Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SELF-REDUCING ANTHRAQUINONE COMPOUNDS
Document Type and Number:
WIPO Patent Application WO/2002/076916
Kind Code:
A1
Abstract:
A method of scavenging oxygen in an atmosphere or liquid comprising the steps of: (i) treating an anthraquinone compound according to the formula: (I) wherein X1-X4 and R1-R4 are as defined in the claims, with predetermined conditions so as to reduce the anthraquinone compound to a reduced form oxidizable by oxygen; and ii) exposing the atmosphere or liquid to said compound; such that at least a portion of teh oxygen in teh atmosphere or liquid is removed through oxidation of the reduced form of the anthraquinone compound, and wherein steps i) and ii) may be carried out in either order.

Inventors:
Horsham, Mark Andrew (5 Aloha Street Mascot, New South Wales 2020, AU)
Scully, Andrew David (12/13 Lachlan Avenue North Ryde, New South Wales 2113, AU)
Murphy, James Keith Gerard (43 Gooden Drive Baulkham Hills, New South Wales 2153, AU)
Application Number:
PCT/AU2002/000341
Publication Date:
October 03, 2002
Filing Date:
March 22, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION (Limestone Avenue Campbell, Australian Capital Territory 2601, AU)
Horsham, Mark Andrew (5 Aloha Street Mascot, New South Wales 2020, AU)
Scully, Andrew David (12/13 Lachlan Avenue North Ryde, New South Wales 2113, AU)
Murphy, James Keith Gerard (43 Gooden Drive Baulkham Hills, New South Wales 2153, AU)
International Classes:
A23L2/44; A23L3/3436; A23L3/3535; B01J20/22; C07C46/00; C07C49/753; C07C50/34; C07C217/14; C07D295/08; C07D295/092; C07D295/10; C07D295/112; C07D295/12; C07D295/13; C07D295/22; C07D295/26; C07D303/36; C09K15/08; C09K15/24; C09K15/30; (IPC1-7): C07C50/18; C07C217/24; C07D295/088; C07D295/116; C07D295/13; C07D295/26; C07D303/36; C08F255/02; C08J7/04; C08J7/12; C09K15/08; C09K15/24; C09K15/30
Domestic Patent References:
1994-06-09
Foreign References:
EP0052853A11982-06-02
GB1298057A1972-11-29
US3974186A1976-08-10
US3838177A1974-09-24
US3947593A1976-03-30
US3764548A1973-10-09
Other References:
DATABASE CA [Online] DIKALOV S. ET AL, XP002971741 Retrieved from STN Database accession no. 119:240987 & BIOCHEM. BIOPHYS. RES. COMMUN. vol. 195, no. 1, 1993, pages 113 - 119
DATABASE CA [Online] ARMITAGE B. ET AL, XP002971742 Retrieved from STN Database accession no. 121:249562 & J. AM. CHEM. SOC. vol. 116, no. 22, 1994, pages 9847 - 9859
DATABASE CA [Online] WINKELMANN E., RAETHER W., XP002971743 Retrieved from STN Database accession no. 104:199588 & ARZNEIM.-FORSCH. vol. 36, no. 2, 1986, pages 234 - 247
DATABASE CA [Online] ETIENNE A. ET AL, XP002971744 Retrieved from STN Database accession no. 66:37694 & BULL. SOC. CHIM. FR. vol. 9, 1966, pages 2913 - 2919
DATABASE CA [Online] DEL CORRAL J.M. ET AL, XP002971745 Retrieved from STN Database accession no. 128:257574 & BIOORG. MED. CHEM. vol. 6, no. 1, 1998, pages 31 - 41
DATABASE CA [Online] DE MESMAEKER A. ET AL, XP002971746 Retrieved from STN Database accession no. 127:234551 & BIOORG. MED. CHEM. LETT. vol. 7, no. 14, 1997, pages 1869 - 1874
DATABASE CA [Online] GRISAR J.M. ET AL, XP002971747 Retrieved from STN Database accession no. 82:106176 & J. MED. CHEM. vol. 17, no. 8, 1974, pages 890 - 893
DATABASE CA [Online] SCHNUR L. ET AL, XP002971748 Retrieved from STN Database accession no. 99:119186 & BIOCHEM. PHARMACOL. vol. 32, no. 11, 1983, pages 1729 - 1732
DATABASE CA [Online] LEVINE S. ET AL, XP002971749 Retrieved from STN Database accession no. 87:95441 & TOXICOL. APPL. PHARMACOL. vol. 40, no. 1, 1977, pages 137 - 145
DATABASE CA [Online] BALLARDINI R. ET AL, XP002971750 Retrieved from STN Database accession no. 132:278869 & EUR. J. ORG. CHEM. vol. 4, 2000, pages 591 - 602
DATABASE CAS [Online] RN 374679-94-4 XP002971751
DATABASE CA [Online] PEREPICHKA D.F. ET AL, XP002971752 Retrieved from STN Database accession no. 135:180466 & J. ORG. CHEM. vol. 66, no. 13, 2001, pages 4517 - 4524
See also references of EP 1377536A1
Attorney, Agent or Firm:
BLAKE DAWSON WALDRON PATENT SERVICES (39th Floor 101 Collins Street Melbourne, Victoria 3000, AU)
Download PDF:
Claims:
CLAIMS :
1. A method of scavenging oxygen in an atmosphere or liquid comprising the steps of: (i) treating an anthraquinone compound according to the following formula: Formula (I) wherein; XI, X2, X3 and X4 are each independently selected from H, ClC20 alkoxy, C1C20 alkanoyl, ClC20 hydroxyalkoxy, ClC20 aminoalkoxy, ClC20 alkylamido, C1C20 alkylcarboxy, C1C20 alkylsulfonyl, CiC2o alkyl sulfonamido, and sulfonate substituents, and Rl, R2, R3 and R4 are each independently selected from H, C1C20alkyl, C1C20 alkoxy, ClC20 alkanoyl, C1C20alkylamino, C1C20alkylcarboxy, C1C20 alkylsulfonyl, C1C20 alkyl sulfonamido, sulfonate substituents and Lruz wherein L is selected from O, CH (R6) wherein R6 is H or C1C20alkyl, CO2, CO, S03 or SOz, and R5 is selected from C1C20aminoalkyl, C1C20morpholinoalkyl, C1C20piperazinylalkyl, C1 C20 alkanol and the radicals represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 20, Z1 and Z2 are selected from H, C1C20alkyl, ClC20 alkanol, ClC20 aminoalkyl and , and the radical represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 20, and Z3 is selected from ClC20 alkanol, Cl C20 aminoalkyl, ClCzo morpholinoalkyl, ClC, o piperazinylalkyl, and the radical represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 20, with the proviso that at least one of Rl, R, R3 and R4 is/are LR5; or a salt thereof, or a composition including said anthraquinone compound or salt thereof, with predetermined conditions so as to reduce the anthraquinone compound or salt thereof to a reduced form oxidizable by oxygen; and (ii) exposing the atmosphere or liquid to said composition; such that at least a portion of the oxygen in the atmosphere or liquid is removed through oxidation of the reduced form of the anthraquinone compound or salt thereof, and wherein steps (i) and (ii) may be carried out in either order.
2. The method of claim 1, wherein Xl, X2, X3 and X4 are each independently selected from H, ClC6 alkoxy, ClC6 alkanoyl, ClC6 hydroxyalkoxy, ClC6 aminoalkoxy, ClC6alkylamido, ClC6alkylcarboxy, ClC6alkylsulfonyl, ClC6 alkyl sulfonamido, and sulfonate substituents.
3. The method of claim 1 or 2, wherein L is selected from O, CH (R6), CO and SO2.
4. The method of claim 1 or 2, wherein L is selected from CO and SO2.
5. The method of claim 1 or 2, wherein W is selected from ClC6 aminoalkyl, ClC6 morpholinoalkyl, ClC6 piperazinylalkyl, ClC6 alkanol and the radicals represented by, CH2CH2#OCH2CH2#nOH wherein, n is any integer between 1 and 6, Z1 and Z2 are selected from H, C1C6alkyl, C1C6alkanol, C1C6aminoalkyl and , and the radical represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 6, and Z3 iS selected from ClC6 alkanol, ClC6 aminoalkyl, ClC6 morpholinoalkyl and ClC6 piperazinylalkyl, and the radical represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 6.
6. The method of claim 5, wherein R7 is selected from ClC6 aminoalkyl, C1C6 morpholinoalkyl, ClC6 piperazinylalkyl and the radicals represented by, wherein Z'and Z'are selected from H, ClC6 alkyl, ClC6 alkanol, ClC6 aminoalkyl and , and Z3 iS selected from ClC6 aminoalkyl, ClC6 morpholinoalkyl and C1C6piperazinylalkyl.
7. The method of any one of claims 1 to 6, wherein Rl is LR5.
8. The method of claim 1, wherein the compound is selected from the group consisting of 2,6bis (3hydroxypropoxy)anthraquinone, 2,6bis[2(2(2 hydroxyethoxy) ethoxy) ethoxy]anthraquinone, 2,6bis (2morpholinoethoxy) anthraquinone, 2,6bis [2 (diethylamino) ethoxy]anthraquinone, N (3 morpholinopropyl)2anthraquinonesulfonamide, 2(4methylpiperazine1sulfonyl) anthraquinone, N, N'bis (3morpholinoethyl)2, 6anthraquinonedisulfonamide, [N glycidylN (3morpholinopropyl)]2anthraquinonesulfonamide, 2 (piperazinel sulfonyl)anthraquinonesulfonamide, 2 (1piperazin1ylethyl)anthraquinone, 2 [1 (4methylpiperazin1yl)ethyl]anthraquinone and salts thereof.
9. The method of any one of claims 1 to 8, wherein step (i) involves treatment with UV light.
10. The method of any one of claims 1 to 9, wherein the method employs a composition comprising said anthraquinone compound (or salt thereof), and further comprising an activated oxygen scavenging agent.
11. The method of claim 10, wherein the activated oxygen scavenging agent is selected from the group consisting of organic antioxidants, organic phosphites, organic phosphines, organic phosphates, hydroquinone and substituted hydroquinone, inorganic compounds, sulphurcontaining compounds and nitrogen containing compounds.
12. A reaction product of an anthraquinone compound according to the following formula: Formula (I) wherein; X1, X2,X3 and X4 are each independently selected from H, ClC20 alkoxy, C1C20 alkanoyl, ClC20 hydroxyalkoxy, ClC20 aminoalkoxy, Clcoo alkylamido, ClC20 alkylcarboxy, C1C20alkylsulfonyl, C1C20alkyl sulfonamido, and sulfonate substituents, and R1, R2, R3 and R4 are each independently selected from H, C1C20alkyl, C1C20 alkoxy, ClC20 alkanoyl, C1C20alkylamido, C1C20 alkylcarboxy, ClC20 alkylsulfonyl, ClC20 alkyl sulfonamido, sulfonate substituents and LR5 wherein L is selected from O, CH (R6) wherein R6 is H or ClC6 alkyl, CO2, CO, S03 or SO2, and R5 is selectedfrom ClC20aminoalkyl, ClC20morpholinoalkyl, ClC20piperazinylalkyl, Cl C20 alkanol and the radicals represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 20, Z1 and Z2 are selected from H, ClC2o alkyl, ClC20 alkanol, C1C20aminoalkyl and , and the radical represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 20, and Z3 is selected from C1C20 alkanol, Cl C20 aminoalkyl, ClC20morpholinoalkyl and C1C20piperzinylalkyl, and the radical represented by, CH2CH2EOCH2CH20H wherein n is any integer between 1 and 20, with the proviso that at least one of Rl, R2, R3 and R4 is/are LR5 ; or a salt thereof, and a compound containing one or more functional groups.
13. The reaction product of claim 12, wherein X1, X2, X3 and X4 are each independently selected from H, ClC6 alkoxy, ClC6 alkanoyl, C1C6 hydroxyalkoxy, C1C6 aminoalkoxy, C1C6 alkylamido, C1C6 alkylcarboxy, ClC6 alkylsulfonyl, Cl C6 alkyl sulfonamido, and sulfonate substituents.
14. The reaction product of claim 12 or 13, wherein L is selected from O, CH (R6), CO and SO2.
15. The reaction product of claim 12 or 13, wherein L is selected from CO and SO2.
16. The reaction product of claim 12 or 13, wherein R5 is selected from ClC6 aminoalkyl, ClC6 morpholinoalkyl, ClC6 piperazinylalkyl, ClC6 alkanol and the radicals represented by, CH2CH2#OCH2CH2#nOH wherein, n is any integer between 1 and 6, Z1 and Z2 are selected from H, ClC6 alkyl, ClC6 alkanol, ClC6 aminoalkyl and , and the radical represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 6, and Z3 is selected from C1C6 alkanol, C1C6 aminoalkyl, C1C6 morpholinoalkyl, C1C6piperazinylalkyl and the radical represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 6.
17. The reaction product of claim 16, wherein R5 is selected from ClC6 aminoalkyl, ClC6morpholinoalkyl, ClC6piperazinylalkyl and the radicals represented by, wherein Z'and Z'are selected from H, ClC6 alkyl, ClC6 alkanol, ClC6 aminoalkyl and , and Z3 iS selected from ClC6 aminoalkyl, ClC6 morpholinoalkyl and C1C6piperazinyalkyl.
18. The reaction product of any one of claims 12 to 17, wherein Rl is LR5.
19. The reaction product of any one of claims 12 to 18, wherein the functional compound contains one or more amine, acid, anhydride, alcohol, phenol, thiol, sulfonamide or glycidyl groups.
20. A reaction product of N (3morpholinopropyl)2anthraquinonesulfonamide and poly (ethylenecoglycidyl methacrylate).
21. A reaction product of [NglycidylN (3morpholinopropyl)]2 anthraquinonesulfonamide and poly (ethylenecoacrylic acid).
22. An oxygen scavenging composition comprising a reaction product according to any one of claims 12 to 21.
23. The composition of claim 22, further comprising an activated oxygen scavenging agent.
24. The composition of claim 23, wherein the activated oxygen scavenging agent is selected from the group consisting of organic antioxidants, organic phosphites, organic phosphines, organic phosphates, hydroquinone and substituted hydroquinone, inorganic compounds, sulphurcontaining compounds and nitrogen containing compounds.
25. A method of scavenging oxygen in an atmosphere or liquid comprising the steps of: (i) treating the composition of any one of claims 22 to 24 with predetermined conditions so as to reduce the anthraquinone component (s) of the reaction product to a reduced form oxidizable by oxygen; and (ii) exposing the atmosphere or liquid to said composition, such that at least a portion of the oxygen in the atmosphere or liquid is removed through oxidation of the reduced form of the anthraquinone component (s), wherein steps (i) and (ii) may be carried out in either order.
26. The method of claim 25, wherein step (i) involves treatment with W light.
27. An anthraquinone compound according to the following formula: Formula (I) wherein; X1,X2,X3 and X4 are each independently selected from H, ClC20 alkoxy, C1C20 alkanoyl, C1C20 hydroxyalkoxy, C1C20 aminoalkoxy, C1C20 alkylamido, C1C20 alkylcarboxy, Clcoo alkylsulfonyl, C1C20 alkyl sulfonamido, and sulfonate substituents, and Rl, R2, R3 and R4 are each independently selected from H, CiQo alkyi, CiCzo alkoxy, C1C20 alkanoyl, ClC20 alkylamido, ClC20 alkylcarboxy, ClC20 alkylsulfonyl, C1C20 alkyl sulfonamido, sulfonate substituents and LR5 wherein L is selected from O, CH (R6) wherein R6 is H or ClC6 alkyl, CO2, CO, S03 or SO2 and R5 is selected from C1C20aminoalkyl, C1C20morpholinoalkyl, C1C20piperazinylalkyl, C1 C20 alkanol and the radicals represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 20, Z1 and Z2 are selected from H, ClC20 alkyl, ClC20 alkanol, C1C20aminoalkyl, and , and the radical represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 20, and Z3 iS selected from ClC20 alkanol, Cl C20aminoalkyl, C1C20morpholinoalkyl, C1C20piperazinylalkyl and the radical represented by, CH2CH2#OCH2CH2#nOH wherein n is any integer between 1 and 20, with the proviso that at least one of Rl, R2, R3 and R4 is/are LRs ; or a salt thereof, wherein said anthraquinone compound or salt thereof is not 2,6bis (2morpholinoethoxy)anthraquinone, 2,6bis [2 (diethylamino) ethoxy]anthraquinone or N, N'bis (3morpholinoethyl)2,6 anthraquinonedisulfonamide.
Description:
SELF-REDUCING ANTHRAQUINONE COMPOUNDS FIELD OF THE INVENTION : This invention relates to oxygen scavenging compositions comprising a class of self-reducing anthraquinone compounds, for use in, for example, food and beverage packaging to scavenge unwanted oxygen, which either remains within the package following the packaging of the food or beverage or otherwise enters the package by permeating through the packaging material. The self-reducing anthraquinone compounds may also be incorporated into packaging materials, to prevent oxygen from permeating through the packaging material to enter the inside of a package. In addition, the self-reducing anthraquinone compounds may be incorporated into packaging materials to reveal leaks in packages or to indicate package damage caused by handling or tampering.

BACKGROUND TO THE INVENTION : A wide variety of foods, beverages and other materials are susceptible to loss in quality if they are exposed to significant amounts of oxygen during storage. The damage can arise from, for example, chemical oxidation of the product and/or microbial growth. In the field of packaging, such damage has been traditionally addressed by generating relatively low-oxygen atmospheres by vacuum packing and/or inert gas flushing. However, these methods are not generally applicable for various reasons. For example, the fast filling speeds commonly used in the food and beverage industries often prevent effective evacuation of, or thorough inert gas flushing of, food and beverage packages, and neither evacuation or inert gas flushing provides any residual capacity for removal of oxygen which may have desorbed from the package contents or entered the package by leakage or permeation. As a consequence, there has been much interest in the identification and development of chemical techniques for generating low-oxygen atmospheres.

In Australian Patent No. 672661 (the entire disclosure of which is incorporated herein by reference), the present applicants describe novel oxygen scavenging compositions comprising a source of labile hydrogen or electrons and a reducible organic compound such as an anthraquinone (AQ), which may be readily activated or "triggered" (ie brought to their oxygen scavenging form) as required by exposure to, for example, ultraviolet (UV) light. The oxygen scavenging compositions, once activated, are capable of scavenging oxygen from an oxygenated atmosphere or liquid

in substantial darkness for periods ranging from up to a few minutes or hours to over 100 days.

The oxygen scavenging compositions described in Australian Patent No.

672661, include a source of labile hydrogens or electrons to allow activation of the reducible organic compound by, for example, photoreduction. The source of labile hydrogen or electrons may be a compound such as a salt of a sulfonic or carboxylic acid or a compound having a hydrogen atom bonded to a carbon atom which is, in turn, bonded to a nitrogen, sulfur, phosphorus, or oxygen atom or, where the composition includes a polymer (eg typical polymers of food and beverage packaging such as ethylene vinyl acetate) which may or may not be covalently linked to the reducible organic compound, the source of labile hydrogen or electrons may be borne on the polymer. Australian Patent No. 672661 also teaches the possibility of providing the source of labile hydrogen or electrons on the reducible organic compound itself (eg a sodium sulfonate salt of the reducible organic compound). This kind of reducible organic compound might be regarded as being"self-reducing"upon exposure to, for example, UV light, and may be particularly suitable when the composition includes a non-or poorly-hydrogen/electron donating polymer such as polyethylene terephthalate (PET).

The present applicants have now identified certain classes of anthraquinone compounds, bearing hydrogen or electron donor substituents, which self-reduce when subjected to predetermined conditions (eg exposure to UV light), and which are particularly suitable for use in oxygen scavenging packaging.

DISCLOSURE OF THE INVENTION : Thus, in a first aspect, the present invention provides a method of scavenging oxygen (particularly ground state oxygen) in an atmosphere or liquid comprising the steps of : (i) treating an anthraquinone compound according to the following formula: Formula (I)

wherein; Xl, X2, X3 and X4 are each independently selected from H, C1-C20 alkoxy, Cl-C20 alkanoyl, C1-C20 hydroxyalkoxy, Cl-C20 aminoalkoxy, C1-C20 alkylamido, C1-C20 alkylcarboxy, C1-C20 alkylsulfonyl, Cl-C20 alkyl sulfonamido, and sulfonate substituents, and Rl, R2, R3 and R4 are each independently selected from H, C1-C20alkyl, C1-C20 alkoxy, Cl-C20 alkanoyl, Cl-C20 alkylamido, Cl-C20 alkylcarboxy, C1-C20 alkylsulfonyl, C1-C20 alkyl sulfonamido, sulfonate substituents and L-RUS wherein L is selected from O, CH (R6) wherein R6 is H or Cl-C6 alkyl, CO2, CO, S03 or SO2, and Ris selected from Cl-C20aminoalkyl, Cl-C20morpholinoalkyl, Cl-C20piperazinylalkyl, Cl- C20 alkanol and the radicals represented by, -CH2-CH2#OCH2CH2#nOH wherein n is any integer between 1 and 20, Z1 and Z2 are selected from H, Cl-C20 alkyl, Cl-C20 alkanol, Cl-C20 aminoalkyl and , and the radical represented by, -CH2-CH2#OCH2CH2#nOH wherein n is as defined above, and Z3 is selected from C1-C20 alkanol, Cl-C2o aminoalkyl, C1-C20 morpholinoalkyl, C1-C20 piperazinylalkyl, and the radical represented by, -CH2-CH2#OCH2CH2#nOH wherein n is as defined above, with the proviso that at least one of Rl, R, R3 and R4 is/are L-Rs ; or a salt thereof, or a composition including said anthraquinone compound or salt thereof, with predetermined conditions so as to reduce the anthraquinone compound or salt thereof to a reduced form oxidizable by oxygen; and (ii) exposing the atmosphere or liquid to said composition; such that at least a portion of the oxygen in the atmosphere or liquid is removed through oxidation of the reduced form of the anthraquinone compound or salt thereof.

Preferably, X1, X2, X3 and X4 are each independently selected from H, Cl-C6 alkoxy, C1-C6 alkanoyl, C1-C6hydroxyalkoxy, C1-C6minoalkoxy, C1-C6 alkylamido, C1-C6alkylcarboxy, C1-C6alkylsulfonyl, C1-C6alkyl sulfonamido, and sulfonate substituents.

Preferably, L is selected from O, CH (R6), CO and SO2.

More preferably, L is selected from CO and SO2.

Preferably, Rs is selected from Cl-C6 aminoalkyl, Cl-C6 morpholinoalkyl, Cl-C6 piperazinylalkyl, C1-C6alkanol and the radicals represented by, -CH2-CH2#OCH2CH2#nOH wherein, n is preferably any integer between 1 and 6, Z1 and Z2 are preferably selected from H, Cl-C6 alkyl, Cl-C6 alkanol, Cl-C6 aminoalkyl and , and the radical represented by, -CH2-CH2#OCH2CH2#nOH wherein n is preferably any integer between 1 and 6, and Z3 iS preferably selected from Cl-C6 alkanol, Cl-C6 aminoalkyl, Cl-C6 morpholinoalkyl, Cl-C6 piperazinylalkyl and the radical represented by, - CH2-CH2-E-OCH2CH2OH wherein n preferably any integer between 1 and 6.

More preferably, Rs is selected from Cl-C6 aminoalkyl, Cl-C6 morpholinoalkyl, C1-C6piperazinylalkyl and the radicals represented by,

Z'and Z'are preferably selected from H, Cl-C6 alkyl, Cl-C6 alkanol, Cl-C6 aminoalkyl , and Z3 iS preferably selected from Cl-C6 aminoalkyl, Cl-C6 morpholinoalkyl and Cl-C6 piperazinylalkyl.

Preferably, W is L-Rs.

Most preferably, the compound is selected from the group consisting of 2,6- bis (3-hydroxypropoxy)-anthraquinone, 2,6-bis [2- (2- (2-hydroxyethoxy) ethoxy) ethoxy]- anthraquinone, 2,6-bis (2-morpholino-ethoxy)-anthraquinone, 2,6-bis [2- (diethylamino) ethoxy]-anthraquinone, N- (3-morpholinopropyl)-2- anthraquinonesulfonamide, 2- (4-methylpiperazine-1-sulfonyl)-anthraquinone, N, N'- bis (2-morpholinoethyl)-2,6-anthraquinonedisulfonamide, [N-glycidyl-N- (3- morpholinopropyl)]-2-anthraquinonesulfonamide, 2-(piperazine-1-sulfonyl)- anthraquinonesulfonamide, 2- (1-piperazin-1-yl-ethyl)-anthraquinone, 2- [l- (4-methyl- piperazin-1-yl)-ethyl]-anthraquinone and salts thereof.

The steps (i) and (ii) may be carried out in either order.

Step (i) may involve treatment of the anthraquinone compound (or salt thereof) with, for example, light of a certain intensity or wavelength (eg UV light) or, alternatively, the application of heat, y-irradiation, corona discharge or an electron beam. The reduced anthraquinone compound (or salt thereof) is reactive towards molecular oxygen to produce activated species such as hydrogen peroxide, hydroperoxy radical or a superoxide ion.

Where the anthraquinone compound (or salt thereof) or, alternatively, a composition including said anthraquinone compound (or salt thereof), forms or is incorporated in a packaging material, the exposure of step (ii) may be effected by a step of packing a product (eg a food or beverage) within said packaging material. In the case, where the packaging material is provided in the form of a container, the packing step may generate said atmosphere (eg generation of a"headspace").

Preferably, the method of the first aspect employs a composition including said anthraquinone compound (or salt thereof). Such a composition also preferably comprises an activated oxygen scavenging agent (ie an agent which reacts with activated oxygen species such as peroxide). Suitable activated oxygen scavenging agents include organic antioxidants, organic phosphites, organic phosphines, organic phosphates, hydroquinone and substituted hydroquinone; inorganic compounds including sulphates, sulphites, phosphites and nitrites of metals; sulphur-containing compounds including thiodipropionic acid and its esters and salts, thio-bis (ethylene glycol beta-aminocrotonate), cysteine, cystine and methionin ; and nitrogen-

containing compounds including primary, secondary and tertiary amines and their derivatives.

Compositions employed in the method of the first aspect may be in a solid, semi-solid (eg a gel) or liquid form. They may therefore be applied as, or incorporated in, for example, bottle closure liners, inks, coatings, adhesives (eg polyurethanes), films, sheets or layers in containers such as trays or bottles either alone or as laminations or co-extrusions. When used in films or layers, they may be blended with typical polymers and/or copolymers used for construction of films or layers such as those approved for food contact. Such films or layers may be produced by extrusion at temperatures between 50°C and 350°C depending upon chemical composition and molecular weight distribution.

In a second aspect, the present invention provides a reaction product of the anthraquinone compound (or salt thereof) defined in the first aspect (such as compounds of the formula VI and IX-XI as shown in Figure 1), and a compound containing one or more functional groups.

Preferably, the functional compound contains one or more amine, acid, anhydride, alcohol, phenol, thiol, sulfonamide or glycidyl groups. One example is the reaction product of compound of formula VI and poly (ethylene-co-glycidyl methacrylate). A second example is the reaction product of compound of formula IX and poly (ethylene-co-acrylic acid).

The reaction product of the second aspect may provide a means of anchoring the anthraquinone compound (or salt thereof) to a polymer which would be useful in applications where migration of the anthraquinone compound (or salt thereof) may be a concern (eg use of the anthraquinone (or salt thereof) in an oxygen scavenging composition used in direct contact with a food or beverage).

The reaction product of the second aspect may provide a polymer capable of scavenging oxygen when used on its own, or when used in combination with other compounds and/or substances to provide an oxygen scavenging composition.

Thus, in a third aspect, the present invention provides an oxygen scavenging composition comprising a reaction product according to the second aspect.

As with compositions employed in the method of the first aspect, compositions of the third aspect also preferably comprise an activated oxygen scavenging agent, ie an agent which reacts with activated oxygen species such as peroxide. Suitable activated oxygen scavenging agents include organic antioxidants, organic phosphites, organic phosphines, organic phosphates, hydroquinone and substituted hydroquinone; inorganic compounds including sulphates, sulphites, phosphites and nitrites of metals; sulphur-containing compounds including thiodipropionic acid and

its esters and salts, thio-bis (ethylene glycol beta-aminocrotonate), cysteine, cystine and methionin ; and nitrogen-containing compounds including primary, secondary and tertiary amines and their derivatives.

Also, compositions of the third aspect may be in a solid, semi-solid (eg a gel) or liquid form. They may therefore be applied as, or incorporated in, for example, bottle closure liners, inks, coatings, adhesives (eg polyurethanes), films, sheets or layers in containers such as trays or bottles either alone or as laminations or co-extrusions.

When used in films or layers, they may be blended with typical polymers and/or copolymers used for construction of films or layers such as those approved for food contact. Such films or layers may be produced by extrusion at temperatures between 50°C and 350°C depending upon chemical composition and molecular weight distribution.

In a fourth aspect, the present invention provides a method for scavenging oxygen (particularly ground state oxygen) in an atmosphere or liquid comprising the steps of: (i) treating a composition according to the third aspect with predetermined conditions so as to reduce the anthraquinone component (s) of said reaction product to a reduced form oxidizable by oxygen; and (ii) exposing the atmosphere or liquid to said composition, such that at least a portion of the oxygen in the atmosphere or liquid is removed through oxidation of the reduced form of the anthraquinone component (s).

The steps (i) and (ii) may be carried out in either order.

Numerous specific applications for the anthraquinone compound (or salt thereof) and compositions of the invention are disclosed in Australian Patent No.

672661 as well as in the applicant's co-pending Australian Patent Application No.

87230/98 (the entire disclosure of which is incorporated herein by reference). The anthraquinone compound (or salts thereof) and compositions according to the invention, can also be used to reveal leaks in packages or to indicate package damage caused by handling or tampering. That is, the anthraquinone compound (or salt thereof) and compositions of the invention may undergo an indicative change in colour or change in UV-visible, infrared or near-infrared absorption spectrum, as the capacity for scavenging oxygen becomes exhausted.

Finally, in a fifth aspect, the present invention provides an anthraquinone compound according to the following formula: Formula (I)

wherein; Xl, X2, X3 and X4 are each independently selected from H, C1-C20 alkoxy, Cl-C20 alkanoyl, C1-C20hydroxyalkoxy, C1-C20aminoalkoxy, C1-C20 alkylamido, C1-C20 alkylcarboxy, Cl-C20 alkylsulfonyl, Cl-C20 alkyl sulfonamido, and sulfonate substituents, and R1, R2, R3 and R4 are each independently selected from H, Cl-C20 alkyl, Cl-C20 alkoxy, Cl-C20 alkanoyl, Cl-C20 alkylamido, Cl-C20 alkylcarboxy, C1-C20 alkylsulfonyl, Cl-C20 alkyl sulfonamido, sulfonate substituents and L-R'wherein L is selected from O, CH (R6) wherein R'is H or C1-C6 alkyl, CO2, CO, S03 or SO2 and Ris selected from C1-C20mainoalkyl, C1-C20morpholinoalkyl, C1-C20piperazinylalkyl, C1- C20 alkanol and the radicals represented by, -CH2-CH2#OCH2CH2#nOH

wherein n is any integer between 1 and 20, Z1 and Z2 are selected from H, Cl-C20 alkyl, Cl-C20 alkanol, Cl-C20 aminoalkyl, and , and the radical represented by, -CH2-CH2#OCH2CH2#nOH wherein n is any integer between 1 and 20, and Z3 iS selected from Cl-C20 alkanol, Cl- Cz0 aminoalkyl Cl-C20 morpholinoalkyl, Cl-C20 piperazinylalkyl, and the radical represented by,

CH2CH240CH2CH2*0H wherein n is any integer between 1 and 20, with the proviso that at least one of R1, R2, R3 and R4 is/are L-Rs ; or a salt thereof, wherein said anthraquinone compound or salt thereof is not 2,6-bis (2-morpholino-ethoxy)-anthraquinone, 2,6-bis [2- (diethylamino) ethoxy]-anthraquinone or N, N'-bis (2-morpholinoethyl)-2,6- anthraquinonedisulfonamide.

The terms"comprise","comprises"and"comprising"as used throughout the specification are intended to refer to the inclusion of a stated step, component or feature or group of steps, components or features with or without the inclusion of a further step, component or feature or group of steps, components or features.

In the specification, unless stated otherwise, where a document, act or item of knowledge is referred to or discussed, that reference or discussion is not an admission that the document, act or item of knowledge, or any combination thereof, at the priority date, was part of the common general knowledge in the art.

The invention will now be described with reference to the following, non- limiting examples and accompanying figure (s).

BRIEF DESCRIPTION OF THE ACCOMPANYING FIGURE (S): Figure 1 provides structural formulae II to XII of the compounds described in the following examples.

Figure 2 provides graphical results showing oxygen scavenging by a composition comprising N- (3-morpholinopropyl)-2-anthraquinonesulfonamide (formula VI) and polyethylene terephthalate (PET), as described in Example 11.

EXAMPLES : Example 1: 2,6-bis (3-hydroxypropoxy)-anthraquinone A mixture of 2,6-dihydroxyanthraquinone (2 g, 8.3 mmol), 3-chloropropanol (8 ml, 95.7 mmol), sodium iodide (12.45 g, 83 mmol) and anhydrous K2CO3 (11.5 g, 83.2 mmol) in DMF (100 ml) was refluxed for 20 hours under nitrogen. The reaction mixture was then poured into water and the resulting precipitate collected by filtration. The product was washed on the filter with water and methanol, and dried in vacuo (2.46 g, 83%). The product was further purified by recrystallisation from ethanol to give the desired product as a green solid; m. p. 190°C ; 1H NMR (200 MHz, DMSO-d6) 1.92 (4H, m, Chez), 3.59 (4H, m, CH20H), 4.23 (4H, m, AQOCH2), 4.62 (2H,

m, OH), 7.35 (2H, d, AQH), 7.51 (2H, s, AOH), 8.07 (2H, d, AQH) ppm. The structure of this compound is shown as formula II in Figure 1.

Example 2 : 2,6-bis [2- (2- (2-hydroxyethoxy) ethoxy) ethoxy]-anthraquinone A mixture of 2,6-dihydroxyanthraquinone (5.69 g, 23.7 mmol), 2- [2- (2- chloroethoxy) ethoxy] ethanol (20 g, 118 mmol), sodium iodide (18 g, 120 mmol) and anhydrous K2CO3 (16.35 g, 118 mmol) in DMF (100 ml) was refluxed for 20 hours under nitrogen. The reaction mixture was then poured into water and extracted with chloroform. The organic extracts were combined, washed with water and saturated brine, and dried over MgSO4. Concentration in vacuo and recrystallisation from ethanol gave the desired product as a yellow solid (2.9 g, 25%) ; m. p. 110°C. 1H NMR (200MHz, CDCl3) 3.7 (16H, m, OCH2), 4.0 (4H, t, CH2OH), 4.40 (4H, t, AQOCH2), 7.3 (2H, dd, AQH), 7.75 (2H, d, AQH), 8.25 (2H, d, AQH) ppm. The structure of this compound is shown as formula III in Figure 1.

Example 3 : 2,6-bis (2-morpholino-ethoxy)-anthraquinone 4- (2-Chloroethyl) morpholine hydrochloride (3.1 g, 16.7 mmol) was dissolved in water (5 ml), and xylene (6 ml) was then added. The mixture was cooled in an ice bath and whilst being vigorously stirred, a solution of KOH (1.455 g, 26 mmol) in water (1 ml) was added. The xylene layer was decanted and the aqueous layer then extracted with fresh xylene (5 ml). The organic fractions were combined, dried over MgSO4 and then filtered.

To a solution of 2,6-dihydroxyanthraquinone (1 g, 4.2 mmol) in DMF (30 ml) at ~50°C, was added sodium hydride (0.21 g, 8.7 mmol). The resulting red coloured reaction mixture was left to stir at 80°C under nitrogen for 0.5 hour. The free base, 4- (2- chloroethyl) morpholine prepared as above in xylene, was then added, and the reaction mixture was left to stir overnight. By TLC analysis (20% MeOH : CHCl3), all of the starting material had disappeared and two new spots were observed. The warm reaction mixture was poured into water (150ml), the precipitate collected by filtration and washed with hot water. The grey-brown product was recrystallised from a mixture of methanol (100 ml) and chloroform (50 ml) to give the product as a yellow coloured solid (0.5 g, 26%) ; m. p. 200-201°C. 1H NMR (200MHz, CDCl3) 2.6 (8H, q, CH3CH2N), 2.9 (4H, t, CH2N), 3.7 (8H, t, C_ 2°), 4.3 (4H, t, CH2OAQ), 7.25 (2H, dd, AQH), 7.7 (2H, d, AQH), 8.25 (2H, d, AQH) ppm. The structure of this compound is shown as formula IV in Figure 1.

Example 4 : 2,6-bis [2- (diethylamino) ethoxy]-anthraquinone 2-Diethylaminoethylchloride hydrochloride (2.778 g, 16.1 mmol) was dissolved in water (2.5 ml), and then xylene (6 ml) was added. The mixture was cooled in an ice bath and whilst being vigorously stirred, a solution of KOH (1.432 g, 25.6 mmol) in water (1 ml) was added. The xylene layer was decanted, and the aqueous layer then extracted with fresh xylene (5 ml). The organic fractions were combined, dried over MgSO4 and then filtered.

To a solution of 2,6-dihydroxyanthraquinone (1 g, 4.2 mmol) in DMF (30 ml) at ~50°C, was added sodium hydride (0.21 g, 8.7 mmol), and the resulting red coloured reaction mixture stirred at 80°C under nitrogen for 0.5 hour. The free base, 2- diethylaminoethylchloride in xylene prepared as above, was then added, and the reaction mixture stirred for a further 1 hour. By TLC analysis (20% MeOH : CHC13), all of the starting material had disappeared and two new spots were observed. The warm reaction mixture was poured into water (250 ml), the precipitate collected by filtration and washed with hot water. The light brown product was recrystallised from a mixture of methanol (50 ml) and chloroform (15 ml) furnishing a yellow coloured solid (1.042 g, 57%) ; m. p. 169-170°C.'H NMR (200MHz, CDCl3) 1. 1 (12H, t, CH3), 2.6 (8H, q, CH3CH2N), 2.9 (4H, t, CH2N), 4.2 (4H, t, CH2O), 7.2-8.2 (6H, 3 x d, AQH) ppm. The structure of this compound is shown as formula V in Figure 1.

Example 5: N- (3-morpholinopropyl)-2-anthraquinonesulfonamide A. Preparafion of 2-anthraquinonesulfonyl chloride A suspension of 2-anthraquinonesulfonic acid sodium salt (500 g) in thionyl chloride (1 L) was stirred at room temperature for 30 minutes. The suspension was then taken to reflux and DMF (25 ml) added dropwise. After stirring at reflux for 3 hours the excess thionyl chloride was removed in vacuo. The resulting residue was triturated by stirring rapidly in water (5 L), filtered, and the solid isolated and washed with hot water (5 L) followed by methanol (1.5 L), and then air dried prior to drying in vacuo at 40°C to give 2-anthraquinonesulfonyl chloride (420 g, 90%).

B. Preparation of N-(3-morpholinopropyl)-2-anthraquinonesulfonamide To a solution of 2-anthraquinonesulfonyl chloride (100 g, 0.33 mol) and 4- (3- aminopropyl) morpholine (95 ml, 0.65 mol) in 2-methoxyethanol (600 ml), was added dropwise over 1 hour a solution of 1M sodium hydroxide in ethanol (341 ml). The reaction mixture was then stirred for 1 hour at room temperature and the resulting precipitate collected, washed successively with methanol, water and further methanol, and finally dried in vacuo at 50°C to yield (110.8 g, 82%) of N- (3-morpholinopropyl)-2-

anthraquinonesulfonamide as a yellow solid; m. p. 151.1-155.7 °C. 1H NMR (200MHz, CDC13) 1.75 (2H, m, CH2), 2.50 (4H, t, NHCH2 + CH2N), 3.10 (4H, t, N (CH2) 2), 3.80 (4H, t, O (CH2) 2), 8. 20-8. 80 (7H, m, AQH) ppm. The structure of this compound is shown as formula VI in Figure 1.

Example 6: 2- (4-methylpiperazine-l-sulfonyl)-anthraquinone To a solution of 2-anthraquinonesulfonyl chloride (300 g, 0.98 mol) and N- methylpiperazine (217 ml, 1.93 mol) in 2-methoxyethanol (3.6 L), was added dropwise over 2.5 hours a solution of 1M sodium hydroxide in ethanol (986 ml). The reaction mixture was then stirred for 1 hour at room temperature before being diluted with water. The resultant precipitate was collected, washed successively with water and ethanol, and finally dried in vacuo at 50°C to yield (320 g, 88%) of 2- (4- methylpiperazine-1-sulfonyl)-anthraquinone as a yellow solid; m. p. 215.7-218.3 °C. lH NMR (200MHz, d6-DMSO) 3.00 (4H, t, N (CH2) 2), 3.25 (3H, s, CH3N), 3.65 (4H, t, SO2N (CH2) 2), 7.95-8.45 (7H, m, AQH) ppm. The structure of this compound is shown as formula VII in Figure 1.

Example 7: N, N'-bis (2-morpholinoethyl)-2,6-anthraquinonedisulfonamide A. Preparation of 2, 6-anthraquinonedisulfonylchloride A suspension of 2,6-anthraquinonesulfonic acid sodium salt (500 g) in thionyl chloride (1 L) was stirred at room temperature for 30 minutes. The suspension was then taken to reflux and DMF (25 ml) added dropwise. After stirring at reflux for 3 hours the excess thionyl chloride was removed in vacuo. The resulting residue was triturated by stirring rapidly in water (5 L), filtered, and the solid isolated and washed with hot water (5 L) followed by methanol (1.5 L), and then air dried prior to drying in vacuo at 40°C to give 2-anthraquinonesulfonyl chloride (420 g, 90%).

B. Preparation ofN, N=bis (2-morpholinoethyl)-2, 6-anthraquinonedisulfonamide To a solution of 2,6-anthraquinonedisulfonyl chloride (0.5 g, 1.23 mmol) and 4- (2-aminoethyl) morpholine (0.7 ml, 4.92 mmol) in 2-methoxyethanol (50 ml), was added dropwise over 0.5 hour a solution of 1M sodium hydroxide in ethanol (2.5 ml).

The reaction mixture was then stirred for 1 hour at room temperature and the resulting precipitate collected, washed successively with water and methanol, and finally dried in vacuo at 50°C to yield (620 mg, 85%) of N,N'-bis (2-morpholinoethyl)- 2,6-anthraquinonedisulfonamide; m. p. 229.6-233.4 °C. The structure of this compound is shown VIII as formula in Figure 1.

Example 8: 2-(piperazine-1-sulfonyl)-anthraquinonesulfonamide To a solution of 2-anthraquinonesulfonyl chloride (80 g, 0.26 mol) and piperazine (89.6 g, 1.04 mol) in 2-methoxyethanol (480 ml), was added dropwise over 1 hour a solution of 1M sodium hydroxide in ethanol (265 ml). The reaction mixture was then stirred for 1 hour at room temperature before being diluted with water. The resultant precipitate was collected, washed successively with methanol, warm water and further methanol, and finally dried in vacuo at 50°C to yield (75.4 g, 81%) of 2- (piperazine-1-sulfonyl)-anthraquinonesulfonamide as a yellow solid. 1H NMR (200MHz, d6-DMSO) 2.75 (4H, t, N (CH2)2), 2.90 (4H, t, SOIN (CH2)2), 7.90-8.50 (7H, m, AQH) ppm. The structure of this compound is shown as formula X in Figure 1.

Example 9 2-(1-piperazin-1-yl-ethyl)-anthraquinone A. Preparation of 2-(Z-bromoethyl)-anthraquinone A mixture of 2-ethylanthraquinone (300g, 1.27mol), N-bromosuccimide (229g, 1. 28mol) and benzoyl peroxide (70%, 2.5g, 7.2mmol) in CCl4 (2L) was stirred at reflux for 1.5 hours. On cooling, the precipitate was collected by filtration and washed on the filter with ethanol, hot water and finally ethanol again. Recrystallisation from methanol/benzene (~1 : 1) afforded 2- (1-bromoethyl)-anthraquinone as bright yellow crystals (343g, 80%).

B. Preparation of 2-(1-piperazin-1-yl-ethyl)-anthraquinone To a suspension of 2- (1-bromoethyl)-anthraquinone (500mg, 1.58 mmol) in refluxing ethanol (8 ml) was added piperazine (681mg, 7.9 mmol) in one portion. The reaction mixture was maintained at reflux for 2.5 h before being diluted three-fold with water. After acidifying to pH 3 with conc. HCl, the reaction mixture was extracted with chloroform. The aqueous phase was then adjusted to pH 10-11 by the addition of 1M sodium carbonate solution and extracted exhaustively with chloroform. The combined organic extracts were dried over MgSO4 and concentrated in vacuo to give a pale yellow solid. Yield (410 mg, 81%) ; m. p. 97.7-98.1 °C. lH NMR (d6-DMSO,310K) 1.31 (2H, d, CH3CH), 2.35 (4H, m, N (CH2) 2), 2.75 (4H, overlapping dd, NH (C_ 2) 2) t 2.90 (1H, s, NH), 3.60 (1H, q, CH3CH), 7.75-8.20 (7H, m, AQ aromatic).

The structure of this compound is shown as formula XI in Figure 1.

Example 10: Preparation of 2- [l- (4-methylpiperazin-1-yl)-ethyl]-anthraquinone To a suspension of 2-(1-bromoethyl)-anthraquinone (3 g, 9.47 mmol) in refluxing ethanol (48 ml) was added N-methylpiperazine (5.25 ml, 47.4 mmol) in one portion. The reaction mixture was maintained at reflux for 2.5 h before being diluted three-fold with water. After acidifying to pH 3 with conc. HCl, the reaction mixture

was extracted with chloroform. The aqueous phase was then adjusted to pH 10-11 by the addition of 1M sodium carbonate solution and extracted exhaustively with chloroform. The combined organic extracts were dried over MgS04 and concentrated in vacuo to give a pale yellow solid. Yield (2.84 g, 89%); m. p. 98.9-102 °C. lH NMR (CDCl3) 1.41 (2H, d, CHIC), 2.45 (8H, m, N (CH2) 2), 3.60 (1H, q, CH3CH), 7.75-8.40 (7H, AQ aromatic). The structure of this compound is shown as formula XII in Figure 1.

Example 11: Oxygen scavenging by self-reducing anthraquinone compounds in PET A composition was prepared by blending N- (3-morpholinopropyl)- anthraquinonesulfonamide (formula VI) (prepared according to the method described in Example 5) into a commercially available polyethylene terephthalate at a level of 2% w/w. The composition was then compression molded to form a film having a thickness of about 60 llm. This film was placed between two layers of polypropylene film and vacuum-sealed to form a flat package containing essentially no headspace.

The package was placed on a conveyor belt moving at 10 m/min and then exposed to light from a commercial UV-curing lamp (model F-300 fitted with a'D'bulb (Fusion Systems Corp., Maryland, USA)). After exposure to the lamp, the package was opened and the film was then quickly transferred into a foil multilayer bag, and this bag was then vacuum-sealed to form a flat package containing essentially no headspace. This foil-lined pouch allows essentially no ingress of oxygen from the atmosphere into the inside of the pouch. Air was then injected into the foil-lined pouch and the pouch stored at 40 °C. The oxygen content inside the pouch was measured by gas chromatography. The volume of oxygen scavenged from the contents of two pouches prepared in the manner described is shown in Table 1.

Table1. Storage Time Oxygen content inside pouch (%) (days) Pouch 1 Pouch 2 0 20.9 20.9 1 18. 0 18. 0 3 17. 3 17. 4 7 16. 9 16. 8 11 16. 6 16. 7

The absorption spectrum of a film prepared from this composition before exposure to the lamp, immediately after exposure to the lamp, and after exposure to the lamp followed by storage in air at 40 °C for 10 days are shown in Figure 2. These spectra clearly illustrate that photoreduction occurs on exposure to the lamp, followed by re-oxidation upon exposure to air.

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.