Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SEPARATION OF SUGARS
Document Type and Number:
WIPO Patent Application WO/2005/040430
Kind Code:
A1
Abstract:
The invention relates to the recovery of deoxy sugars, such as fucose from biomass-derived solutions, such as spent liquors obtained from pulping processes. The invention also relates to the recovery of glycosides from biomass. The invention is based on the use of chromatographic fractionation with specific column packing materials and combinations thereof using water as the eluent. The deoxy sugar product obtained from the chromatographic fractionation may be further purified by crystallization. The invention also provides a novel crystalline L-fucose product and a novel process for the crystallization of fucose.

Inventors:
JUMPPANEN JUHO (GB)
RAVANKO VILI (US)
HEIKKILAE HEIKKI (FI)
NURMI JUHA (FI)
NURMI NINA (FI)
SAARI PIA (FI)
HAEKKAE KATJA (FI)
LEWANDOWSKI JARI (FI)
Application Number:
PCT/FI2004/000557
Publication Date:
May 06, 2005
Filing Date:
September 22, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DANISCO SWEETENERS OY (FI)
JUMPPANEN JUHO (GB)
RAVANKO VILI (US)
HEIKKILAE HEIKKI (FI)
NURMI JUHA (FI)
NURMI NINA (FI)
SAARI PIA (FI)
HAEKKAE KATJA (FI)
LEWANDOWSKI JARI (FI)
International Classes:
C13B20/00; C13B20/14; C13K13/00; (IPC1-7): C13K13/00; B01J39/06; B01J41/06; B01D15/04
Domestic Patent References:
WO2003008072A12003-01-30
WO2000027039A12000-05-11
Foreign References:
US3240775A1966-03-15
EP0560284A11993-09-15
Other References:
PATENT ABSTRACTS OF JAPAN vol. 012, no. 237 (C - 509) 6 July 1988 (1988-07-06)
DATABASE WPI Week 199916, Derwent World Patents Index; Class D17, AN 1999-186299, XP002984112
DATABASE WPI Week 198644, Derwent World Patents Index; Class B04, AN 1986-287932, XP002138488
Attorney, Agent or Firm:
KOLSTER OY AB (P.O. Box 148, Helsinki, FI)
Download PDF:
Claims:
Claims
1. A process of separating and recovering one or more deoxy sug ars and optionally glycosides from a solution derived from biomass containing the same, comprising subjecting said solution to one or more chromatographic fractiona tion steps (1), (2) and (3) using water as the eluent : (1) at least one chromatographic fractionation using a column pack ing material selected from strongly acid cation exchange resins, (2) at least one chromatographic fractionation using a column pack ing material selected from weakly acid cation exchange resins and weakly ba sic anion exchange resins, (3) at least one chromatographic fractionation using a column pack ing material selected from strongly basic anion exchange resins, followed by recovering from fractionations (1) and/or (2) and/or (3) one or more fractions enriched in at least one deoxy sugar and optionally glycoside.
2. A process as claimed in claim 1, wherein the deoxy sugars are selected from fucose and rhamnose and the glycosides are selected from methylaDxylopyranoside.
3. A process as claimed in claim 1, comprising subjecting said so lution to two or more of steps (1), (2) and/or (3).
4. A process as claimed in claim 1, comprising subjecting said solu tion two or more times to steps selected from steps (1), (2) and/or (3).
5. A process as claimed in claim 1, wherein the process comprises recovering a fraction enriched in rhamnose from step (1).
6. A process as claimed in claim 1, wherein the process comprises recovering a fraction enriched in methylaDxylopyranoside from step (2).
7. A process as claimed in claim 1, wherein the process comprises recovering a fraction enriched in fucose from step (3).
8. A process as claimed in claim 1, wherein the process comprises recovering a fraction enriched in rhamnose, fucose or methylaD xylopyranoside in one of steps (1), (2) or (3).
9. A process as claimed in claim 1, wherein the process comprises subjecting said solution derived from biomass to chromatographic fractionation using a column packing material selected from strongly basic anion exchange resins and recovering a fraction enriched in fucose.
10. A process as claimed in claim 1, wherein the process com prises the following sequential steps: (1) subjecting said solution derived from biomass to chroma tographic fractionation using a column packing material selected from strongly acid cation exchange resins and recovering a fraction enriched in rhamnose and/or one or more fractions containing deoxy sugars selected from fucose and glycosides selected from methylaDxylopyranoside, and (2) subjecting said one or more fractions containing methylaD xylopyranoside and fucose to chromatographic fractionation using a column packing material selected from weakly acid cation exchange resins and recov ering a fraction enriched in methylaDxylopyranoside and a fraction contain ing fucose,.
11. A process as claimed in claim 10, wherein the process com prises a further step (3) comprising subjecting said fraction containing fucose to chromatographic fractionation using a column packing material selected from strongly basic anion exchange resins and recovering a fraction enriched in fucose.
12. A process as claimed in claim 1, wherein said strongly acid cation exchange resin is in Na+ form.
13. A process as claimed in claim 1, wherein said strongly acid cation exchange resin is in Zn2+ form.
14. A process as claimed in claim 1, wherein said weakly acid cation exchange resin is in Na+ form.
15. A process as claimed in claim 1, wherein said strongly basic an ion exchange resin is in HS03form.
16. A process as claimed in claim 1, wherein the chromatographic fractionation comprises SMB separation.
17. A process as claimed in claim 1, wherein said solution derived from biomass is derived from plantbased biomass.
18. A process as claimed in claim 17, wherein said solution derived from biomass is a biomass hydrolyzate containing one or more deoxy sugars and glycosides.
19. A process as claimed in claim 18, wherein said biomass hydro lyzate containing one or more deoxy sugars and glycosides is a spent liquor obtained from a pulping process.
20. A process as claimed in claim 19, wherein said spent liquor has been obtained from hardwood pulping.
21. A process as claimed in claim 17, wherein said biomass hydro lyzate containing one or more deoxy sugars and glycosides is selected from a sugar beetderived solution and a sugar canederived solution.
22. A process as claimed in claim 1, wherein said process further comprises subjecting said one or more fractions enriched in at least one deoxy sugar and optionally glycoside to crystallization.
23. A process as claimed in claim 22, wherein said crystallization is carried out using evaporation and cooling crystallization.
24. A process as claimed in claim 21, wherein said one or more de oxy sugars are selected from fucose.
25. A process as claimed in claim 24, wherein fucose is crystallized from a solvent selected from water, an alcohol, preferably ethanol, and a mix ture of water and an alcohol, preferably a mixture of water and ethanol.
26. A process as claimed in claim 25, wherein the crystallization solvent is water.
27. A process as claimed in claim 24, wherein the crystallization of fucose is carried out from a solution containing more than 45% fucose on DS.
28. A process as claimed in claim 27, wherein the crystallization of fucose is carried out from a solution containing more than 80% fucose on DS.
29. A process as claimed in claim 27, wherein the crystallization of fucose is carried out from a solution containing less than 20% rhamnose, less than 15% xylose, less than 3% arabinose and less than 1% galactose on DS.
30. A process as claimed in claim 27, wherein the crystallization of fucose is carried out from a solution containing more than 45% fucose, less than 20% rhamnose, less than 15% xylose, less than 3% arabinose and less than 1% galactose on DS.
31. A process for the crystallization of fucose, wherein the crystalli zation of fucose is carried out from a biomassderived solution containing more than 45% fucose, less than 20% rhamnose, less than 15% xylose, less than 3% arabinose and less than 1% galactose.
32. A process as claimed in claim 30 or 31, wherein said crystalliza tion is carried out at a temperature range of 0 to 100°C.
33. A process as claimed in claim 30 or 31, wherein the viscosity of the resulting crystallization mass is in the range of 5 to 500 Pas.
34. A process as claimed in claim 30 or 31, wherein the crystalliza tion is carried out using a mixture of water and ethanol as the solvent.
35. A process as claimed in claim 30 or 31, wherein the crystalliza tion is carried out with a residence time of 0.5 to 10 days.
36. A process of claim 31 for the crystallization of fucose, wherein the crystallization of fucose is carried out from a biomassderived solution con taining more than 80% fucose, less than 20% rhamnose, less than 15% xy lose, less than 3% arabinose and less than 1 % galactose on DS.
37. A process as claimed in claim 36, wherein the crystallization of fucose is carried out in a temperature range of 0 to 100°C.
38. A process as claimed in claim 36, wherein the crystallization of fucose is carried out with a residence time of 6 to 80 hours.
39. A process as claimed in claim 24, wherein the crystallization of fucose is carried out by fractional crystallization.
40. A process as claimed in claim 39, wherein the process provides crystalline fucose with a purity of more than 60% on DS.
41. A process as claimed in claim 40, wherein the purity of the crys talline fucose is more than 90% on DS.
42. A process as claimed in claim 40, wherein the purity of the crys talline fucose is more 99% on DS.
43. A process as claimed in claim 22 or 31, wherein the process comprises washing the crystals obtained from the crystallization.
44. A process as claimed in claim 43, wherein the washing agent is selected from water, an organic solvent or a mixture thereof.
45. A process as claimed in claim 1, wherein said fucose is L fucose.
46. A process as claimed in claim 1, wherein said rhamnose is L rhamnose.
47. Crystalline Lfucose based on biomass, which has a melting point higher than 144 °C and a purity higher than 99% on DS.
48. Crystalline Lfucose based on biomass as claimed in claim 47, which has a melting point higher than 145°C and a purity higher than 99.5% on DS.
49. Crystalline Lfucose as claimed in claim 47, which is based on plantbased biomass.
50. Crystalline Lfucose as claimed in claim 47, which is obtainable by a method in accordance with claim 24 and 31.
51. Crystalline Lfucose as claimed in claim 50, which is obtainable by crystallization from water, followed by washing.
52. The use of crystalline Lfucose as claimed in any one of claims 47 to 51 as an ingredient in dietary supplements.
53. The use of crystalline Lfucose as claimed in any one of claims 47 to 51 as an ingredient in pharmaceutical.
54. The use of crystalline Lfucose as claimed in any one of claims 47 to 51 as an ingredient in cosmetics.
Description:
Separation of sugars Field of the invention The invention relates to the field of sugar separation technology.

Especially, the invention relates to a process of separating and recovering de- oxy sugars and glycosides from a biomass-derived solution containing these compounds. Especially, the invention relates to the separation of fucose and particularly L-fucose. The invention also relates to a novel crystalline L-fucose product and a process for the crystallization of fucose. Furthermore the inven- tion relates to the use of the crystalline L-fucose thus obtained as a dietary supplement as well as for pharmacological and cosmetic applications.

Background of the invention Deoxy sugars are examples of so-called rare sugars, which are found in small amounts in plant-based materials, such as wood resources, seaweeds and sugar beet and sugar cane. Specific deoxy sugars have been found useful for example for sweetener applications as well as for pharmaceu- tical and cosmetic applications.

Glycosides, especially alkyl glycosides are sugar derivatives, which are frequently found in the same plant-based materials as deoxy sugars men- tioned above.

Deoxy sugars are known to exist in L-form and in D-form. For ex- ample, fucose exists as L-fucose and D-fucose.

One example of deoxy sugars of special interest is fucose, also named 6-deoxygalactose. Fucose is found in a wide variety of natural products from many different sources, in both D-form and L-form. Interest in L-fucose has recently increased because of its potential in the medical field in treating various disease conditions, such as tumors, inflammatory conditions and dis- orders relating to the human immune system. L-fucose has also applications in the cosmetic field, for instance as a skin moisturizing agent.

In accordance with Merck Index, Twelfth Edition, 1996, crystalline L- fucose has a melting point of 140°C and an optical rotation of-75. 6°.

L-fucose occurs for instance in several human milk oligosaccha- rides.

In plant material, fucose is typically associated with plant polysac- charides, which are often highly branched structures having L-fucopyranosyl

units either at the ends of or within the polysaccharide chains. In some cases, even methylated fucopyranosyl units occur in plant polysaccharides.

L-fucose or methylated L-fucopyranosyl units occur in the cell walls of potato, cassava tuber and kiwi fruit, in the seed polysaccharides of soybean and in winged bean varieties and canola, for example.

Seaweed polysaccharides, found in the intercellular mucilage, form complex structures and are often composed of sulfate L-fucose polymers, named fucoidan. Seaweeds of particular importance for the extraction of fuc- oidan are Ecklonia kurome, Laminaria angustata var longissima, Fucus vesicu- losus, Kjellmaniella crassifolia, Pelvetia canaliculata and Fucus serratus L.

Furthermore, extracellular polysaccharides from various bacteria, fungi and micro-algae contain L-fucose.

L-fucose can be obtained from natural sources, such as algae by various extraction methods. These raw materials of natural origin used for the recovery of fucose are typically multicomponent mixtures. The separation of fucose with sufficient purity has presented a problem in the state of the art.

L-fucose has been obtained by hydrolysis of fucoidan occurring in Phaeophyceae algae. Black, W. A. P. et al. disclose an optimized fucoidan ex- traction method in"Manufacture of algal chemicals. IV. Laboratory-scale isola- tion of fucoidan from brown marine algae", J. Sci. Food Agric. 3: 122-129 (1952). The highest yields were obtained by extraction (pH 2.0-2. 5) with hydro- chloric acid at a temperature of 70°C for 1 h. A ratio (w/v) of 1 unit algae to 10 units liquid was shown to be optimal. This procedure yielded about 50% of the total L-fucose. Three subsequently performed acid extractions yielded more than 80% L-fucose. The crude fucoidan was isolated from the acid extraction liquid by neutralization and evaporation to dryness.

US 3,240, 775, Kelco Co. (published 15 March 1966) discloses a method of preparing crystals of an a-L-fucoside and L-fucose comprising the steps of heating a mixture of fucoidan, concentrated hydrogen chloride and methanol until the fucoidan is substantially depolymerized and desulfated, and thereafter recovering, from said mixture, a degradation product which consists of methyl a-L-fucoside and, after subsequent hydrolysis, L-fucose.

Example VIII of the above-mentioned reference discloses a process of obtaining crystalline L-fucose from said mixture containing fucoidan degra- dation products by removing the a-L-fucoside (methyl a-L-fucoside), treating the mixture thus obtained with 1 N sulfuric acid, precipitating sulfuric acid with

Ba (OH) 2, treating the solution with cation exchange resins (Amberlite IR-120 in H form) and activated carbon, concentrating the colorless solution in vacuo to a syrup and diluting the syrup with hot methanol. Ether was added to the di- luted solution, and after seeding with L-fucose the mixture was kept refriger- ated for 8 to 12 days. Crystalline L-fucose with a melting point of 136 to 138°C was obtained. In accordance with Example IX, the same procedure provided crystalline L-fucose with a melting point of 136 to 139°C.

Japanese patent publication 63027496 A2 (Takemura, M et al., Towa Chem. Ind.) describes direct extraction of L-fucose from algae belonging to the family of the Chordariaceae or Spermatochnaceae. The algae were dis- persed in water and treated with concentrated sulfuric acid. The obtained hy- drolyzate was cooled and the algae residues were removed by filtration. The pH of the filtrate was adjusted to 5, the filtrate was treated with charcoal and filtered. A yeast was added to the filtrate to digest the saccharides other than L-fucose. The mixture was treated with charcoal and filtered. The filtrate was subjected to deionization treatment with cation and anion exchange resins and concentrated. The concentrated sugar solution was mixed with ethanol and al- lowed to crystallize. In this way, L-fucose with a purity of 98.7% was obtained (without reference to the analysis method). Melting point data for the L-fucose product was not given.

F. M. Rombouts and J. F. Thibault describe the isolation of pectins from an ethanol-insoluble residue of sugar beet pulp in Carbohydrate Re- search 1986,154, pp. 177-187. The isolated pectins were purified by chroma- tography on DEAE-cellulose or by precipitation with CuS04. The pectins had relatively high contents of neutral sugars. The main neutral sugars in each pec- tin were arabinose and galactose ; other sugars present were rhamnose, fuco- se, xylose, mannose and glucose. Fucose was not separated from the su- gar/pectin mixture.

V. A. Derevitskaya et al. (Dokl. Akad. Nauk. SSSR (1975), 223 (5) 1137-9) describe the separation of complex mixtures of oligosaccharides by anion-exchange chromatography. In accordance with the disclosure, 2-amino- 2-deoxyglucitol, glucosamine, galactose and fucose were successfully sepa- rated from oligosaccharide mixtures, buffered by 0.2 M borate, by anion- exchange chromatography.

M. H. Simatupang describes ion-exchange chromatography of some neutral monosaccharides and uronic acids in J. Chromatogr. (1979), 178 (2),

588-91. The reference discloses ion-exchange chromatography of complex mixtures of uronic acids and monosaccharides containing fucose and man- nuronic and guluronic acids utilizing a borate buffer system. The chroma- tographic system employed a steel column containing HA-X4 or BA-X4 (borate form) anion exchangers and a buffer system of various borate concentrations at various pH values. The separation profile shows that there was overlap be- tween deoxy sugars and other monosaccharides, whereby the separation re- sult was not satisfactory.

S. Honda et al. (Journal of Chromatography, 291 (1984) 317-325) describe the separation of sugar (aldose) anomers with cation exchange resins in sodium and calcium form using asetonitrile as the eluent. The reference only discloses the separation of the anomers of each sugar from one another, not the separation of one sugar from other sugars. Deoxy sugars were eluted si- multaneously with other sugars.

McGuire et al. have studied the effect of pH on the high pH anion- exchange chromatography elution of monosaccharides in Chromatographia, vol. 49, No. 11/12, June 1999. The eluent in the separation was sodium hy- droxide solution. The results show that fucose was separated from other monosaccharides. However, other deoxy sugars are not mentioned.

Japanese Patent Publication No. 11-035591 (published on 9 Febru- ary 1999) discloses a process to produce L-fucose from fucoidan prepared from Cladosiphon okamuranus Tokida or an extract containing fucoidan. The process is a multistep process comprising for example treatments with water and/or an acid, neutralization, dialysis and electrodialytic treatments and ion exchange treatment using alkali as the eluent. L-fucose is finally crystallized from an alcohol.

D. Balaghova et al. studied the changes of the saccharide portion of maple wood in the course of prehydrolysis in Vybrane Procesy Chem. Spraco- vani Dreva (1996), 187-192 (Publisher: Technicka Univerzita Zvolen, Zvolen, Slovakia). The main monosaccharides found in maple wood were D-glucose, D-xylose, L-rhamnose, L-fucose, L-arabinose, D-mannose and D-galactose. L- fucose was not separated from the sugar mixture.

L-fucose can also be obtained via chemical synthesis from L- arabinose (Tanimura, A. , Synthesis of L-fucose, Chem. Abstr. 55: 12306 (1961) ), from D-glucose (Chiba, T. & Tejima, S. , A new synthesis of a-L- fucose, Chem. Pharm. Bull. 27: 2838-2840 (1979) ), from methyl-L-rhamnose

(Defaye, J. , et al., An efficient Synthesis of L-fucose and L- (4-2H) fucose, Car- bohydrate Res. 126: 165-169 (1984) ), from D-mannose (Gesson, J-P et al., A short synthesis of L-fucose and analogs from D-mannose, Tetrahedron Lett.

33: 3637-3640 (1992) ) and from D-galactose (Dejter-Juszynski, M & Flowers, H-M. , Synthesis of L-fucose, Carbohydrate Res. 28: 144-146 (1973); Kristen, H. , et al., Introduction of a new selective oxidation procedure into carbohydrate chemistry-An efficient conversion of D-galactose into L-fucose, J. Carbohydr.

Chem. 7: 277-281 (1988); Sarbajna, S. et al., A novel synthesis of L-fucose from D-galactose, Carbohydr. Res. 270: 93-96 (1965)).

Enzymatic and microbial synthesis has also been used for the pro- duction of L-fucose.

C. Wong et al. disclose an enzymatic synthesis of L-fucose and analogs thereof in J. Org. Chem. , 60: 7360-7363 (1995). L-fucose is produced by enzymatic synthesis from dihydroxyacetone phosphate (DHAP) and DL- lactaldehyde catalyzed by L-fuculose-1-phosphate aldolase, followed by reac- tion with acid phosphatase and L-fucose isomerase. The L-fucose product was isolated by Dowex 50W-X8 (Ba2+ form) chromatography, optionally combined with separation by silica gel.

EP 102 535, Hoecst AG (published 14 March 1984) discloses a process for the production of deoxysugars selected from fucose and rhamnose by fermentation using the genera Alcaligenes, Klebsiella, Pseudomonas or En- terobacter, which produce extracellular polysaccharides containing more than 10% fucose and/or rhamnose. It is recited that fucose and/or rhamnose may be recovered from the hydrolyzate of the fermentation product by chromatog- raphy, ion-exchange or adsorption (for example with zeolites) or by further fermentation treatment. In the examples of the EP patent, rhamnose and fucose are recovered by further fermentation treatment. The reference does not disclose the separation of deoxysugars or the separation of fucose and rhamnose from each other by chromatography.

US 4,772, 334. Kureha Kagaku Kogyo Kabushiki Kaisha (published September 20,1988) discloses a process for producing highly pure rhamnose from gum arabic. The process comprises partial hydrolysis of gum arabic in an aqueous solution of a mineral acid, neutralization and treatment with a polar organic solvent to obtain an aqueous solution containing monosaccharides formed by the hydrolysis of gum arabic, and subjecting the aqueous solution

thus obtained to strongly acid cation exchange chromatography and then to a method of adsorption and separation using activated carbon.

WO 02/27038, Xyrofin Oy (published 4 April 2002) discloses the use of a weakly acid cation exchange resin for chromatographic separation of car- bohydrates from each other. Preferably the weakly acid cation exchange resin is used for the separation of hydrophobic monosaccharides, such as deoxy, methyl and anhydrosugars and sugar alcohols from more hydrophilic saccha- rides.

WO 02/27039, Xyrofin Oy (published 4 April 2002) discloses a proc- ess for recovering a monosaccharide selected from the group consisting of rhamnose, arabinose and mixtures thereof from a solution containing the same by a multistep process comprising at least one step where a weakly acid cation exchange resin is used for the chromatographic separation.

The recovery of glycosides has been discussed for example in US 4 329 449, A. E. Staley Manufacturing Company, published May 11,1982. This reference describes the recovery of methyl-alfa-D-glucopyranoside from crude glycoside mixtures obtained from starch. In the examples of the reference, methyl-alfa-D-glucopyranoside is recovered from the glycoside mixture by crystallization from methanol.

I. Augestad et al. discuss the chromatographic separation of ano- meric glycosides, especially crystalline methylfuranosides of L-fucose, D- ribose and L-rhamnose in Acta Chemica Scandinavica (1956), 10,911-16 and the separation of new crystalline methylfuranosides of galactose, arabinose and xylose in Acta Chemica Scandinavica (1954), 8,251-6. The chroma- tographic separation of anomerics is carried out with a cellulose column using an organic solvent as the eluent.

One of the problems associated with known processes is that they provide the desired deoxy sugars as a mixture with other closely related sug- ars or that they do not provide the deoxy sugars, such as fucose with a suffi- cient degree of purity. Direct extraction from brown algae is costly, and subject to seasonal variations in the supply volume and quality. On the other hand, the production of L-fucose via chemical synthesis for instance from other sugars may be costly and suffer from low yield. Furthermore, it has been problematical to prepare suitable starting fucose solutions for the crystallization of fucose to obtain a crystalline fucose product having a purity of more than 99%.

Furthermore, the recovery of deoxy sugars from one another has presented a problem in the state of the art due to the closely related structures thereof. In many separation processes, the deoxy sugars behave in the same way, whereby no essential separation between these closely-related sugars occurs. Instead, they are often recovered as an admixture in the same fraction.

It has now been found that fucose and other deoxy sugars with high purity as well as glycosides can be effectively recovered from biomass-derived solutions containing deoxy sugars and for example aldose and pentose sugars using a novel chromatographic separation method. It was also found that high purity fucose crystals with a melting point higher than 141°C, preferably higher than 145°C, can be obtained from impure syrups having a fucose content of more than 45% of DS, especially when the content of critical impurities is within a range below specific critical values. Fucose proved to have a very strong salting-out effect on other sugars, such as arabinose and rhamnose.

For this reason, it has been very difficult to prepare fucose crystals with a high purity in the state of the art.

Brief description of the invention An object of the present invention is to provide a method for sepa- rating and recovering deoxy sugars, such as fucose, as well as glycosides from biomass-derived solutions containing the same. Another object of the in- vention is to provide a method of separating deoxy sugars from one another and from other monosaccharides. A further object of the invention is to provide a method of separating glycosides from deoxy sugars and monosaccharides.

With the process of the invention, the disadvantages relating to the known processes can be alleviated. The objects of the invention are achieved by a process which is characterized by what is stated in the independent claims.

The preferred embodiments of the invention are disclosed in the dependent claims.

In accordance with the present invention, the objects above are achieved by providing a novel and versatile process of separating and recover- ing one or more deoxy sugars and optionally glycosides from biomass-derived material. The biomass-derived material useful in the present invention is typi- cally derived from plant-based biomass. It may be for example a hemicellulose hydrolyzate containing deoxy sugars and for example aldose and pentose sugars and glycosides, especially alkyl glycosides from the hemicellulose. In a hemicellulose hydrolyzate derived for example from birch wood, fucose and

rhamnose exist in L-form.

The process of the invention is based on the use of one or more chromatographic fractionations with a column packing material selected from strongly acid cation exchange resins, weakly acid cation exchange resins, strongly basic anion exchange resins and weakly basic anion exchange resins, using water as the only eluent in the chromatographic separation. Surprisingly, it was found that the use of water as the eluent provided an efficient separation of deoxy sugars and glycosides. After the chromatographic separation, the fraction enriched in the desired deoxy sugar or glycoside may be further crys- tallied to obtain the desired deoxy sugar or glycoside with high purity.

With the chromatographic method of the invention, for example a fucose fraction having a purity between 10 and 90%, typically 40 to 80 % or more can be obtained. The fucose fraction obtained from the chromatographic separation can be further purified by crystallization. The crystallization provides a fucose product having a purity of up to 99% or more and a melting point of 144°C or higher. In a typical embodiment of the invention, the crystallization of fucose is carried out from a solution including as impurities less than 20% rhamnose, less than 15% xylose, less than 3 % arabinose and less than 1% galactose on DS. The crystalline fucose typically contains impurities selected from rhamnose, arabinose, galactose and mannose in an amount in the range of 0. 01 toO. 1% on DS.

The process of the present invention thus provides the advantage that the desired deoxy sugars, such as fucose can be obtained with sufficient purity for medical applications, for example.

Definitions relating to the invention In the specification and throughout the examples and the claims, the following definitions are used: "Deoxy sugar"refers to a monosaccharide derivative formed by the deoxidation of a hydroxyl group of the monosaccharide in an aldose or ketose.

Typical examples of deoxy sugars in connection with the present invention are rhamnose and fucose.

Glycosides are sugar derivatives including a glycosidic ether bond.

One example of glycosides and especially alkyl glycosides in connection with the present invention is methyl-a-D-xylopyranoside (MAX).

MAX refers to methyl-a-D-xylopyranoside.

SAC refers to a strongly acid cation exchange resin.

WAC refers to a weakly acid cation exchange resin.

SBA refers to a strongly basic anion exchange resin.

WBA refers to a weakly basic anion exchange resin.

DVB refers to divinylbenzene.

ACN refers to acetonitrile.

DS refers to a dry substance content measured by Karl Fischer titra- tion, expressed as % by weight.

RDS refers to a refractometric dry substance content, expressed as % by weight.

Purity refers to the content of the compound expressed as % on dry substance.

SMB refers to simulated moving bed process.

Melting points in connection with the present invention are meas- ured by the European Pharmacopea method, unless otherwise indicated.

Brief description of the drawings The following drawings are illustrative embodiments of the invention and are not meant to limit the scope of the invention in any way.

Figure 1 is a graphical presentation of the separation profile ob- tained from Example 1 (chromatographic fractionation of a solution containing deoxy sugars using a strongly acid cation exchange resin in Na+ form).

Figure 2 is a graphical presentation of the separation profile ob- tained from Example 2 (chromatographic fractionation of a solution containing deoxy sugars with a strongly acid cation exchange resin in Zn2+ form).

Figure 3 is a graphical presentation of the separation profile ob- tained from Example 3 (chromatographic fractionation of a solution containing deoxy sugars with a weakly acid cation exchange resin in Na+form).

Figure 4 is a graphical presentation of the separation profile ob- tained from Example 5 (chromatographic fractionation of a solution containing deoxy sugars with a strongly basic anion exchange resin in HSO3-form).

Figure 5 is a graphical presentation showing the relation between the melting point of fucose and the purity of fucose.

Figure 6 is a graphical presentation of the separation profile ob- tained from Example 11 (chromatographic fractionation of a solution containing deoxy sugars with a strongly basic anion exchange resin in HS03-form.

Detailed description of the invention

The present invention relates to a process of separating and recov- ering one or more deoxy sugars and optionally glycosides from a solution de- rived from biomass containing deoxy sugars and ordinary sugars, such as pen- tose and hexose sugars, and glycosides. The process of the invention is char- acterized by subjecting the solution derived from biomass to one or more of chromatographic fractionation steps (1), (2) and (3) using water as the eluent : (1) at least one chromatographic fractionation using a column pack- ing material selected from strongly acid cation exchange resins, (2) at least one chromatographic fractionation using a column pack- ing material selected from weakly acid cation exchange resins and weakly ba- sic anion exchange resins, (3) at least one chromatographic fractionation using a column pack- ing material selected from strongly basic anion exchange resins, and recovering from steps (1), (2) and/or (3) one or more fractions en- riched in at least one deoxy sugar and optionally glycosides.

In a typical embodiment of the invention, the process of the inven- tion comprises the separation of deoxy sugars selected from fucose and rham- nose and glycosides selected from methyl-a-D-xylopyranoside from each other and from other sugars.

In one embodiment of the invention, the process of the invention comprises subjecting said solution to two or more of steps (1), (2) and/or (3).

In another embodiment of the invention, the process of the invention comprises subjecting said solution to two or more times to steps selected from steps (1), (2) and/or (3).

In a further embodiment of the process of the invention, the process comprises recovering a fraction enriched in rhamnose from step (1).

In a still further embodiment of the process of the invention, the process comprises recovering a fraction enriched in methyl-a-D- xylopyranoside from step (2).

In a still further embodiment of the process of the invention, the process comprises recovering a fraction enriched in fucose from step (3).

In a further embodiment of the process of the invention, the process comprises step (3), i. e. subjecting said solution derived from biomass to chro- matographic fractionation using a column packing material selected from strongly basic anion exchange resins and recovering a fraction enriched in fucose.

In step (2) of the process of the invention, the use of a weakly basic anion exchange resin typically provides the same separation result as a weakly acid cation exchange resin. Weakly basic anion exchange resins useful in the present invention are disclosed in a non-published Finnish Patent Application No. 20020592 (WO 03/080872).

In a still further embodiment of the process of the invention, the process comprises the following sequential steps: (1) subjecting said solution derived from biomass to chroma- tographic fractionation using a column packing material selected from strongly acid cation exchange resins and recovering a fraction enriched in rhamnose and/or one or more fractions containing deoxy sugars selected from fucose and glycosides selected from methyl-a-D-xylopyranoside, and (2) subjecting said one or more fractions containing methyl-a-D- xylopyranoside and fucose to chromatographic fractionation using a column packing material selected from weakly acid cation exchange resins and recov- ering a fraction enriched in methyl-a-D-xylopyranoside and a fraction contain- ing fucose.

In one embodiment of the process described above, the process comprises a further step (3) comprising subjecting said fraction containing fucose to chromatographic fractionation using a column packing material se- lected from strongly basic anion exchange resins and recovering a fraction en- riched in fucose.

In one embodiment of the invention, the invention also relates to a process with the following separation sequence: WAC (1) + WAC (2) + SAC (3), where WAC (1) is for the recovery of aldose sugars, WAC (2) for the recovery of MAX and SAC (3) for the recovery of rhamnose and fucose.

In another embodiment of the invention, the invention also relates to a process with the following separation sequence: WAC (1) + SAC (2) + WAC (3), WAC (1) for the recovery of aldose sugars, SAC (2) for the recovery of rhamnose and WAC (3) for the recovery of MAX and fucose.

In a further embodiment of the invention, the invention also relates to a process with the following separation sequence: WAC (1) + SBA (2), WAC (1) for the recovery of aldose sugars and SBA (2) for the recovery of MAX, rhamnose and fucose.

Said strongly acid cation exchange resins used as the column pack- ing material in step (1) of the process of the invention may be in a monovalent

cation form or in a divalent cation form. In a preferred embodiment of the in- vention, said strongly acid cation exchange resin is in Na+ form. The resin may also be in H+, Mg2+ or Ca2+ or Zn2+ form, for example.

Said strongly acid cation exchange resin may have a styrene or acrylic skeleton. In a preferred embodiment of the invention, the resin is a sul- phonated polystyrene-co-divinylbenzene resin. Other alkenylaromatic polymer resins, such as those based on monomers like alkyl-substituted styrene or mix- tures thereof can also be applied. The resin may also be crosslinked with other suitable aromatic crosslinking monomers, such as divinyltoluene, divinylxylene, divinyinaphtalene, divinylbenzene, or with aliphatic crosslinking monomers, such as isoprene, ethylene glycol diacrylate, ethylene glycol dimethacrylate, N, N'-methylene bis-acrylamide or mixtures thereof. The crosslinking degree of the resin is typically from about 1 to about 20%, preferably from about 3 to about 8% of the crosslinking agent, such as divinylbenzene. The average par- ticle size of the resin is normally 10 to 2000, um, preferably 100 to 400, um.

Said weakly acid cation exchange resins used as the column pack- ing material in step (2) of the process of the invention may be in a monovalent or divalent cation form, preferably in Na+ form. The resin may also be in H+, Mg2+ or Ca2+ form, for example.

The weakly acid cation exchange resin is preferably an acrylic cation exchange resin having carboxylic functional groups. However, the resin may be other than an acrylic resin, for example a styrene resin, and the func- tional groups may be other than a carboxylic group, e. g. another weak acid.

Such an acrylic resin is preferably derived from methyl acrylate, ethyl acrylate, butyl acrylate, methylmethacrylate or acrylonitrile or acrylic acids or mixtures thereof. The resin may be crosslinked with a crosslinking agent, e. g. divinyl- benzene, or with the other crosslinking agents mentioned above. A suitable crosslinking degree is 1 to 20% by weight, preferably 3 to 8% by weight. The average particle size of the resin is normally 10 to 2000, um, preferably 100 to 400, um.

Said weakly basic anion exchange resin, which can alternatively be used in step (2) of the present invention, are preferably weakly basic anion ex- change resins having an acrylic skeleton. The weakly basic anion exchange resin is preferably derived from acrylic esters (H2=CR-COOR', where R is H or CH3 and R'is an alkyl group, such as methyl, ethyl, isopropyl, butyl etc. ), such as methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, acryloni-

trile or acrylic acids or a mixture thereof. The acrylic matrix is crosslinked with a suitable crosslinker, which can be for example of aromatic type, such as divi- nylbenzene (DVB) or of aliphatic type, such as isoprene, 1,7-octadiene, trivi- nylcyclohexane, diethylene glycol divinyl ether, N, N'-methylenebisacrylamide, N, N'-alkylene bisacrylamides, ethylene glycol dimethacrylate and other di-, tri-, tetra-, pentacrylates and pentamethacrylates. A suitable crosslinking degree with divinylbenzene is from 1 to 10 weight-% DVB, preferably from 3 to 8 weight-%. The weakly basic anion resin is manufactured of the crosslinked polyacrylic polymer by amination with a suitable amine, such as mono-, di-, tri-, tetra-, penta-or hexamines or other polyamines. For example dimethylamine, diethylene triamine, triethylene tetramine, tetraethylene pentamine, pen- taethylene hexamine and dimethylaminopropylamine are suitable amines.

Another weakly basic anion exchange resin structure is epichloro- hydrin-based polycondensation anion exchangers. The chloromethyl and ep- oxy groups of epichlorohydrin react with polyamines forming crosslinked gel type anion exchangers. For example a condensation reaction of epichloro- hydrin with triethylenetetramine results in the following anion resin structure.

This type of anion resin contains both weakly basic (tertiary amine) and strongly basic (quaternary ammonium) functional groups.

Another class of weakly basic anion exchange resins is the ami- nated polycondensation products of phenol and formaldehyde.

Another well known way to produce weakly basic anion exchange resins are the aliphatic amines and ammonia polycondensation resins. Cross- linked resin structures are formed when monomeric amines or ammonia are reacted for example with formaldehyde. The reaction between amine and for- aldehyde forms methylol and/or azomethine groups, which can further react to form polycondensates. A well-known structure of this type is a reaction resin of formaldehyde, acetone and tetraethylenepentamine. Aromatic amines can also be crosslinked with formaldehyde resulting in a weakly basic anion ex- changer.

Different types of crosslinked polyvinylpyridine based ion exchang- ers having pyridine as the functional group are also useful as weakly base an- ion exchangers.

The average particle size of the resin is normally 10 to 2000 mi- crometers, preferably 100 to 400 micrometers.

Said strongly basic anion exchange resins used as the column

packing materials in step (3) of the process of the invention are typically in HSO3-form. Said strongly basic anion exchange resin may have a styrene or acrylic skeleton. The resin may be crosslinked with divinylbenzene. Other al- kenylaromatic polymer resins, such as those based on monomers like alkyl- substituted styrene or mixtures thereof, can also be applied. The resin may also be crosslinked with other suitable aromatic crosslinking monomers, such as divinyltoluene, divinylxylene, divinyinaphtalene, divinylbenzene, or with ali- phatic crosslinking monomers, such as isoprene, ethylene glycol diacrylate, ethylene glycol dimethacrylate, N, N'-methylene bis-acrylamide or mixtures thereof. The cross-linking degree of the resins is typically from about 1 to about 20%, preferably from about 3 to about 8% of the cross-linking agent, such as divinyl benzene. The average particle size of the resin is normally 10 to 2000 , um, preferably 100 to 400, um.

In a preferred embodiment of the invention, the resins used in steps (1), (2) and (3) are gel-type resins.

Manufacturers of the resins are for example Finex Ltd, Dow Chemi- cals, Bayer Chemicals, Purolite Co. and Rohm & Haas Co.

In one embodiment of the invention, each resin is present in a sepa- rate column. In another embodiment of the invention, two or more of the differ- ent resins (SAC, WAC, SBA and WBA) may be included into one column as partial packing material beds, whereby a column includes two or more partial columns each containing a different resin.

In the chromatographic fractionation operation, the cations/anions of the resin are preferably in substantial equilibrium with the cations/anions of the feed solution of the system.

The eluent used in the chromatographic fractionation of the process of the invention is water.

The temperature of the chromatographic fractionation is typically in the range of 20 to 90°C, preferably 40 to 65°C. The pH of the solution to be fractionated is typically in the range of 2 to 9.

The chromatographic fractionation may be carried out as a batch process or a simulated moving bed process (SMB process). The SMB process is preferably carried out as a sequential or continuous process.

In the simulated moving bed process, the chromatographic frac- tionation is typically carried out using 3 to 14 columns connected in series and forming at least one loop. The columns are connected with pipelines. The flow

rate in the columns is typically 0.5 to 10 m3/ (hm2) of the cross-sectional area of the column. The columns are filled with a column packing material selected from the resins described above. The columns are provided with feed lines and product lines so that the feed solution and the eluent can be fed into the col- umns and the product fractions collected from the columns. The product lines are provided with on-line instruments so that the quality/quantity of the produc- tion flows can be monitored during operation.

During the chromatographic SMB separation, the feed solution is circulated through the columns in the loops by means of pumps. Eluent is added, and the product fraction containing the desired deoxy sugar, other op- tional product fractions and residual fractions are collected from the columns.

The flow of the eluent in the columns may be effected from the top of the col- umns or from the bottom of the columns.

Before the chromatographic fractionation, the feed solution may be subjected to one or more pretreatment steps selected from softening by ion- exchange treatment or dilution, concentration e. g. by evaporation, pH adjust- ment, filtration and membrane filtration, for example. Before feeding into the columns, the feed solution and the eluent are heated to the fractionation tem- perature described above (for instance in the range of 50 to 85°C).

The chromatographic fractionation provides one or more fractions enriched in at least one deoxy sugar and optionally glycoside.

To improve the yield of the chromatographic fractionation, recycle fractions of the chromatographic fractionation can also be used.

The chromatographic fractionation method of the invention may fur- ther comprise one or more purification steps selected from membrane filtration, ion exchange, evaporation and filtration. These purification steps may be car- ried out before, after or between said chromatographic fractionation steps.

The fraction enriched in the desired deoxy sugar obtained from the chromatographic fractionation may be further purified by crystallization to ob- tain a crystalline deoxy sugar product.

The crystallization is typically carried out using evaporation and cooling crystallization. The crystallization solvent may be selected from water, an organic solvent, such as an alcohol, preferably ethanol, and a mixture thereof.

In the following, the crystallization of deoxy sugars is described in more detail referring to the crystallization of fucose.

The crystallization of fucose is typically carried out using a solvent selected from water, an organic solvent, such as an alcohol, preferably etha- nol, and mixtures thereof, such as a mixture of water and ethanol. In a pre- ferred embodiment of the invention, the crystallization is carried out with water or with a mixture of water and ethanol.

The crystallization is typically carried out by evaporating the solution enriched in fucose, which has been obtained from the chromatographic frac- tionation to an appropriate dry substance content (e. g. to an RDS of about 70 to 90% depending on the solubility and composition of the liquid). The solution may be seeded with seed crystals of fucose. The seeds, if used, are pulverized crystals in a dry form or they are suspended in a crystallization solvent, which may be water, an alcohol, such as ethanol, or a mixture thereof. A typical crys- tallization solvent is water. The evaporation can be continued after seeding, if the crystal growth potential and viscosity allow. After evaporation, the crystalli- zation mass may be subjected to cooling with simultaneous mixing, until the crystal content or the viscosity of the crystallization mass is sufficiently high.

Then the crystallization solvent may be added if further cooling is needed to in- crease the yield or if lower viscosity is needed for the separation of the crys- tals. The crystallization mass is typically cooled to a temperature of 10 to 40°C.

The crystallization mass may then be mixed at the final temperature for a pe- riod of time, preferably from 0.5 hours to 6 days to reach the maximum crystal- lization yield, whereafter the crystals are separated for example by filtering.

The filtration can be carried out with traditional centrifuges or filters. The filtra- tion cake is washed with the crystallization solvent and dried. Drying can be carried out for example at a temperature between 30 and 90°C by traditional methods. Crystals of fucose with a high purity are obtained. The crystallization typically provides crystalline fucose having a purity of over 99% on DS and a melting point of over 142. 5°C, preferably over 144 °C.

In the fractional crystallization of fucose, the crystallization provides crystalline fucose having a purity of over 60%, preferably over 90% and most preferably over 99%.

In one embodiment of the invention, the crystallization of fucose is carried out from a solution containing more than 45% fucose on DS. In another embodiment of the invention, the crystallization of fucose is carried out from a solution containing more than 80% fucose on DS. In a preferred embodiment of the invention, the crystallization of fucose is carried out from a solution fur-

ther containing the following impurity profile: less than 20% rhamnose, less than 15% xylose, less than 3% arabinose and less than 1 % galactose on DS.

In one embodiment of the invention, the crystallization of fucose is carried out from a solution containing more than 45% fucose in the presence of the following impurity profile: less than 20% rhamnose, less than 15% xylose, less than 3% arabinose and less than 1 % galactose on DS. The crystallization is typically carried out from a mixture of water and ethanol, the viscosity of the mass is typically in the range of 5 to 500 Pas and the residence time is in the range of 0.5 to 10 days and temperature is in the range of 0 to 100°C, prefera- bly 20 to 70 °C.

In another embodiment of the invention, the crystallization of fucose is carried out from a solution containing more than 80% fucose in the presence of the impurity profile presented above. The crystallization is carried out for a period of 6 to 80 hours in the temperature range of 0 to 100°C, preferably 20 to 70 °C, and it can be carried out without organic solvents.

In a further aspect of the invention, the invention also provides a process for the crystallization of fucose, where the crystallization of fucose is carried out from a biomass-derived solution containing more than 45% fucose in the presence of an impurity profile comprising less than 20% rhamnose, less than 15% xylose, less than 3% arabinose and less than 1 % galactose on DS.

In a still further aspect of the invention, the invention also provides a process for the crystallization of fucose, where the crystallization of fucose is carried out from a biomass-derived solution containing more than 80% fucose in the presence of an impurity profile comprising less than 20% rhamnose, less than 15% xylose, less than 3% arabinose and less than 1 % galactose on DS.

The desired impurity profile of the crystallization feed described above may be achieved for example by chromatographic fractionation, frac- tional crystallization of a biomass hydrolyzate or by mixing liquids having dif- ferent compositions, which are preferably prepared by steps (1) to (3) de- scribed above.

The process of the invention typically comprises a further step of washing the crystals obtained from the crystallization. The washing agent is typically selected from water and organic solvents, such as ethanol, or mix- tures thereof.

A typical dry substance content of the crystallization feed is in the range of 30 to 70% by weight. A suitable viscosity of the fucose crystallization

mass is 50 to 300 Pas.

In a still further aspect of the invention, the invention also provides a novel crystalline fucose product having a melting point higher than 144°C and most preferably higher than 145°C and purity higher than 99% on DS. Said novel crystalline fucose product may be obtained by methods presented above, especially by crystallizing fucose from a solution containing more than 45% fucose, typically more than 80% fucose, and in the presence of the impu- rity profile presented above.

The starting material for the recovery of deoxy sugars is typically a mixture containing said deoxy sugars, glycosides, other monosaccharides and other carbohydrates. In a typical embodiment of the invention, said deoxy sug- ars comprise rhamnose and fucose and the glycosides comprise methyl-a-D- xylopyranoside. The mixture may also contain disaccharides and higher sac- charides.

The starting material for the recovery of deoxy sugars is derived from biomass, preferably from plant-based biomass and typically from a hemi- cellulose-containing plant-based material, such as softwood or hardwood, grain straw or hulls, corn husks, corn cops, corn fibers, bagasse and sugar beet. Hemicellulose-containing biomass derived from hardwood, such as birch or beech, is especially preferred for use as the starting material in the present invention.

The content of deoxy sugars in the starting materials mentioned above is typically very low. For example, the content of fucose may be as low as 0. 01 % by weight.

The starting material for the recovery of deoxy sugars is typically a hydrolyzate of the above-described hemicellulose-containing biomass. The hy- drolyzate has been typically obtained from mild acid hydrolysis or enzymatic hydrolysis of the biomass. In a preferred embodiment of the invention, the starting material is a hemicellulose hydrolyzate or a solution derived from a hemicellulose hydrolyzate.

The biomass hydrolyzate for the recovery of deoxy sugars in accor- dance with the present invention is typically spent liquor obtained from a pulp- ing process. The spent liquor is especially spent sulfite pulping liquor, which may be obtained by acid, basic or neutral sulfite pulping, preferably acid sulfite pulping. The spent liquor has a typical fucose content of 0.01 to 0.05% by weight. A typical fucose content of the spent liquor fraction in the chroma-

tographic fractionation step is in the range of 4 to 6% by weight. Pre- enrichment of fucose may be carried out by chromatographic separation and/or by crystallization of xylose from spent liquor.

A typical spent liquor useful in the present invention is spent liquor, which is preferably obtained from acid sulfite pulping. The spent liquor may be obtained directly from sulfite pulping. It may also be concentrated sulfite pulp- ing liquor or a side-relief obtained from sulphite cooking. It may also be a frac- tion which has been chromatographically obtained from sulfite pulping liquor and which contains deoxy sugars.

The starting solution containing deoxy sugars may be e. g. spent sul- fite pulping liquor, from which the main part of xylose, rhamnose and/or man- nose have been separated, for example a liquor disclosed in WO 02/27039 (US publication No. 02/0120135).

In one typical embodiment of the invention, the starting solution con- tains, in addition to deoxy sugars, ordinary sugars, such as aldose sugars typi- cally derived from the hemicelluloses of the biomass.

In another typical embodiment of the invention, the starting solution is a side stream which has been separated from a xylose recovery process af- ter the recovery of xylose or a rhamnose recovery process after the recovery of rhamnose and which is enriched in deoxy sugars. Such a side stream may be for example mother liquor from a crystallization process step or a by-product fraction from a chromatographic separation process step or the like. The rhamnose recovery process mentioned above refers to a process of recovering rhamnose for example from sulfite spent liquor after the recovery of xylose (WO 02/270039). By using a weakly acid cation exchange resin as the column filling material, deoxy sugars such as rhamnose can be separated from hexose and pentose sugars. By using a weakly acid cation exchange resin in Na+ form at an elevated pH, rhamnose is eluted before hexose and pentose sugars.

The starting material may also be a solution derived from sugar beet or sugar cane.

As other raw materials for the recovery of deoxy sugars and gly- cosides may be mentioned fucoidans found in seaweeds as well as plant poly- saccharides found in the cell walls of potato, cassava tuber, kiwi fruit, winged bean varieties and canola, for example.

The invention also relates to crystalline L-fucose based on biomass, which has a melting point higher than 144 °C an a purity higher than 99% on

DS. The L-fucose crystals of the invention have typically an average particle size of 100 to 250, um, with a minimum length of 50, um and a minimum width of 20, um. In a preferred embodiment of the invention, the invention relates to crystalline L-fucose based on plant-based biomass. In a further preferred em- bodiment of the invention, the crystalline L-fucose has a melting point higher than 145 °C and a purity higher than 99.5% on DS.

In a still further embodiment of the invention, the invention relates to crystalline L-fucose, which is obtainable by the crystallization methods de- scribed above, especially by the crystallization from water, followed by wash- ing.

The invention also relates to the use of the crystalline L-fucose of the invention as an ingredient for dietary supplements, pharmaceuticals and cosmetics.

The following examples represent illustrative embodiments of the invention without limiting the invention in any way.

In the following examples, rhamnose and fucose are in L-form.

Example 1 Chromatographic fractionation of a solution containing deoxy sugars with a strongly acid cation exchange resin in Na+ form The solution containing deoxy sugars used as the feed for the chromatographic separation was a side stream separated from Ca2+ based sul- fite spent liquor after the recovery of the main part of xylose (WO 02/27039; US publication No. 02/0120135). Birch had been used as raw material for the sulfite cooking. The feed solution had the following composition: Composition of the feed Dry solids, g/100 ml 42 Fucose, % on RDS 5. 7 Rhamnose, % on RDS 23.2 MAX, % on RDS 13. 0 Others, % on RDS 58.1 The chromatographic fractionation was performed in a pilot scale chromatographic separation column as a batch process. The column with a di-

ameter of 1 m was filled with a strongly acid cation exchange resin having a styrene skeleton (Finex CS11GC), manufactured by Finex Ltd. The resin was in Na+ form. The height of the resin bed was approximately 4.8 m. The DVB- content of the resin was 5.5 weight-% and the average particle size of the resin was 0.31 mm. The temperature of the column, the feed solution and the eluent water was 65°C. The flow rate in the column was adjusted to 550 I/h.

The chromatographic fractionation was carried out as follows : Step 1: The dry substance of the feed solution was adjusted to 37 g dry substance in 100 g solution according to the refractive index (RI) of the solution.

Step 2: 60 1 of preheated feed solution was pumped to the top of the resin bed.

Step 3: The feed solution was eluted downwards in the column by feeding preheated ion-exchanged water to the top of the column.

Step 4: 50-ml samples of the out-coming solution were collected at 5 min in- tervals. The composition of the samples was analyzed with HPLC equipment with Refractive Index detector and two times amino col- umn (75% ACN was used as the eluent).

Rhamnose was eluted from the column before fucose and MAX, and fucose and MAX were eluted almost at the same time. A fraction rich in rhamnose and a fraction rich in fucose and MAX may be separated with the purities and yields presented in the table below. The yield of a component in a fraction is presented in relation to the total amount of that component in all out- coming fractions, including also the recycle fractions and residual fractions. Rhamnose fraction Fucose and MAX fraction Compositions Rhamnose % on RDS 44, 9 15, 4 Fucose % on RDS 0, 6 10, 4 MAX % on RDS 1, 3 24, 5 Yields Rhamnose % 50 27, 7 Fucose % 3 78, 1 MAX % 2, 7 84, 4 The fraction rich in rhamnose may be added to further processing of rham- nose.

The pH of the effluent (the out-coming solution) was 4-6. The separation profile is presented in Figure 1.

Example 2 Chromatographic fractionation of a solution containing deoxy sugars with a strongly acid cation exchange resin in Zn2+ form The feed solution used for the chromatographic fractionation had been obtained from the rhamnose recovery process disclosed in WO 02/0120135 (US Publication No. 02/0120135). The feed solution had the fol- lowing composition: Composition of the feed Dry solids, g/100 g 25 Fucose, % on RDS 13.0 Rhamnose, % on RDS 9.2 MAX, % on RDS 37.0 Others, % on RDS 70.8 The chromatographic fractionation was performed in a laboratory chromatographic separation column as a batch process. The column with a di- ameter of 0.09 m was filled with a strongly acid cation exchange resin having a styrene skeleton (Finex CS11GC), manufactured by Finex Ltd. The height of the resin bed was approximately 1.5 m. The DVB-content of the resin was 5.5 weight-% and the average particle size of the resin was 0.31 mm. The resin was regenerated into Zn2+-form. The temperature of the column and feed solu- tion and eluent water was 65°C. The flow rate in the column was adjusted to 50 ml/min.

The chromatographic fractionation was carried out as follows : Step 1: The dry substance of the feed solution was adjusted to 25 g dry substance in 100 g solution according to the refractive index (RI) of the solution.

Step 2: 800 ml of preheated feed solution was pumped to the top of the resin bed.

Step 3: The feed solution was eluted downwards in the column by feeding preheated ion-exchanged water to the top of the column.

Step 4: 10-ml samples of the out-coming solution were collected at 3 min in- tervals. The composition of the samples was analyzed with Dionex HPLC equipment with a pulsed electrochemical detector and Car- boPac PA1 anion exchange column (water and 0.2 M NaOH were used as eluents).

Rhamnose was eluted before fucose and MAX, and fucose and MAX were eluted almost at the same time. A fraction rich in rhamnose and a fraction rich in fucose and MAX may be separated with the purities and yields presented in the table below. Rhamnose fraction Fucose and MAX fraction Compositions Rhamnose % on RDS 20, 2 4, 1 Fucose % on RDS 7, 7 15, 4 MAX % on RDS 7, 3 45, 4 Yields Rhamnose % 56, 6 43, 4 Fucose % 11, 7 88, 3 MAX 4J95, 9 The pH of the effluent (e. g. the out-coming solution) was between 3 and 4. The separation profile is presented in Figure 2.

Example 3 Chromatographic fractionation of a solution containing deoxy sugars with a weakly acid cation exchange resin in Na+ form The feed solution used for the chromatographic fractionation was a fraction containing fucose, MAX, rhamnose and other monosaccharides ob- tained in accordance with Example 1 (separation with SAC in Na+ form). The feed solution had the following composition: Composition of the feed Dry solids, g/100 ml 36. 7 Fucose, % on RDS 12.6 Rhamnose, % on RDS 14.8 MAX, % on RDS 21.2 Others, % on RDS 51.4

The chromatographic fractionation was performed in a pilot scale chromatographic separation column as a batch process. The column with a di- ameter of 0.60 m was filled with a weakly acid cation exchange resin having an acrylic skeleton (Finex CS16GC), manufactured by Finex Ltd. The resin was regenerated to Na+-form. The height of the resin bed was approximately 5.2 m.

The DVB-content of the resin was 8 weight-% and the average particle size of the resin was 0.33 mm. The temperature of the column, the feed solution and the eluent water was 65°C. The flow rate in the column was adjusted to 150 I/h.

The chromatographic fractionation was carried out as follows : Step 1: The dry substance of the feed solution was adjusted to 33 g dry substance in 100 g solution according to the refractive index (RI) of the solution.

Step 2: 150 1 of preheated feed solution was pumped to the top of the resin bed.

Step 3: The feed solution was eluted downwards in the column by feeding preheated ion-exchanged water to the top of the column.

Step 4: Fraction samples of the out-coming solution were collected at 8-min intervals. The composition of the samples was analyzed with HPLC equipment with a Refractive Index detector and two times an amino column (75% ACN was used as the eluent).

The elution order was methyl-a-D-xylose (MAX), rhamnose and fucose, and they were partially overlapping. Some of the other monosaccha- rides are eluted as a separate peak after fucose. With a Na+ form WAC resin fraction rich in each of the above mentioned components could be separated as presented in the table below. Rhamnose fraction Fucose fraction MAX fraction Compositions Rhamnose % on RDS 26, 8 9 11, 6 Fucose % on RDS 17, 6 32 2, 1 MAX % on RDS 4, 1 1, 3 47, 5 Yields Rhamnose % 48, 6 13, 4 35, 7 Fucose % 35, 4 53, 1 7, 3 MAX % 4, 6 1, 2 91, 7

The pH of the effluent was between 9.2 and 9.7. The separation profile is presented in Figure 3.

Example 4 Pretreatment of a solution containing deoxy sugars with a strongly basic anion exchange resin in HSO3-form The pretreatment step was performed in a pilot scale chroma- tographic separation column as a batch process. The column with a diameter of 0.225 m was filled with a strongly basic anion exchange resin having an acrylic skeleton (Duolite A 101 D). The mean bead size was 0.35 mm. The height of the resin bed was approximately 3.5 m. The resin was regenerated into bisulfite (HS03) form and a feeding device was placed at the top of the resin bed. The temperature of the column and feed solution was 25°C. The flow rate in the column was adjusted to be at maximum 20 I/hour. The pH of the feed solution was in the range of 4 to 4.5.

As the feed, syrup from Example 3 (WAC (Na+)) was used, and the aim of this pretreatment was to remove those compounds that could displace HSO3-ions from the chromatographic separation resin.

The pretreatment step was carried out as follows : Step 1: Eluent water level was dropped down until a short layer of water could be seen on top of the resin surface.

Step 2: 1500-2000 liters of feed solution was run through the column.

Step 3: Feed solution level was dropped down until a short layer of solution could be seen on top of the resin surface.

Step 4: Eluent water was run through the column until no dry substance could be measured in the output.

The pretreatment step did not increase the deoxy sugar purity, nei- ther can there be seen any decomposing. Color removal from the fucose frac- tion and the stability effect in the following separations was significant. The pH of the out-coming solution was about 4.

Example 5 Chromatographic fractionation of a solution containing deoxy sugars with a strongly basic anion exchange resin in HSOs'form The feed solution used for the chromatographic fractionation was a fraction containing deoxy sugars obtained in accordance with Example 3 (separation with WAC in Na+ form). The feed solution had the following com- position: Composition of the feed Dry solids, 1100 ml 42.5 Fucose, % on DS 47.9 Rhamnose, % on DS 10.5 MAX, % on DS 2. 2 Others, % on DS 39. 4 The chromatographic fractionation was performed in a pilot scale chromatographic separation column as a batch process. The column with a di- ameter of 0.6 m was filled with a strongly basic anion exchange resin having an acrylic skeleton (Finex As 532 GC, 3.5% DVB). The height of the resin bed was approximately 4.8 m. The average particle size of the resin was 0.35 mm.

The resin was regenerated into bisulfite (HS03) form. The temperature of the column, the feed solution and the eluent water was 40°C. The flow rate in the column was adjusted to 283 1/h.

The chromatographic fractionation was carried out as follows : Step 1: The dry substance of the feed solution was adjusted to 37 g dry substance in 100 g solution according to the refractive index (RI) of the solution.

Step 2: 100 1 of preheated feed solution was pumped to the top of the resin bed.

Step 3: The feed solution was eluted downwards in the column by feeding preheated ion-exchanged water to the top of the column.

Step 4: 50-ml samples of the out-coming solution were collected at 10 min intervals. The composition of the samples was analyzed with HPLC equipment having an amino column ; ACN (79%) was used as the eluent.

Most of the other monosaccharides including MAX were eluted from the column as a separate peak before fucose and rhamnose. Rhamnose was eluting from the column after fucose, but they were partially overlapping. With a bisulfite-form strongly basic anion exchange resin, fractions rich in fucose and rhamnose may be separated as presented in the table below. Fucose fraction Rhamnose Compositions Rhamnose % on RDS 6, 4 70, 2 Fucose % on RDS 82, 6 20, 8 Yields Rhamnose % 39, 6 60, 4 Fucose % 94, 7 3, 3

The pH of the effluent (e. g. the out-coming solution) was 4.0-4. 3.

The separation profile is presented in Figure 4.

Example 6 Cooling crystallization of fucose (Aqueous crystallization continued by crystallization in a mixture of EtOH and water) Cooling crystallization was carried out from chromatographically en- riched fucose syrup containing 71.8 % fucose, 1.4 % xylose, 0.9 % arabinose, 5.3 % rhamnose and less than 0.2% galactose on DS. A total of 55 kg dry sub- stance of the feed syrup was concentrated by evaporation at reduced pressure and transferred into a 100-liter cooling crystallizer. The syrup having a dry sub- stance content of 89.3% by weight was mixed at 50°C. The seeding occurred spontaneously during mixing. After about 20 hours'mixing at 50°C, the mother liquor had a dry substance concentration of 85.3% by weight corresponding to a fucose crystallization yield of 29%. Then 25 liters ethanol was added to re- duce the viscosity and the mass was cooled to 20°C in 40 hours. The crystalli- zation mass was mixed for 3 days at about 20°C to obtain maximum fucose crystallization yield. The crystals were then separated from the mother liquor using a traditional basket centrifuge. A total of 26.5 kg wet crystals was ob- tained. The crystals were washed by mixing with 20 liters ethanol, centrifuged and dried. A total of 24.5 kg fucose crystals with a purity of more than 99% was

obtained. The yield of the fucose was 62% of the fucose in the feed syrup. The fucose product had a melting point of 145. 1°C.

Three melting point measurements were made by the European Pharmacopoeia method both before and after grinding. The melting point re- sults from the dried crystals were 145.0, 145.0 and 144. 6°C and from the finely powdered sample 145.2, 145.4 and 145. 4°C. The average of all the measure- ments was 145. 1°C. In addition, thermal behavior was measured by a Differen- tial Scanning Calorimeter (Mettler FP84HT) by using a 2 °C/min heating rate from 40°C to 160°C. There was one peak in the thermogram and the peak temperature was 143. 5°C.

Example 7 Crystallization of fucose with water as solvent (Aqueous boiling crystallization followed by cooling crystallization in wa- ter) The starting material for the crystallization was a fraction enriched in fucose, obtained in accordance with Example 5, i. e. from three sequential chromatographic fractionations (SAC in Na+ form, WAC in Na+ form and SBA in HSO3-form). The starting fucose solution contained 86.3% fucose, 0. 8% xy- lose, 0.3% arabinose, 4.5% rhamnose and less than 0.2% galactose on DS.

Some low purity intermediate fucose crystals from a previous crystallization were dissolved and mixed with the starting solution to obtain the crystallization feed liquid. The composition of the feed liquid thus obtained was 88. 3% fucose, 1. 1% xylose, 0.3% arabinose and 4. 1% rhamnose, 0.2% galactose and less than 0.5% MAX on DS, measured by HPLC (the resins in an amino form, +55°C, 79% ACN with 50% H3PO4 6 mol/1). The pH of the feed solution was 4.3 and the dry substance content (DS) was 34. 1% w/w. Totally 280 kg DS of the feed syrup was concentrated by an evaporative crystallizer at reduced pres- sure. The seeding was carried out with 40 grams of dry pulverized fucose seed crystals at 54. 5°C. The seed crystals were prepared by grinding from the prod- uct of the previous crystallization. After seeding, the boiling crystallization mass was prepared by feeding the rest of the syrup and by concentrating the crystal- lization mass at a reduced pressure. Totally 240 liters of the boiling crystalliza- tion mass was transferred into a traditional cooling crystallizer. The mass was cooled gradually from 55 to 23. 5°C in 40 hours. After about 9 hours'mixing at

23. 5°C the crystallization yield was approximately 59% of fucose. The course of the crystallization was the following: Time T DS, ml hrs °C % w/w 0 54.5 80.4 Seeding with 40 g seed crystals into the evaporative crystallizer 2 55.0 82.1 Starting the cooling crystallization (DS, mass 83.0) 22 40.7 75.3 42 23.0 70.8 Cooling finished 51 23.5 70.7 Centrifuging, crystal washing and drying test One centrifuging test was made with a laboratory basket centrifuge Roto Silenta II (7 min/3350 rpm, 50 mi washing water). Totally 483 grams of wet crystals were obtained from 1155 grams of the crystallization mass. The centrifuging results were the following: Total DS Fucose DS g % % on DS g Crystallization mass 1155 83.0 86.3 958.7 Centrifuged crystals 483 97.6 98 471.4 The drying (about 6 h at 40°C) resulted in 2.4% loss of drying. The crystal purity was 98% on DS and the melting point was 136. 6°C. The fucose yield was 54.6% based on the amount of the available fucose. Some of the centrifuged crystals were washed by mixing with 99.5% ethanol, centrifuged and dried. As a result, a crystalline product with a purity of more than 99%, a melting point of 146. 1°C and a particle size over 50, um in length and over 20 , um in width was obtained. The product yield of the fucose crystals having a pu- rity of more than 99% was about 50%. This example demonstrates that high purity fucose crystals can be obtained by crystallization from a water solution when the composition of the feed liquid is within the critical limits and when the impurities are not precipitated, but can be washed off from the crystals with the mother liquor.

Example 8 Crystallization of fucose with a mixture of water and ethanol as solvent (Aqueous boiling crystallization followed by cooling crystallization in a mixture of EtOH and water) The feed syrup for the crystallization was the same fucose solution as in Example 7. The beginning of the crystallization was carried out in the same way as in Example 7. The boiling crystallization described in Example 6 was continued by cooling crystallization in a water solvent, until the crystal con- tent made the viscosity high. Then 30 liters of 99.5% ethanol was mixed into the crystallization mass to reduce the viscosity and the crystallization was con- tinued by cooling from 23.5 to 15. 5°C in 15 hours. Then the crystals were separated from the mother liquor by using a traditional basket centrifuge. To- tally 154.5 kg wet crystals were obtained. The crystals were washed by mixing with 100 liters of 99.5% ethanol, centrifuged and dried. Totally 121.5 kg of a crystalline product with a purity of more than 99% and a melting point of 145. 5°C was obtained. The specific optical rotation was [0°-74. 7°. The yield of the fucose product was about 50%. This example demonstrates that high purity fucose crystals can be obtained by crystallization from a mixture of EtOH and water, when the composition of the feed liquid is within the critical limits.

Example 9 Crystallization of fucose with a mixture of water and ethanol as solvent (Aqueous boiling crystallization followed by cooling crystallization in a mixture of EtOH and water) The starting material for the crystallization was obtained by combin- ing the mother liquors and washings from the crystallizations of Examples 7 and 8. The feed solution contained about 78% fucose, 1.8% xylose, 0.6% ara- binose, 7.8% rhamnose, 0.5% galactose and less than 0. 5% MAX on DS (measured by HPLC: resins in an amino form, +55°C, 79% ACN with 50% H3PO4 6 mi/1). Totally 138 kg DS of the feed syrup with a DS content of 43% by weight (w/w) was concentrated by a traditional evaporative crystallizer at a re- duced pressure. The seeding was carried out with 40 grams of the fucose seed crystals at 54. 6°C. After seeding, the boiling crystallization mass was prepared by feeding the rest of the syrup and by concentrating the crystallization mass

at a reduced pressure. Totally 115 liters of the boiling crystallization mass was transferred into a traditional cooling crystallizer. The mass was cooled gradu- ally from 56 to 36°C in 48 hours, whereby the viscosity became high and the mass was suitable for crystal separation from a water solvent. At this stage, the crystallization yield was 50% fucose. However, the crystallization was con- tinued by adding 27 liters 99,5% ethanol to reduce the viscosity and by cooling from 36 to 15. 5°C in 20 hours. Then the crystals were separated and dried.

The course of the crystallization was the following : Time T DS, ml hrs °C % w/w 0 54.6 83.3 Seeding with 40 g seed crystals in an evaporative crystallizer 1 56. 0 82.1 Cooling crystallization started. DS, mass 85.0 20 51.3 79.6 48 36.0 77.8 The mass was thick and EtOH addition was started 67 15.5-Centrifuging, crystal washing and drying The crystals were separated from the mother liquor by using a tradi- tional basket centrifuge. Totally 59.9 kg wet crystals were obtained. The crys- tals were washed by mixing with 30 liters of 99.5% ethanol, centrifuged and dried. Totally 48.4 kg of a crystalline product with a purity of more than 99% and a melting point of 143. 7°C was obtained. The specific optical rotation was [a] D20-72. 2°. The yield of the fucose product was about 48%. This example demonstrates that high purity fucose could be obtained by crystallization from a mixture of water and ethanol and directly from a feed syrup having a rela- tively low purity (mother liquor of the first crystallization), when the composition of the feed liquid is within critical limits.

Example 10 Conclusion of the fucose crystallization test results It was found that the melting point is a good indication of the purity of the fucose crystals. The results are in the following table. The linear fit (see Figure 5) of the results gives the following equation: crystal purity (% on DS) = 0,177 x mp (°C) + 73,71 (R2 = 0.978). m. p (oC) Purity (% on DS) Ex 6, no extra wash 136, 6 98, 0 Example 7 145, 5 99, 5 Example 8 143, 7 99, 2 Example 9 145, 1 99, 6 Test sample 27052 139,1 98,4 Test sample 17052 142, 2 98, 8

Test samples 27052 and 17052 in the above table refer to further L- fucose samples prepared in accordance with the present invention.

Furthermore, a comparison test between an L-fucose sample of the invention and a commercial L-fucose sample (Sigma Chemical Co. ) provided the following results : Sample le m.p.(°C Fucose purity (% on DS) L-fucose prepared ac-144.2 (144,144. 2 and over 99.5% cording to Example 7,144. 5) having the following im- purities (% on DS): rhamnose 0.07 % arabinose 0.08% mannose 0.02% galactose 0.02% Sigma lot 11K1486 143.2 (143.1, 143.3 and minimum 99% (by 143. 2) Sigma)

Example 11 Chromatographic fractionation of a solution containing deoxy sugars with a strongly basic anion exchange resin in HSOs'form The solution containing deoxy sugars used as the feed for the chromatographic separation was a side stream separated from Ca2+ based sulphite spent liquor after the recovery of the main part of xylose. Birch had been used as raw material for the sulphite cooking. The feed solution had the following composition: Composition of the feed Dry g/100m ! 35. 2 Fucose, % on RDS 4.2 Rhamnose, % on RDS 17.5 MAX, % on RDS 10.3 Others, % on RDS 68

The chromatographic fractionation was performed in a pilot scale chromatographic separation column as a batch process. The column with a di- ameter of 0.1 m was filled with a strongly basic anion exchange resin having an acrylic skeleton (Finex As 532 GC, 3.5% DVB). The height of the resin bed was approximately 1.2 m. The average particle size of the resin was 0.35 mm.

The resin was regenerated into bisulphite (HSO3-) form. The temperature of the column, the feed solution and the eluent water was 40°C. The flow rate in the column was adjusted to 100 ml/min. The pH of the feed solution was 6.0.

The chromatographic fractionation was carried out as follows : Step 1: The dry substance of the feed solution was adjusted to 31.5 g dry substance in 100 g solution according to the refractive index (RI) of the solution.

Step 2: 800 ml of preheated feed solution was pumped to the top of the resin bed.

Step 3: The feed solution was eluted downwards in the column by feeding preheated ion-exchanged water to the top of the column.

Step 4: 5 ml samples of the out-coming solution were collected at 5 min in- tervals. The composition of the samples was analyzed with HPLC equipment having an amino column ; water and ACN (79%) were used as eluent.

Most of the other monosaccharides including MAX were eluting from the column as a separate peak before fucose and rhamnose. Rhamnose was eluting from the column partially after fucose. Thus with a bisulphite-form strongly basic anion exchange resin a fraction rich in fucose can be separated well from other monosaccharides and other components. The pH of the efflu- ent (e. g. the out-coming solution) was 1.9-3. 8. The separation profile is pre- sented in Figure 6.

Example 12 Chromatographic fractionation of a syrup containing fucose with an SMB process The SMB test equipment for the chromatographic fractionation in- cluded six columns connected in series, a feed pump, a recycling pump, an eluent water pump as well as inlet and product valves for the various process streams. The height of each column was 3.4 m and each column had a diame- ter of 0.2 m. The columns were packed with a strong acid gel type cation ex- change resin (Finex CS11GC) in Na+-form. The mean bead size was 0.33 mm and the divinylbenzene content was 5.5%.

The feed for the chromatographic fractionation was a syrup from the rhamnose recovery process disclosed in WO 02/27039 (= US 2002/120135). The aim of the chromatographic fractionation was to separate the fucose and rhamnose contained therein.

The pH of the feed was adjusted with 50% (w/w) NaOH solution to 6.2. The liquor was then filtered with a Seitz pressure filter using Kenite 300 as a filtering aid (precoat 1 kg/m2, bodyfeed 0.5% on DS basis) and the feed con- centration was adjusted to 55 g/100 ml. The composition of the feed is set forth in the table below, whereby the percentages are given on a dry substance weight basis.

Composition of the feed, % on DS Fucose 5.7 Rhamnose 19.1 MAX 13.8 Xylose 2.3 Others 59. 1 The fractionation was performed by a 9-step SMB sequence as set forth below. The temperature of the feed and the eluent was 65°C. Water was used as an eluent.

Step 1: 16 1 of feed solution were pumped into the first column at a flow rate of 80 I/h and a residual fraction was collected from the same col- umn. Simultaneously 27 1 of water were pumped into the second

column at a flow rate of 13 l/h and a residual fraction was collected from column 4. Simultaneously also 16 1 of water were pumped into column 5 at a flow rate of 80 l/h and a fucose-containing fraction was collected from the last column.

Step 2: 10 I of feed solution were pumped into the first column at a flow rate of 80 1/h and a rhamnose-containing fraction was collected from the same column. Simultaneously 19 1 of water were pumped into the second column at a flow rate of 150 1/h and another rhamnose- containing fraction was collected from column 4. Simultaneously also 16 1 of water were pumped into column 5 at a flow rate of 80 1/h and a fucose-containing fraction was collected from the last column.

Step 3: 30 1 of feed were pumped into the first column at a flow rate of 80 1/h and a fucose-containing fraction was collected from the last column.

Step 4: 27 1 of water were pumped into the last column at a flow rate of 80 1/h and a residual fraction was collected from the second column.

Simultaneously 27 l of water were pumped into the third column at a flow rate of 80 l/h and a residual fraction was collected from column 5.

Step 5: 20 1 of water were pumped into the last column at a flow rate of 80 l/h and a rhamnose-containing fraction was collected from the sec- ond column. Simultaneously 20 1 of water were pumped into the third column at a flow rate of 80 l/h and another rhamnose- containing fraction was collected from column 5.

Step 6: 29 I were circulated in the column set loop, formed with all columns, at a flow rate of 80 I/h.

Step 7: 28 1 of water were pumped into the first column at a flow rate of 80 l/h and a residual fraction was collected from the third column. Si- multaneously 28 1 of water were pumped into column 4 at a flow rate of 80 l/h and a residual fraction was collected from the last column.

Step 8: 20 1 of water were pumped into the first column at a flow rate of 80 l/h and a rhamnose-containing fraction was collected from the third column. Simultaneously 20 1 of water were pumped into column 4 at a flow rate of 80 l/h and another rhamnose-containing fraction was collected from the last column.

Step 9: 29 I were circulated in the column set loop, formed with all columns, at a flow rate of 80 I/h.

After equilibration of the system, the following fractions were drawn from the system: one residual fraction from all columns, one rhamnose-con- taining fraction from all columns and three fucose-containing fractions from the last column. The result including HPLC analyses for combined fractions are set forth in the table below.

Fucose Rham-Residual nose Volume, l 62. 0 109.0 153.0 Dry solids, g/100ml 24.9 11.1 1.7 Fucose, % on DS 10.9 0.5 1.5 Rhamnose, % on DS 7.2 37.1 11.7 MAX, % on DS 26.3 1.2 0.0 Xylose, % on DS 1.6 3.0 1.3 Others, % on DS 54. 0 58. 2 85.5 The overall yield calculated from the product fractions is 94.4% for fucose and 76% for rhamnose.

It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The in- vention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.