Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SIZING COMPOSITION FOR MINERAL FIBERS AND RESULTING PRODUCTS
Document Type and Number:
WIPO Patent Application WO/2009/136106
Kind Code:
A2
Abstract:
The present invention relates to a sizing composition for mineral fibers, especially glass fibers or rock fibers, containing a liquid phenolic resin having a free formaldehyde content of less than or equal to 0.1% by total weight of liquid and an extender. The liquid phenolic resin is preferably mainly composed of condensates of phenol-formaldehyde and of phenol-formaldehyde-amine and has a water dilutability, at 20°C, at least equal to 1000%. Another subject of the invention is the insulating products based on mineral fibers treated with said sizing composition.

Inventors:
PONS Y MOLL OLIVIER (FR)
JAFFRENNOU BORIS (FR)
DOUCE JEROME (FR)
Application Number:
PCT/FR2009/050654
Publication Date:
November 12, 2009
Filing Date:
April 10, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SAINT GOBAIN ISOVER (FR)
PONS Y MOLL OLIVIER (FR)
JAFFRENNOU BORIS (FR)
DOUCE JEROME (FR)
International Classes:
C03C25/34; C03C25/14; C03C25/26; C08K5/04; C08K5/16; C08K5/17; C08K5/544; C08L61/10; C08L61/34; C09J161/06; C09J161/10; C09J161/14; C09J161/34; E04B1/74
Domestic Patent References:
WO2007060237A12007-05-31
WO1998053001A11998-11-26
WO2006132785A22006-12-14
WO2000078836A12000-12-28
WO2008043961A12008-04-17
WO2008043960A12008-04-17
Foreign References:
GB1284568A1972-08-09
US3285801A1966-11-15
Attorney, Agent or Firm:
SAINT-GOBAIN RECHERCHE (FR)
Download PDF:
Claims:

REVENDICATIONS

1. Composition d'encollage pour fibres minérales, notamment de verre ou de roche, contenant une résine phénolique liquide présentant un taux de formaldéhyde libre inférieur ou égal à 0,1 % en poids total de liquide et un extendeur.

2. Composition selon la revendication 1 , caractérisée en ce que la résine phénolique liquide est constituée essentiellement de condensats de phénol-formaldéhyde et de phénol-formaldéhyde-amine. 3. Composition selon la revendication 1 ou 2, caractérisée en ce qu'elle présente un taux de phénol libre inférieur ou égal à 0,5 % en poids total de liquide, de préférence inférieur ou égal à 0,4 %.

4. Composition selon l'une des revendications 1 à 3, caractérisée en ce que l'aminé est une alcanolamine ou une aminé cyclique. 5. Composition selon la revendication 4, caractérisée en ce que l'aminé est la monoéthanolamine ou la diéthanolamine.

6. Composition selon l'une des revendications 1 à 5, caractérisée en ce que la résine présente un taux de formaldéhyde libre inférieur ou égal à 0,1 %, un taux de phénol libre inférieur à 0,4 % et une diluabilité à l'eau, à 20 0 C, supérieure ou égale à 1000 %, de préférence supérieure ou égale à 2000 %.

7. Composition selon l'une des revendications 1 à 6, caractérisée en ce que l'extendeur est choisi parmi les hydrates de carbone, les dérivés de la lignine, notamment les lignosulfonates tels que le lignosulfonate d'ammonium (LSA) ou le lignosulfonate de sodium, et les protéines animales ou végétales, notamment de soja.

8. Composition selon la revendication 7, caractérisée en ce que l'hydrate de carbone est choisi parmi les monosaccharides tels que l'érythrose, le thréose, le ribose, l'arabinose, le xylose, le lyxose, le glucose, l'allose, l'altrose, le mannose, le gulose, l'idose, le galactose, le talose le psicose, le fructose, le sorbose et le tagatose, les oligosaccharides tels que le lactose, le maltose, le sucrose, le cellobiose, le tréhalose, le raffinose, le gentianose, le melibiose et le stachyose, et les polysaccharides tels que les amidons, modifiés ou non, les celluloses, les gommes telles que la gomme de guar et le xanthane, les alginates, les pectines.

9. Composition selon l'une des revendications 1 à 8, caractérisée en ce qu'elle comprend en outre 0 à 40 parts d'urée pour 100 parts en poids sec du mélange constitué par la résine et l'urée.

10. Composition selon l'une des revendications 1 à 9, caractérisée en ce que la teneur en extendeur varie de 0,1 à 40 parts en poids pour 100 parts en poids sec de résine liquide, de préférence inférieure ou égale à 20 parts, par exemple de 3 à 20 parts et notamment inférieure ou égale à 15 parts.

11. Composition selon l'une des revendications 1 à 10, caractérisée en ce qu'elle comprend en outre les additifs suivants, pour 100 parts en poids sec de résine liquide et le cas échéant d'urée :

0 à 10 parts d'un catalyseur, par exemple le sulfate d'ammonium, de préférence moins de 7 parts,

0 à 2 parts de silane, en particulier un aminosilane, 0 à 20 parts d'huile, de préférence 6 à 15 parts, 0 à 20 parts d'ammoniaque (solution à 20 % en poids), de préférence moins de 12 parts.

12. Composition résinique contenant une résine phénolique liquide présentant un taux de formaldéhyde libre inférieur ou égal à 0,1 % en poids total de liquide et un extendeur. 13. Produit d'isolation, notamment thermique et/ou acoustique, comprenant des fibres minérales encollées à l'aide de la composition d'encollage selon l'une des revendications 1 à 11.

14. Produit selon la revendication 13, caractérisé en ce que les fibres sont des fibres de verre ou de roche. 15. Utilisation d'une composition résinique selon la revendication 12 pour la fabrication d'une composition d'encollage destinée à la fabrication de produits isolant à base de fibres minérales, notamment de fibres de verre ou de roche.

16. Utilisation d'une composition d'encollage selon l'une des revendications 1 à 11 pour la fabrication de produits isolant à base de fibres minérales, notamment de fibres de verre ou de roche.

Description:

COMPOSITION D'ENCOLLAGE POUR FIBRES MINERALES ET PRODUITS

RESULTANTS

L'invention se rapporte à une composition d'encollage à bas taux de formaldéhyde libre pour fibres minérales, notamment de verre ou de roche. La composition d'encollage comprend une résine obtenue par condensation de phénol, de formaldéhyde et d'aminé en présence d'un catalyseur basique, et un extendeur. L'invention concerne aussi les produits isolants à base de fibres minérales traitées par ladite composition d'encollage.

Les produits d'isolation à base de fibres minérales peuvent être formés à partir de fibres obtenues par différents procédés, par exemple selon la technique connue du fibrage centrifuge interne ou externe. La centrifugation interne consiste à introduire la matière en fusion (en général du verre ou une roche) dans un dispositif centrifuge comprenant une multitude de petits orifices, la matière étant projetée vers la paroi périphérique du dispositif sous l'action de la force centrifuge et s'en échappant sous la forme de filaments. A la sortie du dispositif centrifuge, les filaments sont étirés et entraînés par un courant gazeux ayant une température et une vitesse élevées, vers un organe récepteur pour former une nappe de fibres.

La centrifugation externe consiste, elle, à déverser la matière en fusion à la surface périphérique externe d'organes rotatifs appelés rotors, d'où la fusion est éjectée sous l'action de la force centrifuge. Des moyens d'étirage par courant gazeux et de collecte sur un organe de réception sont également prévus.

Pour assurer l'assemblage des fibres entre elles et permettre à la nappe d'avoir de la cohésion, on projette sur les fibres, à la sortie du dispositif centrifuge, une composition d'encollage contenant une résine thermodurcissable. La nappe de fibres revêtues de l'encollage est soumise à un traitement thermique (à une température généralement supérieure à 100 0 C) afin d'effectuer la polycondensation de la résine et obtenir ainsi un produit d'isolation thermique et/ou acoustique ayant des propriétés spécifiques,

notamment une stabilité dimensionnelle, une résistance à la traction, une reprise d'épaisseur après compression et une couleur homogène.

La composition d'encollage est le plus souvent pulvérisée sur les fibres.

De manière générale, la composition d'encollage renferme la résine, qui se présente habituellement sous la forme d'une solution aqueuse, des additifs tels que de l'urée, des silanes, des huiles minérales, de l'ammoniaque et un catalyseur de polycondensation, et de l'eau.

Les propriétés de la composition d'encollage dépendent en grande partie des caractéristiques de la résine. Du point de vue de l'application, il est nécessaire que la composition d'encollage présente une bonne aptitude à la pulvérisation et puisse se déposer à la surface des fibres afin de les lier efficacement. L'aptitude à la pulvérisation est directement liée à la capacité que possède la résine à pouvoir être diluée dans une grande quantité d'eau et à rester stable dans le temps. On caractérise l'aptitude à la dilution par la « diluabilité » que l'on définit comme étant le volume d'eau déionisée qu'il est possible, à une température donnée, d'ajouter à une unité de volume de la solution aqueuse de résine avant l'apparition d'un trouble permanent. On considère généralement qu'une résine est apte à être utilisée en tant qu'encollage lorsque sa diluabilité est égale ou supérieure à 1000 %, à 20 0 C.

La préparation de la composition d'encollage est généralement effectuée au moment de l'emploi en mélangeant la résine et les additifs mentionnés précédemment. Il est important que la résine reste stable pendant un laps de temps donné avant d'être utilisée dans la composition d'encollage, notamment pendant au moins 8 jours à une température de l'ordre de 12 à 18°C et que sa diluabilité au terme de cette période soit supérieure ou égale à 1000 %, à 20 0 C, de préférence supérieure ou égale à 2000 % (diluabilité infinie).

Par ailleurs, les compositions d'encollage sont soumises à des dispositions réglementaires strictes qui font que la résine doit contenir - et générer lors de l'étape d'encollage ou ultérieurement lors de la cuisson du produit d'isolation - le moins possible de composés considérés comme pouvant nuire à la santé humaine ou à l'environnement.

Les résines thermodurcissables les plus couramment utilisées dans les compositions d'encollage sont des résines phénoliques appartenant à la famille des résols. Outre leur bonne aptitude à réticuler dans les conditions thermiques précitées, ces résines sont très solubles dans l'eau, possèdent une bonne affinité pour les fibres minérales, notamment en verre, et sont relativement peu coûteuses.

Ces résines sont obtenues par condensation de phénol et de formaldéhyde, en présence d'un catalyseur basique, dans un rapport molaire formaldéhyde/phénol généralement supérieur à 1 de manière à favoriser la réaction entre le phénol et le formaldéhyde et à diminuer le taux de phénol résiduel dans la résine.

Pour réduire la quantité de formaldéhyde résiduel, il est connu d'ajouter dans la résine une quantité suffisante d'urée qui réagit avec le formaldéhyde libre en formant des condensats urée-formaldéhyde (voir EP 0 148 050 A1 ). La résine obtenue renferme des condensats de phénol-formaldéhyde et d'urée- formaldéhyde, présente un taux de formaldéhyde libre et de phénol libre, exprimé en poids total de liquide, inférieur ou égal à 3 % et 0,5 %, respectivement, et a une diluabilité à l'eau au moins égale à 1000 %.

Si la quantité de phénol résiduel est acceptable, en revanche la quantité de formaldéhyde résiduel est trop élevée pour satisfaire les contraintes réglementaires actuelles.

En outre, il a été constaté que la résine n'est pas stable dans les conditions du traitement thermique auxquelles les fibres encollées sont soumises pour que la résine réticule et lie efficacement les fibres dans le produit isolant final. Aux températures habituelles mises en œuvre dans l'étuve, en général supérieures à 100 0 C, les condensats urée-formaldéhyde sont dégradés et libèrent du formaldéhyde qui augmente les émissions de gaz indésirables dans l'atmosphère. Du formaldéhyde peut aussi être libéré à partir du produit final lors de son utilisation en tant qu'isolant thermique et/ou acoustique sous l'effet des variations thermiques, mais aussi hygrométriques, liées aux cycles climatiques.

Dans EP 0 480 778 A1 , il a été proposé de substituer une partie de l'urée par une aminé qui réagit avec le phénol et le formaldéhyde libres selon la réaction de Mannich pour former un produit de condensation ayant une stabilité

thermique améliorée. Le taux de phénol et de formaldéhyde libres de cette résine est inférieur ou égal à 0,20 % et inférieur ou égal à 3 %, respectivement.

La présente invention a pour but de proposer une composition d'encollage apte à être pulvérisée sur des fibres minérales qui comprend une résine phénolique liquide ayant un faible taux de formaldéhyde libre et un extendeur.

Par « extendeur », on entend ici une charge organique soluble ou dispersable dans la composition d'encollage aqueuse, c'est-à-dire pouvant être distribuée ou présente sous forme d'une dispersion ou d'une émulsion. L'invention a plus généralement pour objet une composition résinique qui comprend une résine phénolique liquide ayant un faible taux de formaldéhyde libre et un extendeur. Cette composition résinique est destinée notamment à entrer dans la constitution de la composition d'encollage précitée.

Un autre objet de l'invention concerne les produits d'isolation thermique et/ou acoustique obtenus à partir des fibres minérales encollées avec la composition d'encollage précitée.

La résine liquide qui entre dans la constitution de la composition d'encollage conforme à l'invention présente un taux de formaldéhyde libre inférieur ou égal à 0,1 % en poids total de liquide, de préférence inférieur ou égal à 0,05 %.

Le taux de phénol libre de la résine est inférieur ou égal à 0,5 % en poids total de liquide, de préférence inférieur ou égal à 0,4 %.

De manière avantageuse, la résine est une résine liquide qui contient essentiellement des condensats de phénol-formaldéhyde (P-F) et de phénol- formaldéhyde-amine (P-F-A). On entend ici que la partie « phénol » notée P des condensats peut être constituée par (i) du phénol, ou (ii) du phénol substitué par au moins un groupe fonctionnel (tels que halogéno-, nitro-, alkyl-), ou (iii) un groupement phénol, éventuellement substitué, porté par une molécule à longue chaîne, ou (iv) par un mélange de composés (i), (ii), (iii) précités. La résine présente une diluabilité, mesurée à 20 0 C, au moins égale à

1000 %, de préférence supérieure ou égale à 1200 % et avantageusement supérieure ou égale à 1400 %.

La résine est stable thermiquement car elle est exempte de condensats urée-formaldéhyde (U-F) connus pour leur aptitude à se dégrader sous l'effet

de la température. Les condensats P-F-A sont quant à eux stables dans les conditions précitées, notamment ils génèrent peu de formaldéhyde, en particulier lors du vieillissement du produit isolant final.

La résine telle que définie ci-dessus est obtenue selon un procédé qui consiste à faire réagir un phénol tel que défini précédemment, de préférence du phénol, et du formaldéhyde en présence d'un catalyseur basique, dans un rapport molaire formaldéhyde/phénol supérieur à 1 , à refroidir le mélange réactionnel et à introduire dans ledit mélange réactionnel, au cours du refroidissement, une aminé qui réagit avec le formaldéhyde et le phénol libres selon la réaction de Mannich.

Dès l'introduction de l'aminé, on interrompt le refroidissement et on maintient le mélange réactionnel à la température d'introduction pendant une durée qui varie de 10 à 120 minutes, et, après le refroidissement, on ajoute un acide en quantité suffisante pour que le pH de la résine soit inférieur à 7. De préférence, on fait réagir le phénol et le formaldéhyde dans un rapport molaire formaldéhyde/phénol compris entre 2 et 4, ou avantageusement inférieur ou égal à 3, jusqu'à un taux de conversion du phénol supérieur ou égal à 93 %, et on commence à refroidir le mélange réactionnel. Le refroidissement intervient à un stade de la condensation qui correspond à une résine pouvant encore être diluée par de l'eau (diluabilité supérieure à 1000 %).

Par « taux de conversion du phénol », on entend le pourcentage de phénol ayant participé à la réaction de condensation avec le formaldéhyde par rapport au phénol de départ.

L'aminé est ajoutée au cours du refroidissement, de manière progressive car la réaction avec le phénol et le formaldéhyde est exothermique, et la température au moment de l'ajout de l'aminé est maintenue pendant la durée mentionnée plus haut, tout en veillant à ce que la diluabilité de la résine reste au moins égale à 1000 %.

L'aminé est choisie parmi les aminés qui peuvent réagir avec le formaldéhyde et le phénol pour former une base de Mannich. A titre d'exemples on peut citer les alcanolamines, notamment la monoéthanolamine et la diéthanolamine et les aminés cycliques, notamment la pipéridine, la pipérazine et la morpholine. On préfère la monoéthanolamine et la diéthanolamine.

L'introduction de l'aminé est effectuée dès le début du refroidissement, à une température qui peut varier de 50 à 65°C, de préférence de l'ordre de 60 0 C.

La phase de maintien de la température permet de faire réagir l'aminé avec la quasi-totalité du formaldéhyde présent dans le milieu réactionnel et par conséquent d'abaisser le taux de formaldéhyde libre dans la résine finale jusqu'à une valeur inférieure ou égale à 0,1 %.

Le maintien à la température mentionnée précédemment permet en outre de réduire le taux de phénol libre dans la résine, en particulier lorsque celle-ci est obtenue avec un rapport molaire formaldéhyde/phénol inférieur à 3. Le taux de phénol libre dans la résine est ainsi inférieur ou égal à 0,5 %.

La préparation de la résine a lieu selon un cycle de température qui comprend trois phases : une phase de chauffage, un premier palier de température et une phase de refroidissement. Dans la première phase, on fait réagir du formaldéhyde et du phénol en présence d'un catalyseur basique en chauffant progressivement à une température comprise entre 60 et 75°C, de préférence à environ 70 0 C. Le rapport molaire formaldéhyde/phénol est supérieur à 1 , de préférence varie de 2 à 4, et avantageusement inférieur ou égal à 3. Le catalyseur peut être choisi parmi les catalyseurs connus de l'homme du métier, par exemple la triéthylamine, la chaux CaO et les hydroxydes de métaux alcalins ou alcalino-terreux, par exemple les hydroxydes de sodium, de potassium, de calcium ou de baryum. L'hydroxyde de sodium est préféré.

La quantité de catalyseur varie de 2 à 15 % en poids par rapport au poids de phénol de départ, de préférence de 5 à 9 %, et avantageusement de 6 à 8 %.

Dans la deuxième phase, la température du mélange réactionnel qui est atteinte après le chauffage du mélange réactionnel (fin de première phase) est maintenue jusqu'à ce que le taux de conversion du phénol soit au moins égal à 93 %.

La troisième phase est une phase de refroidissement au cours de laquelle on introduit l'aminé dans le mélange réactionnel afin de commencer la réaction avec le formaldéhyde et le phénol résiduels et former ainsi les condensats P-F-A.

L'addition de l'aminé a lieu progressivement à cause du caractère exothermique de la réaction comme indiqué précédemment, et peut par exemple être effectuée à raison de 1 à 5 % en poids par minute de la quantité totale d'aminé, de préférence 2 à 4 %. La quantité d'aminé, en particulier d'alcanolamine, est ajoutée à raison de 0,2 à 0,7 mole d'aminé par mole de phénol de départ, de préférence 0,25 à 0,5 mole.

La durée de l'ajout de l'aminé peut varier de 10 à 120 minutes, de préférence de 20 à 100 minutes, et avantageusement de 25 à 50 minutes. De préférence, l'ajout de l'aminé s'effectue à une température comprise entre 50 et 65°C, et avantageusement de l'ordre de 60 0 C.

Après l'ajout de l'aminé, on effectue un palier de température en maintenant la température de fin d'introduction pendant 10 à 120 minutes, de préférence au moins 15 minutes, de manière à poursuivre la réaction de condensation du formaldéhyde et du phénol avec l'aminé jusqu'à un stade plus avancé et réduire encore la quantité de formaldéhyde et de phénol libres, la diluabilité de la résine, mesurée à 20 0 C, devant être maintenue au moins égale à 1000 %.

Après la formation des condensats P-F-A, on refroidit le mélange réactionnel pour que sa température atteigne 20 à 25°C environ et on le neutralise afin d'arrêter les réactions de condensation.

La neutralisation du mélange réactionnel est effectuée par l'ajout d'un acide jusqu'à l'obtention d'un pH inférieur à 7, de préférence inférieur à 6, avantageusement supérieur à 4 et mieux encore de l'ordre de 5. L'acide est choisi parmi l'acide sulfurique, l'acide sulfamique, l'acide phosphorique et l'acide borique. L'acide sulfurique et l'acide sulfamique sont préférés.

L'extendeur est choisi notamment parmi les hydrates de carbone, les dérivés de la lignine, notamment les lignosulfonates tels que le lignosulfonate d'ammonium (LSA) ou le lignosulfonate de sodium, les protéines animales ou végétales, notamment de soja, et les mélanges de ces composés.

A titre d'exemple d'hydrates de carbone, on peut citer les monosaccharides tels que l'érythrose, le thréose, le ribose, l'arabinose, le xylose, le lyxose, le glucose, l'allose, l'altrose, le mannose, le gulose, l'idose, le galactose, le talose le psicose, le fructose, le sorbose et le tagatose, les

oligosaccharides tels que le lactose, le maltose, le sucrose, le cellobiose, le tréhalose, le raffinose, le gentianose, le melibiose et le stachyose, et les polysaccharides tels que les amidons, notamment de maïs, de pomme de terre, de tapioca et de blé, lesquels amidons peuvent être modifiés ou non, les celluloses, les gommes telles que la gomme de guar et le xanthane, les alginates, les pectines.

Les hydrates de carbone hydrosolubles sont préférés. La composition d'encollage peut comprendre en outre 0 à 40 parts d'urée pour 100 parts en poids sec du mélange constitué par la résine et l'urée. Ces extendeurs peuvent le cas échéant être à base de sous-produits issus de procédés industriels ou agricoles, notammment agro-alimentaires, ou d'autres déchets. Ces matières présentent l'avantage d'être disponibles par des filières distinctes des constituants chimiques généralement utilisés dans la synthèse des résines phénoliques, ce qui rend la préparation de la composition selon l'invention moins sensible aux aléas de production des matières premières conventionnelles.

Dans la composition d'encollage, la teneur en extendeur varie de 0,1 à 40 parts en poids pour 100 parts en poids sec de résine liquide, de préférence inférieure ou égale à 20 parts, par exemple de 3 à 20 parts et notamment inférieure ou égale à 15 parts.

D'une manière générale, la composition d'encollage comprend encore les additifs suivants, pour 100 parts en poids sec de résine et le cas échéant d'urée :

- 0 à 10 parts d'un catalyseur de polycondensation, par exemple le sulfate d'ammonium, de préférence moins de 7 parts,

- 0 à 2 parts de silane, en particulier un aminosilane,

- 0 à 20 parts d'huile, de préférence 6 à 15 parts,

- 0 à 20 parts d'ammoniaque (solution à 20 % en poids), de préférence moins de 12 parts. Le rôle des additifs est connu et brièvement rappelé : l'urée permet d'ajuster le temps de gel de la composition d'encollage afin d'éviter d'éventuels problèmes de prégélification ; le sulfate d'ammonium sert de catalyseur de polycondensation (dans l'étuve à chaud) après la pulvérisation de la composition d'encollage sur les fibres ; le silane est un agent de couplage entre

les fibres et la résine, et joue également le rôle d'agent anti-vieillissement ; les huiles sont des agents anti-poussières et hydrophobes ; l'ammoniaque joue, à froid, le rôle de retardateur de polycondensation.

Les exemples qui suivent permettent d'illustrer l'invention sans toutefois la limiter.

EXEMPLE 1

Dans un réacteur de 2 litres surmonté d'un condenseur et équipé d'un système d'agitation, on introduit 378 g de phénol (4 moles) et 809 g de formaldéhyde (10 moles) en solution aqueuse à 37% (rapport molaire formaldéhyde/phénol égal à 2,5) et on chauffe le mélange à 45°C sous agitation.

On ajoute régulièrement en 30 minutes 52,7 g de soude en solution aqueuse à 50 % (soit 7 % en poids par rapport au phénol), puis on élève la température progressivement à 70 0 C en 30 minutes et on la maintient pendant 80 minutes de manière à atteindre un taux de conversion du phénol égal à 93

%.

Ensuite, on diminue la température à 60 0 C en 30 minutes et simultanément on introduit dans le mélange réactionnel, de manière régulière, 75,3 g de monoéthanolamine (1 ,2 mole). On maintient la température à 60 0 C pendant 15 minutes, on refroidit le mélange jusqu'à 25°C environ en 30 minutes et on ajoute de l'acide sulfamique en solution à 15 %, en 60 minutes, jusqu'à ce que le pH soit égal à 5,0.

La résine obtenue a l'aspect d'une composition aqueuse limpide : elle présente un taux de formaldéhyde libre égal à 0,05 %, un taux de phénol libre égal à 0,2 % (les taux étant exprimés en poids total de liquide) et une diluabilité supérieure à 2000 %.

On ajuste la teneur pondérale en matières solides de la résine liquide à 50 % avec de l'eau, et on ajoute de l'urée (20 parts en poids pour 80 parts en poids sec de la résine liquide). On prépare une composition d'encollage en mélangeant 100 parts en poids sec du mélange précité de résine et d'urée, 7 parts en poids de mélasse, 3 parts de sulfate d'ammonium, 1 part de silane (Silquest ® A-1100 commercialisé par OSI) et 8 parts d'une huile minérale.

Cette composition d'encollage est utilisée pour fabriquer un produit isolant à base de laine minérale. De manière classique, la composition d'encollage est pulvérisée sur des fibres de verre à la sortie du dispositif de fibrage à raison de 4,5 % en poids sec d'encollage par rapport au poids des fibres. Les fibres encollées sont collectées sur un convoyeur à bande où elles forment un matelas de laine de verre qui est ensuite soumis à un traitement thermique dans une étuve de manière à obtenir une température minimale de 200 0 C au cœur du produit.

Le produit isolant final a une épaisseur nominale de 200 mm et une densité nominale de 11 kg/m 3 . Il présente des propriétés mécaniques en termes de résistance en traction, reprise en épaisseur et capacité d'absorption de l'eau identiques à celles d'un produit fabriqué dans les mêmes conditions avec une composition d'encollage témoin ne contenant pas d'extendeur.

EXEMPLE 2 On prépare une résine liquide dans les conditions de l'exemple 1.

On prépare un mélange contenant 80 parts en poids sec de la résine liquide et 20 parts en poids d'urée.

On prépare une composition d'encollage en mélangeant 100 parts (en poids sec) du mélange précité de résine et d'urée, 5 parts en poids d'une dextrine issue d'amidon de maïs, 3 parts de sulfate d'ammonium, 0,75 part de silane (Silquest ® A-1100 commercialisé par OSI) et 9,5 parts d'une huile minérale.

La dextrine issue d'amidon de maïs présente une masse molaire moyenne en poids égale à 3510 et un équivalent en dextrose (DE) égal à 30 (Roclys ® C30725 commercialisé par Roquette Frères ; exemple 2a) ou une masse molaire moyenne en poids égale à 1850 et un équivalent en dextrose (DE) égal à 30 (Tackidex ® 30L75 commercialisé par Roquette Frères ; exemple 2b).

De manière conventionnelle, l'équivalent en dextrose DE est défini par la relation suivante :

/ nombre de liaisons glycosidiques rompues \

DE = 100 x nombre de liaisons glycosidiques dans l'amidon initial

Cette composition d'encollage est utilisée dans les conditions de l'exemple 1 pour fabriquer un produit isolant à base de laine minérale ayant une épaisseur nominale de 80 mm et une densité nominale de 11 kg/m 3 .

On fabrique également dans les mêmes conditions un produit d'isolation (Référence) dans lequel la composition d'encollage ne contient pas d'extendeur.

Sur les produits isolants obtenus, on mesure :

- la reprise d'épaisseur après 24 heures sous compression avec un taux de compression (défini comme étant le rapport de l'épaisseur nominale à l'épaisseur sous compression) égal à 5/1. La reprise d'épaisseur est le rapport de l'épaisseur mesurée à l'épaisseur nominale, exprimée en % ; elle permet d'évaluer la bonne tenue dimensionnelle du produit.

- la résistance en traction selon la norme ASTM C 686-71 T sur un échantillon découpé par estampage dans le produit isolant. L'échantillon a la forme d'un tore de 122 mm de longueur, 46 mm de largeur, un rayon de courbure de la découpe du bord extérieur égal à 38 mm et un rayon de courbure de la découpe du bord intérieur égal à 12,5 mm.

L'échantillon est disposé entre deux mandrins cylindriques d'une machine d'essais dont l'un est mobile et se déplace à vitesse constante. On mesure la force de rupture F (en gramme Force gF) de l'échantillon et on calcule la résistance en traction par le rapport de la force de rupture F à la masse de l'échantillon, exprimée en gF/g.

La résistance en traction est mesurée après la fabrication (RT fab.) et après un vieillissement accéléré dans un autoclave à une température de 105 0 C sous 100 % d'humidité relative pendant 15 minutes (RT15). Les mesures sont les rassemblées dans le tableau 1. EXEMPLE 3

On prépare une composition d'encollage dans les conditions de l'exemple 2 modifié en ce qu'on remplace la dextrine issue d'un amidon de maïs par un hydrolysat de protéines de soja (Soyad ® 12UT commercialisé par Hercules).

La composition d'encollage est utilisée pour fabriquer un produit d'isolation à base de laine minérale dans les mêmes conditions qu'à l'exemple 2.

Les mesures de reprise d'épaisseur et de résistance en traction sont données dans le tableau 1.

Tableau 1

La présence d'un extendeur dans les exemples 2 et 3 améliore la résistance en traction des produits et permet de conserver une reprise d'épaisseur comparable à celle du produit de référence sans extendeur.