mode de réalisation selon l'invention, le procédé peut comprendre en outre au moins une étape iv) de calcination dudit catalyseur séché obtenu à l'étape iii) à une température comprise entre 250 et 1000°C.

Dans un mode de réalisation selon l'invention, les étapes i) et ii) du procédé selon l'invention sont réalisées simultanément.

Dans un autre mode de réalisation selon l'invention, l'étape i) du procédé selon l'invention est réalisée avant l'étape ii).

Dans encore un autre mode de réalisation selon l'invention, l'étape ii) du procédé selon l'invention est réalisée avant l'étape i). De préférence, les étapes i) et/ou ii) est (sont) réalisée(s) par imprégnation à sec.

Avantageusement, la teneur en élément nickel est comprise entre 10 et 35% en poids par rapport au poids total du catalyseur.

Selon un mode de réalisation selon l'invention, ledit composé organique comprend une seule fonction alcool. Selon un mode de réalisation selon l'invention, ledit composé organique comprend au moins deux fonctions alcool.

Selon un mode de réalisation selon l'invention, ledit composé organique est un composé organique aromatique comprenant au moins deux fonctions alcools.

Selon un mode de réalisation selon l'invention, ledit composé organique est choisi parmi le diéthylène glycol, le triéthylène glycol, le tétraéthylène glycol, ou un polyéthylène glycol répondant à la formule Η(00 2 Η4) η ΟΗ avec n supérieur à 4 et ayant une masse molaire moyenne inférieure à 20000 g/mol.

Selon un mode de réalisation selon l'invention, ledit composé organique est un monosaccharide de formule brute C n (H 2 0) p avec n compris entre 3 et 12. Selon un mode de réalisation selon l'invention, ledit composé organique comprend au moins une fonction alcool, au moins une fonction cétone et au moins un hétérocyclique insaturé.

Selon un mode de réalisation selon l'invention, ledit composé organique est un disaccharide ou un trisaccharide, ou un dérivé d'un monosaccharide. Dans un mode de réalisation selon l'invention, le procédé selon l'invention est réalisé en présence d'une charge choisie parmi une coupe C2 de vapocraquage ou une coupe C2-C3 de vapocraquage, et dans lequel procédé le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est compris entre 0,5 et 1000, la température est comprise entre 0 et 300°C, la vitesse volumique horaire (V.V.H.) est comprise entre 100 et 40000 h "1 , et la pression est comprise entre 0,1 et 6,0 MPa.

Dans un mode de réalisation selon l'invention, le procédé selon l'invention est réalisé en présence d'une charge choisie parmi les essences de vapocraquage et dans lequel procédé le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est compris entre 0,5 et 10, la température est comprise entre 0 et 200°C, la vitesse volumique horaire (V.V.H.) est comprise entre 0,5 et 100 h "1 , et la pression est comprise entre 0,3 et 8,0 MPa.

Description détaillée

Définitions

Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.

Les propriétés texturales et structurales du support et du catalyseur décrits ci-après sont déterminées par les méthodes de caractérisation connues de l'homme du métier. Le volume poreux total et la distribution poreuse sont déterminés dans la présente invention par porosimétrie à l'azote tel que décrit dans l'ouvrage « Adsorption by powders and porous solids. Principles, methodology and applications » écrit par F. Rouquérol, J. Rouquérol et K. Sing, Académie Press, 1999.

On entend par surface spécifique, la surface spécifique BET (S B ET en m 2 /g) déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique " The Journal of American Society", 1938, 60, 309. On entend par taille des nanoparticules de nickel, le diamètre moyen des cristallites de nickel sous forme oxyde. Le diamètre moyen des cristallites de nickel sous forme oxyde est déterminé par diffraction des rayons X, à partir de la largeur de la raie de diffraction située à l'angle 2thêta=43° (c'est-à-dire selon la direction cristallographique [200]) à l'aide de la relation de Scherrer. Cette méthode, utilisée en diffraction des rayons X sur des poudres ou échantillons polycristallins qui relie la largeur à mi-hauteur des pics de diffraction à la taille des particules, est décrite en détail dans la référence : Appl. Cryst. (1978), 1 1 , 102-1 13 « Scherrer after sixty years: A survey and some new results in the détermination of crystallite size», J. I. Langford and A. J. C. Wilson. Description du procédé

La présente invention concerne un procédé d'hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, aussi appelés styréniques, contenus dans une charge d'hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h "1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h "1 lorsque le procédé est réalisé en phase gazeuse, en présence d'un catalyseur comprenant un support en alumine et une phase active constituée de nickel, ledit catalyseur étant préparé par un procédé comprenant au moins :

i) une étape de mise en contact dudit support avec au moins une solution contenant au moins un précurseur de nickel ;

ii) une étape de mise en contact dudit support avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction alcool, ledit composé organique comprenant entre 1 et 20 atomes de carbone ;

iii) une étape de séchage dudit support imprégné à une température inférieure à 250°C, de manière à obtenir un catalyseur séché ; les étapes i) et ii) étant réalisées séparément, dans un ordre indifférent, ou simultanément.

Les composés organiques mono-insaturés tels que par exemple l'éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono-insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1 -2-butadiène et le 1 -3- butadiène, le vinylacétylène et l'éthylacétylène, et d'autres composés polyinsaturés dont le point d'ébullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes.

L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l'hydrogénation des noyaux aromatiques.

La charge d'hydrocarbures traitée dans le procédé d'hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique.

Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+.

La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent.

La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition moyenne suivante : de l'ordre de 90 % poids de propylène, de l'ordre de 1 à 8 % poids de propadiène et de méthylacétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent.

Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l'ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l'ordre de 30 % poids d'éthylène, de l'ordre de 5 % poids de propylène, le reste étant essentiellement du méthane, de l'éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4. La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1 ,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent. La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes.

L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10 et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha- méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante: 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre.

De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective selon l'invention est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une essence de vapocraquage. Le procédé d'hydrogénation sélective selon l'invention vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière à ce que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l'hydrogénation des noyaux aromatiques.

La mise en œuvre technologique du procédé d'hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l'hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs réinjections) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d'hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation d'au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.

L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d'abaisser le coût énergétique et d'augmenter la durée de cycle du catalyseur.

D'une manière générale, l'hydrogénation sélective d'une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0,1 et 200 h "1 pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire V.V.H. comprise entre 100 et 40000 h "1 pour un procédé réalisé en phase gazeuse.

Dans un mode de réalisation selon l'invention, lorsqu'on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1 ,0 et 2,0, la température est comprise entre 0 et 200°C, de préférence entre 20 et 200 °C et de manière encore plus préférée entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 et 100 h "1 , de préférence entre 1 et 50 h "1 et la pression est généralement comprise entre 0,3 et 8,0 MPa, de préférence entre 1 ,0 et 7,0 MPa et de manière encore plus préférée entre 1 ,5 et 4,0 MPa.

Plus préférentiellement, on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20 et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h "1 et la pression est comprise entre 1 ,0 et 7,0 MPa.

Encore plus préférentiellement, on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 1 ,0 et 2,0, la température est comprise entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h "1 et la pression est comprise entre 1 ,5 et 4,0 MPa.

Le débit d'hydrogène est ajusté afin d'en disposer en quantité suffisante pour hydrogéner théoriquement l'ensemble des composés polyinsaturés et de maintenir un excès d'hydrogène en sortie de réacteur.

Dans un autre mode de réalisation selon l'invention, lorsqu'on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0 et 300°C, de préférence entre 15 et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 et 40000 h "1 , de préférence entre 500 et 30000 h "1 et la pression est généralement comprise entre 0,1 et 6,0 MPa, de préférence entre 0,2 et 5,0 MPa.

Description du catalyseur

Le catalyseur employé pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention comprend une phase active déposée sur un support comprenant de l'alumine, ladite phase active étant constituée de nickel. Selon l'invention, la teneur en élément nickel dans le catalyseur est comprise entre 10 et 35% en poids de la masse de catalyseur, de préférence entre 1 1 et 30% en poids, plus préférentiellement entre 12 et 25% en poids, et encore plus préférentiellement entre 12 et 23% en poids. La teneur en Ni est mesurée par fluorescence X.

Le nickel se présente sous la forme de nanoparticules déposées sur ledit support. La taille des nanoparticules de nickel dans le catalyseur, mesurée sous leur forme oxyde, est inférieure ou égale à 18 nm, de préférence inférieure ou égale à 15 nm, plus préférentiellement comprise entre 0,5 et 12 nm, et encore plus préférentiellement comprise entre 1 ,5 et 10 nm.

Ledit catalyseur selon l'invention est généralement présenté sous toutes les formes connues de l'Homme du métier, par exemple sous forme de billes, d'extrudés, de tablettes, de pastilles, de cylindres creux ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage. Dans un mode de réalisation particulier selon l'invention, le catalyseur est constitué d'extrudés de diamètre généralement compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1 ,0 et 2,5 mm. Celui-ci peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur.

Dans un autre mode de réalisation particulier selon l'invention, le catalyseur se présente sous la forme de billes de diamètre compris entre 1 et 8 mm, de préférence entre 2 et 7 mm.

Le support sur lequel est déposée ladite phase active comprend de l'alumine (Al 2 0 3 ).

Dans une première variante de réalisation, l'alumine présente dans ledit support est une alumine de transition telle qu'une alumine gamma, delta, thêta, chi, rho, êta, ou kappa, seule ou en mélange. De manière plus préférée, l'alumine est une alumine de transition gamma, delta ou thêta, seule ou en mélange. Dans une seconde variante de réalisation, l'alumine présenta dans ledit support est une alumine alpha.

Le support peut comprendre un autre oxyde différent de l'alumine, tel que la silice (Si0 2 ), le dioxyde de titane (Ti0 2 ), la cérine (Ce0 2 ) et la zircone (Zr0 2 ). Le support peut être une silice- alumine. De manière très préférée, ledit support est constitué uniquement d'alumine.

Le volume poreux du support est généralement compris entre 0,1 cm 3 /g et 1 ,5 cm 3 /g, de préférence compris entre 0,5 cm 3 /g et 1 ,0 cm 3 /g. La surface spécifique du support est généralement supérieure ou égale à 5 m 2 /g, de préférence supérieure ou égale à 30 m 2 /g, plus préférentiellement comprise entre 40 m 2 /g et 250 m 2 /g, et encore plus préférentiellement comprise entre 50 m 2 /g et 200 m 2 /g.

Description du procédé de préparation du catalyseur

D'une manière générale, le catalyseur utilisé dans le cadre du procédé d'hydrogénation sélective est préparé par un procédé comprenant au moins les étapes suivantes :

i) une étape de mise en contact dudit support avec au moins une solution contenant au moins un précurseur de nickel ;

ii) une étape de mise en contact dudit support avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction alcool, ledit composé organique comprenant entre 1 et 20 atomes de carbone ;

iii) une étape de séchage dudit support imprégné à une température inférieure à 250°C, de manière à obtenir un catalyseur séché ; les étapes i) et ii) étant réalisées séparément, dans un ordre indifférent, ou simultanément.

Etape i) Mise en contact du précurseur de nickel avec le support

Le dépôt du nickel sur ledit support, conformément à la mise en œuvre de ladite étape i), peut être réalisé par toute méthode bien connue de l'Homme du métier. En particulier, ladite étape i) peut être réalisée par imprégnation, à sec ou en excès, ou encore par dépôt - précipitation, selon des méthodes bien connues de l'Homme du métier.

Ladite étape i) est préférentiellement réalisée par imprégnation du support consistant par exemple en la mise en contact dudit support avec au moins une solution, aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l'acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique, contenant au moins un précurseur de nickel au moins partiellement à l'état dissous, ou encore en la mise en contact dudit support avec au moins une solution colloïdale d'au moins un précurseur du nickel, sous forme oxydée (nanoparticules d'oxyde, d'oxy(hydroxyde) ou d'hydroxyde du nickel) ou sous forme réduite (nanoparticules métalliques du nickel à l'état réduit). De préférence, la solution est aqueuse. Le pH de cette solution pourra être modifié par l'ajout éventuel d'un acide ou d'une base. Selon une autre variante préférée, la solution aqueuse peut contenir de l'ammoniaque ou des ions ammonium NH 4 + .

De manière préférée, ladite étape i) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du catalyseur avec une solution, contenant au moins un précurseur du nickel, dont le volume de la solution est compris entre 0,25 et 1 ,5 fois le volume poreux du support à imprégner.

Lorsque le précurseur de nickel est introduit en solution aqueuse, on utilise avantageusement un précurseur de nickel sous forme de nitrate, de carbonate, de chlorure, de sulfate, d'hydroxyde, d'hydroxycarbonate, de formiate, d'acétate, d'oxalate, de complexes formés avec les acétylacétonates, ou encore de complexes tétrammine ou hexammine, ou de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit support. On utilise avantageusement comme précurseur de nickel, le nitrate de nickel, le carbonate de nickel, le chlorure de nickel, l'hydroxyde de nickel, le hydroxycarbonate de nickel. De manière très préférée, le précurseur de nickel est le nitrate de nickel, le carbonate de nickel ou l'hydroxyde de nickel.

Les quantités du ou des précurseurs de nickel introduites dans la solution sont choisies de telle manière que la teneur totale en élément nickel est comprise entre 10 et 35% en poids de la masse de catalyseur, de préférence entre 1 1 et 30% en poids, plus préférentiellement entre 12 et 25% en poids, et encore plus préférentiellement entre 12 et 23% en poids. Dans le mode de réalisation dans lequel l'étape i) est réalisée par imprégnation, à sec ou en excès, de préférence à sec, l'imprégnation du nickel avec le support peut être avantageusement réalisée via au moins deux cycles d'imprégnation, en utilisant des précurseurs de nickel identiques ou différents à chaque cycle. Dans ce cas, chaque imprégnation est avantageusement suivie d'un séchage et éventuellement d'un traitement thermique.

Etape ii) mise en contact du composé organique avec le support

La mise en contact dudit support avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction alcool, conformément à la mise en œuvre de ladite étape ii), peut être réalisé par toute méthode bien connue de l'Homme du métier. En particulier, ladite étape ii) peut être réalisée par imprégnation, à sec ou en excès selon des méthodes bien connues de l'Homme du métier. De manière préférée, ladite étape ii) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du catalyseur avec un volume de ladite solution compris entre 0,25 et 1 ,5 fois le volume poreux du support à imprégner.

Ladite solution contenant au moins un composé organique comprenant au moins une fonction alcool peut être aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l'acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique. Ledit composé organique est préalablement au moins partiellement dissous dans ladite solution à la concentration voulue. De préférence, ladite solution est aqueuse ou contient de l'éthanol. De façon encore plus préférée, ladite solution est aqueuse. Le pH de ladite solution pourra être modifié par l'ajout éventuel d'un acide ou d'une base. Dans un autre mode de réalisation possible, le solvant peut être absent de la solution d'imprégnation.

Dans le mode de réalisation dans lequel l'étape ii) est réalisée par imprégnation, à sec ou en excès, de préférence à sec, l'imprégnation du support peut être réalisée en utilisant une ou plusieurs solutions dont l'une au moins desdites solutions comprend au moins un composé organique comprenant au moins une fonction alcool. Dans le mode de réalisation dans lequel l'étape ii) est réalisée par imprégnation, à sec ou en excès, de préférence à sec, l'imprégnation du support peut être avantageusement réalisée via au moins deux cycles d'imprégnation, en utilisant des composés organiques, ou des mélanges de composés organiques dont l'un au moins comprend au moins une fonction alcool, identiques ou différents à chaque cycle. Dans ce cas, chaque imprégnation est avantageusement suivie d'un séchage et éventuellement d'un traitement thermique.

Le rapport molaire dudit composé organique comprenant au moins une fonction alcool introduit lors de l'étape ii) par rapport à l'élément nickel introduit à l'étape i) est compris entre 0,01 et 5,0 mol/mol, de préférence compris entre 0,05 et 1 ,5 mol/mol, plus préférentiellement entre 0,08 et 0,9 mol/mol. Ledit composé organique comprend entre 1 et 20 atomes de carbone, de préférence entre 1 et 12 atomes de carbone, et encore plus préférentiellement entre 1 et 8 atomes de carbone.

Dans un mode de réalisation selon l'invention, le composé organique comprend une seule fonction alcool (mono-alcool). De préférence, le composé organique est choisi parmi le méthanol, l'éthanol, le propanol, le butanol, le pentanol, l'hexanol, le 2-propyn-1 -ol, le geraniol, le menthol, le phénol, le crésol, sous l'une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmile méthanol, l'éthanol, le phénol

Dans un autre mode de réalisation selon l'invention, le composé organique comprend au moins deux fonctions alcools (diol ou plus généralement polyol). De préférence, le composé organique est sélectionné parmi l'éthylène glycol, le propane-1 ,3-diol, le butane-1 ,4-diol, le pentane-1 ,5-diol, l'hexane-1 ,6-diol, l'heptane-1 ,7-diol, l'octane-1 ,8-diol, le propane-1 ,2-diol, le butane-1 , 2-diol, le butane-2,3-diol, le butane-1 ,3-diol, le pentane-1 ,2-diol, le pentane-1 ,3-diol, le pentane-2,3-diol, le pentane-2,4-diol, le 2-éthylhexane-1 ,3-diol (étohexadiol), le p- menthane-3,8-diol, le 2-méthylpentane-2,4-diol, le but-2-yne-1 ,4-diol, le 2,3,4- trihydroxypentane, le 2,2-dihydroxyhexane, le 2,2,4-trihydroxyhexane, le glycérol, l'érythritol, le thréitol, l'arabitol, le xylitol, le ribitol, le mannitol, le sorbitol, le dulcitol, l'allitol, le gluciotol, le tolitol, le fucitol, l'iditol, le volemitol, l'inositol, sous l'une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmi l'éthylène glycol, le propane-1 , 3-diol, le butane-1 ,4-diol, le pentane-1 ,5-diol, l'hexane-1 ,6-diol, le glycérol, le xylitol, le mannitol, le sorbitol, sous l'une quelconque de leurs formes isomères.

Dans un autre mode de réalisation selon l'invention, le composé organique est un composé organique aromatique comprenant au moins deux fonctions alcools. De préférence, le composé organique est sélectionné parmi le pyrocatéchol, le résorcinol, l'hydroquinol, le pyrogallol, le phloroglucinol, l'hydroxyquinol, le tétrahydroxybenzène, le benzènehexol, sous l'une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmi le pyrocatéchol, le résorcinol, l'hydroquinol.

Dans un autre mode de réalisation selon l'invention, le composé organique peut être sélectionné parmi le diéthylène glycol, le triéthylène glycol, le tétraéthylène glycol, ou plus généralement les polyéthylène glycol répondant à la formule H(OC 2 H 4 ) n OH avec n supérieur à 4 et ayant une masse molaire moyenne inférieure à 20000 g/mol. Plus préférentiellement, ledit composé organique est choisi parmi le diéthylène glycol, le triéthylène glycol, les polyéthylène glycol ayant une masse molaire moyenne inférieure à 600 g/mol.

Dans un autre mode de réalisation selon l'invention, le composé organique est un monosaccharide de formule brute C n (H 2 0) p avec n compris entre 3 et 12, de préférence entre 3 et 10. De préférence, le composé organique est sélectionné parmi le glycéraldéhyde, le dihydroxyacétone, l'érythrose, le thréose, l'érythrulose, le lyxose, l'arabinose, le xylose, le ribose, le ribulose, le xylulose, le glucose, le mannose, le sorbose, le galactose, le fructose, l'allose, l'altrose, le gulose, l'idose, le talose, le psicose, le tagatose, le sédoheptulose, le mannoheptulose, sous l'une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmi le glucose, le mannose, le fructose, sous l'une quelconque de leurs formes isomères.

Dans un autre mode de réalisation selon l'invention, le composé organique est un disaccharide ou un trisaccharide, ou un dérivé d'un monosaccharide, sélectionné parmi le sucrose, le maltose, le lactose, le cellobiose, le gentiobiose, l'inulobiose, l'isomaltose, l'isomaltulose, le kojibiose, le lactulose, le laminaribiose, le leucrose, le maltulose, le mélibiose, le nigerose, le robinose, le rutinose, le sophorose, le tréhalose, le tréhalulose, le turanose, l'érlose, le fucosyllactose, le gentianose, l'inulotriose, le kestose, le maltotriose, le mannotriose, le mélézitose, le néokestose, le panose, le raffinose, le rhamninose, le maltitol, le lactitol, l'isomaltitol, l'isomaltulose, sous l'une quelconque de leurs formes isomères. Plus préférentiellement, ledit composé organique est choisi parmi le sucrose, le maltose, le lactose, sous l'une quelconque de leurs formes isomères.

Dans un autre mode de réalisation selon l'invention, le composé organique comprend au moins une fonction alcool, au moins une fonction cétone et au moins hétérocyclique insaturé, de préférence choisi parmi l'isomaltol, le maltol, l'éthylmaltol, l'acide déhydroacétique, l'acide kojique, l'acide érythorbique, sous l'une quelconque de leurs formes isomères.

Parmi tous les modes de réalisation précédents, ledit composé organique comprenant au moins une fonction alcool est de préférence choisi parmi le méthanol, l'éthanol, le propanol, le butanol, le pentanol, l'hexanol, le 2-propyn-1 -ol, le geraniol, le menthol, le phénol, le crésol, l'éthylène glycol, le propane-1 ,3-diol, le butane-1 ,4-diol, le pentane-1 ,5-diol, l'hexane- 1 ,6-diol, l'heptane-1 ,7-diol, l'octane- 1 ,8-diol, le propane-1 ,2-diol, le butane-1 ,2-diol, le butane-2,3-diol, le butane-1 ,3-diol, le pentane-1 ,2-diol, le pentane-1 ,3-diol, le pentane-2,3- diol, le pentane-2,4-diol, le 2-éthylhexane-1 ,3-diol, le p-menthane-3,8-diol, le 2- méthylpentane-2,4-diol, le but-2-yne-1 ,4-diol, le 2,3,4-trihydroxypentane, le 2,2- dihydroxyhexane, le 2,2,4-trihydroxyhexane, le glycérol, l'érythritol, le thréitol, l'arabitol, le xylitol, le ribitol, le mannitol, le sorbitol, le dulcitol, l'allitol, le gluciotol, le tolitol, le fucitol, l'iditol, le volemitol, l'inositol, le pyrocatéchol, le résorcinol, l'hydroquinol, le pyrogallol, le phloroglucinol, l'hydroxyquinol, le tétrahydroxybenzène, le benzènehexol, le diéthylène glycol, le triéthylène glycol, le tétraéthylène glycol, les polyéthylène glycol répondant à la formule H(OC 2 H 4 ) n OH avec n supérieur à 4 et ayant une masse molaire moyenne inférieure à 20000 g/mol, le glycéraldéhyde, le dihydroxyacétone, l'érythrose, le thréose, l'érythrulose, le lyxose, l'arabinose, le xylose, le ribose, le ribulose, le xylulose, le glucose, le mannose, le sorbose, le galactose, le fructose, l'allose, l'altrose, le gulose, l'idose, le talose, le psicose, le tagatose, le sédoheptulose, le mannoheptulose, le sucrose, le maltose, le lactose, le cellobiose, le gentiobiose, l'inulobiose, l'isomaltose, l'isomaltulose, le kojibiose, le lactulose, le laminaribiose, le leucrose, le maltulose, le mélibiose, le nigerose, le robinose, le rutinose, le sophorose, le tréhalose, le tréhalulose, le turanose, l'érlose, le fucosyllactose, le gentianose, l'inulotriose, le kestose, le maltotriose, le mannotriose, le mélézitose, le néokestose, le panose, le raffinose, le rhamninose, le maltitol, le lactitol, l'isomaltitol, l'isomaltulose, l'isomaltol, le maltol, l'éthylmaltol, l'acide déhydroacétique, l'acide kojique, l'acide érythorbique, sous l'une quelconque de leurs formes isomères.

Plus préférentiellement, ledit composé organique est choisi parmi le méthanol, l'éthanol, le phénol, l'éthylène glycol, le propane-1 ,3-diol, le butane-1 ,4-diol, le pentane-1 ,5-diol, l'hexane-1 ,6-diol, le glycérol, le xylitol, le mannitol, le sorbitol, le pyrocatéchol, le résorcinol, l'hydroquinol, le diéthylène glycol, le triéthylène glycol, les polyéthylène glycol ayant une masse molaire moyenne inférieure à 600 g/mol, le glucose, le mannose, le fructose, le sucrose, le maltose, le lactose, sous l'une quelconque de leurs formes isomères.

Tous les modes de réalisation portant sur la nature dudit composé organique sont combinables entre eux si bien que l'étape ii) peut être réalisée par mise en contact dudit support avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction alcool, en particulier un composé organique comprenant au moins une fonction alcool tels que cité(s) ci-avant.

Mises en œuyre des étapes i) et ii) Le procédé de préparation du catalyseur au nickel comporte plusieurs modes de mises en œuvre. Ils se distinguent notamment par l'ordre d'introduction du composé organique et du précurseur de nickel, la mise en contact du composé organique avec le support pouvant être effectuée soit après la mise en contact du précurseur de nickel avec le support, soit avant la mise en contact du précurseur de nickel avec le support, ou soit en même temps que la mise en contact du nickel avec le support.

Un premier mode de mise en œuvre consiste à effectuer ladite étape i) préalablement à ladite étape ii).

Un deuxième mode de mise en œuvre consiste à effectuer ladite étape ii) préalablement à ladite étape i). Chaque étape i) et ii) de mise en contact du support avec le précurseur de nickel (étape i), et de mise en contact du support avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction alcool (étape ii), est réalisée au moins une fois et peut avantageusement être réalisée plusieurs fois, éventuellement en présence d'un précurseur de nickel et/ou d'un composé organique identique(s) ou différent(s) à chaque étape i) et/ou ii) respectivement, toutes les combinaisons possibles de mises en œuvre des étapes i) et ii) étant incluses dans la portée de l'invention. Un troisième mode de mise en œuvre consiste à effectuer ladite étape i) et ladite étape ii) simultanément (co-contactage). Ce mode de mise en œuvre peut comprendre avantageusement la mise en œuvre d'une ou plusieurs étapes i), éventuellement avec un précurseur de nickel identique ou différent à chaque étape i). En particulier, une ou plusieurs étapes i) précède(nt) et/ou suive(nt) avantageusement ladite étape de co-contactage. Ce mode de mise en œuvre peut également comprendre plusieurs étapes de co-contactage : les étapes i) et ii) sont effectuées de manière simultanée à plusieurs reprises, éventuellement en présence d'un précurseur de nickel et/ou d'un composé organique identique(s) ou différent(s) à chaque étape de co-contactage.

De préférence, lorsque ledit composé organique comprend au moins deux fonctions alcools (diol ou plus généralement polyol), à l'exception des composés de type diéthylène glycol, triéthylène glycol, tétraéthylène glycol, ou plus généralement polyéthylène glycol, on réalise l'étape i) avant l'étape ii) ou on réalise l'étape ii) avant l'étape i).. Plus préférentiellement, on réalise l'étape i) avant l'étape ii).

De préférence, lorsque ledit composé organique est un composé organique aromatique comprenant au moins deux fonctions alcools, on réalise l'étape i) avant l'étape ii), ou on réalise les étapes i) et ii) simultanément.

De préférence, lorsque ledit composé organique est un diéthylène glycol, un triéthylène glycol, un tétraéthylène glycol, ou plus généralement un polyéthylène glycol répondant à la formule H(OC 2 H4) n OI-l avec n supérieur à 4 et ayant une masse molaire moyenne inférieure à 20000 g/mol, on réalise l'étape i) avant l'étape ii) ou l'étape ii) avant l'étape i). Plus préférentiellement, on réalise l'étape i) avant l'étape ii).

De préférence, lorsque ledit composé organique est un monosaccharide de formule brute C n (H 2 0)p avec n compris entre 3 et 12, ou un disaccharide ou un trisaccharide, ou un dérivé d'un monosaccharide, on réalise l'étape ii) avant l'étape i) ou l'étape i) avant l'étape ii). De préférence, lorsque ledit composé organique comprend au moins une fonction alcool, au moins une fonction cétone et au moins hétérocyclique insaturé, on réalise l'étape i) avant l'étape ii) ou l'étape ii) avant l'étape i). Chaque étape de mise en contact peut être de préférence suivie d'une étape de séchage intermédiaire. L'étape de séchage intermédiaire est effectuée à une température inférieure à 250°C, de préférence comprise entre 15 et 240°C, plus préférentiellement entre 30 et 220°C, encore plus préférentiellement entre 50 et 200°C, et de manière encore plus préférentielle entre 70 et 180°C. Avantageusement, lorsqu'on réalise une étape de séchage intermédiaire, on peut réaliser une étape de calcination intermédiaire. L'étape de calcination intermédiaire est effectuée à une température comprise entre 250°C et 1000°C, de préférence entre 250 et 750°C.

Avantageusement, après chaque étape de mise en contact, que ce soit une étape de mise en contact du précurseur de nickel avec le support, une étape de mise en contact du composé organique avec le support, ou une étape de mise en contact du précurseur de nickel et du composé organique de manière simultanée avec le support, on peut laisser maturer le support imprégné, éventuellement avant une étape de séchage intermédiaire. La maturation permet à la solution de se répartir de manière homogène au sein du support. Lorsqu'une étape de maturation est réalisée, ladite étape est opérée avantageusement à pression atmosphérique ou à pression réduite, sous une atmosphère inerte ou sous une atmosphère contenant de l'oxygène ou sous une atmosphère contenant de l'eau, et à une température comprise entre 10°C et 50°C, et de préférence à température ambiante. Généralement une durée de maturation inférieure à quarante-huit heures et de préférence comprise entre cinq minutes et cinq heures, est suffisante. Des durées plus longues ne sont pas exclues, mais n'apportent pas nécessairement d'amélioration.

Etape iii) - séchage

Conformément à l'étape de séchage iii) de la mise en œuvre de la préparation du catalyseur, préparé selon au moins un mode de mise en œuvre décrit ci-dessus, l'étape de séchage est effectuée à une température inférieure à 250°C, de préférence comprise entre 15 et 240°C, plus préférentiellement entre 30 et 220°C, encore plus préférentiellement entre 50 et 200°C, et de manière encore plus préférentielle entre 70 et 180°C, pendant une durée typiquement comprise entre 10 minutes et 24 heures. Des durées plus longues ne sont pas exclues, mais n'apportent pas nécessairement d'amélioration. L'étape de séchage peut être effectuée par toute technique connue de l'Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l'oxygène ou sous un mélange de gaz inerte et d'oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d'air ou d'azote. Etape iv) - calcination (optionnelle)

Optionnellement, à l'issue de l'étape iii) de séchage, on effectue une étape iv) de calcination à une température comprise entre 250°C et 1000°C, de préférence comprise entre 250°C et 750°C, sous une atmosphère inerte ou sous une atmosphère contenant de l'oxygène. La durée de ce traitement thermique est généralement comprise entre 15 minutes et 10 heures. Des durées plus longues ne sont pas exclues, mais n'apportent pas nécessairement d'amélioration. Après ce traitement, le nickel de la phase active se trouve ainsi sous forme oxyde et le catalyseur ne contient plus ou très peu de composé organique introduit lors de sa synthèse. Etape v) - traitement réducteur (optionnelle)

Préalablement à l'utilisation du catalyseur dans le réacteur catalytique et la mise en œuvre d'un procédé d'hydrogénation, on effectue avantageusement au moins une étape de traitement réducteur v) en présence d'un gaz réducteur après les étapes iii) ou iv) de manière à obtenir un catalyseur comprenant du nickel au moins partiellement sous forme métallique.

Ce traitement permet d'activer ledit catalyseur et de former des particules métalliques, en particulier du nickel à l'état zéro valent. Ledit traitement réducteur peut être réalisé in-situ ou ex-situ c'est-à-dire après ou avant le chargement du catalyseur dans le réacteur d'hydrogénation. Ladite étape v) de traitement réducteur peut être mise en œuvre sur le catalyseur ayant été soumis ou non à l'étape vi) de passivation, décrite par la suite.

Le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène / azote, ou hydrogène / argon, ou hydrogène / méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables. Ledit traitement réducteur est réalisé à une température comprise entre 120 et 500°C, de préférence entre 150 et 450°C. Lorsque le catalyseur ne subit pas de passivation, ou subit un traitement réducteur avant passivation, le traitement réducteur est effectué à une température comprise entre 180 et 500°C, de préférence entre 200 et 450°C, et encore plus préférentiellement entre 350 et 450°C. Lorsque le catalyseur a subi au préalable une passivation, le traitement réducteur est généralement effectué à une température comprise entre 120 et 350°C, de préférence entre 150 et 350°C. La durée du traitement réducteur est généralement comprise entre 2 et 40 heures, de préférence entre 3 et 30 heures. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1 et 10°C/min, de préférence entre 0,3 et 7°C/min. Le débit d'hydrogène, exprimé en L/heure/gramme de catalyseur est compris entre 0,01 et 100 L/heure/gramme de catalyseur, de préférence entre 0,05 et 10 L/heure/gramme de catalyseur, de façon encore plus préférée entre 0,1 et 5 L/heure/gramme de catalyseur.

Etape vi) - passivation (optionnelle)

Préalablement à sa mise en œuvre dans le réacteur catalytique, le catalyseur selon l'invention peut éventuellement subir une étape de passivation (étape vi) par un composé soufré ou oxygéné ou par le C0 2 avant ou après l'étape de traitement réducteur v). Cette étape de passivation peut être effectuée ex-situ ou in-situ. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier.

L'étape de passivation par le soufre permet d'améliorer la sélectivité des catalyseurs et d'éviter les emballements thermiques lors des démarrages de catalyseurs neufs (« run away » selon la terminologie anglo-saxonne). La passivation consiste généralement à empoisonner irréversiblement par le composé soufré les sites actifs les plus virulents du nickel qui existent sur le catalyseur neuf et donc à atténuer l'activité du catalyseur en faveur de sa sélectivité. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier et notamment, à titre d'exemple par la mise en œuvre de l'une des méthodes décrites dans les documents de brevets EP0466567, US5153163, FR2676184, WO2004/098774, EP0707890. Le composé soufré est par exemple choisi parmi les composés suivants: thiophène, thiophane, alkylmonosulfures tels que diméthylsulfure, diéthylsulfure, dipropylsulfure et propylméthylsulfure ou encore un disulfure organique de formule HO-R S-S-R 2 -OH tel que le di-thio-di-éthanol de formule HO-C 2 H4-S-S-C 2 H4-OH (appelé souvent DEODS). La teneur en soufre est généralement comprise entre 0,1 et 2 % poids dudit élément par rapport à la masse du catalyseur.

L'étape de passivation par un composé oxygéné ou par le C0 2 est généralement effectuée après un traitement réducteur au préalable à température élevée, généralement comprise entre 350 et 500°C, et permet de préserver la phase métallique du catalyseur en présence d'air. Un deuxième traitement réducteur à température plus basse généralement entre 120 et 350°C, est ensuite généralement effectué. Le composé oxygéné est généralement l'air ou tout autre flux contenant de l'oxygène. Le catalyseur préparé selon au moins l'un quelconque des modes de réalisation décrits ci- dessus, en association ou non avec ladite étape iv) et/ou ladite étape v) et/ou ladite étape vi), se trouve, avant la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, soit entièrement soit au moins partiellement débarrassé dudit composé organique comprenant au moins une fonction alcool. L'introduction du composé organique lors de sa préparation a permis d'augmenter la dispersion de la phase active menant ainsi à un catalyseur plus actif et/ou plus sélectif.

L'invention est illustrée par les exemples qui suivent.

L'ensemble des catalyseurs préparés dans les exemples 2 à 9 sont préparés à isoteneur en élément nickel. Le support utilisé pour la préparation de chacun de ces catalyseurs est une alumine delta ayant un volume poreux de 0,67 mL/g et une surface BET égale à 140 m 2 /g.

Exemple 1 : Préparation des solutions aqueuses de précurseurs de Ni

Une première solution aqueuse de précurseurs de Ni (solution S1 ) utilisée pour la préparation des catalyseurs A, B et C est préparée à 25°C en dissolvant 276 g de nitrate de nickel Ni(N0 3 )2.6H 2 0 (fournisseur Strem Chemicals®) dans un volume de 100 mL d'eau déminéralisée. On obtient la solution S1 dont la concentration en NiO est de 19,0 %poids (par rapport à la masse de la solution).

Une deuxième solution aqueuse de précurseurs de Ni (solution S2) utilisée pour la préparation des catalyseurs D, E, F et G est préparée à 25°C en dissolvant 151 g de nitrate de nickel Ni(N0 3 )2.6H 2 0 (fournisseur Strem Chemicals®) dans un volume de 50 mL d'eau déminéralisée. On obtient la solution S2 dont la concentration en NiO est de 19,3 %poids (par rapport à la masse de la solution).

Exemple 2 (comparatif) : Préparation d'un catalyseur A par imprégnation de nitrate de nickel sans additif

La solution S1 préparée à l'exemple 1 est imprégnée à sec sur 10 g dudit support d'alumine. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d'air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.

Le catalyseur calciné A ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d'oxyde de nickel dont le diamètre moyen (déterminé par diffraction des rayons X à partir de la largeur de la raie de diffraction située à l'angle 2thêta=43°) est de 15,2 nm. Exemple 3 (invention) : Préparation d'un catalyseur B par imprégnation successive de nitrate de nickel puis de pentane-1 ,5-diol

Le catalyseur B est préparé par imprégnation de nitrate de Ni sur ledit support d'alumine puis par imprégnation de pentane-1 ,5-diol en utilisant un ratio molaire {pentane-1 ,5-diol / nickel} égal à 0,6.

Pour ce faire, la solution S1 préparée à l'exemple 1 est imprégnée à sec sur ledit support d'alumine. Le solide B1 ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C. Puis, une solution aqueuse B' est préparée par dissolution de 4,81 g de pentane-1 ,5-diol (CAS 1 1 1 -29-5, fournisseur Sigma-AIdrich®, pureté 97%) dans 20 mL d'eau déminéralisée. Cette solution B' est ensuite imprégnée à sec sur 10 g du solide B1 préalablement préparé. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d'air de 1 L h/g de catalyseur à 450°C pendant 2 heures.

Le catalyseur calciné B ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d'oxyde de nickel dont le diamètre moyen est de 5,1 nm.

Exemple 4 (invention) : Préparation d'un catalyseur C par imprégnation successive de nitrate de nickel puis de pentane-1 ,5-diol, sans calcination finale

Le catalyseur C est préparé par imprégnation de nitrate de Ni sur ledit support d'alumine puis par imprégnation de pentane-1 ,5-diol en utilisant un ratio molaire {pentane-1 ,5-diol / nickel} égal à 0,6.

Pour ce faire, la solution S1 préparée à l'exemple 1 est imprégnée à sec sur ledit support d'alumine. Le solide B1 ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C. Puis, une solution aqueuse B' est préparée par dissolution de 4,81 g de pentane-1 ,5-diol (CAS 1 1 1 -29-5, fournisseur Sigma-AIdrich®, pureté 97%) dans 20 mL d'eau déminéralisée. Cette solution B' est ensuite imprégnée à sec sur 10 g du solide B1 préalablement préparé. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, sans autre traitement thermique. On obtient le catalyseur C.

Pour réaliser les caractérisations, une partie de ce catalyseur C est calciné sous un flux d'air de 1 L/h/g de catalyseur à 450°C pendant 2 heures, pour obtenir le catalyseur calciné C_calci. Le catalyseur calciné C_calci contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d'oxyde de nickel dont le diamètre moyen est de 5,9 nm. Exemple 5 (invention) : Préparation d'un catalyseur D par imprégnation successive de (D)- mannitol puis de nitrate de nickel

Le catalyseur D est préparé par imprégnation de (D)-mannitol sur ledit support d'alumine puis par imprégnation de nitrate de Ni en utilisant un ratio molaire {(D)-mannitol / nickel} égal à 0,6.

Pour ce faire, une solution aqueuse D' est préparée par dissolution de 8,42 g de (D)-mannitol (CAS 69-65-8, fournisseur Sigma-AIdrich®, pureté 98%) dans 20 ml_ d'eau déminéralisée. Cette solution D' est ensuite imprégnée à sec sur ledit support alumine. Le solide D1 ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C. Puis, la solution S2 préparée à l'exemple 1 est imprégnée à sec sur 10 g du solide D1 préalablement préparé. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d'air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.

Le catalyseur calciné D ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d'oxyde de nickel dont le diamètre moyen est de 6,2 nm.

Exemple 6 (invention) : Préparation d'un catalyseur E par imprégnation successive de (D)- mannitol puis de nitrate de nickel, avec un ratio molaire additif sur nickel de 0,08

Le catalyseur E est préparé par imprégnation de (D)-mannitol sur ledit support d'alumine puis par imprégnation de nitrate de Ni en utilisant un ratio molaire {(D)-mannitol / nickel} égal à 0,08.

Pour ce faire, une solution aqueuse E' est préparée par dissolution de 1 ,12 g de (D)-mannitol (CAS 69-65-8, fournisseur Sigma-AIdrich®, pureté 98%) dans 20 mL d'eau déminéralisée. Cette solution E' est ensuite imprégnée à sec sur ledit support alumine. Le solide E1 ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C. Puis, la solution S2 préparée à l'exemple 1 est imprégnée à sec sur 10 g du solide E1 préalablement préparé. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d'air de 1 L h/g de catalyseur à 450°C pendant 2 heures.

Le catalyseur calciné E ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d'oxyde de nickel dont le diamètre moyen est de 7,4 nm. Exemple 7 (invention) : Préparation d'un catalyseur F par imprégnation successive de (D)- mannitol puis de nitrate de nickel, avec un ratio molaire additif sur nickel de 0,9

Le catalyseur F est préparé par imprégnation de (D)-mannitol sur ledit support d'alumine puis par imprégnation de nitrate de Ni en utilisant un ratio molaire {(D)-mannitol / nickel} égal à 0,08.

Pour ce faire, une solution aqueuse F' est préparée par dissolution de 12,6 g de (D)-mannitol (CAS 69-65-8, fournisseur Sigma-AIdrich®, pureté 98%) dans 20 mL d'eau déminéralisée. Cette solution F' est ensuite imprégnée à sec sur ledit support alumine. Le solide F1 ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C. Puis, la solution S2 préparée à l'exemple 1 est imprégnée à sec sur 10 g du solide F1 préalablement préparé. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d'air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.

Le catalyseur calciné F ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d'oxyde de nickel dont le diamètre moyen est de 5,9 nm.

Exemple 8 (invention) : Préparation d'un catalyseur G par imprégnation successive de (D)- (+)-mannose puis de nitrate de nickel

Le catalyseur G est préparé par imprégnation de (D)-(+)-mannose sur ledit support d'alumine puis par imprégnation de nitrate de Ni en utilisant un ratio molaire {(D)-(+)-mannose / nickel} égal à 0,6.

Pour ce faire, une solution aqueuse G' est préparée par dissolution de 6,20 g de (D)-(+)- mannose (CAS 3458-28-4, fournisseur Sigma-AIdrich®, pureté 99%) dans 20 mL d'eau déminéralisée. Cette solution G' est ensuite imprégnée à sec sur ledit support alumine. Le solide G1 ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C. Puis, la solution S2 préparée à l'exemple 1 est imprégnée à sec sur 10 g du solide G1 préalablement préparé. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d'air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.

Le catalyseur calciné G ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d'oxyde de nickel dont le diamètre moyen est de 4,8 nm.

Exemple 9 (invention) : Préparation d'un catalyseur H par co-imprégnation de nitrate de nickel et de (D)-(+)-mannose

Le catalyseur H est préparé par co-imprégnation de nitrate de nickel et de (D)-(+)-mannose sur ledit support d'alumine en utilisant un ratio molaire {(D)-(+)-mannose / nickel} égal à 0,6. Pour ce faire, une solution aqueuse H' est préparée en dissolvant 62,0 g de nitrate de nickel Ni(N0 3 ) 2 -6H 2 0 (fournisseur Strem Chemicals®) et 23,0 g de (D)-(+)-mannose (CAS 3458-28- 4, fournisseur Sigma-AIdrich®, pureté 99%) dans 20 ml_ d'eau déminéralisée. Cette solution H' est ensuite imprégnée à sec sur 10 g dudit support alumine. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d'air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.

Le catalyseur calciné H ainsi préparé contient 13,8 %poids de l'élément nickel supporté sur alumine et il présente des cristallites d'oxyde de nickel dont le diamètre moyen est de 6,3 nm.

Exemple 10 : Évaluation des propriétés catalvtiques des catalyseurs A à H en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène

Les catalyseurs A à H décrits dans les exemples ci-dessus sont testés vis-à-vis de la réaction d'hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène.

La composition de la charge à hydrogéner sélectivement est la suivante : 8 %pds styrène (fournisseur Sigma Aldrich®, pureté 99%), 8 %pds isoprène (fournisseur Sigma Aldrich®, pureté 99%), 84 %pds n-heptane (solvant) (fournisseur VWR®, pureté > 99% chromanorm HPLC). Cette charge contient également des composés soufrés en très faible teneur : 10 ppm pds de soufre introduits sous forme de pentanethiol (fournisseur Fluka®, pureté > 97%) et 100 ppm pds de soufre introduits sous forme de thiophène (fournisseur Merck®, pureté 99%). Cette composition correspond à la composition initiale du mélange réactionnel. Ce mélange de molécules modèles est représentatif d'une essence de pyrolyse.

La réaction d'hydrogénation sélective est opérée dans un autoclave de 500 mL en acier inoxydable, muni d'une agitation mécanique à entraînement magnétique et pouvant fonctionner sous une pression maximale de 100 bar (10 MPa) et des températures comprises entre 5°C et 200°C.

Préalablement à son introduction dans l'autoclave, une quantité de 3 mL de catalyseur est réduite ex situ sous un flux d'hydrogène de 1 L h/g de catalyseur, à 400 °C pendant 16 heures (rampe de montée en température de 1 °C/min), puis elle est transvasée dans l'autoclave, à l'abri de l'air. Après ajout de 214 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l'autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d'hydrogène, et porté à la température du test égale à 30°C. Au temps t=0, environ 30 g d'un mélange contenant du styrène, de l'isoprène, du n-heptane, du pentanethiol et du thiophène sont introduits dans l'autoclave. Le mélange réactionnel a alors la composition décrite ci-dessus et l'agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l'autoclave à l'aide d'une bouteille réservoir située en amont du réacteur.

L'avancement de la réaction est suivi par prélèvement d'échantillons du milieu réactionnel à intervalles de temps réguliers : le styrène est hydrogéné en éthylbenzène, sans hydrogénation du cycle aromatique, et l'isoprène est hydrogéné en méthyl-butènes. Si la réaction est prolongée plus longtemps que nécessaire, les méthyl-butènes sont à leur tour hydrogénés en isopentane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L'activité catalytique est exprimée en moles de H 2 consommées par minute et par gramme de Ni.

Les activités catalytiques mesurées pour les catalyseurs A à H sont reportées dans le Tableau 1 ci-dessous. Elles sont rapportées à l'activité catalytique mesurée pour le catalyseur A (A HYD i)-

Tableau 1 : Comparaison des performances en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène.

Les résultats figurant dans le tableau 1 démontrent que les catalyseurs B à H, préparés en présence d'un composé organique (ayant au moins une fonction de type alcool et comprenant entre 1 et 20 atomes de carbone), sont plus actifs que le catalyseur A préparé en l'absence de ce type de composé organique. Cet effet est lié à la diminution de la taille des particules de Ni.