Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SENSOR FOR MEASURING HYDROGEN DIFFUSION DIFFERENCES
Document Type and Number:
WIPO Patent Application WO/2001/040782
Kind Code:
A2
Abstract:
Patent of invention 'Process for metering hydrogen permeated in a metallurgical structure', refers to a process for metering permeated hydrogen flow in machines, equipment, piping, or other metallic apparatus, through a sensor that uses the properties of a couple of dissimilar materials, in construction and installation that are suitable to measure electrical values between a metering couple and a reference couple. The measured value is a function of the flow rate of hydrogen that permeates the metallic surface under monitoring. In consequence, we obtain a process for measuring hydrogen corrosion or hydrogen flow through an apparatus.

Inventors:
CORREA LUIZ AUGUSTO DEMARIA (BR)
Application Number:
PCT/BR2000/000131
Publication Date:
June 07, 2001
Filing Date:
December 01, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CORREA LUIZ AUGUSTO DEMARIA (BR)
International Classes:
G01N17/02; G01N27/00; (IPC1-7): G01N27/00
Foreign References:
US4065373A1977-12-27
US5858204A1999-01-12
Attorney, Agent or Firm:
Criativa, Marcas Patentes S/c Ltda A. E. (N°. 470 Juvev, -130 Curitiba PR, BR)
Download PDF:
Claims:
CLAIMS
1. PROCESS FOR METERING HYDROGEN PERMEATED IN A METALLURGICAL STRUCTURE, AND APPARATUS THEREOF", characterized by a process which employs metering couple made of two dissimilar materials, said couple being under permeation by the hydrogen to be measured, in way to utilize the changing in physical properties of that couple with the flow of permeated hydrogen to measure this flow, through sensor endowed of two parts, being one of such parts the metering couple, made of two dissimilar materials, welded on the metallic surface in contact with the hydrogengenerating mean which one wants to measure, in such a way to form a metallurgical continuity with that surface, in so being subjected to permeation by hydrogen, or it can be subjected to permeation by hydrogen by any other adequate method which warrants the diffusion of hydrogen through this couple, and the other part the rcvf^rence corcple, made from the same two dissimilar materials of the metering couple, just attached to the face of the metallic surface in contact with the hydrogengenerating mean, in such a way forming no metallurgical continuity with that surface, in so having no permeation of hydrogen through the surface. Metering couple and reference couple are both connected to meters of electrical units, such as electrical potential, being the difference of that electrical units between the couples a function of the hydrogen mass flow through the surface.
2. PROCESS FOR METERING HYDROGEN PERMEATED IN A METALLURGICAL STRUCTURE, AND APPARATUS THEREOF", according to claim 1., characterized by sensor (2), with two parts in an"U"fonnat (2A and 2B), being one side (2Al and 2B1) and the basis of the"U" (2A2 and 2B2) made of the same material and the other side of the"U" (2A3 and 2B3) in another material and welded in the basis of the"U", being one of the parts (metering couple (2A)) welded by the basis of the"U" (2A2) to the outer face of the surface under permeation by hydrogen (1), in a way to form a metallurgical continuity with said surface and the other part (reference couple (2B)) only attached by the basis of the"U" (2B2), in so forming no metallurgical continuity between the surfaces and aiming and allowing the correction of the influence of the temperature over the physical properties of the couple. Both sensor parts are connected by measuring conductor (3) and reference conductor (4) to a voltmeter (5), which measures difference of potential.
3. PROCESS FOR METERING HYDROGEN PERMEATED IN A METALLURGICAL STRUCTURE, AND APPARATUS THEREOF", according to claim 1., characterized by, the sensor being assembled externally to the item under permeation by hydrogen, according to the following process : a. l.) The basis of the"U" (2A2) from the first material is welded on the outer face of the surface under permeation (I), and the side (2A3) of the other material is welded in basis (2A2), then forming the"U"of the metering couple (2A) of the sensor (2) ; a. 2.) The basis of the"U" (2B2) of the first material is attached to the outer face of the surface under permeation (I), by ordinary adhesive means that allow an intimate contact with the basis (2B2) and the surface under permeation and the obtaining of actual values of temperature at the surface (1), and the side (2B3) of the other material is welded on the basis (2B2) forming the"U"of the reference couple (2B) of the sensor (2) ; and a. 3.) The measuring conductor (3) is connected to the side (2A3) and the reference conductor (4) is connected to the side (2B3), both conductors are connected to the voltmeter (5), and the sides of the"U" (2A1 and 2BI) are connected each other by welding, or this connection can be made using the same material forming both"U".
4. PROCESS FOR METERING HYDROGEN PERMEATED IN A METALLURGICAL STRUCTURE, AND APPARATUS THEREOF", according to claim 1., characterized by, the sensor being assembled internally to the item under permeation by hydrogen, according to the following process : b. l.) The item is drilled to access its interior. A threaded sleeve is welded, creating a connection. A tubular well from the same material of the item, but with adequate thickness, is screwed in this connection in form of sleeve, in order to maximize the hydrogen permeation. b. 2.) Inside the tubular well the measuring apparatus is implante, following the same sequence of the items a. 1, a. 2. and a. 3., from the claim 3.
Description:
"PROCESS FOR METERING HYDROGEN PERMEATED IN A METALLURGICAL STRUCTURE, AND APPARATUS THEREOF" The present patent of Invention refers to a process for metering permeated hydrogen flow in machines, equipment, piping, or other metallic apparatus, used in the oil industry, refineries, chemical industries, petrochemical industries, units for production, pumping, transport, and storage of petroleum and gas, tanks, machines, and equipment that work with hydrogen, or chemicals that can generate hydrogen, and nuclear industries, through a sensor that uses the properties of a couple of dissimilar materials, in construction and installation that are suitable to measure electrical values between a metering couple and a reference couple. The measured value is a function of the flow rate of hydrogen that permeates the metallic surface under monitoring. In consequence, we obtain a process for measuring hydrogen corrosion or hydrogen flow through an apparatus having a low cost of construction, an unlimited shelf life, not wasting any materials, a high response velocity, an accuracy and precision that are equivalent or better than those obtained by the state-of-art methods, and a extremely simple and cheap installation, a low cost of maintenance, with an easy integration with process computers, either digital or analogic.

As is well known by the users and technicians from Industrial Corrosion sector, structural damages are caused, in many cases, by the intrusion of hydrogen in the metallic structure, being this hydrogen generated by acidic means containing free protons (H+cathion), by chemical processes that lead to proton formation, by atomic hydrogen (Ht') formation, or even by hydrogen gas (H2), adsorbed in the metallic structure. The structural damages caused by the hydrogen are quite varied, among these we can mention : hydrogen- induced cracking (HIC), blistening, sulfur stress cracking (SSC), Stress Oriented Hydrogen Induced Cracking (SOHIC). Several processes were conceived for controlling these damages, such as forming a layer of protective material, controlling the conditions of the fluid in contact with the material submitted to corrosion, etc. Although, a main problem is how to measure, in a safe, economically viable, and mainly quick way, the hydrogen formation next to a corrosion-subjected surface in order to use these control processes to avoid the severe damages that can surge.

A great effort has been made at present time to obtain a hydrogen sensor with faster response time, with easy installation, the least possible maintenance, with precise and accurate results, with integration to data processing systems, and, of course, the lesser possible cost, since the deterioration process, occurring in continuous processing plants, needs a ready corrective action.

Sensors for hydrogen permeated in metallic structures, developed until now can be classified in 4 groups : Pressure sensors, vacuum sensors, electrochenwical sensors, and fuel cell senx (vrs that we will describe below : 1. Pressacre sensors are based on measuring the pressure generated by gaseous hydrogen (H2), formed by the combination between hydrogen atoms (Ho), when these atoms cross the hydrogen-permeated surface, or the walls of a reactional tube inserted in the hydrogen generating mean.

These sensors can be of 2 types : 1. 1 l're. sxure} sensors by insertion: This model is made of a thin- walled carbon steel pipe (reactional tube), which has one of its ends closed, while the other end is in communication with pressure meters, being this meter inserted in the hydrogen generating mean. In FIGURE 4, we can see a typical pressure sensor by insertion, which has a pressure meter (11), typically a manometer, a connection (12), an external body (13 e 14), a reactional tube (15), inserted in the hydrogen generating mean (16). Atomic hydrogen (H"), formed by corrosion reactions out of the wall of reactional tube (15), cross this wall and then changes to molecular hydrogen gas (H2), with a molecular volume greater than H", so it cannot return to the hydrogen generator mean, and then accumulates inside the tube, raising the tube internal pressure, which is measured by the pressure meter (11). That sensor allows checking the efficiency of corrosion inhibitors based on the suppression of hydrogen formation in the mean, having pressure stabilization when an inhibitor does its part.

Although, this sensor do not have a quick response time (it can even take one month to attain mesurable levels), nor a great sensibility, and it can even indicate a corrosive process when that is irreparably advanced. In addition, these sensors are difficult to integrate with process computers.

1. 2 External pressure sensors: This model of sensor works similarly to that earlier described, but the sensor is installed externally, forming a chamber between the external wall of the corrosion-subjected surface and the sensor, where molecular hydrogen (H2) accumulates, giving rise to the pressure, in the same way that occurs in insertion-type sensors. In FIGURE 5, we have a typical external pressure sensor, with an external coupling (21), a manometer-thermometer assembly (22), a pressurizing chamber (23), being this assembly coupled directly to the surface under corrosion by hydrogen (24). This sensor has the advantage, over the insertion-type one showed in item 1. 1, that it can be assembled externally to the corrosion-subjected surface, without interference on the industrial process, but still presents all the other disadvantages. Its response time is even more slow, due to the greater thickness of the corrosion-subjected walls, when compared with the wall thickness of the reactional tube from the insertion-type sensors cited on item 1. 1.

Vacuum-type sensors : These sensors are based on the changing in the grid current of a vacuum electronic valve, when its exterior side, made in steel, suffers corrosion by hydrogen, being this current proportional to the mass of hydrogen incoming the tube. They can be installed externally to the surface under corrosion as well as through insertion in the corrosive mean, and have been greatly improved ultimately, having, over the pressure sensors, the advantage of a greater sensibility. State-of-the-art Vacuum sensors work with the hydrogen-collecting cavity under high vacuum (10-6 Pa), and they can measure hydrogen masses as ! ow as 10 g. In spite of its greater sensibility, however, vacuum sensors are indicated only for laboratory work, or in industrial units with a very controlled environment, like, for example, in nuclear plants, due to its electronics and hardware being very expensive and fragile for the rough working conditions of an oil plant.

I le trocshen7ical xewnxf) rx : Beginning ffom the work of Devanathan et alii, which aimed at first to determine diffusivity of hydrogen through metallic plates, using an electrochemical double cell, in which the metal test-piece was the surface separating the semi-cells each other, it were developed electrochemical sensors based on the oxidation of atomic hydrogen (H") and electrochemical reduction of the so formed ionic hydrogen (H+) producing molecular hydrogen (H2), the electrical current from that oxidation being proportional to the mass of permeated hydrogen. As a commercial example of this type of sensor, we have the Palladium sensor showed in FIGURE 6. In this model, atomic hydrogen (31) that permeates the corrosion-subjected surface (32), is oxidized when permeating a palladium metal sheet (33), polarized by a potentiostate, forming hydrogen cathion (H+) when entering in contact with the electrolyte (34). The so produced hydrogen cathion is then reduced in the auxiliary electrode (35), forming molecular hydrogen. In this model, the main disadvantage is the use of a noble metal (palladium), with the following cost increasing.

Electrochemical sensors are generally of complex construction, needing expensive measurement instruments, have a low response velocity, worsened by the need for an external assembly, and have the additional disadvantage of a limited shelf life, once the electrochemical reactions imply in consuming the cells. In addition, the electrochemical processes can be very complicated, being subject to interference by mean and electrolytes contaminants, by the temperature, etc. Several variants have been recently developed, such as solid electrolyte sensors, but none of these efforts actually achieved to eliminate the cited disadvantages.

4. lwuel cell sensors : This type of sensor, recently developed, and object of the US patent USNN 09/119, 088, by Yepez & Vera, makes use of the fuel cell principle, where there is electrical current generation when the hydrogen generated by the corrosive mean, and cross over the surface under corrosion (anode), in the atomic form (H"), is transformed in ionic hydrogen (H+), by entering in contact with an electrolyte, and reacts with oxygen from the air in a porous cathode, forming water and thus generating the electrical current. Once each hydrogen atom provides one electron, that current is proportional to the flow of hydrogen by the surface. An example of this type of sensor, utilizing as solid electrolyte a proton-exchange membrane of perfluorinated sulphonic acid, is seen in FIGURE 7, where we have the corrosion-subjected surface whose hydrogen flow is to be measured (41) and that corresponds to the fuel cell anode, the point of admittance of hydrogen (42), the membrane-type solid electrolyte (43), the porous electrolyte (44), that catches oxygen from the air and corresponds to the cathode from the fuel cell, and the current collector (45), which is electrically connected, as well as the material under corrosion (41), to a microamperimeter for measure the electrical current proportional to hydrogen flow. In order to obtain the greatest possible transport of oxygen from the air, the cathode is made from graphite pressed with platinum particles with a great contact surface, making the sensor expensive. Besides that, its mechanical construction is relatively complex, raising the costs for serial manufacturing of this model. Finally, this type of sensor does not actually eliminate the disadvantages of the electrochemical sensors, even needing an external assemblage, with consequent delay in response time, and complex and expensive measure instruments.

"PROCESS FOR METERING CORROSION CAUSED BY HIDROGEN PERMEATED IN A METALURGICAL STRUCTURE, AND APPARATUS THEREOF", tllat is the object of the present patent, was developed to overcome the disadvantages of the sensors and process in use at now, utilizing concepts of basic instrumentation, such as thermocouples, for a novel application, through the use of the physical properties of the coupling of dissimilar materials, and endowed of two parts, being one of such parts the metering couple, welded on the metallic surface in contact with the hydrogen- generating mean which one wants to measure, in such a way to form a metallurgical continuity with that surface, or bonded to that surface in any other way which warrants diffusion of hydrogen through this couple, in so being subjected to the permeation by hydrogen, and the other part the refererlce cozcple, just attached to the face of the metallic surface in contact with the hydrogen-generating mean, in such a way forming no metallurgical continuity with that surface, in so having no permeation of hydrogen through the surface. Metering couple and reference couple are both connected to meters of electrical units, such as electrical potential, being the difference of that electrical units between the couples a function of the hydrogen mass flow through the surface. In consequence, we obtain a process for measuring hydrogen mass flow through a sensor of easy and cheap construction (manufacturing) and installation, that can be assembled so externally (in such case the metallic surface under permeation by hydrogen being the monitored item's own surface) as well as by insertion (in such case the metallic surface under hydrogen permeation being a thin-wall reactional tube inserted in the process fluid, taking advantage of the lower response time relative to the external assemblage) with a very low cost of maintenance, with an unlimited shelf life, and obtaining a high response velocity, an accuracy and precision that are equivalent or better than those obtained by the state-of-art methods, and a extremely simple and cheap installation, a low cost of maintenance, with an easy integration with process computers, either digital or analogic.

To a better understanding of the present patent of invention, we annexed the following drawings : FIGURE I., that shows the electrical diagram of the process for metering hydrogen, object of this patent ; FIGURE 2., that shows the assembly hydrogen generation cell, volume meter, and proof sensor used in the research phase ; FIGURE 3., that shows a grapllic correlating Hydrogen flow rate by area versus difference-of-potential ; FIGURE 4, that shows a typical pressure sensor by insertion ; FIGURE 5, that shows a typical external pressure sensor ; FIGURE 6, that shows a typical palladium electrochemical sensor ; FIGURE 7, that shows a fuel cell sensor.

The principle underlying the present patent is the discovering that the physical properties of a coupling of dissimilar conductors, like those largely used in thermocouples for measuring temperature, on being a function of the different density of electrons in the atomic lattices of each material, are extremely influenced by the flow of atomic hydrogen (H°), which contains one uncoupled electron (represented by the point in the formula Hue), through this coupling. To make sure this flow, the measuring couple needs to form a crystalline lattice with metallurgical continuity with the surface to be measured. As the temperature also has an influence over these properties, it is necessary a reference couple, made from the same dissimilar materials of the metering couple, in contact with the same surface to be measured, in such a way to remain at the same temperature from the metering couple, eliminating the influence of the temperature over the measured potential. As the potential of the reference couple must only come from temperature, it is necessary that that one be not permeated by hydrogen. So, the reference couple is only attached to the surface to be measured, and, because it does not form a metallurgical continuity with that surface, is not permeated by the hydrogen.

To accomplis the technical concepts that are the ground for the present invention, we made a research with several experiments using a hydrogen generating cell, volume meter, and proof sensor assembly (see FIGURE 2) changing the materials and manufacturing techniques. It was assembled a hydrogen generation cell (8), in a horizontal cylindrical format, simulating an item under permeation by hydrogen. This cell contained the surface under permeation (1), in form of a circular lid, locked by a flange. It was assembled a current generator (9), by connecting a conductor (electrode) (9-A) with a stem in the inner part of the cell, to a potentiostate (9-B), from which another conductor (counterelectrode) (9-C) was connected to the outer face of the surface under permeation (1). The aiming of this potentiostate was to generate electric current to accelerate the formation of hydrogen in the acidic solution contained in the cell. The meter of generated hydrogen volume (10) was assembled by forming a chamber (I 0-A) in the outer face of the surface under permeation (1), by totally welding a little metallic plate (10-B) spaced from this surface, said plate containing an orifice communicating with an"U"tube (10-C) containing ethylene glycol.

The proof sensor (2) was assembled in two parts in an"U"format (2-A and 2- B), being one of the sides (2-A-1 and 2-B-1) and the basis of the"U" (2-A-2 and 2-B-2) in the same material, and the remaining side of the"U" (2-A-3 and 2-B-3) in another material and welded in the basis of the"U", with one of the parts (metering couple) (2-A) welded in the outer face of the lid (1), in a way to form a metallurgical continuity with the circular lid (1), and the other part (reference couple) (2-B), only joined by the basis of the"U" (2-B-2) with the outer face of the lid (1), in such way forming no metallurgical continuity between the surfaces. Both sensor parts are connected by metering conductor (3), and reference conductor (4), to a voltmeter that measures electrical difference of potential.

It were made the experiments following described, each test repeated thrice, and the results, having a low scattering, were registered on the graph (FIGURE 3), relating hydrogen flow by area versus difference of potential between metering couple and reference couple.

TEST NR. I With an empty hydrogen generating cell (8), and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a NiCr-Ni couple, it was measured the voltage at voltmeter (5), for temperatures of 10, 20, 30, 40, 50, 60 and 70 Celsius degrees at the surface under permeation (1), and it was observed that the potential values are practically constant, and equal to zero (see point A, from Figure 3 graph) ; TEST NR. 2 With an empty hydrogen generating cell (8), and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a FE-CuNi couple, it was measured the voltage at voltmeter (5), for temperatures of 10, 20, 30, 40, 50, 60 and 70 Celsius degrees at the surface under permeation (1), and it was observed that the potential values are practically constant, and equal to zero ; TEST NR. 3 With an empty hydrogen generating cell (8), and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a NiCr-NiAI couple, it was measured the voltage at voltmeter (5), for temperatures of 10, 20, 30, 40, 50, 60 and 70 Celsius degrees at the surface under permeation (1), and it was observed that the potential values are practically constant, and equal to zero ; TEST NR. 4 With an empty hydrogen generating cell (8), and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a PtIO-PtRh couple, it was measured the voltage at voltmeter (5), for temperatures of 10, 20, 30, 40, 50, 60 and 70 Celsius degrees at the surface under permeation (1), and it was observed that the potential values are practically constant, and equal to zero ; TEST NR. 5 With an empty hydrogen generating cell (8), and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a Pt30-PtRh couple, it was measured the voltage at voltmeter (5), for temperatures of 10, 20, 30, 40, 50, 60 and 70 Celsius degrees at the surface under permeation (1), and it was observed that the potential values are practically constant, and equal to zero ; TEST NR. 6 With an empty hydrogen generating cell (8), and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a Cu-CuNi couple, it was measured the voltage at voltmeter (5), for temperatures of 10, 20, 30, 40, 50, 60 and 70 Celsius degrees at the surface under permeation (I), and it was observed that the potential values are practically constant, and equal to zero ; TEST NR. 7 With the hydrogen generating cell (8) filled with a 1/3 Molar Acetic Acid aqueous solution, under agitation during 48 hours, and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a NiCr-Ni couple, it was measured the voltage at voltmeter (5), at a temperature of 20 Celsius degrees at the surface under permeation (I), and it was observed a potential of 0. 06 mV, and following the hydrogen generation, it was measured a shift of 1. 0 mm/h of ethyleneglycol at column (10-C), which corresponds to a flow of 0. 54 mmVh of generated hydrogen by cm2 of the surface under hydrogen permeation. (See point B in Figure 3 graph) ; TEST NR. 8 With the hydrogen generating cell (8) filled with a 2/3 Molar Acetic Acid aqueous solution, under agitation during 48 hours, and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a NiCr-Ni couple, it was measured the voltage at voltmeter (5), at a temperature of 20 Celsius degrees at the surface under permeation (1), and it was observed a potential of 0. 14 mV, and following the hydrogen generation, it was measured a shift of 1. 6 mm/h of ethyleneglycol at column (10-C), which corresponds to a flow of 0. 89 mm3A1 of generated hydrogen by cm2 of the surface under hydrogen permeation. (See point C in Figure 3 graph) ; TEST NR. 9 With the hydrogen generating cell (8) filled with a 1. 0 Molar Acetic Acid aqueous solution, under agitation during 48 hours, and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a NiCr-Ni couple, it was measured the voltage at voltmeter (5), at a temperature of 20 Celsius degrees at the surface under permeation (1), and it was observed a potential of 0. 23 mV, and following the hydrogen generation, it was measured a shift of 2. 0 mm/h of ethyleneglycol at column (10-C), which corresponds to a flow of 1. 07 mm'/h of generated hydrogen by cm2 of the surface under hydrogen permeation. (See point D in Figure 3 graph) ; TEST NR. 10 With the hydrogen generating cell (8) filled with a 1. 0 Molar Acetic Acid aqueous solution, under agitation and under an electrical current of 10 mA, equivalent to 0. 2 mA/cm2, supplied by the current generator assembly (9), during 48 hours, and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a NiCr-Ni couple, it was measured the voltage at voltmeter (5), at a temperature of 20 Celsius degrees at the surface under permeation (1), and it was observed a potential of 0. 3 mV, and following the hydrogen generation, it was measured a shift of 3. 0 mm/h of ethyleneglycol at column (10-C), which corresponds to a flow of 1. 61 mm3/h of generated hydrogen by cm2 of the surface under hydrogen permeation. (See point E in Figure 3 graph) ; TEST NR. 11 With the hydrogen generating cell (8) filled with a 1. 0 Molar Acetic Acid aqueous solution, under agitation and under an electrical current of 20 mA, equivalent to 0. 4 mA/cm2, supplied by the current generator assembly (9), during 48 hours, and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a NiCr-Ni couple, it was measured the voltage at voltmeter (5), at a temperature of 20 Celsius degrees at the surface under permeation (1), and it was observed a potential of 0. 37 mV, and following the hydrogen generation, it was measured a shift of 4. 0 mm/h of ethyleneglycol at column (10-C), which corresponds to a flow of 2. 15 mm3/h of generated hydrogen by cm2 of the surface under hydrogen permeation. (See point F in Figure 3 graph) ; TEST NR. 12 With the hydrogen generating cell (8) filled with a 1. 0 Molar Acetic Acid aqueous solution, under agitation and under an electrical current of 50 mA, equivalent to 1. 0 mA/cm2, supplied by the current generator assembly (9), during 48 hours, and with proof sensor (2) made of metering couple (2-A) and reference couple (2-B) with a NiCr-Ni couple, it was measured the voltage at voltmeter (5), at a temperature of 20 Celsius degrees at the surface under permeation (1), and it was observed a potential of 0. 44 mV, and following the hydrogen generation, it was measured a shift of 6. 0 mm/h of ethyleneglycol at column (10-C), which corresponds to a flow of 3. 22 mm-3/l1 of generated hydrogen by cm2 of the surface under hydrogen permeation. (See point G in Figure 3 grapll) ; The process for metering permeated hydrogen flow is realized, in a preferential but not restrictive arrangement, by an apparatus build of a sensor (2), with two parts in an"U"format (2-A and 2-B), being one side (2-A-1 and 2-B-1) and the basis of tl1e"U" (2-A-2 and 2-B-2) made of the same material and the other side of the"U" (2-A-3 and 2-B-3) in another material and welded in the basis of the"U", being one of the parts (metering couple (2-A)) welded by the basis of the"U" (2-A-2) to the outer face of the surface under permeation by hydrogen (1), in a way to form a metallurgical continuity with said surface and the other part (reference couple (2-B)) only attached by the basis of the"U" (2-B-2), in so forming no metallurgical continuity between the surfaces and aiming and allowing the correction of the influence of the temperature over the physical properties of the couple. Both sensor parts are connected by measuring conductor (3) and reference conductor (4) to a voltmeter (5), which measures difference of potential.

The installation of the apparatus for metering hydrogen flow can be made in two ways : a) EXTERNALLY TO THE ITEM UNDER PERMEATION BY HYDROGEN a. l.) The basis of the"U" (2-A-2) from the first material is welded on the outer face of the surface under permeation (1), and the side (2-A-3) of the other material is welded in basis (2-A-2), then forming the"U"of the metering couple (2-A) of the sensor (2) ; a. 2.) The basis of the"U" (2-B-2) of the first material is attached to the outer face of the surface under permeation (1), by ordinary adhesive means that allow an intimate contact with the basis (2-B-2) and the surface under permeation and the obtaining of actual values of temperature at the surface (1), and the side (2-B-3) of the other material is welded on the basis (2-B-2) forming tlle"U"of the reference couple (2-B) of the sensor (2) ; and a. 3.) The measuring conductor (3) is connected to the side (2-A-3) and the reference conductor (4) is connected to the side (2-B-3), both conductors are connected to the voltmeter (5), and the sides of the"U" (2-A-1 and 2-B-1) are connected each other by welding, or this connection can be made using the same material forming both"U". b) INTERNALLY TO THE ITEM UNDER PERMEATION BY HYDROGEN b. l.) The item is drilled to access its interior. A threaded sleeve is welded, creating a connection. A tubular well from the same material of the item, but with adequate thickness, is screwed in this connection in form of sleeve, in order to maximize the hydrogen permeation. b. 2.) Inside the tubular well the measuring apparatus is implante, following the same sequence of the items a. I, a. 2. and a. 3.

It is easily understood by a technically trained person that the present patent is not limited by particular constructive arrangements, such as those presented above, but it can be changed the employed couples'quantity and materials, the form of these materials and couples, as well as the methods for compensating the temperature, the measuring instruments, and even the measured electrical variables, without let the innovative purpose of this invention, which is the employment of couples of dissimilar materials forming metering couple and reference couple, both submitted to the temperature of the item under permeation, said metering couple being under permeation by the hydrogen to be measured, and said reference couple being free from permeation by hydrogen, in way to utilize the changing in physical properties of the metering couple with the flow of permeated hydrogen to measure this flow, in a way independent from temperature.