Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SELECTIVE MODIFICATION OF PENDENT FUNCTIONALITIES OF POLYMERS
Document Type and Number:
WIPO Patent Application WO/2004/065453
Kind Code:
A2
Abstract:
A process for selectively modifying pendent functionalities of a polymer containing the pendent functionalities and hydrolytically unstable backbone functionalities is provided. The process includes: (a) providing the polymer in a solvent system (preferably an ether-containing solvent system) adapted to maintain the polymer in a dissolved or partially dissolved state, wherein the pendent functionalities of the polymer are more accessible than the hydrolytically unstable backbone functionalities; and (b) adding at least one additive to the solvent system to selectively modify at least one of the pendent functionalities. The process is especially well suited for specifically acid hydrolyzing pendent esters of PDTE.

Inventors:
KEMNITZER JOHN (US)
BRODE GEORGE (US)
MINASYAN ROBERT (US)
MALANEY TIMOTHY (US)
Application Number:
PCT/US2004/001765
Publication Date:
August 05, 2004
Filing Date:
January 23, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INTEGRA LIFESCIENCES CORP (US)
KEMNITZER JOHN (US)
BRODE GEORGE (US)
MINASYAN ROBERT (US)
MALANEY TIMOTHY (US)
International Classes:
C08G63/91; C08G64/42; C08G85/00; (IPC1-7): C08G63/91; C08G64/42; C08G69/48
Foreign References:
US6120491A2000-09-19
Attorney, Agent or Firm:
Tener, David M. (Rivise Bernstein, Cohen & Pokotilow, Ltd., Seven Penn Center, 1635 Market Street, 12th Floo, Philadelphia PA, US)
Download PDF:
Claims:
CLAIMS
1. A process for selectively modifying pendent functionalities of a polymer containing the pendent functionalities and hydrolytically unstable backbone functionalities, said process comprising: providing the polymer in a solvent system adapted to maintain the polymer in a dissolved or partially dissolved state, wherein the pendent functionalities of the polymer are more accessible than the hydrolytically unstable backbone functionalities. of the polymer ; and adding at least one additive to the solvent system to selectively modify at least one of the pendent functionalities.
2. The process of claim 1, wherein the solvent system is an ether containing solvent system for the polymer.
3. The process of claim 1, wherein the additive to the solvent system is an acid.
4. The process of claim 3, wherein the acid is hydrochloric acid.
5. The process of claim 3, wherein the acid is ptoluenesulfonic acid.
6. The process of claim 1, wherein the solvent system comprises at least one solvent selected from the group consisting of 1,4dioxane, tetrahydrofuran, dichloromethane, tertbutyl methyl ether and poly (ethylene glycol) dimethyl ether.
7. The process of claim 1, wherein the solvent system consists essentially of water and a watermiscible ether.
8. The process of claim 7, wherein the watermiscible ether is cyclic.
9. The process of claim 8, wherein the watermiscible ether is 1, 4dioxane.
10. The process of claim 8, wherein the watermiscible ether is tetrahydrofuran.
11. The process of claim 7, wherein the watermiscible ether is noncyclic.
12. The process of claim 11, wherein the watermiscible ether is poly (ethylene glycol).
13. The process of claim 1, wherein the polymer is a polycarbonate, a polyester, a polyarylate, a polyamide or a copolymer mixture thereof.
14. The process of claim 13, wherein the polymer is amino acid derived.
15. The process of claim 14, wherein the solvent system is an ethercontaining solvent system for the polymer.
16. The process of claim 14, wherein the polymer is poly (desaminotyrosyltyrosine (ethyl ester) carbonate) (PDTE).
17. The process of claim 16, wherein the solvent system is an ethercontaining solvent system for PDTE.
18. The process of claim 16, wherein the pendent functionalities comprise pendent esters and the at least one additive is an acid catalyst adequate to acid hydrolyze at least one of the pendent esters to form at least one pendent carboxylic acid functionality.
19. The process of claim 18, wherein, a number of the pendent esters acid hydrolyzed to form at least one pendent carboxylic acid functionality increases as a first function of a reaction time of the acid hydrolysis, and a molecular weight of the polymer decreases as a second function of the reaction time.
20. The process of claim 18, wherein a sufficient number of the pendent esters are converted to pendent carboxylic acids, such that a % DT of the polymer is increased from an original % DT of about 0% to a final % DT of at least 1%.
21. The process of claim 20, wherein the final % DT is about 5% to about 40%.
22. The process of claim 18, further comprising: obtaining a product mixture resulting from biphasic synthesis of the polymer ; isolating an organic pnase from the product mixture; and adding at least one solvent to the isolated organic phase to provide the solvent system; and adding at least one additive to the solvent system to selectively modify at least one of the pendent functionalities.
23. A process for selectively modifying pendent functionalities of a polymer containing the pendent functionalities and hydrolytically unstable backbone functionalities, said process comprising: providing the polymer in a solvent system adapted to maintain the polymer in a dissolved or partially dissolved state, wherein the pendent functionalities of the polymer are more accessible than the hydrolytically unstable backbone functionalities of the polymer; and adding at least one additive to the solvent system to selectively modify at least one of the pendent functionalities, wherein the polymer is a polycarbonate, a polyester, a polyarylate, a polyamide or a copolymer mixture thereof, the solvent system comprises at least one ether, and the additive is an acid.
24. A process for selectively modifying pendent functionalities of a polymer containing the pendent functionalities and hydrolytically unstable backbone functionalities, said process comprising: providing the polymer in a solvent system adapted to maintain the polymer in a dissolved or partially dissolved state, wherein the pendent functionalities of the polymer are more accessible than the hydrolytically unstable backbone functionalities of the polymer; and adding at least one additive to the solvent system to selectively modify at least one of the pendent functionalities, wherein the polymer is a polycarbonate, a polyester, a polyarylate, a polyamide. or a copolymer mixture thereof, the solvent system comprises at least one ether, the pendent functionalities comprise ester groups, and the additive is an acid adequate to acid hydrolyze at least one of the ester groups.
25. A polymer produced by the process of claim 1.
Description:
TITLE OF THE INVENTION SELECTIVE MODIFICATION OF PENDENT FUNCTIONALITIES OF POLYMERS SPECIFICATION BACKGROUND OF THE INVENTION 1. FIELD OF INVENTION The invention relates to a process for selectively modifying pendent functionalities of polymers having hydrolytically unstable backbone functionalities and to products produced thereby.

2. DESCRIPTION OF RELATED ART It is frequently desirable to modify the properties of a polymer by modifying the pendent functionalities of the polymer. Such is the case for polymers having pendent protective groups remaining from polymerization. These relatively inert pendent groups can be necessary for polymerization, but undesirable in the product polymer itself.

For example, U. S. Patent No. 6,120, 491 reports that certain polycarbonates, polyarylates and poly (alkylene oxide) polymers based on amino acids, such as those disclosed in U. S.

Patents Nos. 5,099, 060,5, 198,507, 5,216, 115 and. 5, 658, 995, cannot be prepared by conventional solution processes from monomers having free carboxylic acid groups. Removable protecting groups must be incorporated into the polymer that can be cleaved after the polymer is formed, without significant degradation of the polymer backbone. The protecting groups are needed to prevent cross-reaction of these otherwise free carboxylic acid groups with (i) phosgene, phosgene equivalents or diacid chlorides used in the preparation of polycarbonates and ester carbonate copolymers, and (ii) carbodiimide reagents used in the preparation of polyarylates.

The polymers with protected carboxylic acid groups are limited in specific bioresorption applications because of their slow rate of degradation and significant hydrophobicity.

The free acid form of the polymers, in which the ester

'protecting groups have been removed from the pendent carboxylic acid chains of the diphenol based component, would be less hydrophobic and thus would be expected to exhibit somewhat. increased degradation rates. desirable in bioresorbable polymers.

In polycarbonates, polyarylates and poly (alkylene oxide) block copolymers thereof prepared from tyrosine-derived diphenol monomers, the backbone contains bonds that are designed to degrade in aqueous media (acidic, neutral, or basic). Thus, the selective removal of any carboxylic acid protecting groups is a challenge. According to the 491 patent, the ester protecting groups of such polymers cannot be removed by conventional hydrolysis techniques without unacceptable degradation of the polymer backbone.

The 491 patent purports to solve this problem in providing a process comprising controlling monomer feed ratios of desaminotyrosyl tyrosine ethyl ester (DTE) and desaminotyrosyl tyrosine benzyl ester (DTBn) monomers, followed by polymerization using phosgene or a phosgene equivalent. The desired copolymer is isolated, and subsequently subjected to hydrogenolysis to effect benzyl ester removal, yielding the free carboxylic acid copolymer for all compositions (e. g. , the entire copolymer compositional range of the poly (DTE-co-X% DT) carbonates) (where DT is desaminotyrosyl tyrosine free acid) with controlled molecular weights. Although this synthetic strategy enables the preparation of the desired composition of matter, the economics of the process (viz. , support of additional monomer manufacture, additional isolation/handling protocols, removal of catalyst residues, capital expenditure on pressure hydrogenation equipment, and increased waste streams) would jeopardize wide-use commercial acceptance.

Accordingly, it is desired to provide an alternative solution to the problem of selective modification of pendent groups in polymers with an acceptable low level of

hydrolytically unstable backbone cleavage.

All references cited herein are incorporated herein by reference in their entireties.

BRIEF SUMMARY OF THE INVENTION Accordingly, the invention provides a process for selectively modifying pendent functionalities of a polymer containing the pendent functionalities and hydrolytically unstable backbone functionalities, said process comprising : (a) providing the polymer in a solvent system adapted to maintain the polymer in a dissolved or partially dissolved state wherein the pendent functionalities of the polymer are more accessible than the hydrolytically unstable backbone functionalities of the polymer ; and (b) adding at least one additive to the solvent system to selectively modify at least one of the pendent functionalities.

Also provided are polymers produced by the process.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and wherein: Fig. 1 is a plot of Mw vs. % DT for a 1, 4-dioxane (1, 4-DO)/HCl/H2O system in accordance with the invention; Fig. 2 is a plot of time vs. % DT for mixed solvent systems, as per Examples 46-49; Fig. 3 is a plot of time vs. % DT for mixed solvent systems, as per Examples 54-57; Fig. 4 is a plot showing the effect of increasing HC1 and H2O concentrations for PDTE in 1,4-DO on Mw vs. % DT, in accordance with the invention; and Fig. 5 is a plot showing the effect of increasing HC1 and H20 concentrations for PDTE in 1,4-DO on the rate of conversion to DT, in accordance with the invention.

DETAILED DESCRIPTION OF THE INVENTION The invention provides an alternative means for selective modification of pendent groups on polymers having

hydrolytically unstable backbones. Contrary to the teachings of the 491 patent, the invention provides for acid hydrolysis of such polymers without unacceptable amounts of backbone degradation. Base hydrolysis will also effect pendent ester removal, but is most typically accompanied with severe backbone hydrolysis. Consequently, acid hydrolysis is preferred. In preferred embodiments, the invention surprisingly mitigates the expected shortcomings of acid hydrolysis through the use of an ether containing solvent system. Moreover, the invention is simpler and more economical than the benzyl ester hydrogenolysis method of the '491 patent.

The solvent systems of the invention can include one or more solvents. Each solvent in the system need not constitute an ether-type solvent only. Other types of solvent, such as those discussed below, are also suitable for use in the invention.

Although the invention is preferably applied to polymers intended for use in bioresorbable materials, and particularly to polycarbonate, polyester or polyamide polymers produced by the biphasic polymerization process disclosed in our U. S.

Patent No. 6,359, 102, the invention is also suitable for modifying other types of polymers having hydrolytically unstable backbones and pendent groups. Thus, while the following examples focus on PDTE as the polymer, the invention is not limited thereto.

PDTE is the most preferred polymer to modify by the process of the invention because of its superior. properties as a bioresorbable material. Other types of bioresorbable materials, such as other polymers based on lactic acid, glycolic acid, orthoester, etc. , are inherently hydrophobic (water insoluble), have marginal mechanical properties, and on bioresorption (through enzymatic and/or chemical hydrolysis) release the starting acid (i. e., acid dumping), which frequently leads to inflammation and swelling (e. g. , in

orthopedic applications). In addition, there is the complete absence of functional groups for derivatization in many bioresorbable materials. Table 1 shows the acid equivalent ratio available upon complete hydrolysis from a few of the most commonly utilized degradables, including PDTE.

Table 1. Acid byproduct released from commonly used degradable polymers.

m. eq. of Inflammatory Polymer Type Formulation Acid effective Response Ho in lOg Device Device ic-CH2CO2+ HOCH2CO2H Acid 58 76 172 High Polylactic @CH(CH3)CO2@ HOCH(CH3)CO2H Acid 72 90 139 High Tyrosine PDTE HOC6H9CH2CH2CO2H Polycarbonate 383 166 26* Low + HOC6HQCH2CH (NH2) CO2H 181 * 26 m. eq. He in 10g Device effective since the carboxylic acid in tyrosine is buffered by the free amine.

The copolymer is composed of DTE and DT monomeric repeat units, as shown in the following structure: HO0 1 0 o o _ x y o v i o Jo v i x Y L L J DTE monomeric repeat unit DT monomeric repeat unit

Controlling the ratio and/or placement of DTE and DT throughout the copolymer allows an altering of the final properties, such as hydrophilic character, degradation. rates, mechanical strength retention and ability to derivatize through the pendent free carboxylic acid.

Accordingly, a particularly preferred embodiment of the invention provides a process for synthesizing the entire copolymer compositional range of the poly (DTE-co-X% DT

carbonates) through preferential and controlled hydrolysis of the pendent ester group to form pendent carboxylic acid groups, without undue cleavage of the amide or carbonate functions in the parent PDTE by selection of appropriate parameters as given by the invention.

A preferred solvent system can also be provided in the form of a mixture of water and a polymer-dissolving water-miscible ether (typically a cyclic ether), wherein the water-miscible ethers are preferably 1, 4-dioxane and tetrahydrofuran.

Additionally, use of an additional polymer solvent, such as methylene chloride, chloroform, and the like, can be provided in conjunction with the ether-containing solvent.

The solvent system can then be provided in a composition containing the polymer to be modified as a solution in an organic solvent and secondarily providing the ether-containing solvent or the polymer to be modified can be added to the solvent system in conjunction with the ether-containing solvent. An advantage of the. former alternative is that the pendent group modification process can be appended to a polymerization process without the need for complete isolation of the polymer from the product mixture yielded by polymerization. It is possible to simply adjust the solvent properties of the product mixture (or a fraction therefrom) to achieve the desired solvent system and then acidify the product mixture/fraction to hydrolyze the pendent functionalities. Thus, in a particularly preferred embodiment of the invention, the product mixture from the biphasic polymerization, described in above-identified U. S. Patent No. 6,359, 102, is phased to obtain the organic phase, which will contain PDTE or some other polymer, at least one solvent is added to the organic phase to provide the desired solvent system, and the system is then acidified to acid hydrolyze pendent ester groups from the polymer. There is no need to isolate the polymer twice, thereby cutting precipitation

'solvent and handling time by over 50%, while at the same time being able to access the desired copolymer compositional range.

Table 2. Time course of Example 49: DT Copolymer via. acid hydrolysis route using polymer dissolved in MeCl2, followed by addition of THF and aqueous HC1 (Fig. 2).

Time (hrs) % DT Mw (x 103) 0 0 192.5 14 11. 7 148.0 20 14. 5 141.5 90 27.6 120.4 110 29.3 124. 8 Table 3. Poly (DTE-co-X% DT carbonate) via the. acid hydrolysis route, using a 1,4-dioxane/water system.

% DT Target Actual % DT Predicted Mw Actual Mw Yield 5%a 4.9 174K 172K 83% 5% a 5. 6 77K 89K 65% 25% b 24.0 130K 131K 88% 25% a 23. 6 106K 118K 94% a : PDTE : H2O : HCI/1. 00: 1. 05 : 0.31 b: PDTE: H2O : HCI/1. 00: 2.23 : 0.65 Higher % DT compositions may be obtained by control of appropriate solvent parameters (Fig. 1).

Acidification of this solvent system can be achieved by the addition of an acid in an amount and concentration sufficient to achieve a pH of less than 7, preferably less than 5, more preferably less than 3, most preferably about 2.

Suitable acids for use in the invention include, but are not limited to, inorganic acids such as hydrochloric acid, and organic acids such as p-toluenesulfonic acid. Fig. 4 graphically demonstrates the effect of varying the acid hydrolysis conditions on the relationship between % DT and Mw.

Since the number of pendent esters acid hydrolyzed to form pendent carboxylic acids increases as a function of the reaction time of the acid hydrolysis, and the molecular weight of the polymer decreases as a different function of-the reaction time, the characteristics of the resulting polymer can be adjusted by adjusting the reaction time. A calibration curve, such as shown in Fig. 5 can be plotted for a given system to assist in such adjustments.

Polymers produced by the process of the invention can be distinguished from polymers produced by other processes. For example, polymers produced by a hydrogenolysis process contain undesirable contaminants from the hydrogenolysis process, such as unremoved benzyl esters and residual metal catalyst. The present process is much cleaner, and yields an extremely high purity polymer product substantially free (containing less than 10 wt. %, more preferably less than 1 wt. %, even more preferably less than 0.1 wt. %) of such contaminants.

The invention will be illustrated in more detail with reference to the following Examples, but it should be understood that the present invention is not deemed to be limited thereto.

EXAMPLES Example 1 A 100 mL flask was charged with 0.75 g of PDTE having a starting weight average molecular weight of 107, 000 g/mol.

The PDTE was dissolved in 7.5 mL of methylene chloride and cooled to 0°C. 2 mL of 1. 0 N sodium hydroxide were then added. The reaction mixture was stirred vigorously for 3.5 hours, after which time it was acidified to pH 2 and diluted with an additional 10 mL of methylene chloride. The system was then extracted with 10 mL of saturated sodium chloride.

The resulting polymer was isolated by precipitation into 150 mL of diethyl ether, followed by drying under vacuum. The resulting isolated powder had a Mw of 91,000 g/mol and a DT% (DT/ (DTE + DT) ) of 4%.

The % DT was cteterminea sy d copolymer assay method specifically developed for the analysis of DT and DTE content for any given member of the poly (DTE-co-X% DT carbonate) family. The developed HPLC method allows determination of the monomeric composition (i. e. , DT and DTE) of the copolymers.

Additionally, the operational mode of the assay can be expanded to allow determination of various other byproducts that may be potentially formed by thermolysis. This enables quickly, reproducibly, and economically assaying copolymer composition across the complete compositional range (Fig. 5).

The assay method involves the following : a) Mild digestion of Poly (DTE-co-X% DT carbonate), resulting in carbonate backbone cleavage only; b) 3mg sample, lmL 100mmol NHgOH (80: 20/1,4-DO : H20), 2-4hr @ 60°C ; c) HPLC analysis utilizing a reverse phase column (C18) ; d) Linear gradient of CH3CN/H20 95/5 to 50/50 (45 min) @ ImL/min ; and e) k280 detection.

Example 2 A 100 mL flask was charged with 0.75 g of PDTE having a starting weight average molecular weight of 107,000 g/mol.

The PDTE was dissolved in 7.5 mL of methylene chloride and cooled to 0°C. 2 mL of 1.0 N sodium hydroxide were then added. The reaction mixture was stirred vigorously for 13 hours, after which time it was acidified to pH 2 and diluted with an additional 10 mL of methylene chloride. The system was then extracted with 10 mL of saturated sodium chloride, followed by two washings with 10 mL of water. The organic solution was dried using anhydrous sodium sulfate, filtered, and the polymer isolated by solvent removal under reduced pressure, followed by further drying under vacuum. The resulting isolated powder had a Mw of 114, 000. g/mol and % DT of 1%.

Example 3 A 100 mL flask was charged with 0.50 g of PDTE having a starting weight average molecular weight of 107,000 g/mol.

The PDTE was dissolved in 7. 5 mL of methylene chloride. 15 mg of benzyltriethylammonium chloride were added to the flask, followed by 1. 25 mL of 1.0 N sodium hydroxide. The reaction mixture was stirred vigorously for 118 hours at ambient temperature, after which time an additional 10 mL of methylene chloride were added to it. The reaction mixture was then acidified to pH 2. The system was extracted with 10 mL of saturated sodium chloride, followed by two washings with 10 mL of water. The resulting polymer was isolated by precipitation into 150 mL of diethyl ether, followed by drying under vacuum.

The resulting isolated powder had a Mw of 13,000 g/mol and % DT of 14%.

Example 4 A 25 mL flask was charged with 0.50 g of PDTE having a starting weight average molecular weight of 174,000 g/mol.

The PDTE was dissolved in 5. 0 mL of tetrahydrofuran. 1. 0 mL of 1.0 N sodium hydroxide was added to the flask, followed by vigorous stirring for 30 minutes. The reaction mixture was phased and the solvent was removed under reduced pressure, followed by further drying under vacuum. The resulting isolated powder had a Mw of 6, 000 g/mol and % DT of 1%.

Example 5 A 25 mL flask was charged with 0.30 g of PDTE having a starting weight average molecular weight of 174,000 g/mol.

The PDTE was dissolved in 3.0 mL of tetrahydrofuran. Six drops of 12M hydrochloric acid were added to the flask, followed by vigorous stirring for 114 hours. The resulting polymer was isolated by precipitation into 50 mL of diethyl ether, followed by drying under vacuum. The resulting polymer had a Mw of 15,000 g/mol and % DT of 69%.

Example 6 A 25 mL flask was charged with 1. 00 g of PDTE having a starting weight average molecular weight of 70,000 g/mol. The PDTE was dissolved in 10 mL of tetrahydrofuran. 5 mL of 1. 5M hydrochloric acid were added to the flask, followed by vigorous stirring for 3 hours. The resulting polymer was isolated by precipitation into 100 mL of the precipitation medium (water), rinsed with additional amounts of the precipitation medium until the washings were neutral, and then dried under vacuum. The resulting polymer had a Mw of 73,000 g/mol and % DT of 2%.

Examples 7-27 Examples 7-27 were performed in accordance with Example 6, and are summarized in Table 4, below : Table 4. Examples 7-27. 4-) I <u T r, p dP o ' o p 0 0 0 m §"S S -. g. g Wn w d' r4 ty, Ct) r) 4 7 1. 00 62 THF (10) 12M HC1 (1) 1 DE (125) 46 16 93 8 1. 00 62 THF (5) 12M HC1 (1) 2 Water (200) 43 26 91 9 1. 00 62 THF (5) 12M HC1 (1) 4 Water (200) 31 41 95 10 1. 00 62 THF (5) 12M HC1 (1) 4 Water (200) 90 29 100 and Water (0. 5) 11 1. 00 62 THF (5) 12M HC1 (1) 6 Water (200) 33 44 96 and Water (0. 5) 12 1. 00 62 THF (5) 12M HC1 (1) 8 Water (200) 30 54 95 and Water (0. 5) 13 1. 00 62 THF (5) 12M HC1 (1) 4 Water (200) 51 10 99 and Water (1) 14 1. 00 62 THF (5) 12M HC1 (1) 6 Water (200) 47 20 94 and Water (1) 15 1. 00 62 THF, (5) 12M HC1 (1) 8 Water (200) 44 26 94 and Water (1) 16 1. 00 62 THF (5) 12M HC1 (0. 5) 17 Water (200) 42 22 90 and Water (1) 17 1. 00 62 THF (5) 12M HC1 (0. 25) 17 Water (200) 55 8 94 and Water (1. 25) 18 1. 00 62 THF (5) 12M HC1 (0. 10) 17 Water (200) 60 6 94 and Water (1. 40) 19 5. 00 62 THF (25) 12M HC1 (7. 5) 3. 5 Water (1000) 32 52 92 20 3. 00 354 THF (35) 12M HC1 (10. 5) 3. 5 Water (1000) 60 50 79 21 1. 00 224 DO (10) 12M HC1 (0. 2) *** *** *** *** 22a 150 198 DO (1500) 12M HC1 (9. 9) 19 2P* 172 5 83 22b 150 198 DO (1500) 12M HC1 (9. 9) 111 2P* 118 24 94 23 80 89 DO (800) 12M HC1 (5. 3) 24 2P* 89 6 65 24 80 232 DO (800) 12M HCl (10. 6) 33 2P* 131 24 88 25 20 ? DO (200) 12M HC1 (2. 7) 30 2P*105 23 94

26a582248 DO (5000) 12MHC1 (38. 6) 23 2P** 205 94 26b 582 248 DO (5000) 12MHC1 (38.6) 32 2P** 192 11 88 27a 600 277 DO (6000) 12M HCl (79.5) 28 2P** 158 23 72 27b 600 277 DO (6000) 12M HCl (79. 5) 48 2P** 132 31-86 Abbreviations : Tetrahydrofuran (THF), Diethyl ether (DE), 12 molar Hydrochloric acid. (12M HCl), 1, 4-Dioxane (DO), and 2- Propanol (2P). Note: 12M HC1 is a 37 weight percent solution of HC1 in water.

* Vacuum drying conducted at 75°C.

** Vacuum drying conducted at 105°C.

*** Time course evaluation, graphically depicted in Figure 1.

Example 28 A 50 mL flask was charged with 1.0 g of PDTE with a starting weight average molecular weight of 252, 000 g/mol.

The PDTE was dissolved in 15 mL of 1,4-dioxane, and then 0. 58 g of p-toluenesulfohic acid monohydrate was added and stirred until dissolved. Water (0. 50 mL) was slowly added via pipet to give a clear and colorless reaction solution. The solution was stirred vigorously for 45 hours. The resulting polymer was isolated by precipitation into 2-propanol, rinsed with 2-propanol, and dried. under vacuum at 65°C. The resulting polymer had a Mw of 109,000 g/mol, % DT of 31%, and an overall isolated yield of 86%.

Examples 29-38 Examples 29-37 were performed in. 25 mL flasks in accordance with Example 28, (as was Example 38 in a larger flask), and are summarized in Table 5.

Examples 39-42 . Each of four 25 mL round-bottom flasks containing a magnet was charged with about 1. 0 g of poly (DTE carbonate), which was dissolved in 10 mL of 1, 4-dioxan. Glacial acetic acid and DI water were then added via syringe or graduated pipet as appropriate in specified amounts, The mixture was then stirred at RT for about 24 hours. The product was isolated by precipitation into 2-propanol, followed by 2- propanol rinsing and vacuum drying at 85°C for about 24 hrs.

Prescribed ratios and results are summarized in Table 5.

Examples 43-45 Each of three 25 mL round-bottom flasks containing a magnet was charged with about l. Og of poly (DTE carbonate), which was dissolved in 10 mL of the solvent listed below. A prescribed amount of 37% HC1 (12M HC1) was then added via graduated pipet, and then stirred at RT for about 22 hours.

The product was isolated by precipitation into 2-propanol, followed by 2-propanol rinsing and vacuum drying at 85°C for about 24 hrs. Prescribed ratios and results are summarized in Table 5.

Example 46 About l. Og of poly (DTE carbonate) was charged to a 25 mL round-bottom flask containing a stir bar, and dissolved by the addition of 15 mL of methylene dichloride. 0.20 mL of 37% HC1 (12M HC1) was added via pipet, and then stirred at RT for 90 hours. The product was isolated by precipitation into 2-propanol and vacuum dried at 85°C for about 18 hrs.

Examples 47-49 To a 25 mL round-bottom flask with stir bar charged ~1. 0g of poly (DTE carbonate) (PDTE), and dissolved by the addition of 15 mL of methylene dichloride. Added via pipet a prescribed volume of 1,4-DO or THF, followed by 0.15 mL of 37% HC1 (12M HC1). Let stir at RT for 78-90 hours. Isolation by precipitation into 2-propanol. Prescribed ratios and results summarized in Table 5.

Examples 50-53 To each of 5 x 25 mL round-bottom flasks with stir bar charged-l. Og of poly (DTE carbonate) (PDTE), 0.5g (or 0.5mL) of the prescribed poly (ethylene glycol) dimethyl ether or tert-butyl methyl ether, and dissolved each by the addition of 15 mL of methylene dichloride. Added via pipet 0. 20 mL of 37% . HC1 (12M HC1). Let stir at RT for-70 hours. Isolation by precipitation into 2-propanol, followed by washing with water, and completed with 2-propanol rinsing. Vacuum drying at 85°C

for-18 hrs. Prescribed ratios and results summarized in Table 5.

Examples 54-57 To each of 4 x 50 mL round-bottom flasks with stir bar charged 20 mL of 6% poly (DTE carbonate) solution in methylene dichloride from the polymer manufacturing process, as disclosed in the aforementioned reference US 6,359, 102, prior to isolation. Added via graduated pipet 1.5 mL of either 1,4- dioxane, tetrahydrofuran or PEG 500, followed by 0. 15 mL of 37% HC1. Let stir at room temperature followed by periodic 3 mL aliquot removal, isolation by precipitation into 2- propanol, and subsequent analyses for % DT and molecular weight.

Table 5. Examples 28-57. c ?-""<"C : ? r. I. lq u C :) S S gS e 3 4J-5-S - g-g g 0 E r4 F : 4 0w t,, 41 E-1 n r. C cn w ti' g'-5'h-S. (UtUB 04 4-J a4-1 0) dp 28 1. 0 252 PTSAM (0. 58 g) and 45 2P 109 31 86 water (0. 50 mL) 29D 1. 00 252 DO (15) PTSAM (0. 10 g) and 45 2P 198 9 92 water (0. 50 mL) _0r_ 1. 00 252 DO (15) PTSAM (0. 50g) 45 2P 154 23 87 31 1. 00 252 NMP (15) PTSAM (0. 11 g) and 45 2P 218 0. 9 92 water (0. 50 mL) 32c-1. 00 252 NMP (15) PTSAM (0. 50 g) 45 2P 226 1. 4 91 --3= 1. 00 252 NMP (15) PTSAM (0. 50 g) 45 2P 194 1. 8 89 34 1. 00 252 DO (15) 4M HC1 in DO 14 Water 255 1. 1 96 (0. 33 mL) (no water (200) added) 35 1. 00 252 DO (14) 4M HC1 in DO 14 Water 241 1. 9 94 (0. 66 mL) (no water (200) added) 36 1. 00 252 DO (13) 4M HC1 in DO (2 mL) 14 Water 181 5. 1 99 (no water added) (200) 37 1. 00 252 DO (10) 4M HC1 in DO (5 mL) 14 Water 185 4. 8 98 (no water added) (200) 38 20. 0 268 DO (250) 12M HC1 (8 mL) 20 2P 68 55. 5 74 39D 1. 00 175 DO (10) GAA (0. 07) and 24 2P 168 0. 3 94 Water (0. 08) 'T 1. 00 175 DO (10) GAA (0. 21) and 24 2P 168 0. 2 94 Water (0. 23) 41 1. 00 175 DO (10) GAA (0. 35) and 24 2P 166 0. 3 92 Water (0. 38) 42 1. 00 175 DO (10) GAA (1. 39) and 24 2P 155 0. 3 93 Water (1. 51) 43 1. 00 175 DMF (10) 12M HC1 (1) and 22 2P 148 3 89 water (0. 30) 44'1. 00 175 DMA (10) 12M HC1 (1) and 22 2P 161 1 95 water (0. 30) 45C 1. 00 175 NMP (10) 12M HC1 (1) and 22 2P 113 2 91 water (0.30) 46E 1. 00 168 MeCl2 (15) 12M HC1 (0. 20) 90 2P 153 4 89 47 1.00 193 MeCl2 (15) 12M HCl (0. 15) 78 2P 180 7 ND + DO (0-5) 48 1. 00 193 MeCl2 (15) 12M HCl (0. 15) 78 2P 176 9 ND + DO (1) 49 1. 00 193, MeCl2 (15) 12M HC1 (0.15) 90 2P 120 28 ND +THF (3.5) 50F 1. 00 168 MeCl2 (15) 12M HC1 (0.20) 70 2P 133 10.4 92 + PEG A (0. 5) 51F 1.00 168 MeCl2 (15) 12M HC1 (0. 20) 70 2P 141 8.5 93 + PEG B (0.5) S2 1. 00 168 MeCl2 (15) 12M HC1 (0.20) 70 2P 145 9.6 95 + PEG C (0. 5) 53F 1. 00 168 MeCl2 (15) 12M HC1 (0. 20) 70 2P 135 5.5 93 + MTBE (0.5) 54 1.2 174 MeCl2 12M HC1 (0.15) 96 2P 94 28 75 (18.8) + DO (1. 5) 55 1.2 174 MeCl2 12M HC1 (0.15) 96 2P 89 30 70 (18.8) + THF (1. 5) 56 1. 2 174 MeCl2 12M HCl (0. 15) 96 2P 97. 26 74 (18.8) + PEG 500 (1. 5) 57 1. 2 174 Merl2 12M HC1. (0. 15) 96 2P 102 15 88 (18. 8)

Notes for Table 5 1. Additional Abbreviations used include: 1-methyl-2- pyrrolidinone (a. k. a. N-methylpyrrolidinone or NMP), p-toluenesulfonic acid monohydrate (PTSAM), glacial acetic acid (GAA), N, N'-dimethylformamide (DMF), N, N'-dimethylacetamide (DMA), dichloromethane (a. k. a. methylene chloride or Mecs) ter-butyl methyl ether (MTBE), poly (ethylene glycol) dimethyl ether of molecular weights 500 (PEG A), 1000 (PEG B), and 2000 (PEG C), and not determined (ND).

2. C superscript, denotes examples for non-ether containing solvent systems.

3. D superscript denotes examples for cyclic ether containing solvent systems with acids other than HC1.

4.. E superscript denotes example without an ether.

5. F superscript denotes examples for linear ether containing systems.

Use of certain non-ether containing systems: (a) does not generally result in appreciable pendent ester cleavage ; (b) does generally result in varying undesired degrees of backbone cleavage; and (c) does not facilitate desired reproducible

control of ester cleavage. Additionally, other non-ether containing examples are worse for obtaining % DT at desired levels (viz. , lower by a factor of lOx) by using acids of low pKa in ether containing systems.

It is apparent from the foregoing description that the inventors have provided for pendent ester removal at controlled levels (determined via HPLC) with random backbone distribution (determined via 13C NMR) from the parent PDTE, via a preferred acid hydrolysis process. The process has been demonstrated to be 'reproducible and predictable for % DT and Mw using starting PDTE at various molecular weights; fully scaleablei and optimized for selected solvent conditions.

Such results were certainly unpredictable in view of the aforementioned teaching away from acid hydrolysis by the 491 patent.

While the invention has been described in detail and with reference to specific examples thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.