Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SKI CONSTRUCTION
Document Type and Number:
WIPO Patent Application WO/1998/048908
Kind Code:
A1
Abstract:
A layer of low density elastomeric material (12) is interposed between upper and lower segments (14, 10) of a ski, the layer and upper segment (14) extending along at least 35 % of the length of the lower segment (10). The elastomeric layer (12) contains at least one insert of high density material (16) disposed in a direction across the width of the ski, the insert being of greater density than the low density elastomeric material (12) to provide torsional rigidity to ski which otherwise has softened longitudinal flexibility and enhanced vibration damping.

Inventors:
Howe, John G. (McIntire Road, Box 2460 North Waterford, ME, 04267, US)
Application Number:
PCT/US1998/008246
Publication Date:
November 05, 1998
Filing Date:
April 24, 1998
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
Howe, John G. (McIntire Road, Box 2460 North Waterford, ME, 04267, US)
International Classes:
A63C5/07; A63C5/075; A63C9/00; (IPC1-7): A63C5/14
Foreign References:
US3260532A
US5211418A
DE3808780A1
DE2726726A1
US5372370A
US4961715A
US4639009A
US5441296A
US5465994A
US5681054A
Attorney, Agent or Firm:
Joyce, Kevin E. (Cushman, Darby & Cushman Intellectual Property Group of Pillsbury Madison & Sutro, 1100 New York Avenue, N.W, Washington DC, 20005, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:
1. A ski construction comprising: a lower and an upper ski segment; and a layer of elastomeric material attached to and separating said lower and upper segments, said layer and upper segment extending along at least 35% of the length of the lower segment, said layer including at least one insert of material, disposed in a direction across the width of the ski, which is of greater density than said elastomeric material so as to be substantially nonresilient in order to provide torsional rigidity between the upper and lower ski segments.
2. A ski construction according to Claim 1, wherein said elastomeric layer covers a central portion of the lower ski segment.
3. A ski construction according to Claim 1, wherein said elastomeric layer extends up to 80% of the length of the upper surface of the lower ski segment.
4. A ski construction according to Claim 2, wherein said elastomeric layer extends up to 80% of the length of the upper surface of the lower ski segment.
5. A ski construction according to Claim 1, wherein said elastomeric layer is a foam having a density substantially in the range of 5 to 30 pounds per cubic foot.
6. A ski construction according to Claim 1, wherein said elastomeric layer has a thickness substantially in the range of 0.1000.400".
7. A ski construction according to Claim 5, wherein said elastomeric layer covers a central portion of the lower ski segment.
8. A ski construction according to Claim 5, wherein said elastomeric layer extends up to 80% of the length of the upper surface of the lower ski segment.
9. A ski construction according to Claim 8, wherein said elastomeric layer covers a central portion of the lower ski segment.
10. A ski construction according to Claim 6, wherein said elastomeric layer covers a central portion of the lower ski segment.
11. A ski construction according to Claim 6, wherein said elastomeric layer extends up to 80% of the length of the upper surface of the lower ski segment.
12. A ski construction according to Claim 11, wherein said elastomeric layer is a foam having a density substantially in the range of 5 to 30 pounds per cubic foot.
13. A ski construction according to Claim 1, wherein said elastomeric layer covers a central portion of the lower ski segment and the insert is located adjacent to said central portion.
14. A ski construction according to Claim 13, wherein said elastomeric layer extends up to 80% of the length of the upper surface of the lower ski segment.
15. A ski construction according to Claim 13, wherein said elastomeric layer is a foam having a density substantially in the range of 5 to 30 pounds per cubic foot.
16. A ski construction according to Claim 13, wherein said elastomeric layer has a thickness substantially in the range of 0.1000.400".
17. A ski construction according to Claim 16, wherein said elastomeric layer is a foam having a density substantially in the range of 5 to 30 pounds per cubic foot.
18. A ski construction according to Claim 1, including at least two spaced inserts.
19. A ski construction according to Claim 1, wherein said insert is a strip of hard rubber.
20. A ski construction according to Claim 18, wherein said inserts are strips of hard rubber.
21. A ski construction according to Claim 1, wherein said insert is formed by the density of the elastomeric layer being higher on one side of the ski than on the other.
22. A ski construction according to Claim 21, wherein the higher density portion of the layer has a density of at least 50 pounds per cubic foot and wherein the density of the layer on the other side of the ski is less than 35 pounds per cubic foot.
23. A ski construction according to Claim 1, wherein said insert is formed by the density of the elastomeric layer being greater at a central portion thereof than at the ends of the layer.
24. A ski construction according to Claim 23, wherein the higher density portion of the layer has a density of at least 50 pounds per cubic foot and wherein the density of the layer on the ends of the layer is less than 35 pounds per cubic foot.
25. A ski construction according to Claim 1, further comprising an adjustable friction plate connected between an upper surface of the lower ski segment and an upper surface of the upper ski segment.
Description:
SKI CONSTRUCTION BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved ski or snowboard construction wherein materials are combined in such a manner as to enhance performance -- especially with regard to ice-holding ability and the reduction of vibration and chattering at high speed.

Although the invention pertains both to skis and snowboards, for convenience of discussion reference will be limited hereinafter to skis, it being understood, however, that the same principles disclosed are applicable to snowboards as well.

2. Prior Art It is well known that ski performance involves control of the longitudinal flexibility and torsional rigidity of the ski. As a ski passes over uneven terrain, it is desirable that it flex longitudinally. However, to negotiate turns, the ski must have sufficient torsional rigidity so that its edges can carve into snow to cause the ski to turn. It also is known that vibration and shock transmitted to the skier's legs can be reduced by a laminated ski construction wherein one or more of layers, or partial layers of a lamination consists of an

elastomeric material. An example is the ski disclosed in U.S. Patent 4,405,149.

In U.S. Patent Nos. 5,344,176 and 5,413,371, and in Swiss Patent 0104105, elastomeric materials, alone or in combination with solid materials, are secured to the upper surface of a conventional ski in spaced relationship between the ski and its binding. One purpose of such construction is to elevate the skier above the ski to improve the skier's turning leverage. Additionally, the elastomeric material serves to damp vibrations encountered as the skis are used, such damping being achieved without significantly affecting the ski's flexibility.

Such "add-on" devices add weight and some stiffness to the ski, and they can interfere with the ski binding's function.

SUMMARY OF THE INVENTION The present invention provides a high performance ski construction which nevertheless permits increased longitudinal flexibility and greatly enhanced vibration damping, as compared with known skis, without increasing the ski's weight. This is accomplished by forming the ski with upper and lower segments, and providing a thick layer of low density elastomeric material between the two segments, the layer containing at

least one insert of substantially non-resilient material extending across the width of the ski which maintains the ski's torsional rigidity.

Such a ski construction additionally permits ski bindings to be mounted above the upper surface of the upper segment so as to elevate the skier, thereby reducing boot drag and improving the skier's turning leverage.

BRIEF DESCRIPTION OF THE DRAWINGS The invention now will be described in greater detail with respect to the accompanying drawing, wherein: Figure 1 is a side elevational view of a ski constructed in accordance with the present invention; and Figure 2 is a side elevational view of a further embodiment of a ski constructed in accordance with the present invention.

DETAILED DESCRIPTIONS OF PREFERRED EMBODIMENTS OF THE INVENTION The present invention improves ski performance through a unique lamination arrangement which is illustrated in the accompanying Figure 1 and which now will be described.

A first lower ski segment 10 of conventional construction, but of lighter weight

and greater flexibility, is provided with a layer of elastomeric material 12 interposed between lower segment 10 and a second upper ski segment 14. The upper segment 14 is long and strong enough to serve as a surface for securing the bindings which retain the skier's boot and to provide torsional and longitudinal stiffness, as well as vibration control, to lower segment 10.

The length of the upper segment 14 and elastomeric layer 12 is selected so as to be between 35 and 80% of the overall length of the lower ski segment 10. To achieve the desired characteristics, the material used as layer 12 preferably is an elastomeric foam having a density between 5 and 35 pounds per cubic foot, the most desirable density being approximately 25 pounds per cubic foot. The thickness of layer 12 preferably is in the range of 0.100 - 0.400".

Through appropriate selection of the thickness of segment 14 a division of ski stiffness can be achieved between the upper segment 14 and lower segment 10. That division of stiffness preferably has a ratio of approximately 10:90 to as much as 75:25 (top to bottom). By so arranging the upper and lower segments to be significantly independent of one another, a substantial damping of vibration and shock forces to the skier's legs occurs thereby making the ski

more comfortable and precise to use, especially on icy surfaces. Such damping typically is from 3 to 3 1/2 times greater than in conventional skis or 2 1/2 to 3 times greater than conventional skis used in combination with so-called damping plates such as described in U.S. Patent No. 5,413,371 or Swiss Patent 0104185. At the same time, the longitudinal flexibility of the compound ski is softer than conventional skis so as to permit the ski to better conform to the contour of the terrain over which the ski passes. This is because the enhanced damping and extended control provided by the upper ski segment 14 combine to force the extremities of the ski to hold on the ice with extra tenacity.

As stated previously, it is extremely important that the torsional characteristics of the ski be controlled so that proper edging can be achieved for negotiating turns. In order to retain the desired torsional characteristics of the ski, at least one substantially non-resilient, high density insert 16 is embedded in the low density elastomeric layer 12, insert 16 extending over the full width of layer 12. Such an insert preferably is made of hard rubber having a density of greater than 40 pounds per cubic foot.

If one insert 16 is used, it preferably is positioned within layer 12 between the

locations of the toe and heel pieces of the bindings. When two spaced inserts are incorporated within layer 12, they preferably are positioned below the binding's toe and heel pieces, respectively. It has been found that with one or a multiple of inserts 16, a ski can be produced having outstanding damping characteristics, combined with softened longitudinal flexibility, while maintaining the desired degree of torsional rigidity.

The torsional characteristics of the ski also can be established, if desired, by varying the compressibility of the elastomeric foam layer 12 transversely to the longitudinal axis of the ski. More particularly, a higher density foam, having a density of at least 50 pounds per cubic foot, can be employed on the inside edge of layer 12. i.e., that portion of layer 12 closest to the inside edge of the ski. Of course, this alternative is not applicable to a snowboard.

Torsional characteristics additionally can be achieved by varying the density of the elastomeric material of layer 12 in the direction of the ski's longitudinal axis. In such a case, the material is selected so as to be of higher density at its center than at the ends of layer 12. The highest density area again is greater

than 40 pounds per cubic foot, preferably approximately 60.

In the embodiments discussed above, the ski's characteristics are fixed during manufacture. However, it also is possible to provide an adjustability feature to permit the skier to vary the stiffness and damping of the ski during use. This is accomplished (Fig. 2) by the use of a conventional friction plate 18 at one or both ends of the upper ski segment 14. The friction plate is secured to the lower ski segment 10 and rests on the upper surface of upper segment 14. An adjusting knob 20 bears on the plate to clamp layer 14 to lower segment 10 to a degree dependent on the adjustment of the knob. By this arrangement, the energy absorption contributed by layer 12 can be altered thereby varying the overall stiffness characteristic of the composite ski.

The invention just described provides a ski construction having a high degree of damping and soft feel without the loss of torsional rigidity. The substantial thickness of combined layers 12 and 14 also results in the elevation of a skier's boot which allows improved edge control and reduced boot drag during turns. Since the upper and lower segments 14 and 10 of the ski can flex independently and have high damping, the ski

flex through the boot mounting area thereby permits very short skis to be made while maintaining an adequate boot mounting capability.

An additional advantage of this invention is that the increased thickness of the total ski allows the use of a much narrower lower ski (segment 10). This is because the boot and binding are displaced upwardly high enough to allow high edge angles of the ski without encountering boot or binding drag. This reduction in width further enhances the performance of the composite ski on ice because less twisting torque is required to place the ski on its edge.