Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SEMICONDUCTOR ELEMENT AND METHOD FOR PRODUCTION THEREOF
Document Type and Number:
WIPO Patent Application WO/2017/016945
Kind Code:
A1
Abstract:
The invention relates to a method for producing a component wherein a composite, comprising a semiconductor layer stack and connection layers, is provided, wherein a molded article material is applied to the composite to form a molded article, such that the molded article covers the connection layers. Recesses for exposing the connection layers are formed through the molded article and the recesses are then filled with an electrically conductive material to form through-contacts. The invention further relates to a component, which is in particular produced by such a method, wherein the molded article is integral and formed from a compressed and/or from a molded article material reinforced by fibers or fillers.

Inventors:
MOOSBURGER JUERGEN (DE)
HOEPPEL LUTZ (DE)
Application Number:
PCT/EP2016/067245
Publication Date:
February 02, 2017
Filing Date:
July 20, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OSRAM OPTO SEMICONDUCTORS GMBH (DE)
International Classes:
H01L33/38; H01L23/00; H01L23/31; H01L33/48; H01L21/56; H01L33/00
Domestic Patent References:
WO2011090269A22011-07-28
Foreign References:
US20110090656A12011-04-21
US6331450B12001-12-18
US20080105981A12008-05-08
US20070126016A12007-06-07
DE102013106609A12015-01-08
DE102008054235A12010-05-12
Attorney, Agent or Firm:
SCHINKINGER, Stefan (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Herstellung eines Bauelements (100) mit folgenden Verfahrensschritten:

a) Bereitstellen eines Verbunds (200) aufweisend einen

Halbleiterschichtenstapel (20), eine erste

Anschlussschicht (41) und eine zweite Anschlussschicht (42), wobei die erste und zweite Anschlussschicht auf dem Halbleiterschichtenstapel angeordnet, verschiedenen elektrischen Polaritäten zugeordnet und zur elektrischen Kontaktierung des herzustellenden Bauelements

eingerichtet sind,

b) Aufbringen eines Formkörpermaterials auf den Verbund (200) zur Ausbildung eines Formkörpers (10), sodass - in Draufsicht auf den Halbleiterschichtenstapel (20) - der Formkörper (10) die erste Anschlussschicht (41) und die zweite Anschlussschicht (42) bedeckt,

c) Ausbilden einer ersten Ausnehmung (411) und einer

zweiten Ausnehmung (421) durch den Formkörper (10) hindurch zur stellenweisen Freilegung der

Anschlussschichten (41, 42), und

d) Auffüllen der ersten und zweiten Ausnehmung mit einem elektrisch leitfähigen Material zur Bildung von

Durchkontakten (441, 442), die mit den

Anschlussschichten (41, 42) elektrisch leitend verbunden sind und sich in der vertikalen Richtung durch den

Formkörper (10) hindurch erstrecken.

2. Verfahren nach dem vorhergehenden Anspruch,

bei dem das Formkörpermaterial zur Bildung des Formkörpers (10) durch Heißverpressen auf den Verbund (200) aufgebracht und dadurch an dem Verbund befestigt wird.

3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Formkörpermaterial ein mit Fasern und/oder mit Weißpartikeln gefülltes Matrixmaterial ist, wobei das

Formkörpermaterial vor dem Aufbringen auf den Verbund (200) lediglich teilweise und nicht vollständig vernetzt ist.

4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Formkörper (10) aus einer FR4-Prepreg-Lage oder aus einer Mehrzahl von Prepreg-Lagen gebildet wird.

5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Formkörpermaterial ein mit Glasfasern verstärktes Epoxidharz ist, das vor dem Aufbringen auf den Verbund (200) teilausgehärtet vorliegt und nach dem Aufbringen vollständig ausgehärtet wird.

6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die erste Anschlussschicht (41) mittels eines

Beschichtungsverfahrens auf den Halbleiterschichtenstapel (20) aufgebracht wird, wobei die erste Anschlussschicht (41) eine vertikale Dicke (D41) von höchstens 10 pm aufweist.

7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Ausnehmungen (411, 421) mittels Laserbohrens ausgebildet werden, wobei die Anschlussschichten (41, 42) beim Laserbohren als Stoppschichten dienen.

8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die erste Anschlussschicht (41) und/oder die zweite Anschlussschicht (42) Kupfer enthalten und/oder die

Ausnehmungen (411, 421) mit Kupfer befüllt werden.

9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Verbund (200) ein Waferverbund ist.

10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Verbund (200) mit einer ersten Metallschicht (3) bereitgestellt wird, wobei

- die erste Metallschicht (3) in vertikaler Richtung

zwischen den Anschlussschichten (41, 42) und dem

Halbleiterschichtenstapel (20) angeordnet, mit einer der Anschlussschichten (41, 42) elektrisch leitend verbunden und von der anderen Anschlussschicht elektrisch isoliert ist ,

- die erste Metallschicht (3) eine mittlere vertikale

Dicke (D3) aufweist, die größer ist als eine mittlere vertikale Dicke der ersten Anschlussschicht (D41) und/oder der zweiten Anschlussschicht (D42), und wobei zwischen den Anschlussschichten (41, 42) und/oder zwischen den Durchkontakten (441, 442) ein

Zwischenbereich (40) gebildet ist, der in Draufsicht von der ersten Metallschicht lateral überbrückt wird.

11. Verfahren nach einem der vorhergehenden Ansprüche zur Herstellung einer Mehrzahl von Bauelementen (100), bei dem

- der Verbund (200) eine Mehrzahl von lateral

beabstandeten ersten Anschlussschichten (41) und eine Mehrzahl von lateral beabstandeten zweiten

Anschlussschichten (42) aufweist,

- das Formkörpermaterial auf den Verbund (200) zur

Ausbildung des Formkörpers (10) derart aufgebracht wird, dass der Formkörper (10) die Mehrzahl von ersten

Anschlussschichten (41) und die Mehrzahl von zweiten Anschlussschichten (42) bedeckt, - eine Mehrzahl von ersten und zweiten Durchkontakten (441, 442) durch Ausbilden und Auffüllen einer Mehrzahl von ersten und zweiten Ausnehmungen (411, 421)

ausgebildet wird,

- der Verbund (200) einen oder mehrere Trenngräben

(50) aufweist, und

- der Verbund (200) nach der Bildung des Formkörpers (10) entlang des Trenngrabens oder der Trenngräben (50) derart in eine Mehrzahl von Bauelementen (100)

vereinzelt wird, dass die Bauelemente (100) jeweils einen Träger (7) und einen auf dem Träger (7)

angeordneten Halbleiterkörper (2) aufweisen, wobei der Halbleiterkörper (2) einen Teil des

Halbleiterschichtenstapels (20) enthält, und der Träger (7) einen Teil des Formkörpers (10), eine der ersten Anschlussschichten (41), eine der zweiten

Anschlussschichten (42), einen der ersten Durchkontakte (441) und einen der zweiten Durchkontakte (442) enthält.

12. Bauelement (100) mit einem Träger (7) und einem auf dem Träger angeordneten Halbleiterkörper (2), bei dem

- der Träger zumindest einen Formkörper (10), einen

ersten Durchkontakt (441) und einen zweiten

Durchkontakt (442) aufweist, wobei die Durchkontakte in lateraler Richtung voneinander räumlich beabstandet sind und sich in vertikaler Richtung jeweils durch den Formkörper hindurch erstrecken, und der Formkörper die Durchkontakte lateral vollumfänglich umschließt,

- das Bauelement eine erste Anschlussschicht (41) und

eine von der ersten Anschlussschicht lateral

beabstandete zweite Anschlussschicht (42) aufweist, wobei die Anschlussschichten zur elektrischen Kontaktierung des Halbleiterkörpers eingerichtet, verschiedenen elektrischen Polaritäten des Bauelements zugehörig, zwischen dem Halbleiterkörper und den

Durchkontakten angeordnet und mit den Durchkontakten elektrisch leitend verbunden sind,

— der Formkörper einstückig und aus einem verpressten und/oder mit Fasern oder Füllstoffen verstärkten

Formkörpermaterial ausgebildet ist.

13. Bauelement nach dem vorhergehenden Anspruch,

bei dem der Formkörper (10) eine erste Ausnehmung (411) und eine zweite Ausnehmung (421) aufweist, wobei die Ausnehmungen (411, 421) jeweils eine Innenwand mit Trennspuren aufweisen und zur Ausbildung der Durchkontakte (441, 442) mit einem elektrisch leitfähigen Material aufgefüllt sind.

14. Bauelement nach einem der Ansprüche 12 bis 13,

das eine erste Metallschicht (3) aufweist, die in vertikaler Richtung zwischen dem Halbleiterkörper (2) und den

Anschlussschichten (41, 42) angeordnet ist und dabei mit einer der Anschlussschichten elektrisch leitend verbunden und von der anderen Anschlussschicht elektrisch isoliert ist, wobei die erste Metallschicht (3) in Draufsicht einen

zwischen den Anschlussschichten und/oder zwischen den

Durchkontakten (441, 442) angeordneten Zwischenbereich (40) entlang einer lateral Längsrichtung überbrückt.

15. Bauelement nach dem vorhergehenden Anspruch,

bei dem die erste Metallschicht (3) in dem Zwischenbereich (40) frei von einer Unterbrechung ist und eine laterale

Breite entlang einer zu der Längsrichtung quer oder senkrecht verlaufenden lateralen Querrichtung aufweist, wobei sich die laterale Breite der ersten Metallschicht höchstens um 30 % von einer lateralen Breite der Anschlussschichten (41, 42) entlang der lateralen Querrichtung unterscheidet.

16. Bauelement nach einem der Ansprüche 14 bis 15,

das eine zusammenhängende Isolierungsstruktur (9) aufweist, die sich bereichsweise in den Halbleiterkörper (2) hinein erstreckt und zumindest bereichsweise an den Träger (7) angrenzt, wobei

- die erste Metallschicht (3) durch die

Isolierungsstruktur (9) von einer der Anschlussschichten (41, 42) elektrisch isoliert ist, und

- die Isolierungsstruktur (9) zumindest eine Öffnung

aufweist, durch die sich die erste Metallschicht (3) oder eine der Anschlussschichten (41, 42) zur

elektrischen Kontaktierung des Halbleiterkörpers (2) hindurch erstreckt.

17. Bauelement nach einem der Ansprüche 12 bis 16,

das eine Verdrahtungsstruktur (8) aufweist, wobei

- sich die Verdrahtungsstruktur (8) bereichsweise in den Halbleiterkörper (2) hinein erstreckt und zumindest bereichsweise an den Träger (7) angrenzt, und

- die erste Anschlussschicht (41) und die zweite

Anschlussschicht (42) mittels der Verdrahtungsstruktur (8) mit einer ersten Halbleiterschicht (21) eines ersten Ladungsträgertyps beziehungsweise mit einer zweiten Halbleiterschicht (22) eines zweiten Ladungsträgertyps des Halbleiterkörpers (2) elektrisch verbunden sind.

18. Bauelement nach dem vorhergehenden Anspruch,

bei dem der Halbleiterkörper (2) eine zwischen der ersten Halbleiterschicht (21) und der zweiten Halbleiterschicht (22) angeordnete aktive Schicht (23) aufweist, die im Betrieb des Bauelements zur Emission oder Detektion von

elektromagnetischen Strahlungen eingerichtet ist, wobei die Verdrahtungsstruktur (8) eine Durchkontaktierung (82) aufweist, die sich zur elektrischen Kontaktierung der ersten Halbleiterschicht (21) durch die zweite Halbleiterschicht (22) und die aktive Schicht (23) hindurch in die erste

Halbleiterschicht (21) erstreckt.

Description:
Beschreibung

HALBLEITERBAUELEMENT UND DESSEN HERSTELLUNGSVERFAHREN

Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldung 10 2015 214 228.0, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.

Zur Herstellung eines Gehäuses für einen Halbleiterchip kann der Halbleiterchip mit einer Vergussmasse umhüllt werden, wodurch ein Bauelement mit dem Halbleiterchip und der gehärteten Vergussmasse als Gehäuse gebildet wird. Alternativ kann das Gehäuse auch separat hergestellt und der

Halbleiterchip darin platziert werden.

Eine Aufgabe ist es, ein vereinfachtes und kostengünstiges Verfahren zur Herstellung eines mechanisch stabilen

Bauelements anzugeben. Des Weiteren wird ein Bauelement mit einer hohen mechanischen Stabilität angegeben.

Gemäß zumindest einer Ausführungsform des Verfahrens zur Herstellung eines Bauelements wird ein Verbund aus einem Halbleiterschichtenstapel, einer ersten Anschlussschicht und einer zweiten Anschlussschicht bereitgestellt. Der Verbund ist vorzugsweise ein Waferverbund . Der Waferverbund kann ein Aufwachssubstrat aufweisen, auf das der

Halbleiterschichtenstapel etwa durch ein

Beschichtungsverfahren, bevorzugt durch ein Epitaxie- Verfahren, aufgebracht ist. Die erste Anschlussschicht und die zweite Anschlussschicht sind insbesondere zur

elektrischen Kontaktierung des Halbleiterschichtenstapels eingerichtet und beispielsweise verschiedenen elektrischen Polaritäten des herzustellenden Bauelements zugehörig. Der Verbund kann auch eine Mehrzahl von ersten Anschlussschichten und eine Mehrzahl von zweiten Anschlussschichten aufweisen. Die Anschlussschichten können mittels eines

Beschichtungsverfahrens , etwa mittels eines galvanischen oder stromlosen Beschichtungsverfahrens , auf den

Halbleiterschichtenstapel aufgebracht werden.

Gemäß zumindest einer Ausführungsform des Verfahrens wird der Verbund mit einer ersten Metallschicht bereitgestellt. Die erste Metallschicht ist in vertikaler Richtung etwa zwischen den Anschlussschichten und dem Halbleiterschichtenstapel angeordnet. Insbesondere ist die erste Metallschicht mit einer aus der Gruppe aus der ersten und der zweiten

Anschlussschicht elektrisch verbunden und von der anderen Anschlussschicht aus dieser Gruppe elektrisch isoliert.

Unter einer vertikalen Richtung wird eine Richtung

verstanden, die insbesondere senkrecht zu einer

Haupterstreckungsfläche des Halbleiterschichtenstapels gerichtet ist. Unter einer lateralen Richtung wird eine

Richtung verstanden, die insbesondere parallel zu der

Haupterstreckungsfläche des Halbleiterschichtenstapels verläuft. Insbesondere sind die vertikale Richtung und die laterale Richtung quer, insbesondere senkrecht zueinander gerichtet .

Gemäß zumindest einer Ausgestaltung weist die erste

Metallschicht eine größere mittlere vertikale Dicke auf als eine mittlere vertikale Dicke der ersten Anschlussschicht oder eine mittlere vertikale Dicke der zweiten

Anschlussschicht. In Draufsicht kann die erste Metallschicht einen zwischen den Anschlussschichten angeordneten Zwischenbereich lateral überbrücken, bevorzugt einen Großteil etwa mindestens 60%, mindestens 70% oder mindestens 90% des Zwischenbereichs überdecken und dadurch das herzustellende Bauelement an Stellen des Zwischenbereichs mechanisch

verstärken. Die erste Anschlussschicht und die zweite

Anschlussschicht sind durch diesen Zwischenbereich

voneinander elektrisch getrennt. Der Verbund kann eine

Mehrzahl von solchen ersten Metallschichten aufweisen, wobei jede Metallschicht einem Paar aus einer ersten

Anschlussschicht und einer zweiten Anschlussschicht

zugeordnet ist. Die erste Metallschicht beziehungsweise die ersten Metallschichten können somit als eine mechanische Verstärkung für den Halbleiterschichtenstapels sowie für die herzustellenden Bauelemente dienen.

Gemäß zumindest einer Ausführungsform des Verfahrens wird der Verbund mit einem oder einer Mehrzahl von Trenngräben

bereitgestellt. Ein solcher Trenngraben kann sich in der vertikalen Richtung in den Halbleiterschichtenstapel hinein erstrecken. Insbesondere wird der Halbleiterschichtenstapel durch den Trenngraben oder durch die Mehrzahl von Trenngräben beispielsweise nach einem Vereinzelungsschritt entlang der Trenngräben in eine Mehrzahl von Halbleiterkörpern der herzustellenden Bauelemente unterteilt. Das heißt, der

Verbund mit dem Halbleiterschichtenstapel kann auf Waferebene bereitgestellt werden, wobei der Halbleiterschichtenstapel in eine Mehrzahl von Halbleiterkörpern vereinzelt werden kann.

Der Halbleiterschichtenstapel kann eine erste

Halbleiterschicht eines ersten Ladungsträgertyps und eine zweite Halbleiterschicht eines zweiten Ladungsträgertyps aufweisen. Des Weiteren weist der Halbleiterschichtenstapel eine aktive Schicht auf, die insbesondere zwischen der ersten und der zweiten Halbleiterschicht angeordnet ist. Zum

Beispiel ist die aktive Schicht eine p-n-Übergangszone . Die aktive Schicht kann dabei als eine Schicht oder als eine Schichtenfolge mehrerer Schichten ausgebildet sein. Die aktive Schicht ist insbesondere dazu eingerichtet, eine elektromagnetische Strahlung etwa im sichtbaren,

ultravioletten oder im infraroten Spektralbereich zu

emittieren oder eine elektromagnetische Strahlung zu

absorbieren und diese in elektrische Signale oder elektrische Energie umzuwandeln. Der Halbleiterschichtenstapel kann mittels eines Epitaxie-Verfahrens schichtenweise auf ein Aufwachssubstrat aufgebracht sein. Der Verbund kann daher auch ein Aufwachssubstrat aufweisen, auf dem der

Halbleiterschichtenstapel angeordnet ist. Das

Aufwachssubstrat kann jedoch in einem nachfolgenden

Verfahrensschritt von dem Halbleiterschichtenstapel entfernt werden, sodass das herzustellende Bauelement insbesondere frei von einem Aufwachssubstrat ist.

Der Halbleiterschichtenstapel weist eine erste Hauptfläche auf, die beispielsweise als eine Strahlungsdurchtrittsflache ausgebildet ist. Des Weiteren weist der

Halbleiterschichtenstapel eine der ersten Hauptfläche

abgewandte zweite Hauptfläche auf, die beispielsweise durch eine Oberfläche einer Halbleiterschicht, zum Beispiel der zweiten Halbleiterschicht, gebildet ist. Insbesondere

begrenzen die erste Hauptfläche und die zweite Hauptfläche den Halbleiterschichtenstapel in der vertikalen Richtung. Insbesondere grenzt die erste Hauptfläche an das

Aufwachssubstrat an. Die erste Metallschicht sowie die

Anschlussschichten sind insbesondere auf der Seite der zweiten Hauptfläche auf dem Halbleiterschichtenstapel angeordnet . Gemäß zumindest einer Ausführungsform des Verfahrens wird ein Formkörpermaterial auf den Verbund zur Ausbildung eines

Formkörpers des herzustellenden Bauelements aufgebracht. Das Formkörpermaterial wird insbesondere auf der Seite der zweiten Hauptfläche des Halbleiterschichtenstapels so

ausgebildet, dass in Draufsicht auf den

Halbleiterschichtenstapel der Formkörper die erste

Anschlussschicht und die zweite Anschlussschicht bedeckt, insbesondere vollständig bedeckt.

Das Formkörpermaterial kann dabei ein mit Fasern, etwa

Gewebefasern oder Glasfasern, verstärktes Matrixmaterial aufweisen. Beispielsweise ist das Matrixmaterial ein

Harzmaterial wie etwa ein Epoxidharz. Zusätzlich oder

alternativ kann das Matrixmaterial mit Weißpartikeln etwa mit reflektierenden beziehungsweise streuenden Partikeln aus Titanoxid oder Siliziumoxid gefüllt sein. Bevorzugt ist das Formkörpermaterial vor dem Aufbringen auf den Verbund

lediglich teilweise und nicht vollständig vernetzt, wodurch das Formkörpermaterial sich einfach verarbeiten lässt und die Form des Formkörpers leicht modelliert beziehungsweise verändert werden kann. Insbesondere ist das

Formkörpermaterial in Form von einer Zweiphasenfolie

(englisch: bistage moldsheet) ausgebildet, die ein

Matrixmaterial, Faser wie etwa Glasfaser und/oder Füllstoffe wie etwa Weißpartikel aufweist, wobei das Matrixmaterial mit den Fasern und/oder Füllstoffen nicht vollständig vernetzt ist und erst nach dem Aufbringen oder während des Aufbringens auf den Verbund etwa durch eine thermische Behandlung

vollständig vernetzt wird. Das Formkörpermaterial kann ein Leiterplattenmaterial sein. Unter einem Leiterplattenmaterial wird ein Material

verstanden, das in der Leiterplattenindustrie für die

Herstellung von Leiterplatten verwendet wird, und

beispielsweise ein mit Fasern verstärktes Matrixmaterial aufweist, wobei die Fasern in dem Matrixmaterial eingebettet sind. Zum Beispiel weist das Formkörpermaterial ein mit

Fasern verstärktes Reaktionsharz auf. Insbesondere ist der Formkörper aus einer FR4-Prepreg-Lage oder aus einer Mehrzahl von Prepreg-Lagen (Laminat) gebildet. Das FR4-Material ist üblicherweise mit Glasfasern gefüllt und weist daher eine besonders hohe mechanische Stabilität auf, etwa eine

deutliche höhere Stabilität als ein mit Silizium-haltigen Partikeln gefüllten Vergussmaterial. Der heißverpresste

Formkörper sowie das herzustellende Bauelement sind somit besonders bruchstabil ausgebildet.

Gemäß zumindest einer Ausführungsform des Verfahrens wird das Formkörpermaterial zur Bildung des Formkörpers mittels

Heißverpressens auf den Verbund aufgebracht, wodurch das Formkörpermaterial etwa nach einer Abkühlung auf einer natürlichen Art und Weise an dem Verbund befestigt wird. Das Formkörpermaterial, welches zuvor insbesondere mit den Fasern und/oder mit anderen Füllstoffen wie Weißpartikeln lediglich teilweise vernetzt vorliegt, kann durch das Heißverpressen vollständig vernetzt werden. Insbesondere kann das

Formkörpermaterial vor dem Aufbringen auf den Verbund

lediglich teilausgehärtet, das heißt lediglich angetrocknet und nicht vollständig ausgehärtet, vorliegen, wobei das

Formkörpermaterial etwa nach dem Heißverpressen vollständig ausgehärtet wird, wodurch ein fester und mechanisch stabiler Formkörper auf dem Verbund ausgebildet wird. Insbesondere wird bei der Aushärtung des Formkörpermaterials eine Temperatur oberhalb einer Glasübergangstemperatur des

Formkörpermaterials verwendet, sodass der Formkörper nach der Abkühlung eine dauerhafte Form erhält und mechanisch stabil an dem Verbund befestigt wird.

Gemäß zumindest einer Ausführungsform des Verfahrens wird zumindest eine Ausnehmung in dem Formkörper zur Freilegung zumindest einer Anschlussschicht ausgebildet. Beispielsweise werden eine erste Ausnehmung durch den Formkörper hindurch zur teilweisen Freilegung der ersten Anschlussschicht und eine zweite Ausnehmung durch den Formkörper hindurch zur teilweisen Freilegung der zweiten Anschlussschicht

ausgebildet. Die erste und die zweite Ausnehmung sind etwa durch den Zwischenbereich in der lateralen Richtung

voneinander räumlich beabstandet, wobei der Zwischenbereich vollständig von dem Formkörpermaterial gefüllt ist. Die

Ausbildung der Ausnehmungen kann mechanisch erfolgt werden. Auch können die Ausnehmungen mittels Laserbohrens erzeugt werden, wobei die erste und die zweite Anschlussschicht etwa als Stoppschichten dienen können. Laserbohren ist ein

besonders geeignetes Verfahren zur Erzeugung solcher

Ausnehmungen, da die Ausnehmungen durch dieses Verfahren hinsichtlich deren Positionen und Größen ganz gezielt und präzise in kürzester Zeit erzeugt werden können. Es hat sich außerdem herausgestellt, dass Kupferschichten beim

Laserbohren als besonders geeignete Stoppschichten dienen können. Die Anschlussschichten sind daher bevorzugt aus Kupfer ausgebildet oder bestehen aus diesem.

Die Anschlussschichten können jeweils als eine Metallschicht ausgebildet sein, wobei die Metallschicht eine vertikale Dicke aufweist, die insbesondere höchstens 15 pm beträgt. Beispielsweise beträgt die vertikale Dicke der Anschlussschichten mindestens 4 pm. Bevorzugt beträgt eine mittlere vertikale Dicke der ersten und/oder zweiten

Anschlussschicht zwischen einschließlich 4 und 15 pm, zwischen einschließlich 4 und 10 pm oder zwischen

einschließlich 4 und 8 pm, zum Beispiel circa 6 pm. Bei einer solchen vertikalen Dicke können die erste Anschlussschicht und/oder die zweite Anschlussschicht insbesondere mittels eines galvanischen Prozesses oder stromlosen

Abscheidungsprozesses auf den Halbleiterschichtenstapel vereinfacht aufgebracht werden, da diese geringe Dicke der Anschlussschichten eine Verwendung von deutlich einfacher zu handhabenden Lacken als zum Beispiel einem Trockenresist erlaubt. Das heißt, die erste und/oder die zweite

Anschlussschicht mit solcher geringer Dicke können ohne großen Aufwand beispielsweise mittels strukturierten

Aufbringens von Metallschichten durch ein galvanisches oder stromloses Beschichtungsverfahren auf den

Halbleiterschichtenstapel aufgebracht werden, bei dem auf das Aufbringen und Verarbeiten einer vergleichsweise dicken

TrockenresistSchicht verzichtet werden kann. Die

vergleichsweise dünnen Anschlussschichten können dabei als Basis für nachfolgende Prozessschritte etwa zur Bildung von sich durch den Formkörper hindurch erstreckenden

Durchkontakten etwa in Form von Anschlusssäulen dienen, wobei die Durchkontakte eine vertikale Dicke aufweisen, die

deutlich größer, etwa mindestens zweimal, fünfmal oder mindestens zehnmal oder etwa mindestens zwanzigmal so groß wie die Dicke der Anschlussschichten sein kann.

Gemäß zumindest einer Ausführungsform des Verfahrens werden die Ausnehmungen mit einem elektrisch leitfähigen Material, zum Beispiel mit einem Metall wie zum Beispiel Kupfer, zur Bildung von Durchkontakten, gefüllt. Die Durchkontakte sind mit den Anschlussschichten elektrisch leitend verbunden und erstrecken sich in vertikaler Richtung durch den Formkörper hindurch. Die Durchkontakte und Anschlussschichten bilden insbesondere eine zweite Metallschicht des herzustellenden Bauelements. Die zweite Metallschicht kann somit insbesondere in zumindest zwei voneinander lateral beabstandete

Teilbereiche unterteilt sein, wobei ein erster Teilbereich einen ersten Durchkontakt und eine erste Anschlussschicht umfasst und ein zweiter Teilbereich einen zweiten

Durchkontakt und eine zweite Anschlussschicht umfasst.

Die zweite Metallschicht kann zwar in einem einzigen

Verfahrensschritt, etwa mittels eines galvanischen oder stromlosen Beschichtungsverfahrens , ausgebildet werden.

Hierzu wird jedoch eine TrockenresistSchicht benötigt, die mindestens genauso dick wie eine vertikale Dicke der zweiten Metallschicht ist. Diese vergleichsweise dicke

TrockenresistSchicht muss vor dem Aufbringen der zweiten Metallschicht strukturiert und nach dem Aufbringen der zweiten Metallschicht entfernt werden. Aufgrund der

vergleichsweise großen Dicke der zweiten Metallschicht, die etwa 100 pm oder einige hunderte Mikrometer betragen kann, sind Prozesse hinsichtlich der Strukturierung und

anschließender Entfernung der TrockenresistSchicht mit großem Aufwand verbunden. Durch die schrittweise Ausbildung der zweiten Metallschicht, nämlich durch das Ausbilden von den relativ dünnen Anschlussschichten und das Auffüllen der Ausnehmungen mit einem elektrisch leitfähigen Material, kann die Ausbildung der zweiten Metallschicht vereinfacht, zuverlässig und besonders effizient ausgestaltet werden. Des Weiteren wird die zweite Metallschicht unmittelbar nach deren Fertigstellung bereits von dem Formkörper umgeben, sodass eine Umhüllung etwa durch ein Vergießen der Metallschicht mit einem Vergussmaterial nicht mehr erforderlich ist. Außerdem steht für das elektrisch leitfähige Material, das zum

Auffüllen der Ausnehmungen verwendet wird, eine große Auswahl an verschiedenen Materialien zur Verfügung. Auch können verschiedene Formen der Ausnehmungen, und damit verschiedene Formen der zweiten Metallschicht einfach erzeugt werden.

Gemäß zumindest einer Ausführungsform des Verfahrens wird der Verbund vor dem Aufbringen des Formkörpermaterials frei von einem Träger, der verschieden von einem Aufwachssubstrat ist, bereitgestellt. Das Verfahren ist insbesondere so ausgelegt, dass das herzustellende Bauelement nach dessen Fertigstellung von der zweiten Metallschicht und von dem Formkörper

mechanisch getragen wird. Insbesondere bilden die zweite Metallschicht und der Formkörper einen Träger oder ein

Gehäuse des herzustellenden Bauelements. Das Bauelement wird außerdem bevorzugt von der ersten Metallschicht mechanisch verstärkt, wobei die erste Metallschicht auch als Teil des Trägers oder des Gehäuses ausgebildet werden kann.

Gemäß zumindest einer Ausführungsform des Verfahrens wird der Verbund mit einer Mehrzahl von ersten Metallschichten und eine Mehrzahl von zweiten Metallschichten mit jeweils einer ersten Anschlussschicht sowie einer zweiten Anschlussschicht bereitgestellt. Der Verbund weist insbesondere einen oder eine Mehrzahl von Trenngräben zwischen den herzustellenden Bauelementen auf, sodass der Verbund nach der Bildung des Formkörpers entlang der Trenngräben in eine Mehrzahl von Bauelementen vereinzelt werden kann. Die vereinzelten

Bauelemente können jeweils einen Träger und einen auf dem Träger angeordneten Halbleiterkörper aufweisen, wobei der Halbleiterkörper aus dem Halbleiterschichtenstapel hervorgeht und der Träger insbesondere aus den vereinzelten Formkörper, einer von den ersten Metallschichten und einer von den zweiten Metallschichten mit einer ersten Anschlussschicht, einem ersten Durchkontakt, einer zweiten Anschlussschicht und einem zweiten Durchkontakt gebildet ist. Das vereinzelte Bauelement kann auch eine Mehrzahl von ersten und/oder zweiten Anschlussschichten sowie eine Mehrzahl von ersten und/oder zweiten Durchkontakten aufweisen. Der Träger des vereinzelten Bauelements wird somit direkt am

Halbleiterschichtenstapel beziehungsweise am

Halbleiterkörper, das heißt auf Waferebene und nicht in einem separaten Verfahrensschritt, ausgebildet, sodass das

fertiggestellte Bauelement in diesem Sinne insbesondere frei von einer Verbindungsschicht etwa in Form einer Lötschicht oder einer KlebstoffSchicht zwischen dem Halbleiterkörper und dem Träger ist.

In einem Verfahren zur Herstellung eines oder einer Mehrzahl von Bauelementen wird ein Verbund aufweisend eine erste

Anschlussschicht, eine zweite Anschlussschicht und einen Halbleiterschichtenstapel bereitgestellt, wobei die erste und die zweite Anschlussschicht zur elektrischen Kontaktierung des Halbleiterschichtenstapels eingerichtet und verschiedenen elektrischen Polaritäten des herzustellenden Bauelements zugeordnet sind. In einem nachfolgenden Verfahrensschritt wird ein Formkörpermaterial auf den Verbund, insbesondere auf eine dem Halbleiterschichtenstapel abgewandte Oberfläche des Verbunds, zur Ausbildung eines Formkörpers aufgebracht, sodass in Draufsicht auf den Halbleiterschichtenstapel der Formkörper die erste Anschlussschicht und die zweite

Anschlussschicht bedeckt. Nach dem Aufbringen des

Formkörpermaterials werden eine erste Ausnehmung und eine zweite Ausnehmung durch den vom Körper hindurch zur

Freilegung der Anschlussschichten ausgebildet. Die Ausnehmungen werden anschließend mit einem elektrisch

leitfähigen Material zur Bildung von Durchkontakten

aufgefüllt, die mit den Anschlussschichten elektrisch

verbunden sind und sich in der vertikalen Richtung durch den Formkörper hindurch erstrecken.

Durch das stufenweise Ausbilden der Anschlussschicht und des zugehörigen Durchkontakts kann auf eine Verarbeitung eines vergleichsweise dicken TrockenresistSchicht verzichtet werden. Durch das Öffnen und Auffüllen der Ausnehmungen wird auch kein Rückschieifen des Formkörpers beziehungsweise der Durchkontakte benötigt, wodurch die Gefahr einer Ablagerung von Metallreste, etwa Kupferreste oder Kupferatome, auf der Strahlungsdurchtrittsflache vermieden werden können. Eine Gefahr etwa bezüglich einer Kupferkontamination kann somit minimiert werden. Eine weitere Gefahr, wonach eine vertikale Grenzfläche zwischen einem Durchkontakt und dem Formkörper etwa bei einem Rückschleifprozess möglicherweise nicht freigelegt wird, wird durch das Öffnen und Auffüllen der Ausnehmungen ebenfalls vermieden. Zudem ist das hier

beschriebene Verfahren aufgrund einer großen Auswahl von Formkörpermaterialien besonders kostengünstig und ist auch für einen Verbund mit besonders großer Fläche anwendbar, die zum Beispiel eine Fläche eines Verbunds von mehreren

ursprünglichen Wafern und somit viel größer als typische Wafergröße sein kann. Auch eine gleichmäßige vertikale

Bauhöhe des Bauelements kann bereits nach dem Ausbilden des Formkörpers festgelegt werden.

In einer Ausführungsform eines Bauelements weist dieses einen Träger und einen auf dem Träger angeordneten Halbleiterkörper auf. Der Träger ist zumindest aus einem Formkörper, einem ersten Durchkontakt und einem zweiten Durchkontakt ausgebildet. Die Durchkontakte sind in lateraler Richtung voneinander räumlich beabstandet und können sich in

vertikaler Richtung jeweils durch den Formkörper hindurch erstrecken. Dabei kann der Formkörper die Durchkontakte lateral vollumfänglich umschließen. Das Bauelement weist eine erste Anschlussschicht und eine von der ersten

Anschlussschicht lateral beabstandete zweite Anschlussschicht auf, wobei die Anschlussschichten zur elektrischen

Kontaktierung des Halbleiterkörpers eingerichtet sind. Die erste und zweite Anschlussschicht sind verschiedenen

elektrischen Polaritäten des Bauelements zugeordnet. Die Anschlussschichten können als Teile des Trägers ausgebildet sein. Dabei sind die Anschlussschichten etwa zwischen dem Halbleiterkörper und den Durchkontakten angeordnet und mit den Durchkontakten elektrisch verbunden. Der Formkörper ist insbesondere einstückig ausgebildet. Das heißt, der

Formkörper ist zusammenhängend und kann etwa in einem

einzigen Verfahrensschritt hergestellt werden. Insbesondere ist der Formkörper aus einem verpressten und mit Fasern oder Füllstoffen verstärkten Formkörpermaterial ausgebildet.

Gemäß zumindest einer Ausführungsform des Bauelements weist der Formkörper eine erste Ausnehmung und eine zweite

Ausnehmung auf. Die erste Ausnehmung und/oder die zweite Ausnehmung können dabei eine Innenwand mit Trennspuren aufweisen. Insbesondere können alle Innenwände der ersten und/oder des zweiten Ausnehmung Trennspuren aufweisen. Zur Ausbildung der Durchkontakte sind die Ausnehmungen etwa mit einem elektrisch leitfähigen Material aufgefüllt. Unter Trennspuren werden Spuren auf der Innenwand der Ausnehmung verstanden, die etwa bei der Ausbildung der Ausnehmung entstanden sind. Solche Spuren können charakteristische

Spuren eines mechanischen Bearbeitungsprozesses, etwa eines Bohr- oder Fräsprozesses, oder eines chemischen

Bearbeitungsprozesses, etwa eines Ätzprozesses, oder

charakteristische Spuren eines Laserbearbeitungsprozesses sein. Die Trennspuren können außerdem etwa in Form von mit elektrisch leitfähigen Material gefüllten Rillen oder

durchtrennten Glasfaserbündeln auf der Innenwand der

Ausnehmung vorliegen.

Gemäß zumindest einer Ausführungsform des Bauelements weist dieses eine erste Metallschicht auf. Die erste Metallschicht ist in vertikaler Richtung etwa zwischen dem Halbleiterkörper und den Anschlussschichten angeordnet ist. Insbesondere ist die erste Metallschicht mit einer der Anschlussschichten elektrisch leitend verbunden und von einer anderen

Anschlussschicht elektrisch isoliert. In Draufsicht ist ein zwischen den Anschlussschichten sowie zwischen den

Durchkontakten angeordneter Zwischenbereich von der ersten Metallschicht entlang einer lateralen Längsrichtung

überbrückt beziehungsweise überdeckt, wodurch das Bauelement an Stellen des Zwischenbereichs mechanisch verstärkt ist. In Draufsicht weist die erste Metallschicht somit Überlappungen sowohl mit der ersten als auch mit der zweiten

Anschlussschicht. Insbesondere ist die erste Metallschicht im Bereich des Zwischenbereichs frei von einer Unterbrechung.

Die erste Metallschicht kann in dem Zwischenbereich außerdem eine laterale Breite entlang einer lateralen und zu der

Längsrichtung quer oder senkrecht verlaufenden Querrichtung aufweisen, wobei sich die laterale Breite der ersten

Metallschicht höchstens um 30 % oder höchstens um 20 % oder bevorzugt höchstens um 10 % von einer lateralen Breite der Anschlussschichten und/oder der Durchkontakte entlang der lateralen Querrichtung unterscheidet. Die laterale Breite der ersten Metallschicht kann dabei kleiner als die laterale Breite der Anschlussschichten und/oder der Durchkontakte sein. Die erste Metallschicht kann als Teil des Trägers ausgebildet sein. Der Träger kann eine zweite Metallschicht aufweisen, wobei die zweite Metallschicht die

Anschlussschichten und die Durchkontakte umfasst. Somit ist das Bauelement über die zweite Metallschicht extern

elektrisch kontaktierbar .

Gemäß zumindest einer Ausführungsform des Bauelements weist dieses eine zusammenhängende Isolierungsstruktur auf, welche eine einzige oder eine Mehrzahl von Isolierungsschichten aufweisen kann, die sich insbesondere aneinander angrenzen und somit eine zusammenhängende Isolierungsstruktur bilden. Das heißt die zusammenhängende Isolierungsstruktur kann durch mehrere separate Verfahrensschritte hergestellt sein.

Insbesondere ist die zusammenhängende Isolierungsstruktur des Bauelements so eingerichtet, dass sich die

Isolierungsstruktur bereichsweise in den Halbleiterkörper hinein erstreckt und bereichsweise an den Träger angrenzt oder sich gar in den Träger hinein erstreckt. Die erste

Metallschicht kann durch die Isolierungsstruktur von der ersten oder von der zweiten Anschlussschicht elektrisch isoliert sein. Insbesondere weist die Isolierungsstruktur eine Öffnung auf, durch die sich die erste Metallschicht oder die zweite Metallschicht, etwa eine Anschlussschicht, zur elektrischen Kontaktierung des Halbleiterkörpers hindurch erstreckt. Die Isolierungsstruktur kann mehrere solche

Öffnungen aufweisen.

Gemäß zumindest einer Ausführungsform des Bauelements weist dieses eine Verdrahtungsstruktur zur elektrischen Kontaktierung des Halbleiterkörpers mit der ersten Metallschicht und/oder mit der zweiten Metallschicht auf. Beispielsweise bildet die Verdrahtungsstruktur eine

Verdrahtungsebene, die im Wesentlichen zwischen dem Träger und dem Halbleiterkörper angeordnet ist. Insbesondere kann sich die Verdrahtungsstruktur bereichsweise in den

Halbleiterkörper und/oder in den Träger hinein erstrecken oder zumindest bereichsweise an den Halbleiterkörper und/oder Träger angrenzen. Mittels der Verdrahtungsstruktur können die erste Anschlussschicht und die zweite Anschlussschicht etwa mit einer ersten Halbleiterschicht eines ersten

Ladungsträgertyps beziehungsweise mit einer zweiten

Halbleiterschicht eines zweiten Ladungsträgertyps des

Halbleiterkörpers elektrisch leitend verbunden werden.

Der Halbleiterkörper kann außerdem eine aktive Schicht aufweisen, die in der vertikalen Richtung zwischen der ersten Halbleiterschicht und der zweiten Halbleiterschicht

angeordnet ist und im Betrieb des Bauelements zur Emission oder zur Detektion von elektromagnetischen Strahlungen eingerichtet ist. Bevorzugt weist die Verdrahtungsstruktur eine Durchkontaktierung auf, die sich zur elektrischen

Kontaktierung der ersten Halbleiterschicht durch die zweite Halbleiterschicht und die aktive Schicht hindurch in die erste Halbleiterschicht erstreckt. Durch die

Durchkontaktierung kann das Bauelement so ausgeführt werden, dass dieses über eine Rückseite des Bauelements extern elektrisch kontaktierbar ausgebildet ist. Ein externes elektrisches Kontaktieren des Bauelement kann dabei

insbesondere ein Wiederaufschmelzlöten (engl.: reflow

soldering) umfassen. Das hier beschriebene Verfahren ist für die Herstellung eines hier beschriebenen Bauelements besonders geeignet. Die in Zusammenhang mit dem Bauelement beschriebenen Merkmale können daher auch für das Verfahren herangezogen werden und

umgekehrt .

Weitere Vorteile, bevorzugte Ausführungsformen und

Weiterbildungen des Verfahrens sowie des Bauelements ergeben sich aus den im Folgenden in Verbindung mit den Figuren 1A bis 8 erläuterten Ausführungsbeispielen.

Es zeigen:

Figuren 1A bis 6 verschiedene Verfahrensstadien eines

Ausführungsbeispiels für ein Verfahren zur Herstellung eines oder einer Mehrzahl von Bauelementen in schematischen Schnittansichten, und

Figuren 7 und 8 verschiedene Ausführungsbeispiele für ein

Bauelement in schematischen Schnittansichten.

Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit gleichen Bezugszeichen versehen. Die Figuren sind jeweils schematische Darstellungen und daher nicht unbedingt maßstabsgetreu. Vielmehr können vergleichsweise kleine Elemente und insbesondere Schichtdicken zur

Verdeutlichung übertrieben groß dargestellt werden.

In Figur 1A ist ein Verbund 200 dargestellt. Der Verbund weist einen Halbleiterschichtenstapel 20 auf. Der

Halbleiterschichtenstapel 20 ist auf einem Substrat 1 angeordnet. Das Substrat 1 ist insbesondere ein

Aufwachssubstrat , etwa ein Saphirsubstrat, wobei der Halbleiterschichtenstapel 20 etwa mittels eines Epitaxie- Verfahrens schichtenweise auf das Aufwachssubstrat

abgeschieden ist. Der Halbleiterschichtenstapel 20 weist eine dem Substrat 1 zugewandte erste Hauptfläche 201 und eine dem Substrat 1 abgewandte zweite Hauptfläche 202 auf.

Insbesondere ist die erste Hauptfläche 201 durch eine

Oberfläche einer ersten Halbleiterschicht 21 und die zweite Hauptfläche 202 durch eine zweite Halbleiterschicht 22 des Halbleiterschichtenstapels 20 gebildet. Der

Halbleiterschichtenstapel 20 weist außerdem eine aktive

Schicht 23 auf, die zwischen der ersten Halbleiterschicht 21 und der zweiten Halbleiterschicht 22 angeordnet ist.

Der Verbund 200 weist auf der Seite der zweiten Hauptfläche 202 des Halbleiterschichtenstapels 20 eine

Verdrahtungsstruktur 8 auf. Die Verdrahtungsstruktur 8 erstreckt sich in einer Verdrahtungsebene und ist zur elektrischen Kontaktierung des Halbleiterschichtenstapels 20 eingerichtet, wobei die Verdrahtungsstruktur 8 direkt mit verschiedenen Halbleiterschichten des

Halbleiterschichtenstapels 20 elektrisch leitend verbunden sein kann. Der Verbund 200 weist eine erste Metallschicht 3 auf. Die erste Metallschicht 3 kann bevorzugt strukturiert etwa mittels eines Beschichtungsverfahrens auf die

Verdrahtungsstruktur 8 und/oder auf den

Halbleiterschichtenstapel 20 aufgebracht werden. Insbesondere enthält die erste Metallschicht ein Metall, zum Beispiel Ni oder Cu .

Des Weiteren weist der Verbund 200 eine erste

Anschlussschicht 41 und eine von der ersten Anschlussschicht 41 lateral beabstandete zweite Anschlussschicht 42 auf.

Insbesondere können der Halbleiterschichtenstapel 20 über die erste Anschlussschicht 41 und die zweite Anschlussschicht 42 elektrisch kontaktiert werden. Die Anschlussschichten 41 und 42 sind dabei insbesondere verschiedenen elektrischen

Polaritäten des herzustellenden Bauelements 100 zugeordnet und über die Verdrahtungsstruktur 8 mit den jeweiligen

Halbleiterschichten des Halbleiterschichtenstapels 20

elektrisch leitend verbunden sind. Die Anschlussschichten 41 und 42 können Kupfer enthalten oder aus Kupfer bestehen.

In der Figur 1A ist die erste Metallschicht 3 in der

vertikalen Richtung zwischen dem Halbleiterschichtenstapel 20 und den Anschlussschichten 41 und 42 angeordnet. Der Verbund 200 weist eine Isolierungsstruktur 9 auf, wobei die erste Metallschicht 3 mittels der Isolierungsstruktur 9 von einer der Anschlussschichten, in der Figur 1A von der zweiten

Anschlussschicht 42, elektrisch getrennt ist. Die

Isolierungsstruktur 9 weist eine Öffnung auf, durch die sich die erste Anschlussschicht 41 hindurch zur Bildung eines elektrischen Kontakts mit der ersten Metallschicht 3

erstreckt. In der Figur 1A weisen die erste Metallschicht 3 und die Isolierungsstruktur 9 eine gemeinsame Öffnung auf, durch die sich die zweite Anschlussschicht 42 hindurch zur Bildung eines elektrischen Kontakts mit der

Verdrahtungsstruktur 8 erstreckt. Die erste Metallschicht 3 kann dabei zusammenhängend und einstückig ausgebildet sein.

Des Weiteren weist die Isolierungsstruktur 9 eine weitere Öffnung auf, durch die sich die erste Metallschicht 3

hindurch zu der Verdrahtungsstruktur 8 erstreckt. In der Figur 1A sind die Verdrahtungsstruktur 8 und die

Isolierungsschicht 9 schematisch vereinfacht dargestellt. Abweichend von der Figur 1A können die Verdrahtungsstruktur 8 und/oder die Isolierungsstruktur 9 sich bereichsweise in den Halbleiterschichtenstapel 20 hinein erstrecken. Die

Verdrahtungsstruktur 8 kann Teilbereiche aufweisen, die etwa durch die Isolierungsstruktur 9 voneinander elektrisch getrennt und somit verschiedenen elektrischen Polaritäten des herzustellenden Bauelements zugeordnet sind. Die

Isolierungsstruktur 9 eines jeweiligen herzustellenden

Bauelements 100 ist insbesondere als eine zusammenhängende Isolierungsstruktur ausgebildet. Dabei kann die

zusammenhängende Isolierungsstruktur 9 elektrisch isolierende Teilschichten aufweisen, die etwa in separaten

Verfahrensschritten ausgebildet sind und sich unmittelbar aneinander angrenzen und so eine zusammenhängende Struktur bilden. Beispielsweise weist die Isolierungsstruktur 9 ein elektrisch isolierendes Material wie Siliziumoxid, etwa

Siliziumdioxid, und/oder Siliziumnitrid auf oder besteht aus zumindest einem dieser Materialien.

Die erste Metallschicht 3 und/oder die Anschlussschichten 41, 42 können jeweils mittels eines galvanischen oder stromlosen Beschichtungsverfahrens auf den Halbleiterschichtenstapel 20 abgeschieden werden. Insbesondere werden die erste

Metallschicht 3 und/oder die Anschlussschichten 41 sowie 42 mit Hilfe einer insbesondere strukturierten Lackschicht auf den Halbleiterschichtenstapel 20 aufgebracht. Die erste

Metallschicht 3 weist eine vertikale Dicke D3 auf, die insbesondere zwischen einschließlich 3 und 30 pm, bevorzugt zwischen einschließlich 6 und 15 pm, etwa circa 10 pm ist.

Die erste Anschlussschicht 41 und die zweite Anschlussschicht 42 weisen eine erste vertikale Dicke D41 beziehungsweise eine zweite vertikale Dicke D42 auf, wobei die Dicken der

Anschlussschichten jeweils insbesondere zwischen

einschließlich 4 und 15 pm, bevorzugt zwischen 4 und 10 pm, oder zwischen 4 und 8 pm, etwa circa 6 pm dick sind.

Insbesondere weist die erste Metallschicht 3 eine mittlere Dicke auf, die größer ist als eine mittlere Dicke der

Anschlussschicht 41 und/oder Anschlussschicht 42.

Beispielsweise beträgt ein Verhältnis zwischen der mittleren Dicke der ersten Metallschicht 3 und der mittleren Dicke der Anschlussschichten zwischen einschließlich 1 zu 2 oder zwischen einschließlich 1 zu 3 oder zwischen einschließlich 1 zu 5. Insbesondere ist die erste Metallschicht 3 so dick ausgebildet, dass die erste Metallschicht 3 mechanisch stabil, insbesondere freitragend ausgebildet ist und so zur mechanischen Stabilisierung des Halbleiterschichtenstapels 20 beziehungsweise des herzustellenden Bauelements 100 beiträgt.

Die erste Metallschicht 3 und die erste und zweite

Anschlussschichten 41, 42 sind jeweils insbesondere aus einem Metall wie etwa Kupfer oder Nickel, oder aus einer Metalllegierung ausgebildet. Insbesondere sind die

Anschlussschichten 41 und 42 sowie die erste Metallschicht 3 so eingerichtet, dass die erste Metallschicht 3 in Draufsicht einen zwischen den Anschlussschichten 41 und 42 angeordneten Zwischenbereich 40 lateral überbrückt und somit insbesondere ein Großteil, etwa mindestens 60 %, etwa mindestens 70 oder mindestens 90 % des Zwischenbereichs 40 bedeckt. Insbesondere kann die erste Metallschicht 3 den Zwischenbereich 40

vollständig bedecken. Durch die Überbrückung beziehungsweise Überdeckung des Zwischenbereichs 40 durch die erste

Metallschicht 3 wird das herzustellende Bauelement 100 an Stellen des Zwischenbereichs 40 durch die erste Metallschicht 3 mechanisch verstärkt, wodurch die mechanische Stabilität des Bauelements erhöht ist. Beispielsweise ist die erste Metallschicht 3 und die

Anschlussschichten 41 sowie 42 hinsichtlich ihrer Materialien so ausgebildet, dass die erste Metallschicht ein höheres Elastizitätsmodul aufweist als die Anschlussschichten 41 und 42 und/oder die Anschlussschichten eine höhere

Wärmeleitfähigkeit aufweisen als die erste Metallschicht 3. Zum Beispiel weist die erste Metallschicht 3 Nickel und die erste und/oder zweite Anschlussschicht 41, 42 Kupfer auf. Eine derartige Ausgestaltung verringert die Bauhöhe des herzustellenden Bauelements bei Beibehaltung ausreichender mechanischer Stabilität des Bauelements sowie einer hohen Effizienz bezüglich der Wärmeabführung durch die erste

Metallschicht und durch die Anschlussschichten.

Das in der Figur 1B dargestellte Ausführungsbeispiel

entspricht im Wesentlichen dem in der Figur 1A dargestellten Ausführungsbeispiel. Im Unterschied hierzu weist der Verbund eine Mehrzahl von ersten Metallschichten 3, eine Mehrzahl von ersten Anschlussschichten 41 sowie eine Mehrzahl von zweiten Anschlussschichten 42 auf. Die ersten Metallschichten 3 sind etwa durch einen Trenngraben 50 lateral beabstandet. Der Trenngraben 50 kann sich in der vertikalen Richtung von der Seite der Anschlussschichten in den Halbleiterschichtenstapel 20 hinein erstrecken. Abweichend von der Figur 1B kann der Verbund 200 eine Mehrzahl von Trenngräben 50 aufweisen.

Entlang der Trenngräben 50 kann der Verbund 200 in eine

Mehrzahl von Bauelementen vereinzelt werden, sodass die vereinzelten Bauelemente einen Halbleiterkörper, eine von den ersten Metallschichten 3, eine von den ersten

Anschlussschichten 41 und eine von den zweiten

Anschlussschichten 42 aufweisen, wobei der Halbleiterkörper 2 aus dem Halbleiterschichtenstapel 20 hervorgeht. Die

Isolierungsstruktur 9 kann so ausgebildet sein, dass sich diese bereichsweise in den Trenngraben 50 hinein erstreckt. Insbesondere kann die Isolierungsstruktur 9 eine Bodenfläche des Trenngrabens 50 bedecken, wobei der Verbund 200 bei der Vereinzelung durch die Isolierungsstruktur 9 in dem

Trenngraben 50 durchgetrennt wird. Abweichend von der Figur 1B kann sich die erste Metallschicht 3 ebenfalls zumindest teilweise in den Trenngraben 50 hinein erstrecken.

In Figur 2 wird ein Formkörpermaterial, etwa ein elektrisch isolierender Kunststoff, auf den Verbund 200 zur Ausbildung eines Formkörpers 10 aufgebracht. In Draufsicht auf den

Halbleiterschichtenstapel 20 bedeckt der Formkörper 10 die erste Anschlussschicht 41, die zweite Anschlussschicht 42 sowie den zwischen den Anschlussschichten ausgebildeten

Zwischenbereich 40 insbesondere vollständig. Das

Formkörpermaterial kann eine Vergussmasse sein, die mittels eines Gießverfahrens bevorzugt unter Druckeinwirkung, etwa mittels Spritzgießens (injection molding) , Spritzpressens (transfer molding) oder Formpressens (compression molding) , auf den Verbund 200 aufgebracht wird.

Alternativ kann das Formkörpermaterial ein Matrixmaterial sein, dass insbesondere ein Harzmaterial aufweist und

beispielsweise mit Fasern, etwa mit Glasfasern oder

Gewebefasern, und/oder mit Weißpartikeln, insbesondere streuenden oder reflektierenden Partikeln etwa aus einem Silizium- oder Titanoxid gefüllt ist. Insbesondere ist das Formkörpermaterial ein Leiterplattenmaterial. Anstelle des Vergießens beziehungsweise des Einmoldens erweist es sich als besonders günstig und effizient, solches Formkörpermaterial mittels Verpressens insbesondere mittels Heißverpressens auf den Verbund aufzubringen und dadurch an dem Verbund zu befestigen. Das Formkörpermaterial kann vor dem Aufbringen auf den Verbund lediglich teilweise und nicht vollständig vernetzt sein. Eine vollständige Vernetzung des

Matrixmaterials des Formkörpermaterials kann durch eine thermische Behandlung während des Aufbringens oder nach dem Aufbringen des Formkörpermaterials auf den Verbund erfolgen. Auch kann das Formkörpermaterial vor dem Aufbringen auf den Verbund teilausgehärtet, das heißt etwa angetrocknet, vorliegen und erst nach dem Aufbringen auf den Verbund vollständig ausgehärtet werden.

Beispielsweise ist das Formkörpermaterial ein mit Glasfasern verstärktes Epoxidharz. Auch kann der Formkörper 10 aus einer FR4-Prepreg-Lage oder aus einer Mehrzahl von solchen Prepreg- Lagen (Laminat) ausgebildet sein. Der Formkörper 10 kann Strahlung streuende und/oder reflektierendene Füllstoffe aufweisen. Das Formkörpermaterial kann dabei mit

Weißpartikeln etwa mit ein mit streuenden oder

reflektierenden Partikeln wie Titanoxid- oder Siliziumoxid- Partikeln gefüllt, insbesondere hochgefüllt sein. Unter einem mit Weißpartikeln hochgefüllten Material wird ein Material verstanden, das ein Matrixmaterial und in das Matrixmaterial eingebettete Weißpartikel aufweist, wobei die Weißpartikel etwa mindestens 30 oder 40 oder 60, etwa mindestens 70 oder mindestens 80 Gewichts- oder Volumen-% des hochgefüllten Materials ausmachen. Bei einem mit Glasfasern verstärkten Epoxidharz mit hochgefüllten Weißpartikeln kann der Anteil an Weißpartikeln auch unter 60 % liegen.

In der Figur 3 werden Ausnehmungen in den Formkörper 10 ausgebildet. In vertikaler Richtung erstrecken sich die

Ausnehmungen zur teilweisen Freilegung der Anschlussschichten 41 und 42 durch den Formkörper 10 hindurch. Durch eine erste Ausnehmung 411 wird die erste Anschlussschicht 41 teilweise freigelegt. Das heißt, eine Oberfläche der ersten Anschlussschicht liegt in der ersten Ausnehmung 411 zumindest teilweise frei. Durch eine zweite Ausnehmung 421 wird die zweite Anschlussschicht 42 teilweise freigelegt. Die

Ausnehmungen 411 und 421 sind in lateraler Richtung durch einen Teilbereich des Formkörpers 10 räumlich beabstandet, wobei der Teilbereich des Formkörpers 10 den Zwischenbereich 40 beispielsweise vollständig bedecken. Die Ausnehmungen 411 und 421 können in den lateralen Richtungen von dem Formkörper 10 vollumfänglich umschlossen sein.

Die Ausnehmungen 411 und 421 können durch einen mechanischen Prozess oder durch Laserbohren ausgebildet sein, wobei die Anschlussschichten 41 und 42 jeweils als Stoppschichten dienen. Insbesondere werden die Ausnehmungen 411 und 421 nach dem vollständigen Aushärten und/oder nach dem vollständigen Vernetzen des Matrixmaterials beziehungsweise des

Formkörpermaterials des Formkörpers 10 ausgebildet.

In einem nachfolgenden Verfahrensschritt, wie in der Figur 4 dargestellt, werden die Ausnehmungen 411 und 421 mit einem elektrisch leitfähigen Material aufgefüllt, wodurch in den Ausnehmungen jeweils ein Durchkontakt 441 oder 442 etwa in Form einer Anschlusssäule ausgebildet wird, der mit der jeweiligen Anschlussschicht 41 oder 42 elektrisch leitend verbunden ist und insbesondere im direkten physischen und somit auch im direkten elektrischen Kontakt mit der

entsprechenden Anschlussschicht steht.

Zur Ausbildung der Durchkontakte 441 und 442 wird

insbesondere Kupfer aufgrund seiner ausgezeichneten

elektrischen und thermischen Leitfähigkeit verwendet. Im Vergleich zu weiteren hochleistungsfähigen Materialien wie Silber und Gold ist Kupfer besonders kostengünstig. Kupfer ist außerdem ein besonders geeignetes Material zur Auffüllung von Ausnehmungen mittels eines galvanischen Verfahrens, da Kupfer aufgrund seines anisotropen Materialverhaltens ganz gezielt auf Bodenflächen der Ausnehmungen galvanisch

aufgebracht werden kann, wobei die Bodenflächen bevorzugt Kupfer aufweisen. Die Anschlussschichten 41 und 42 können jeweils ebenfalls aus Kupfer ausgebildet oder zumindest mit Kupfer beschichtet sein, wodurch optimale mechanische, elektrische und thermische Verbindungen zwischen den

Anschlussschichten und den Durchkontakten ausgebildet werden. Zudem ist Kupfer im Vergleich zu anderen Metallen wie etwa Nickel oder Eisen relativ weich, sodass die aus Kupfer gebildeten Anschlussschichten oder Durchkontakte äußere mechanische Einwirkungen gut auffangen können. Auch weisen Kupfer und viele handelsübliche Formkörpermaterialien einen vergleichbaren thermischen Ausdehnungskoeffizienten auf, sodass ein etwa aus Kupfer und einem handelsüblichen

Formkörpermaterial gebildeter Träger besonders stabil

gegenüber Temperaturänderungen ist. Es ist jedoch auch möglich, dass die Durchkontakte und die Anschlussschichten unterschiedliche elektrisch leitfähige Materialien, etwa unterschiedliche Metalle aufweisen.

Die Ausnehmungen 411 und/oder 421 sowie die Durchkontakte 441 und/oder 442 können verschiedene Formen aufweisen etwa quaderförmig, zylinderartig, stumpfkegelartig,

stumpfpyramidenartig oder andere Formen aufweisen.

Insbesondere sind die Durchkontakte als Anschlusssäulen 441 und 442 ausgebildet. Unter einer Säule wird allgemein eine geometrische Struktur mit einer vertikalen Höhe, einer lateralen Breite und einem lateralen Querschnitt verstanden, wobei der laterale Querschnitt entlang der vertikalen Richtung, also entlang der Höhe, eine im Wesentlichen

unveränderte Form aufweist und wobei sich ein Betrag

hinsichtlich einer Fläche des Querschnitts entlang der vertikalen Richtung insbesondere nicht sprunghaft ändert. Der Durchkontakt in diesem Sinne ist insbesondere einstückig ausgebildet und ist etwa in einem einzigen Verfahrensschritt herstellbar. Zum Beispiel weist der laterale Querschnitt der Säule beziehungsweise des Durchkontakts die Form eines

Kreises, eines Vielecks, einer Ellipse oder andere Formen auf. Ein Aspektverhältnis hinsichtlich der Höhe zur Breite kann zwischen einschließlich 0,1 und 10, etwa zwischen einschließlich 0,3 und 3, oder mehr sein. Eine geometrische Struktur mit sprunghaft verändernden Flächen des Querschnitts entlang der vertikalen Richtung, etwa mit einer Stufe auf Seitenflächen der geometrischen Struktur, ist oft auf einen Verbund aus zwei oder mehreren in separaten

Verfahrensschritten hergestellten Teilschichten

zurückzuführen, und ist im Zweifel nicht als den hier

beschriebenen Durchkontakt in Form einer Säule zu verstehen.

Die Durchkontakte 441 und 442 können jeweils eine mittlere vertikale Höhe und eine mittlere laterale Breite aufweisen, wobei ein Verhältnis zwischen der Breite und der Höhe

beispielsweise zwischen einschließlich 0,2 zu 5, etwa

zwischen 2 zu 5 oder zwischen 1 zu 3 beträgt. Insbesondere ist die mittlere Breite des Durchkontakts größer als eine mittlere Höhe des Durchkontakts, wodurch das herzustellende Bauelement besonders gut thermisch leitend ausgebildet ist. Die Durchkontakte 441 und 442 sind insbesondere so

ausgebildet, dass diese bei einer vertikalen Höhe mit dem Formkörper 10 bündig abschließen. Die Anschlussschichten und die Durchkontakte bilden in der Figur 4 eine zweite Metallschicht 4, wobei die zweite

Metallschicht 4 einen ersten Teilbereich und einen von dem ersten Teilbereich lateral beabstandeten zweiten Teilbereich aufweist. Der erste Teilbereich der zweiten Metallschicht 4 enthält eine erste Anschlussschicht 41 und einen ersten

Durchkontakt 441. Der zweite Teilbereich der zweiten

Metallschicht 4 enthält eine zweite Anschlussschicht 42 und einen zweiten Durchkontakt 442. Insbesondere ist die zweite Metallschicht 4 in lateraler Richtung von dem Formkörper 10 vollumfänglich umschlossen. Der Formkörper 10 kann dabei zusammenhängend, insbesondere einstückig ausgebildet sein. Auch die Trenngräben 50 können mit dem Formkörpermaterial gefüllt sein. In der Figur 4 bildet der erste Durchkontakt 441 mit der ersten Anschlussschicht 41 eine erste Stufe in dem Formkörper 10. Der zweite Durchkontakt 442 bildet mit der zweiten Anschlussschicht 42 eine zweite Stufe in dem

Formkörper 10. Insbesondere umläuft die erste und/oder zweite Stufe den zugehörigen Durchkontakt und ist von dem Formkörper 10 lateral vollständig bedeckt.

In Figur 5 wird das Substrat, insbesondere das

Aufwachssubstrat beispielsweise mittels eines mechanischen oder chemischen Trennverfahrens oder mittels eines

Laserabhebeverfahrens von dem Halbleiterschichtenstapel 20 getrennt. Eine durch die Entfernung des Substrats 1

freigelegte Oberfläche des Verbunds 200, die insbesondere durch eine Oberfläche des Halbleiterschichtenstapels 20 gebildet ist, kann zur Erhöhung der Lichteinkoppel- beziehungsweise Lichtauskoppeleffizienz strukturiert werden.

Vor der Vereinzelung des Verbunds 200 können Kontaktschichten 410 und 420 auf die Durchkontakte 441 und 442 aufgebracht werden. Beispielsweise bedecken eine erste KontaktSchicht 410 und eine zweite KontaktSchicht 420 den ersten Durchkontakt 441 beziehungsweise den zweiten Durchkontakt 442 in

Draufsicht vollständig, wodurch die Durchkontakte 441 und 442 sowie Anschlussschichten 41 und 42, das heißt insbesondere die gesamte zweite Metallschicht 4, durch den Formkörper 10, die Kontaktschichten 410 und 420 und die Verdrahtungsstruktur 8 vollständig umschlossen sind, wodurch die zweite

Metallschicht 4 vor Umwelteinflüssen und vor der Gefahr einer möglichen Oxidation geschützt wird. Durch die vollständige Verkapselung der zweiten Metallschicht 4 kann verhindert werden, dass Metallreste der zweiten Metallschicht 4, die beispielsweise Kupfer aufweist, etwa bei der Vereinzelung des Verbunds 200 auf eine Vorderseite des herzustellenden

Bauelements 100 gelangen können und dadurch eventuell dem Halbleiterschichtenstapel 20 schädigen. Durch die

vollständige Verkapselung der zweiten Metallschicht 4 wird außerdem eine Migration etwa von Kupferatomen oder

Kupferionen beispielsweise über Außenflächen des Bauelements insbesondere im Betrieb des Bauelements zur Vorderseite des Bauelements verhindert. Es ist auch möglich, dass die

Verdrahtungsstruktur 8 eine Diffusionsbarriereschicht 80 aufweist, die eine Migration etwa von Kupferatomen oder

Kupferionen in den Halbleiterschichtenstapel 20 verhindert.

Der Verbund 200 kann entlang der Trenngräben 50 in eine

Mehrzahl von Bauelementen 100 so vereinzelt werden, dass die vereinzelten Bauelemente 100, wie zum Beispiel in der Figur 6 dargestellt, jeweils einen Träger 7 und eine auf dem Träger 7 angeordneten Halbleiterkörper 2 aufweisen. Der

Halbleiterkörper 2 geht bei der Vereinzelung des Verbunds 200 aus dem Halbleiterschichtenstapel 20 hervor. Der Träger 7 ist insbesondere aus dem vereinzelten Formkörper 10, einer ersten Metallschicht 3 und einer zweiten Metallschicht 4 mit einer ersten Anschlussschicht 41 und einer zweiten Anschlussschicht 42 gebildet. Das Bauelement 100 weist dabei eine

strukturierte Strahlungsdurchtrittsflache 101 auf, die durch die erste Hauptfläche 201 des Halbleiterkörpers 2 gebildet werden kann. Das Bauelement 100 ist insbesondere auf einer der Strahlungsdurchtrittsflache 101 abgewandte Rückseite 202 etwa mittels der ersten KontaktSchicht 410 und der zweiten KontaktSchicht 420 extern elektrisch kontaktierbar . Das heißt, das Bauelement 100 ist als ein oberflächenmontierbares Bauelement ausgebildet.

In Figur 7 ist ein Ausführungsbeispiel für ein Bauelement 100 schematisch dargestellt. Dieses Ausführungsbeispiel

entspricht im Wesentlichen dem in der Figur 6 dargestellten Ausführungsbeispiel für ein Bauelement. Im Unterschied hierzu sind die Verdrahtungsstruktur 8 und die Isolierungsstruktur 9 detaillierter dargestellt.

In der Figur 7 weist die Verdrahtungsstruktur 8 eine

Stromaufweitungsschicht 80, eine elektrisch leitfähige

Schicht 81 und eine Durchkontaktierung 82 auf. Die

Verdrahtungsstruktur 8 erstreckt sich dabei bereichsweise in den Halbleiterkörper 2 hinein und bereichsweise in den Träger 7 hinein oder grenzt zumindest bereichsweise an den Träger 7 an. Der erste Teilbereich der zweiten Metallschicht 4 mit dem ersten Durchkontakt 441 und der ersten Anschlussschicht 41 ist über die erste Metallschicht 3, die elektrisch leitfähige Schicht 81 und die Durchkontaktierung 82 mit der ersten

Halbleiterschicht 21 des Halbleiterkörpers 2 elektrisch leitend verbunden. Der zweite Teilbereich der zweiten

Metallschicht 4 mit dem zweiten Durchkontakt 442 und der zweiten Anschlussschicht 42 ist über die Stromaufweitungsschicht 80 mit der zweiten Halbleiterschicht 22 des Halbleiterkörpers 2 elektrisch leitend verbunden. Die Durchkontaktierung 82 ist mit der ersten Metallschicht 3 elektrisch leitend verbunden und so ausgebildet, dass sich diese zur elektrischen Kontaktierung der ersten

Halbleiterschicht 21 zumindest von der zweiten Hauptfläche 202 durch die zweite Halbleiterschicht 22 und die aktive Schicht 23 hindurch erstreckt.

Die Stromaufweitungsschicht 80 ist insbesondere gleichzeitig als eine Diffusionsbarriereschicht ausgebildet und bedeckt etwa eine Öffnung der Isolierungsschicht 9 vollständig, durch welche Öffnung sich die erste Metallschicht 3 oder eine

Anschlussschicht 42 hindurch erstreckt. Die

Stromaufweitungsschicht 80 und die Isolierungsstruktur 9 weist eine gemeinsame Öffnung auf, durch die sich die

Durchkontaktierung 82 etwa von der elektrisch leitfähigen Schicht 81 hindurch zu dem Halbleiterkörper 2 erstreckt.

Die elektrisch leitfähige Schicht 81 ist insbesondere als eine Spiegelschicht ausgebildet und kann dabei ein Metall, etwa Aluminium, Rhodium, Palladium, Silber oder Gold

aufweisen. Die elektrisch leitfähige Schicht bedeckt dabei die aktive Schicht 23 in Draufsicht zumindest bereichsweise. Entlang der vertikalen Richtung kann sich die elektrisch leitfähige Schicht 81 seitlich des Halbleiterkörpers so weit erstrecken, dass sie die zweite Halbleiterschicht 22 oder die aktive Schicht 23 lateral umgibt. Elektromagnetische

Strahlungen, die seitlich oder rückwärts aus dem

Halbleiterkörper 2 austreten, können somit wieder in Richtung der aktiven Schicht 23 beziehungsweise in Richtung der

Strahlungsdurchtrittsfläche 101 des Bauelements

zurückreflektiert werden, wodurch die Effizienz des Bauelements erhöht ist. In der Figur 7 ist die elektrisch leitfähige Schicht 81 zusammenhängend ausgebildet.

In der Figur 7 ist die Isolierungsstruktur 9 als eine

zusammenhängende Isolierungsstruktur dargestellt, die sich bereichsweise in den Halbleiterkörper 2 hinein und

bereichsweise in den Träger 7 hinein erstreckt oder zumindest bereichsweise an den Träger 7 angrenzt. Die

Durchkontaktierung 82 ist im Bereich des Halbleiterkörpers 2 in der lateralen Richtung mittels der Isolierungsstruktur 9 von der zweiten Halbleiterschicht 22 und von der aktiven Schicht 23 elektrisch getrennt. Durch die Isolierungsstruktur 9 ist die erste Metallschicht 3 von dem zweiten Teilbereich der zweiten Metallschicht 4 mit dem zweiten Durchkontakt 442 und der zweiten Anschlussschicht 42 elektrisch getrennt.

In Figur 8 ist ein weiteres Ausführungsbeispiel für ein

Bauelement schematisch dargestellt. Dieses

Ausführungsbeispiel entspricht im Wesentlichen dem in der Figur 7 dargestellten Ausführungsbeispiel für ein Bauelement.

Im Unterschied hierzu erstreckt sich die Durchkontaktierung 82 durch die erste Metallschicht 3 hindurch. Dabei weisen die erste Metallschicht 3 und die Isolierungsstruktur 9 eine gemeinsame Öffnung auf. Anders als in der Figur 7, in der die erste Metallschicht 3 in der vertikalen Richtung zwischen der elektrisch leitfähigen Schicht 81 und der Metallschicht 4 angeordnet ist, ist die elektrisch leitfähige Schicht 81 in der Figur 8 zwischen der ersten Metallschicht 3 und der zweiten Metallschicht 4 angeordnet.

Des Weiteren ist die elektrisch leitfähige Schicht 81 in eine erste Teilschicht 811 und eine zweite Teilschicht 812 unterteilt, wobei die Teilschichten 811 und 812 im Bereich des Zwischenbereichs 40 voneinander lateral beabstandet und somit voneinander elektrisch getrennt sind. Die Teilschichten 811 und 812 sind mit der ersten Anschlussschicht 41

beziehungsweise der zweiten Anschlussschicht 42 elektrisch leitend verbunden und somit verschiedenen elektrischen

Polaritäten des Bauelements 100 zugehörig.

Sowohl in der Figur 7 als auch in der Figur 8 ist die erste Metallschicht 3 zusammenhängend, insbesondere einstückig ausgebildet. In der Figur 7 weist die erste Metallschicht 3 eine Öffnung auf, durch die sich die zweite Anschlussschicht 42 hindurch erstreckt. In der Figur 8 weist die erste

Metallschicht 3 eine Öffnung auf, durch die sich die

Durchkontaktierung 82 der Verdrahtungsstruktur 8 zur

elektrischen Kontaktierung der ersten Halbleiterschicht 21 hindurch erstreckt. In der Figur 7 ist die erste

Metallschicht 3 für die elektrische Kontaktierung der ersten Halbleiterschicht 21 eingerichtet. In der Figur 8 ist die erste Metallschicht 3 für die elektrische Kontaktierung der zweiten Halbleiterschicht 22 eingerichtet. Die erste

Metallschicht 3 in der Figur 8 ist außerdem in lateraler Richtung von der Isolierungsstruktur 9 vollständig

umschlossen. Gemäß Figuren 7 und 8 kann der Halbleiterkörper 2 zumindest bei der Höhe der zweiten Halbleiterschicht 22 in lateralen Richtungen von der Isolierungsstruktur 9

vollumfänglich umschlossen werden. Auch der Träger 7 mit dem Formkörper 10 kann den Halbleiterkörper 2 bei der Höhe der zweiten Halbleiterschicht 22 in lateralen Richtung

vollumfänglich umschließen, sodass der Träger 7 gleichzeitig als ein Gehäuse für den Halbleiterkörper 2 ausgebildet ist. Die Erfindung ist nicht durch die Beschreibung der Erfindung anhand der Ausführungsbeispiele auf diese beschränkt. Die Erfindung umfasst vielmehr jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist .