Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SILYLNORBORNANE ANHYDRIDES AND METHOD FOR MAKING
Document Type and Number:
WIPO Patent Application WO/1984/000366
Kind Code:
A1
Abstract:
Silylnorbornane anhydrides are provided by effecting reaction between a silicon hydride and a norbornene carboxylic acid anhydride in the presence of a platinum catalyst. The resulting silicon functionalized norbornane monoanhydrides or dianhydrides can be used to synthesize a variety of tough organosilicon polyimide copolymers and polydiorganosiloxane polyimide block polymers.

Inventors:
RYANG HONG-SON (US)
Application Number:
PCT/US1983/000506
Publication Date:
February 02, 1984
Filing Date:
April 11, 1983
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GEN ELECTRIC (US)
International Classes:
C07F7/08; C07F7/10; C07F7/14; C07F7/18; C08G73/10; C08G77/14; C08G77/38; (IPC1-7): C07F7/18; C07F7/10; C08G77/14; C08G77/38
Foreign References:
US2894968A1959-07-14
US2851473A1958-09-09
Other References:
See also references of EP 0112845A1
Download PDF:
Claims:
20 -What I claim
1. as ew and desire to secure by Letters Patent of the United States is: Silylnorbornane anhydrides of the formula where RR5 are members selected from hydrogen, halogen, C(l13) monovalent hydrocarbon radicals and. substituted monovalent hydrocarbon radicals, Z is selected from O and C(R),r R6 is a member selected from monovalent hydrocarbon radicals and substituted monovalent hydrocar¬ bon radicals, and X is a member selected from the class consisting of, (a) a hydrolyzable radical selected from the class consisting of halo, hydrogen, C.5; . alkoxy, acyloxy, N*"(R7)2f cyano, hydrogen, amido, carbamato, enoxy, imidato, iso¬ cyanato, oxi ato, isocyanate, oxi ato, thioisocyanato and ureido, (b) siloxanes having the formula. TITUTE SHEET (c) polysiloxanes having the formula. R is selected from monovalent hydrocarbon radicals and 7 is selected from a radical having the formula. and (a) radicals, Y1 is selected from R radicals, 7 rad¬ icals and mixtures thereof, a is a whole number equal to 0 to 3 inclusive, b is a whole, number equal to 0 to 3 inclusive, c is a whole number! equal to 0 to 3 inclusive, the sum of b+c is equal to 0 to 3 inclusive and n is an integer equal to 1 to 2000 inclusive.
2. Monoanhydrides of the formula. SUBSTITUTE SHEET where RR5 are are a members selected from hydrogen, halogen, ,1p^3» monovalent hydrocarbon radical and sub¬ stituted monovalent hydrocarbon radicals, R is a member selected from .g ^. monovalent hydrocarbon radi cals, and substituted .g^^. monovalent hydrocarbon rad¬ icals, X is a hydrolyzable radical selected from halo, hydrogen, C^_gj alkoxy, acyloxy, "N(R 7)2r cyano, hydrogen, amido, carbamato, enoxy, imidato, isocyanato, oximato, isocyanate, oximato, thioisocyanato and ureido, R7 is selected from monovalent hydrocarbon radicals Z is selected from O and C(R)2, and a is a whole number ; I equal to 0 to 3 inclusive.
3. The compound 23 .
4. The compound.
5. The compound.
6. The compound SUBSTITUTE SHEET O PI 24 .
7. The compound.
8. The compound.
9. The compound.
10. Dianhydrides of the formula, ! β where RR3 is selected from hydrogen, halogen, C., .. monovalent hydrocarbon radical and substituted C., . monovalent hydrocarbon radicals, R° is a member selected from __^3. monovalent hydrocarbon radicals and substi¬ tuted .^_^3. monovalent hydrocarbon radicals and Z is selected from 0 and C(R)2.
11. The compound SUBSTITUTE SHEET 26 .
12. Dianhydride terminated polydiorganosilox anes of the formula. where RR5 are selected from hydrogen halogen, ., .,. monovalent hydrocarbon radicals and substituted C,, ,,. monovalent hydrocarbon radicals, R is selected from C(l13) π^πo^a^ent hydrocarbon radicals and substituted C(l13) monovalent hydrocarbon radicals, Z is selected from O and C(R)2, and n is an integer equal to 1 to inclusive.
13. Dianhydride terminated polydiσrganosilox ane of the formula, 27 where RR5 are members selected from hydrogen and a C,, 8j alkyl radical, R6 is selected from a C(113) mono¬ valent hydrocarbon radical and substituted C,, 13) mono¬ valent hydrocarbon, Z is selected from O and C(R)2, n is an integer equal to 1 to 2000 inclusive, m is an integer equal to 0 to 100 inclusive and the sum of n+m is equal to 2 to 2000 inclusive.
14. Silyl polynorbornane anhydrides having the formula, R Rp53 are members selected from hydrogen and a C,, g. alkyl radical, R6 is selected from a C. ,,. monovalent hydrocarbon radical and substituted C,. ,,. monovalent ITUTE SHEET hydrocarbon, Z is selected from O and C(R)2_, x is a hydrolyzable radical selected from halo, hydrogen, .^g. alkoxy, acyloxy, N(R7)2, cyano, hydrogen, amido, car¬ bamato, enoxy, im÷datb, isocyanato, oximato, isocyanate, oximato, and thioisocyanato, d is equal to 0 or 1, e is equal to 0 to 2 and the sum of d+e is equal to 1 or 2.
15. 1.
16. A method for making silylnorbornane anhy¬ drides included within formula (1) which comprises effecting reaction between norbornene anhydride of the formula. with a silane of the formula, in the presence of an effective amount of a platinum cat¬ alyst, where X is a member selected from the class con sisting of. a) a hydrolyzable radical selected from the class consisting of halo, hydrogen, C.._«. SUBSTITUTE SHEET alkoxy, acyloxy, N(R6)2, cyano, hydrogen, amido, amino, carbamato, enoxy, imidato, isocyanato, oximato1, isocyanate, oximato, thioisocyanato and ureido, (b) siloxanes having the formula. (c) polysiloxanes having the formula. where RR5 are members selected from hydrogen and C alkyl, R6 is selected from a C(1_13) monjovalent hydrocar i bon radical and substituted C., .. monovalent hydrocar¬ bon, Y is selected from a radical having the formula, SUBSTITUTE SHEET and (a) radicals, Y1 is selected from R6 radicals, 7 rad¬ icals and mixtures thereof, Z is selected from O and C(R)2, a is a whole number equal to 0 to 3 inclusive, b is' a whole number equal to 0 to 3 nclusive, c is a whole number equal to 0 to 3 inclusive, the sum of b+c is equal to 0 to 3.inclusive, and n is an integer equal to 1 to 2000 inclusive. ' .
17. A method for making dianhydride terminated polydiorganosiloxane which comprises equilibrating an anhydride terminated diorganosiloxane of the formula. with a cyclopolydiorganosiloxane of the formula. in the presence of an acid catalyst, where where RR5 are members selected from hydrogen and ,^_8» alkyl, R is selected from a ,, ^3» monovalent hydrocarbon radical 31 and substituted C{1_13) monovalent hydrocarbon, Z is selected from O and C<H)2. and « has a value of 3 to 6 inclusive. WAT:kab SUBSTITUTE SHEET OMPI.
Description:
SILYENORBORNANE ANHYDRIDES AND METHOD FOR MAKING

Cross Reference to Related Applications

References is made to my copending application RD-14212, for Silicone-Zmide Copolymers and Method for Making, filed concurrently herewith and assigned to the same assignee as the present invention.

Background of the Invention

The present invention is directed to silylnor- bornane anhydrides and method for making. More particu¬ larly, the present invention relates to the hydrosilation of norbornene carboxylie acid anhydride with a silicon hydride in the form of a silane, disiloxane, or polysi- loxane.

Prior to the present invention, indirect methods were available for synthesizing silicon func¬ tional anhydrides involving the addition of silanes to ortho alkyl substituted, aromatic hydrocarbon followed by oxidation of the alkyl groups as shown by J.R. Pratt et al, J. Org. Chem., 38.4271 (1973). Another procedure involved the reaction of maleic anhydride with cyclopen- tadiene attached by carbon-silicon linkages onto a

SUBSTITUTE SHEET

polysiloxane backbone to produce a siloxane functional¬ ized by 5-norbornene-2,3-carboxylic anhydride groups as shown by L. Ya. Moshinskii et al, ϋ.S.S.R. 244616 (1969) EChe . Abstracts 72, 32777m (1970)3.

Direct reaction of unsaturated anhydrides, for example, allyl succinic anhydride with trichlorosilane is reported by Walter Ξafner et al, Che . Abstracts, 212163J r Vol. 91, page 24 (1979) . Attempts to directly react silicon hydride with cyclic anhydride having inter- nal aliphatic unsaturation, for example, maleic anhydride and tetrahydrophthalic anhydride to produce silyl anhy¬ drides have been unsuccessful. The reason why direct hydrosilation has been found successful with aliphati- cally-unsaturated cyclic anhydrides having the aliphatic unsaturation in a side chain such as allylsuccinic anhy¬ dride rather than internal ring unsaturation, such as maleic anhydride, is not completely understood. One pos¬ sible explanation is that terminal olefins are much more reactive than internal olefins.

The present invention is based on the discovery that although cyclic anhydrides having internal aliphatic unsaturation normally do not react with silicon hydride, 5-norbornene-2,3-carboxylic anhydride of the formula.

SUBSTITUTE SHEET

OMPI

5 where R-R are a members selected from hydrogen, halogen,

C.- .-. monovalent hydrocarbon' radicals and substituted

Cπ-i3 ) monovalent hydrocarbon radicals, Z is selected

from -O- and C-(R) 2 , readily reacts with silicon hydride

in the presence of a platinum catalyst to produce silyl norbornane anhydrides or dianhydrides.

Statement of the Invention

There is provided by the present invention, silylnorbornane anhydrides of the formula

where R-R 5 and Z are as previously defined, R is selected from C._ ,_. monovalent hydrocarbon radicals and

substituted monovalent hydrocarbon radicals, and X is a member selected from the class consisting of.

SUBSTITUTE SHEET

(a) a hydrolyzable radical selected from the class consisting of halo, hydrogen, C., „.

7 alkoxy, acyloxy, -N(R )., cyano, a ido,

carbamato, enoxy, imidato, isocyanato, oxi- stato, isocyanate, oximato, thioisocyanato and ureido.

(b) siloxanes having the formula.

πr)

(c) polysiloxanes having the formula.

ϊ 1

where R 6 is as previously defined, R7 is selected from monovalent hydrocarbon radicals, ? is selected from a radical having the formula.

SUBSTITUTE SHEET

and (a) radicals, is selected from R radicals, Y rad¬ icals and mixtures thereof, a is a whole number equal to 0 to 3 inclusive, b is a whole number equal to 0 to 3 inclusive, c is a whole number equal to 0 to.3 inclusive, the sum of b+c is equal to 0 to 3- inclusive and n is an integer equal to 1 to 2000 inclusive.

Radicals included within R-R , are for example,

halogen such as chloro, bromo, etc. Among R- radicals there are included, aryl radicals and halogenated aryl radicals, for example, phenyl, chlorophenyl, tolyl, xylyl, biphenyl, naphthyl,. etc.? alkenyl radicals, for example, vinyl, allyl, cyclohexenyl, etc.; C π- R - a ^--*y^

radicals, halogenated alkyl and aminpalkyl radicals, for

example, methyl, ethyl, propyl, butyl, pctyl, etc. R is selected from C,, «. alkyl radicals, for example, methyl,

ethyl, propyl, etc., and C.g..^. " aryl radicals, for exam-

pie, phenyl tolyl, etc.. In instances where R-R 7 is more than one radical, these radicals can be all the same or any two or more the aforementioned radicals.

Silylnorbornane anhydrides included within for¬ mula (2} are, for example.

SUBSTITUTE SHEET

0 π

SUBSTITUTE SHEET OM WIP

-

Siloxane norbornane anhydrides: ' included within formula (2) are, for example.

SUBSTITUTE SHEET

- 8 -

Polysiloxane norbornane anhydrides included within formula (2) are, for example.

SUBSTITUTE SHEET

9 -

where R-R , Z and n-are as previously defined, is an integer equal to 0 to 500 inclusive and the sum of ϊn+n is equal to 1 to 2000 inclusive.

In another aspect of the present invention there is provided a method for making silylnorbornane anhydrides included within formula- (2) which comprises effecting reaction between a norbornene anhydride of for¬ mula (1) with a silane of the formula.

in the presence of an effective amount of a platinum cat¬

alyst, where X, R and a are as previously defined.

Experience has shown that the hydrosilation reaction between the norbornene anhydride of formula (1) and the silane of formula (3} can be facilitated in the presence of an inert organic solvent, for example, diglyme, toluene, chlorobenzene, ethylene

SUBSTITUTE SHEET

- 10 -

glycoldimethylether, tetrahydrofuran, etc. In instances where monohydrosilation isomers are formed, longer reac¬ tion times and high temperatures, for example, tempera¬ tures exceeding 100 C may be required for dianhydride formation.

If an increase is desired in the molecular weight of organopolysiloxane having 'chemically combined norbornane anhydride siloxy units attached to silicon by carbon-silicon linkages, the lower molecular weight nor¬ bornane substituted siloxane can be equilibrated with a cyclic siloxane, for example octa-methylcyclotetrasilox- ane in the presence of an acid catalyst such as sulfuric acid. A typical reaction is as follows:

-PΪioil <H + >

where R and Z are as previously defined, p is a positive integer and m' has a value of 3 to 6 inclusive.

SUB S TITUTE SHEET

' OM

- π -

Hydrosilation catalysts which can be used in the practice of the present invention are, for example, unsaturated siloxanes, as shown by Karstedt D.S. Patent 3,775,442, Ashby U.S. Patents 3,159,601, and 3,159,662 and Lamσreaux U.S. Patent 3,220,972, assigned to the same assignee as the present invention. An effective amount of a platinum catalyst is about 0.001% to 0.1% by weight of platinum, based on the weight of the hydrosilation mixture or the inte condensation mixture.

" The silylnorbornane anhydrides of formula (2) can be used as intermediates for making polyimide- polydiorganosiloxane block polymers based on the reaction of organic diamines,. for example, m ta-phenylene diamine, with bisanhydrides included within formula (1) and ix- tures of such anhydrides with other bisanhydrides, for example, benzophenone dianhydride, pyro ellitic dianhy- dride, and aromatic bis(ether anhydride)s as shown in my copending application RD-14212, filed concurrently here¬ with. Further, some ^f the silylnorbornane anhydrides included within formula (2) can be used as adhesion pro¬ moters for room temperature vulcanizable organopolysilox¬ ane compositions.

In order that those skilled in the art will be better able to practice the invention, the following examples are given by way of illustration and not by way of limitation. All parts are by weight.

SUBSTITUTE SHEET

- 12 -

Example 1.

There was added 10 drops of a 5% platinum cat¬ alyst prepared in accordance with Karstedt, U.S. 3,775,442, assigned to the same assignee as the present invention, to a mixture while it was being stirred of

69.4 g (0.42 mole) of 5-norbornene-2,3-dicarboxylic acid anhydride, 26.8 g (0.2 mole) 1,1,3,3-tetramethyldi- siloxane and 100 ml of dry ehlorobenzene. The resulting mixture was heated with stirring to 70-80°C for 4 hours and then 100-110°C overnight. After cooling, carbon black was added and the solution was stirred for 30 minutes at room temperature. Filtration, removal of the solvent at 100°C with a vacuum pump and addition of dry diethylether resulted in the precipitation of a white crystalline solid. Based on'method of preparation, the product was 5,5*-(l,l,3,3-tetramethyl-l,3- disiloxanediyl)-bis-norbornane-2,3-dicarboxylic anhydride having the formula,-

The identity of the above dianhydride was further con¬ firmed by NMR, IR, Mass spectrometry and elemental analysis.

There was added a mixture of 0.57 grams of the above 5,5'-(1,1,3,3-tetramethyl-l,3-disiloxanediyl)-bis- norbornane-2,3-dicarboxylic anhydride, 1.289 grams benzo- phenone tetracarboxylic dianhydride and 5 ml of dimeth 1- formamide to a solution of 0.991 gram of methylene diani- line and 5 ml of dimethylfor amide while it was stirred under nitrogen. The resulting solution was stirred for 2 hours at room temperature. A part of the solution was . poured into a glass dish and dried at 80°C for 1 hour, then 150°C for 2 hours in an oven under nitrogen. There was obtained a silicone polyimide copolymer having a " g of 243°C The copolymer is useful as high temperature insulation for metallic conductors.

Example 2.

There was added 10 drops of the platinum catal- yst used in Example 1 under a nitrogen atmosphere to a mixture of 8.36 grams of 5-norbornene-2,3-dicarboxylic

S UB S TITUTE SHEET

anhydride, 44.8 grams of an alpha,omega-dihydrogen polydimethylsiloxane having an average molecular weight of 1790 and 100 ml of chlorobenzene. The mixture was stirred and heated to 60-80°C overnight. After cooling, carbon black was added and the solution was stirred for 30 minutes at room temperature. A colorless viscous oil- was obtained when the resulting mixture was filtered and solvent was removed at 100°C in vacuo. Based on method of preparation, there was obtained a norbornane anhydride end-capped polydimethylsiloxane having the formula.

The identity of the ahove material was further confirmed by NMR analysis.

There was added a mixture of 0.53 grams of the above polysiloxane dianhydride ' and 0.725 grams of benzo- phenone dianhydride and 5 ml of dimethylformamide under nitrogen to a mixture of 0.496 grams of methylene diani- line and 5 ml of dimethylformamide while the mixture was stirred under nitrogen. The resulting solution was stirred for 2 hours at room temperature. The resulting solution was then poured into a glass dish and dried at

TITUTE SHEET

80°C for 1 hour and then 150°C for 2 hours in an oven under nitrogen. There was obtained a film having a Tg of 271°C. Based on method of preparation, the product was a block copolymer. The block copolymer is useful as a polyimide impact modifier.

Example 3.

A mixture of 5-norbornene-2 ,3-dicarboxylic

anhydride (1.64 gm, 10 «»2 mole) , dimethylchlorosilane (1.5

_» 2 gm, 1.6 x 10 mole) , 5 drops of the catalyst of Example 1, and 30 ml of toluene was sealed under anhydrous condi¬ tions and heated to 60-80°C overnight. After removal of the volatile materials under vacuum, the residue was analyzed by NMR,. IR and GC/Hass which confirmed the quan¬ titative formation of 5-dimethylchlorosilylnorbornane- 2 ,3-dicarboxylic anhydride : HN R S (in CDC1, , 7.25 ppm

internal standard) 3.43 (2Ξ,m) 2.85 (2Ξ, m) , 1.90" * 1.56 (4Ξ,m) , 0.90 (lH,t) , 0.42 (3H,S) , and 0.37 (3Ξ,S) ; IR

(neat) 2960 , 2870 , 1850 and 1770 cm "1 . Mass (Intensity% )

260 (M+2, 1.4%) , 258 (M + , 2.9) , 192 (8.6) , 159 (28.5) , 95 (60.3) , 93 (100) , 66 (97.4) . Without further purifica¬ tion, the product was subsequently mixed with Ξ-0 (0.2

gm) at 0°C in tetrahydrofuran (20 ml) , and then stirred at room temperature for 2 hours. The volatile materials were removed and the residue was heated to 200°C under

SUBSTITUTE SHEET

vacuum for 2 hours. After addition of dry diethyl ether . the white precipitate (1.8 gm, 80% yield) was collected and dried. Spectroεcopic data of the product were ident¬ ical to those for 5 ,5 , -(l ,l,3 ,3-tetramethyl-l,3- disiloxanediyl) -bis-norbornane-2 ,3-dicarboxylic anhydride of Example 1.

Example 4.

Ωiere was added 1 drop of 96% sulfuric acid to a mixture of 2.75 g of the dianhydride of Example 3 , 10.7 g of octa-methylcyclotetrasiloxane and 50 ml of dry toluene. The resulting solution was refluxed for 2 hours. After cooling , carbon black was added and the solution was heated to 100°C for 1 hour. Filtration and evaporation gave a colorless viscous oil. Based on method of preparation, the product was an anhydride ter¬ minated polydimethylsiloxane having the formula.

._ O

The identity of the product was further confirmed by NMR and IR analysis.

Example 5,

S UBSTITUTE

The solution of 6.57 g (0.04 mole) of 5-nor- bornene-2,3-dicarboxylie anhydride, 61.3 g of methylhydrogen-dimethylsiloxane copolymer having 3.4 wt% (H)CH 3 SiO and a MW of 30,000, 100 ml of chlorobenzene and

10 drops of the Pt catalyst of Example 1 was heated to 80°C overnight. After addition of carbon black, the mix- .ture was stirred 1 hour at room temperature. Filtration and evaporation of low boiling materials under vacuum gave a colorless viscous residue. Based on method of prepara-tion, the product was norbornane anhydride func¬ tionalized polysiloxane having the formula.

The identity of the produce was further confirmed by NMR and IR.

A blend of 10 parts of the above norbornane anhydride functionalized polysiloxane is blended as an adhesion promoter with 100 parts of a room temperature vulcanizable polydimethylsiloxane as. shown by Beers et al, U.S. 3,541,044, assigned to the same assignee as the present invention.

SUBSTITUTE SHEET

Example 6

The procedure of Example 1 was repeated, except there was used .02 mol of the 5-norbornene-2,3- dicarboxylic acid anhydride and 0.24 mol of the disilox- ane. The resulting mixture was stirred at 60-80°C for 8 hours. Upon work-up there was obtained a colorless viscous oil in quantitative yield. Based on. method of preparation, the product was

Its identity was confirmed by NMR and IR. The compound is found useful as an adhesive promoter for room tempera¬ ture vulcanizable compositions.

Although the above examples are directed to only a few of the very many variables involved in the practice of the present invention, it should be under¬ stood that the present invention is directed to a much broader variety of silylnorbornanes which include the corresponding mono- and bis-anhydrides thereof as well as the disiloxanes and polysiloxane. These materials are made by hydrosilation of norbornene anhydride of formula (2) with silicon hydride of formula (3).

In addition to the mono and dianhydrides as shown by formula (2) , there is also included within the scope of the present invention silyl polynorbornane anhy¬ drides having ; the formula.

where R-R 6 , X and Z are as previously defined, d is equal to 0 or 1, e is equal to 0 to 2 and the sum of d+e is equal to 1 or 2.

SUBSTITUTE SHEET