Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SMART HEATING SYSTEM
Document Type and Number:
WIPO Patent Application WO/2014/176585
Kind Code:
A1
Abstract:
A smart heating system is described that generally comprises at least one heater element, optionally, at least one temperature sensor, a set of predetermined or predictable performance information used to control the heating system; and, optionally, an electronic conditioning module (ECU) capable of storing and processing the performance information. The performance information may be stored as written text, a bar code, a data matrix, or a radio frequency identification (RFID) tag. The smart heating system heating system may further comprises a LIN or a CAN bus capable of providing a communication pathway between at least two of the system components.

Inventors:
CULBERTSON DAVID P (US)
KHAIR MAGDI (US)
TAN JULIAN (US)
Application Number:
PCT/US2014/035645
Publication Date:
October 30, 2014
Filing Date:
April 28, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WATLOW ELECTRIC MFG (US)
International Classes:
F01N3/027; H05B1/02
Foreign References:
US20060047480A12006-03-02
US20080028753A12008-02-07
Other References:
None
Attorney, Agent or Firm:
WEISS, Keith D. (P.O. Box 10395Chicago, IL, US)
Download PDF:
Claims:
CLAIMS

What is claimed is

1. A smart heating system, the heating system comprising:

at least one heater element;

a set of predetermined or predictable performance information used to control the heating system;

optionally, at least one temperature sensor; and

optionally, an electronic conditioning module (ECU) capable of storing and processing the performance information.

2. The smart heating system according to Claim 1 , wherein the heating system further comprises at least one support bracket in contact with the at least one heater element and optionally with the at least one temperature sensor.

3. The smart heating system according any of Claims 1 or 2, wherein the performance information includes heater information or a combination of heater and sensor information.

4. The smart heating system according to any of Claims 1 or 2, wherein the heating system further comprises a power switch that receives signals from the ECU or a switch control unit.

5. The smart heating system according to Claim 4 wherein the performance information further includes switch information.

6. The smart heating system according to Claim 5, wherein the power switch is controlled by the switch control unit; the switch control unit using the switch information; optionally, the switch control unit being in communication with the ECU.

7. The smart heating system according to any of Claims 1-6, wherein the heater performance information includes a rate of heating at a desired voltage or under a specified flow condition, heater resistance, heater or sensor stability, temperature profile or distribution, flow uniformity or temperature conditions in a location adjacent to the heater element.

8. The smart heating system according to any of Claims 5 or 6, wherein the switch information includes a measurement of the current and/or voltage, as well as the rate of heating associated with the solid state components of the switch as a function of the amount of electrical current that is being switched.

9. The smart heating system according to any of Claims 1-8, wherein the heating system includes multiple heater elements and temperature sensors, the temperature sensors being a combination of individual sensors or a multiple junction sensor capable of providing more than one temperature measurement.

10. The smart heating system according to any of Claims 1-9, wherein the temperature sensor is selected as a thermocouple, a thermistor, or a resistance temperature device.

1 1. The smart heating system according to any of Claims 1-10, wherein the heater element is selected as a cable heater, a tubular heater, a cartridge heater, a flexible heater, a layered heater, a metal foil, or a metal fleece heater.

12. The smart heating system according to any of Claims 1-1 1 , wherein the

performance information is stored as written text, a bar code, a data matrix, a radio frequency identification (RFID) tag, or in memory of a conditioning module.

13. The smart heating system according to any of Claims 1-12, wherein the heating system further comprises a LIN or a CAN bus capable of providing a communication pathway between at least two system components.

14. The smart heating system according to any of Claims 1-13, wherein the heating system compensates for a thermal gradient present in a diesel oxidation catalyst (DOC), diesel particle filter (DPF), selectic catalytic reducer (SCR), lean NOx traps, or another exhaust component that includes an after-treatment catalyst.

15. A diesel exhaust system that includes a smart heating system, the smart heating system comprising:

at least one heater element;

a set of predetermined or predictable performance information used to control the heating system;

optionally, at least one temperature sensor; and optionally, an electronic conditioning module (ECU) capable of storing and processing the performance information.

16. The diesel exhaust system according to Claim 15, wherein the smart heating system further comprises at least one support bracket in contact with the at least one heater element and optionally with the at least one temperature sensor.

17. The diesel exhaust system according any of Claims 15 or 16, wherein the performance information includes heater information or a combination of heater and sensor information.

18. The diesel exhaust system according to any of Claims 15-17, wherein the smart heating system further comprises a power switch that receives signals from the ECU or a switch control unit.

19. The diesel exhaust system according to Claim 18, wherein the performance information further includes switch information.

20. A method of providing thermal control in a predetermined application by compensating for a thermal gradient, the method comprising:

providing a smart heating system constructed according to any of Claims 1-13; and establishing thermal control by creating a desired temperature profile; the temperature profile being created by providing power to all or some of the heater elements in the smart heating system simultaneously or alternatingly.

21. The method according to Claim 20, wherein the power is applied to the heater elements in the smart heating system at either the same level or at different levels.

22. The method according to any of Claims 20 or 21 , wherein establishing the thermal control uses a closed loop control mechanism or open loop control mechanism.

23. An exhaust gas treatment system that comprises a smart heating system, the smart heating system providing an exhaust temperature that enhances performance of a diesel oxidation catalyst (DOC), diesel particle filter (DPF), selectic catalytic reducer (SCR), lean NOx traps, or another exhaust component that includes an after-treatment catalyst.

24. The exhaust gas treatment system according to Claim 23, wherein the smart heating system comprises:

at least one heater element;

a set of predetermined or predictable performance information used to control the smart heating system;

optionally, at least one temperature sensor;

optionally, an electronic conditioning module (ECU) capable of storing and processing the performance information; and

optionally, a power switch that receives signals from the ECU or a switch control unit.

25. The exhaust gas treatment system according to any of Claims 23 or 24, wherein the predetermined or predictable performance information includes heater information or a combination of heater and sensor information, and, optionally, switch information.

26. The exhaust gas treatment system according to Claim 25, wherein the heater information, the combination of heater and sensor information, or the switch information is stored as written text, a bar code, a data matrix, a radio frequency identification (RFID) tag, or in memory of a conditioning module.

27. An exhaust gas treatment system that provides for the heating of an exhaust component through the use of a smart heating system; the smart heating system comprising:

one or more heater elements;

at least one temperature sensor;

a set of heater information or a combination of heater and sensor information used to control the smart heating system;

a power switch;

a switch control unit;

a set of switch information; and

optionally, an electronic conditioning module (ECU) capable of storing and processing the heater information or the combination of heater and sensor information;

wherein the switch control unit uses the switch information to control the power switch; optionally, the switch control unit is in communication with the ECU.

28. The exhaust gas treatment system of Claim 27, wherein the heater information, the combination of heater and sensor information, or switch information is stored as written text, a bar code, a data matrix, a radio frequency identification (RFID) tag, or in memory of a conditioning module.

29. The exhaust gas treatment system of Claim 28, wherein the smart heating system establishes thermal control by creating a desired temperature profile; the temperature profile being created by providing power to all or some of the heater elements in the smart heating system simultaneously or alternatingly.

Description:
SMART HEATING SYSTEM

[0001] This disclosure relates generally to temperature management. More specifically, this disclosure relates to systems and methods for measuring and compensating for heat transfer differences and other environmental heat transfer related aspects of thermal systems.

[0002] The statements in this section merely provide background information related to the present disclosure and may not constitute prior art. Heat flux is a useful measure for predicting relative heater element performance, including temperature, transfer efficiency, and life-time. The flux density exhibited by a heater element is defined as Watt density (watts/mm 2 ), which represents a measure of the magnitude of the power that can be concentrated per square millimeter of an element's surface area. A heater element that exhibits a high Watt density will generally provide a fast temperature rise and a lower overall manufacturing cost due to the reduced amount of surface area that is required. However, these advantages are often off-set by the risk of reduced lifetime due to the higher surface temperatures that are encountered, as well as the potential for lower reliability (e.g., over-shooting the desired temperature condition, etc.).

[0003] During manufacturing, variances encountered in processing conditions and heater construction can result in differences in the heat flux that are exhibited within different portions of a single heater element or between the various heater elements that are produced. In order to compensate for this manufacturing variability, and ensure reliability at the expense of maximizing performance (e.g., rate of heating) and minimize cost (e.g., lowering the element's surface area), the industry conventionally applies a safety factor, which results in a reduction in the Watt density exhibited by the heater element.

BRIEF SUMMARY OF THE INVENTION

[0004] In overcoming the enumerated drawbacks and other limitations of the related art, the present invention provides a smart heating system. The smart heating system generally comprises at least one heater element, a set of predetermined or predictable performance information used to control the heating system, and optionally an electronic conditioning module (ECU) capable of storing and processing the performance information. Alternatively, the smart heating system may further comprise at least one temperature sensor. The performance information may be stored as written text, a bar code, a data matrix, or a radio frequency identification (RFID) tag. The smart heating system heating system may further comprises a LIN or a CAN bus capable of providing a communication pathway between at least two system components. [0005] According to one aspect of the present disclosure, the smart heating system may further comprise at least one support bracket in contact with the at least one heater element and optionally with the at least one temperature sensor. The performance information may include only heater information or a combination of both heater and sensor information. The heater performance information may include the rate of heating that occurs at a desired voltage or under a specified flow condition.

[0006] According to another aspect of the present disclosure, the heating system may further comprise a power switch that receives signals from the ECU. In this case, the performance information may also include switch information. The power switch can be controlled by a switch control unit that is in communication with the ECU and uses the switch information. The switch information may include a measurement of the current and/or voltage, as well as the rate of heating associated with the solid state components of the switch as a function of the amount of electrical current that is being switched.

[0007] According to yet another aspect of the present disclosure, the smart heating system includes multiple heater elements and temperature sensors, the temperature sensors being a combination of individual sensors or a junction sensor capable of providing more than one temperature measurement. The temperature sensor may be selected as a thermocouple, a thermistor, or a resistance temperature device. The heater element may be selected as a cable heater, a tubular heater, a cartridge heater, a flexible heater, a layered heater, a metal foil, or a metal fleece heater.

[0008] The smart heating system may be used to compensate for a thermal gradient present in a diesel oxidation catalyst (DOC), diesel particle filter (DPF), selectic catalytic reducer (SCR), lean NOx traps, or another exhaust component that includes an after-treatment catalyst. Thus diesel exhaust system may be constructed to comprise the smart heating system as described above and hereafter.

[0009] A method of providing thermal control in a predetermined application by compensating for a thermal gradient is provided herein. This method comprises providing a smart heating system and establishing thermal control by creating a desired temperature profile. The desired temperature profile can be created by providing power to all or some of the heater elements in the smart heating system simultaneously or alternatingly. Alternatively, the power may be applied to the heater elements in the smart heating system at either the same level or at different levels. The thermal control may be established by using a closed loop control mechanism or open loop control mechanism.

[0010] Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[001 1] The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.

[0012] Figure 1A is a pictorial representation of a smart heating system constructed according to the teachings of the present disclosure;

[0013] Figure 1 B is a pictorial representation of another smart heating system constructed according to the teachings of the present disclosure;

[0014] Figure 2 is a pictorial representation of another smart heating system constructed with multiple sensors; and

[0015] Figures 3(A-C) are pictorial representation of smart heating systems constructed with a mounting bracket;

[0016] Figures 4(A-C) are pictorial representations and cross-sectional views of multiple heater elements used in a smart heating system in a diesel exhaust application;

[0017] Figure 5 is a schematic representation of a smart heating system design;

[0018] Figures 6(A-B) are schematic representations of other smart heating systems designed to use heater information;

[0019] Figures 7(A-B) are schematic representations of other smart heating systems designed to use heater and sensor information; and

[0020] Figures 8(A-B) are schematic representations of other smart heating systems designed with power switch control.

DETAILED DESCRIPTION

[0021] The following description is merely exemplary in nature and is in no way intended to limit the present disclosure or its application or uses. It should be understood that throughout the description, corresponding reference numerals indicate like or corresponding parts and features.

[0022] The present disclosure generally relates to a smart heating system and a method of use associated therewith. The smart heating system made and used according to the teachings contained herein is described throughout the present disclosure in conjunction with diesel exhaust applications in order to more fully illustrate the concept. The incorporation and use of smart heating system in conjunction with other types of thermal management applications is contemplated to be within the scope of the disclosure. [0023] The following specific embodiments are given to illustrate the design and use of smart heating systems according to the teachings of the present disclosure and should not be construed to limit the scope of the disclosure. Those skilled-in-the-art, in light of the present disclosure, will appreciate that many changes can be made in the specific embodiments which are disclosed herein and still obtain alike or similar result without departing from or exceeding the spirit or scope of the disclosure. One skilled in the art will further understand that any properties reported herein represent properties that are routinely measured and can be obtained by multiple different methods. The methods described herein represent one such method and other methods may be utilized without exceeding the scope of the present disclosure.

[0024] A smart heating system general comprises at least one heater element with predetermined (e.g., measured) or predictable performance characteristics. One example of such performance characteristics includes the rate of heating for the heater element when it is exposed to a preselected voltage or under a specified process flow condition. Although the average performance for multiple heater elements of the same or substantially similar design that are manufactured by the same process under similar process conditions represents valuable information, the measurement or knowledge of how each individual heater element in the system performs allows one to control the system's overall performance with respect to fast heating without sacrificing overall reliability. One specific example of a performance characteristic for a heater element that can be used to control a system's overall performance includes, without limitation, the locations associated with any non-uniformity in sheath temperature as shown by the temperature profile exhibited by the heating element under a known or predetermined flow/process condition.

[0025] A smart heating system provides the benefits of enhanced diagnostic capability in addition to maximizing heat flux and lowering manufacturing cost. A robust diagnostic capability often depends on the variation exhibited from heater element to heater element. A system that is capable of using performance characteristics or information for specific heater elements provides for enhanced diagnostic capability by allowing at least a portion of the random variation that arises from manufacturing variances to be corrected or compensated for.

[0026] The specific characteristics or information can be stored in any known format that is desirable, including but not limited to written text, bar codes, data matrix, and radio frequency identification (RFID), as well as being communicated on a digital bus or any other information or communication method known to one skilled in the art.

[0027] According to one aspect of the present disclosure, the smart heating system may comprise at least one heater element or alternatively, a combination of at least one heater element and at least one temperature sensor. The sensor may be in contact with the sheath of the heater element (see Figure 1A), located on a bracket adjacent to the heater element, or located upstream or downstream of the heater element (see Figure 1 B). The sensor is capable of measuring the temperature in a specific or desired location of the heater element. The measurement of temperature by the sensor allows the system to reduce power when the heater element is approaching or surpassing a predetermined temperature limit established according to the application being performed.

[0028] Referring to Figures 1 A and 1 B, one specific combination of the smart heating system 100 is shown that comprises a tubular heater 105 and a thermocouple 1 10. The thermocouple 1 10 can be in contact with or attached to the sheath of the heater element 105 (Figure 1A) or located adjacent to the heater element 105 (Figure 1 B). One skilled in the art will understand that other types of heaters and sensors, may be used without exceeding the scope of the present disclosure. Optionally, the thermocouple 1 10 may be in communication with or attached to a signal conditioning module 1 15 that is capable of storing and/or processing information, such as, without limitation, sensor time response or stability, sensor contact resistance to the heater's sheath, heater's maximum temperature limit, maximum ramp rate for the heater, heater resistance or stability, and the heater's temperature profile or distribution map, as well as the difference in temperature between the heater and the area adjacent to the heater. The maximum temperature limit and the maximum ramp rate may be determined for a specific heater 105 and sensor 1 10 combination using conventional testing and inspection of the combination.

[0029] Since the signal conditioning module 1 15 may comprise an input and output

(I/O), an analog to digital converter (ADC), and a microprocessor, it is possible to use said module to make or communicate other measurements, including but not limited to, the magnitude of current leakage to ground, as well as the voltage and/or current applied to the heater. The measurement of current leakage is useful for determining if the heater insulation resistance (IR) is low and can be used to adjust the rate of applying voltage to the heater in order to remove moisture and/or extend the lifetime of the heater. The measurement of the applied voltage and/or current can be used to determine Power and heat flux associated with the smart heating system 100, as well as to detect the occurrence of any defects or faults.

[0030] Still referring to Figure 1 , a signal conditioning module 1 15 with digital communication capability may alternatively be used. Such digital communication capability may include the use of a local interconnect network (LIN) bus or controller area network (CAN) bus, as well as any other digital bus known to one skilled in the art. The digital bus receives measurements, such as temperature, current leakage, voltage, current, etc. from another device that is in communication with the bus through the use of an integral connector 120, which in turn allows the signal conditioning unit 1 15 to become aware of and use this information instead of information that itself had measured.

[0031] According to another aspect of the present disclosure, the types of information collected and/or communicated may be utilized to enhance control of the heater system with respect to performance. For example, the information may be used to calculate (a) control parameters to avoid over temperature conditions associated with the heater; (b) a slow ramp for voltage at low current (l)-resistance (R) conditions in order to allow moisture to be evaporated; or (c) a diagnostic limit designed to prolong the lifetime of the heater system. An example of such a diagnostic limit (DL), may include the calculation of the change in temperature (ΔΤ) per unit time (At) per a predetermined variable (x) as shown in Equation 1. This predetermined variable (x) is selected based upon the specific application in which the smart heating system is being used. In certain applications, this variable (x) may be the applied voltage, the amount of fuel used, or the mass flow of an exhaust, among others.

[0032] DL = [(AT/At) /x] Eq. 1

[0033] According to another aspect of the present disclosure, the smart heating system may comprise more than one temperature sensor. Referring now to Figure 2, a smart heating system 200 having a heater 205 in contact with more than one temperature sensor 210, alternatively, multiple sensors 210, alternatively, at least three sensors 210 is shown. The use of multiple sensors 210 allows the smart heating system 200 to measure temperature at several locations of the heater element 205, thereby, allowing calculation of differences in the measured locations. The calculation of these temperature differences provides for more precise control of the heater element 205 thereby increasing lifetime, as well as avoiding any damage resulting from localized over-heating.

[0034] In many applications, thermal gradients will exist in the environment to which the smart heating system is exposed. For example, thermal gradients may exist within a diesel oxidation catalyst (DOC) that can vary as a function of time and/or engine condition. Thermal gradients may also exist in other after treatment components, such as diesel particle filters (DPF), selective catalytic reducers (SCR), or lean NO x traps, among other components present in the exhaust stream that include an after-treatment catalyst. At least part of the function of an after-treatment catalyst is to facilitate a chemical reaction with the exhaust gases in order to reduce pollutants to comply with emission regulations. Since such chemical reactions have a dependency on temperature, a variation or gradient in temperature will affect the rate at which these reactions proceed. The use of a smart heating system 200 can improve the performance of the after-treatment component by effectively controlling the temperature at a level that facilitates the occurrence of the chemical reaction.

[0035] Still referring to Figure 2, in a diesel exhaust system, a smart heating system 200 with multiple sensors 210 is exposed to exhaust gases. In this application, the smart heating system 200 can detect variations in temperature caused by thermal flow distribution of the exhaust gases and compensate or adjust accordingly in order to maximize the performance and/or lifetime of the heater element 205. Thus sensor information includes a measurement of temperature conditions in a location adjacent to the heater element 205. A similar arrangement with a single sensor is also shown in Figure 1 B. The use of multiple sensors 205 can also be used to measure or predict additional diagnostic conditions when used in various applications. A few examples of which include the measurement of temperature gradients (i) downstream in a diesel particulate filter (DPF) in order to determine non-uniform soot build-up in the DPF; (ii) downstream of a diesel oxidation catalyst (DOC) in order to identify the occurrence of non-uniform oxidation or face-plugging of the DOC; and (iii) upstream of a DOC in order to identify non-uniform temperatures so that more accurate energy balance calculations can be obtained.

[0036] According to another aspect of the present disclosure, the smart heating system may further comprise a support bracket. In some applications, such as in a diesel exhaust system, among others, the vibrations arising from the application may be to such a degree that at least one support bracket is necessary to mount the smart heating system. Referring now to Figures 3(A), each mounting bracket 330 may be used to support a heating element 305 of the smart heating system 300. When desirable the temperature sensor 310 may also be supported by one of the brackets 330. When multiple sensors 310 are utilized, each sensor 330 may be in contact with a bracket 330.

[0037] Alternatively, a multiple junction sensor 31 1 may be utilized (Figures 3B &

3C) with such sensor 31 1 being in contact with the bracket 305 in multiple locations. A multiple junction sensor 31 1 provides multiple temperature measurements. As shown in Figure 3B, the specific multiple junction sensor 31 1 shown provides for a temperature measurement at the center of the heater can (junction J1 ) and at four other locations (junctions J2-J5). In Figure 3C, a smart heating system 300 is shown with a bracket 330 providing support for a heater element 305 and a multiple junction sensor 31 1 that provides for temperature measurement at three locations (junctions J1-J3). One skilled in the art will understand that many other different sensors 310, 31 1 and bracket 305 combinations may be utilized without exceeding the scope of the present disclosure.

[0038] In general, a smart heating system 300 that has multiple sensors 310, 31 1 measuring temperature commands better performance, lower heater cost, greater reliability and enhanced diagnostic capability than a similar sensor comprising a single sensor 310. The use of a multiple junction sensor 31 1 may become a lower cost alternative as compared to the use of multiple individual sensors 310.

[0039] Referring now to Figures 4(A-C), the smart heating system 400 may comprise multiple heater elements 405. In Figure 4A, multiple circulation heater elements 405 having a U-shaped bend are shown in an exhaust component 41 1. In Figures 4B and 4C, multiple circulation heater elements 405 are shown that have a circular shape. Multiple heater elements 405 can be used to create a desired temperature profile. For example, all of the heater elements 405 could be powered at the same time or alternated such that an uniform temperature is established in the exhaust / after treatment system 41 1 in order to facilitate the chemical reaction. Alternatively, some of the heater elements 405 can be fabricated and powered at different levels in order to create a different amount of heat and to modify the thermal gradient that exists within the exhaust or after treatment component 41 1. Several specific examples in which heater elements create different amounts of heat include (a) providing heater elements 405 located on the periphery with a different amount of power than those located in the interior of the exhaust component 41 1 ; and (b) providing heater elements 405 located in different quadrants with in the exhaust component 41 1 in order to control thermal gradients on a quadrant by quadrant basis. Alternatively, heater elements 405 may be placed only around the periphery of the exhaust component 41 1 in order to establish a single heating zone that can be used to reduce or improve radial temperature gradients.

[0040] Similar to the use of multiple heaters, the use of multiple sensors located in predetermined places based on their ability to add value in measuring the thermal gradient. The temperature sensors can be thermocouples, thermistors, resistance temperature devices, and any other known means of measuring or detecting temperature. A heater element having a resistance that varies with temperature may be used as a 2-wire heater/sensor combination. The heater element may include without limitation cable heaters, tubular heaters, cartridge heaters, flexible heaters, layered heaters, metal foils, metal fleece heaters, or any other type of heater known to one skilled in the art.

[0041] Referring now to Figure 5, one specific example of a smart heating system

500 designed for controlling temperature is shown. In this system 500 design, the heater element 505 receives power from a switch 550 that can be actuated using signal(s) from the heater control unit 560. The heater control unit 560 receives information from one or more sensors 510 and/or an electronic control unit 540. Based on the information, the heater control unit 560 communicates with the power switch 550 and relays the power to the heater element 505. The power switch 550 relays may be integrated into the heater control unit 540 when desirable. The heater elements 505 are distributed so that they are capable of providing a preferred or desirable temperature profile in the after treatment exhaust system in order to enhance performance of the after treatment system. Enhanced performance with respect to a diesel exhaust system includes without limitation improved N0 2 production by the diesel oxidation catalyst (DOC) or in a catalyzed diesel particulate filter (DPF); improving ammonia storage or NO x conversion SCR, or improving other chemical reactions.

[0042] During the construction of a smart heating system, the heater may be mounted with the information related to the heater attached to the heater assembly via a barcode, data matrix, RFID tag, or any other known method. Such heater information may include, among others, rating of heating, resistance, maximum voltage as a function of time, etc. Referring now to Figure 6A, the smart heating system 600 may be utilized via an open loop control mechanism 601. In this mechanism 601 , the smart heating system 600, which includes a heater 605 along with its related information 607, is in communication with an electronic control unit (ECU) 640. The heater information 607 may be either manually or automatically communicated to the ECU 640 or to a switching device 650 to enable better use of the heater 605. A similar benefit associated with using the heater information 607 equally applies to a closed loop control mechanism 602 as described in Figure 6B that incorporates an external temperature sensor 611.

[0043] Alternatively, a smart heating system can be utilized that includes information about both the heater and temperature sensor(s). Referring now to Figures 7A and 7B, a smart heating system 700 that includes both a heater 705 and sensor 710 combination that is marked with both heater and sensor information 707 as previously described above for a smart heating system 600 that includes only heater information 607 (see Figure 6) or if the sensor is an active sensor with a signal conditioning module (not shown), the information 707 may be stored in the memory of the conditioning module. The heater-sensor information 707 is communicated to an ECU 740 (Figure 7A) or to a power switch 750 (Figure 7B) in order to enhance the utilization of the smart heating system 700. Although the smart heating system 700 is shown in Figures 7A & 7B to be utilized in a closed loop control mechanism 701 , one skilled in the art will understand that an open loop control mechanism (not shown) may also be utilized as another option.

[0044] Referring now to Figure 8A, a third option for using heater-sensor information 807 is to communicate this information 807 to another control unit 860 that controls the functionality of the power switch 850. Optionally, the switch control 860 may also be in communication with the ECU 840. Alternatively, as shown in Figure 8B, the information 808 concerning the switch 850 can be incorporated with the switch control 860 for use along with the heater-sensor information.

[0045] Still referring to Figure 8(B), the switch information 808 may include without limitation, a measurement of the current and/or voltage, as well as the rate of heating associated with the solid state components of the switch 850 as a function of the amount of electrical current that is being switched. The rate of heating associated with the sensor 810 junction in contact with the switch 850 can be determined based on the electrical current (I) and the ability of the switch 850 to dissipate heat away from the junction. One skilled in the art will understand the relationship of this current (I) to the resistance (R) associated with a heater element 805 resulting in what is known as l 2 R heating. Thus the current to temperature relationship of the heater element 805 can be measured and stored as heater information 807. At a predetermined fluid flow condition, which can be communicated to the ECU 840, the smart heater system 800 comprising a heater 805, sensor 810, and switch 850 can be used to compare the rate of fluid temperature change to the rate of change in the switch 850 temperature in order to diagnose if the system 600 is operating efficiently.

[0046] The foregoing description of various forms of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Numerous modifications or variations are possible in light of the above teachings. The forms discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various forms and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.