Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SOCCER GOAL
Document Type and Number:
WIPO Patent Application WO/2010/080814
Kind Code:
A1
Abstract:
A game goal according to the invention, such as a soccer goal (100), collapses both vertically and laterally. The goal includes joints and brackets which facilitate the collapse of the goal such that the during vertical collapse, the forward uprights of the goal fold below the goal ' s lower rear support members, enhancing the goals transportability. The goal includes stabilizing arms and corresponding receptacles to stabilize the goal in the collapsed position. The goal also has a resistive element (201) which prevents the goal from collapsing too quickly. The goal further incorporates a rotating joint (301) in a top corner bracket which provides an interference fit with a slot (127) in the top corner bracket and a notch in the upright, thereby providing stability when the goal is in the upright or open position for use. Lateral stability of the goal under the weight of a net is enhanced by angle brackets (110) at the ground level of the goal.

More Like This:
WO/2006/103423SPORTS APPARATUS
Inventors:
REEVES FRANCIS (US)
Application Number:
PCT/US2010/020236
Publication Date:
July 15, 2010
Filing Date:
January 06, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
REEVES FRANCIS (US)
International Classes:
A63B63/00
Domestic Patent References:
WO2000024479A12000-05-04
Foreign References:
US20040036222A12004-02-26
US20050067785A12005-03-31
US5539957A1996-07-30
US5186469A1993-02-16
US5681231A1997-10-28
US6561931B12003-05-13
US6220776B12001-04-24
US7377714B22008-05-27
Attorney, Agent or Firm:
MCNAMARA, Brian, J. et al. (3000 K Street Nw Suite 60, Washington DC, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. An collapsible game goal comprising:

An upright;

An upper rear support member connected to said upright through a first moveable connection;

A lower rear support member having a first end connected to a rear bracket through a second moveable connection and a second end connected to said second end of said upper rear support member through a third moveable connection;

Said third moveable connection being such that by applying pressure to said upright when said goal is in an upright position, said upper and lower rear support members move relative to each other and said upright folds in a direction so that when fully collapsed at least a portion of said upright lies beneath at least said lower rear support member.

2. The apparatus of claim 1, wherein said first, second and third moveable connections are pivoting connections.

3. The apparatus of claim 2, wherein said first moveable connection comprises a rotating link and a flexible member connected to said upper rear support member.

4. A collapsible game goal comprising: an upright; an upper crossbar; an upper rear support member: a top corner bracket connected to said upper crossbar and said upright, said top corner bracket having a slot therein; a rotating link linking to said upper rear support member, said rotating link fitting into said slot, and rotatable around said upper crossbar.

5. The apparatus recited in claim 4, comprising a pivoting connection between said upright and said top corner bracket.

6. The apparatus recited in claim 4, comprising a notch in said upright.

7. The apparatus recited in claim 6, wherein said rotating link fits into said notch to engage said notch when said goal is in an open position.

8. The apparatus recited in claim 7, wherein said rotating link rotates to disengage said notch when said goal is being vertically collapsed.

9. The apparatus recited in claim 8, comprising a pivoting connection between said upright and said top corner bracket.

10. The apparatus recited in claim 9, said pivoting connection being configured to permit said upright to pivot in said top bracket during horizontal collapse of said goal.

11. The apparatus recited in claim 8, said rotating link disengaging said notch during vertical collapse when pressure is applied to said upper crossbar to push said upper crossbar toward a rear portion of said goal.

12. The apparatus recited in claim 6, said rotating link and said notch forming an interference fit providing stability to said goal.

13. The apparatus recited in claim 4, wherein said rotating link links to said upper rear support member through a transition member and a flexible link.

14. An apparatus as recited in claim 13, said flexible link flexes to allow said upper rear support member to remain stationary relative to said upright during lateral collapse.

15. A collapsible game goal comprising: a ground member; an upright; joints to facilitate horizontal and vertical collapse of said goal: a stabilizing arm on said upright: a receptacle on said ground member positioned to receive said stabilizing arm when said goal is vertically folded to a collapsed position.

16. An apparatus as recited in claim 15, comprising a lower rear support member at an end of said ground member remote from an end of said ground member proximate to said upright and a resistance element between said lower rear support member and said ground member.

17. A collapsible game goal comprising: a ground member; an lower rear support member; joints to facilitate horizontal and vertical collapse of said goal: a resistance element between said lower rear support member and said ground member.

18. A collapsible game goal comprising: upper and lower rear support members movably connected to each other; an upright movably connected to a ground member; a crossbar; a first moveable connection, said first moveable connection being between said lower rear support member and said ground member; a second moveable connection said second moveable connection being between said upper rear support member and said upright; said first and second moveable connections causing said lower support member to move away from said ground member when pressure is initially applied to said crossbar during a first portion of vertical collapse.

19. The apparatus recited in claim 18, said first and second moveable connections causing said lower support member to move toward said ground member when said upper rear support member moves into a spatial region in front of and on top of said upright, as pressure is applied to said crossbar during a second portion of vertical collapse.

20. A collapsible game goal comprising: an upper crossbar and a lower crossbar, said upper and lower crossbars each having a double pivot point joint, said double pivot point joint in said upper crossbar being angularly oriented differently from an orientation of said double pivot point joint in said lower crossbar when said goal is in an open position and oriented to approximately match said orientation of said double pivot point joint in said lower crossbar when said goal is vertically collapsed.

21. The apparatus recited in claim 20, wherein during lateral collapse the positions of said double pivot point joints in said upper and lower crossbars allows lateral collapse of said goal from its sides toward a center.

Description:
SOCCER GOAL

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

[0001] This application claims priority from U.S. Provisional Patent Application No. 61/143,611, filed January 9, 2009. Portions of this application also relates to subject matter disclosed in U.S. Patent Application No. 08/288,309, filed August 10, 1994, now issued as U.S. Patent No. 5,681,231, U.S. Patent Application No. 08/958,346, filed October 27, 1997, now issued as U.S. Patent 6,561,931, U.S. Patent Application No. 09/179,403, filed October 27, 1998, now issued as U.S. Patent 6,220,776, and U.S. Patent Application No. 10/405,475, filed April 3, 2003, now issued as U.S. Patent 7,377,714. AU of the above listed patent applications are incorporated herein by reference in their entirety.

BACKGROUND

[0002] The present invention relates generally to the field of collapsible structures and, in particular to collapsible game goals, such as collapsible soccer goals.

SUMMARY OF PREFERRED EMBODIMENTS

[0003] One embodiment of the invention relates to a soccer goal which collapses to a size suitable for transport. The soccer goal according to the invention collapses both vertically and laterally. A goal according to the invention has top corner brackets which are connected to upper rear support members. Upper rear support members are connected to lower rear support members by a joint. The upper rear support members are connected to top corner brackets at one end and to the lower rear support members at the other end. The opposite ends of the lower rear support members are connected to rear corner brackets. During collapse, the upper and lower rear support members pivot at the joint connecting them, allowing the uprights to fold under at least the lower rear support members. As a result, most of each lower rear support member folds into an area defined to be the front of the uprights. BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 shows a collapsible soccer goal according to the invention in an upright (non- collapsed position), without a net attached.

[0005] FIG. 2 is a side view of a soccer goal as shown in FIG. 1. [0006] FIG. 3 shows the collapsible soccer goal of FIG. 1 during the initial stage of vertically collapsing the goal. Rear support members begin to move towards the back of the goal.

[0007] FIG. 4 is a side view of the collapsible soccer goal as shown in FIG. 3. [0008] FIG. 5 shows the collapsible soccer goal of FIG. 1 as it is vertically collapsed further from the position shown in FIG. 3., i.e., as the structure collapses, the rear support members are behind a plane formed by the uprights of the goal. [0009] FIG. 6 is a side view of the collapsible soccer goal shown in FIG. 5. [0010] FIG. 7 shows the collapsible soccer goal of FIG. 1 vertically collapsed further from the position shown in FIG. 5, i.e., as the structure collapses to the point where the rear support member of the goal is even with a plane formed by the uprights of the goal. [0011] FIG. 8 is a side view of the collapsible soccer goal as shown in FIG. 7. [0012] FIG. 9 illustrates a plane aligned with the upright of the goal. This plane moves with the upright as the goal is folded.

[0013] FIG. 9a illustrates a flat reference plane aligned with the uprights as the goal is being folded as in FIG 5.

[0014] FIG. 10 illustrates the collapsible soccer goal of FIG. 1 vertically collapsed still further from the position shown in FIG. 8., i.e., as the structure collapses to the point where the upper rear support member crosses over and in front of a plane aligned with the upright of the goal.

[0015] FIG. 11 is a side view of the collapsible soccer goal as shown in FIG. 10. [0016] FIG. 12 illustrates the collapsible soccer goal of FIG. 1 vertically collapsed to the point that the stabilizing arms are about to engage corresponding square receptacles, in which rear support members begin to move towards the front of the goal. [0017] FIG. 13 is a side view of a collapsible soccer goal as shown in Figure 12. [0018] FIG. 14 is a detailed view of the engagement of stabilizer arms into the square receptacles in the soccer goal of FIG. 1 as the goal is collapsed. [0019] FIG. 15 illustrates the soccer goal of FIG. 1 vertically collapsed so that the stabilizer arms engage the corresponding square receptacles.

[0020] FIG. 16 illustrates the soccer goal of FIG. 1 folded such that the goal's rear support members fold into a location on top of the goal's uprights.

[0021] FIG. 17 shows the collapsible soccer goal of FIG. 1 in the vertically collapsed position.

[0022] FIG. 18 is a side view of the collapsible soccer goal as shown in FIG. 17.

[0023] FIG. 19 is an view from the rear of the collapsible soccer goal of FIG. 1 in the vertically collapsed position.

[0024] FIG. 20 is an view from the front that shows the collapsible soccer goal vertically collapsed as shown in FIG. 20 in the initial stage of lateral collapse.

[0025] FIG. 21 is a further view of the goal according to the invention in the initial stages of lateral collapse.

[0026] FIG. 22 is a view of the top bracket assembly showing the connection of the upper crossbar, upper rear support member and upright of the goal according to the invention.

[0027] FIG. 23 shows the arrangement illustrated in Figure 22 but with the top corner bracket not shown for purposes of illustration.

[0028] FIG. 24 is a more detailed view of the elements shown connected in Figure 22 and

23 with the exterior of the top corner bracket not shown for purposes of illustrating the elements and connection.

[0029] FIG. 25 illustrates the arrangement of a notch in the upright of a goal according to the invention

[0030] FIG. 26 illustrates the detailed arrangement shown in Figure 24 with the top bracket shown in place.

[0031] FIG. 27 illustrates the rear bracket assembly in the goal according to the invention.

[0032] FIG. 28 is a side view of a rear bracket assembly on a goal according to the invention.

[0033] FIG. 29 illustrates a further stage of lateral collapse of a goal according to the invention.

[0034] FIG. 30 illustrates the stage of lateral collapse of Figure 29 as seen from a different direction [0035] FIG. 31 illustrates the goal according to the invention in a still further stage of lateral collapse.

[0036] FIG. 32 illustrates the stage of lateral collapse shown in Figure 31 as seen from another perspective.

[0037] FIG. 33 illustrates the goal according to the invention as fully collapsed.

[0038] FIG. 34 illustrates the goal according to the invention as fully collapsed as seen from a different perspective from that shown in Figure 33.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0039] Fig. 1 illustrates a collapsible structure, in particular, a collapsible soccer goal, according to the invention. Fig. 1 shows the collapsible soccer goal according to invention in an upright or open position, as it would be used in a soccer game. For purposes of illustration, Fig. 1 shows the soccer goal without a net.

[0040] The collapsible soccer goal 100 shown in Fig. 1 has ground members 102. Upper rear support member 104 and lower rear support member 106 are joined by single pivot joint 108. Lower rear support member 106 and ground member 102 are connected to ground bracket 110 by pivot point 210.

[0041] Ground bracket 110 is also connected to lower crossbar 112 at pivot point 204. As shown in Fig. 1, lower crossbar 112 preferably has flat sections 114 which contact the ground and elevated sections 118 with transitional sections 116 there between. Elevated sections 118 are joined by folding joint 120. By way of illustration and not limitation, joint 120 may be a double pivot or kickout member joint of the type disclosed at least in Figure 18 of U.S. Patent 6,220,776 by Reeves (Reeves' 776), which is incorporated herein by reference. [0042] By way of illustration and not limitation, ground member 102, corner member 122 and socket portion of joint 124 may be of the type disclosed at least in Figures 7 and 8 of U.S. Patent 5.681,231 by Reeves, (Reeves '231) which is incorporated herein by reference. Ground member 102 is an elbow having a gaped arm and an ungapped arm. The portion of member 102 that touches the ground is the ungapped arm and it connects to ground bracket 110. The gapped arm is the socket portion of joint 124. The elbow is the 90 degree corner bend of member 122. [0043] By way of illustration and not limitation, joint 124 may also be of the type disclosed at least in Figure 10 of U.S. Patent 7,377,714 by Reeves (Reeves '714), which is incorporated herein by reference. At the forward or front bottom portion of the soccer goal, each ground member 102 connects to transitional corner member 122. Transitional corner member 122 is shown in Figure 1 having a curved shape, although other suitable shapes may be used as well. Transitional corner member 122 connects to one end of joint 124. . Also connected to joint 124 is one end of upright member 126, which corresponds to the "moveable member" as disclosed in Reeves '714. The other end of upright member 126 connects to top corner bracket 128.

[0044] Stabilizer arm 130 protrudes from upright 126 such that as the goal is collapsed, stabilizer arm 130 is inserted into square receptacle 132 to keep the upper crossbar from interfering with the lower crossbar during the horizontal folding process as discussed further herein. Stabilizer arm 130 can be separately attached as an element to upright 126 or can be formed integrally with upright 126. Receptacle 132 and the corresponding mating stabilizer are 130 are not limited to the mating square shapes shown and may be any other suitable supporting geometric configuration, such as triangular and round shapes. [0045] Upper rear support member 104 connects through other elements to the top corner bracket 128, as discussed further herein. Top crossbar 134 also connects to top corner bracket 128 , as discussed further herein. Top crossbar 134 connects to double pivot joint 136, which is a joint having a linkage that allows up to 180 degrees of motion. By way of illustration and not limitation, double pivot joint 136 may be of the type disclosed in at least at Figure 18 of Reeves '776, which is incorporated herein by reference. [0046] The side view in Fig. 2 shows a rear corner bracket assembly 200 including elements associated with ground bracket 110, which are described further herein. These include motion dampening or resistance element 201 , which limits the speed at which the goal collapses, thereby preventing injuries which might occur if the goal collapsed too quickly. Fig. 2 also shows angle support element 202, which helps to keep the rear support members square in relationship to the overall goal , as discussed further herein. [0047] The goal according to the invention collapses both vertically and laterally. In operation, the goal preferably is first collapsed vertically. Figure 3 illustrates the initial stage of the vertically collapsing goal. Mechanisms, such as sliding joint lock sleeves 315 which engage pivot joints 108 and flex link joints 124 in a fixed, non-pivoting position are moved to a disengaged or open position, such that the members of joints 108 and 124 are free to disengage and pivot. As shown in Figure 3, pivot joint 108 has a reduced end pivoting member 151 which pivots about a single point 153, for example by rotating around a bolt (not shown), to engage and disengage from socket 153. A similar pivot joint is illustrated at least as element 2205 in U.S. Patent 6,561,931 (Reeves '931), which is incorporated herein by reference. A user collapsing the goal then applies pressure to upper crossbar 134 from the front of the goal toward the back. Uprights 126 begin to move toward the back of the goal, by means of joints 124, and joints 108 and rear ground brackets 110 and top corner brackets 128 beginning to fold. As a result, the upper crossbar 134 and uprights 126, being permanently joined by the top corner brackets 128, begin to move together toward the back of the goal. The upper rear support members 104 and lower rear support members 106 pivot at joints 108. As the user applies pressure to the upper crossbar 134, both rear support members 104 and 106 being to move backward, i.e., upward and outward from the center of the goal. This motion is in contrast to conventional collapsible goals in which the rear support members begin to fold inward and down into the center of the goal.

[0048] Fig. 4 further illustrates the conditions shown in Fig. 3. Dashed lines and arrows in Figure 4 show the direction of movement of the goal as it is being collapsed from the upright position. The dashed lines in Figure 4 illustrate the position of upright 126, lower rear support member 106 and upper rear support member 104 when the goal is in the upright or open position. Figure 4 further illustrates that as pressure is applied to upper crossbar 134, upright member 126 moves toward ground member 112 , and upper and lower rear support members, 104 and 106 respectively, move upward and outward from their position in the upright goal.

[0049] Figures 5 and 6 illustrate the relative positions of the goal components described above, as the goal is further collapsed.

[0050] Figures 7 and 8 illustrate the collapsing goal at a point just before the upper rear support member 104 crosses over and in front of a plane formed by the uprights 126 and crossbar 134. This position is reached just before the rear support member 104 begins to fold in front of or on top of upright 126, or the same position as just before the upper crossbar 134 and uprights 126 fold under rear support member 104. As the goal is collapsed further from this point, upper and lower rear support members 104 and 106 begin to travel forward toward the open or front of the goal into a region relative to a reference plane aligned with uprights 126.

[0051] For ease of reference, Figure 9 illustrates the location of the region 930 relative to the reference plane 915 when the goal is in the open position. Fig. 9 also shows a second region 950 relative to reference plane 915. As shown in Figure 9 flat reference plane 915 is located through the center of both uprights 126 and through the center of crossbar 134 and is parallel to the scoring plane of the goal in the open position. Plane 915 delimits the two spatial regions 930 and 950. Spatial region 930 is the area in front or on top of the uprights 126. Spatial region 950 is the area behind or below the uprights 126. Thus, plane 915 is a reference plane that allows us to describe the unique folding design of the soccer goal in FIG. 1. Plane 915 moves with uprights 126, as they fold. Figure 9a shows flat reference plane 915 aligned with uprights 126 as the goal is being folded as in FIG 5.

[0052] Figures 10 and 11 illustrate the goal according to the invention as the upper crossbar 134 is pushed closer to the lower crossbar 112, causing uprights 126 to move downward toward ground members 102. As a result of the motion facilitated through joints 124 and 108 acting with top corner brackets 128 and ground brackets 110 with motion dampening or resistance members 201 and angle support members 202, as upper crossbar 134 approaches lower crossbar 112, upper and lower support members 104 and 106 begin to move toward the front of the goal. In FIG. 10 upper rear support member 104 is located in region 930, namely region in front of or on top of uprights 126 This is in contrast to FIG 1. which shows upper rear support member 104 located in region 950, namely region behind or beneath uprights 126.

[0053] Figures 12 and 13 illustrate the position of the various components of a soccer goal according to the invention as the upper crossbar 134 and the uprights 126 descend still further to a point where the stabilizing arms 130 protruding from the uprights 126 are about to engage the square receptacles 132, which are part of or attached to ground members 102. Engagement of the stabilizer arms 130 with square receptacles 132 provides extra support for the upper crossbar 134 through the horizontal folding stages. Upper crossbar 134 will not interfere with the lower crossbar 112. The engagement of stabilizer arms 130 with square receptacles 132, this prevents uprights 126 from rotating or otherwise moving in an undesirable manner when the upper and lower crossbars 134 and 112 are later disengaged for later collapse of the goal. This will allow upper and lower crossbars 134 and 112 to move on two different planes without becoming entangled as the goal is laterally collapsed. [0054] Figure 14 is a detailed view of the stabilizing arms 130 engaged in square receptacles 132. As shown in Figure 14, in each case square receptacle 132 is part of or attached to ground member 102 in a position to receive stabilizer arm 130. By way of illustration and not limitation, in Figure 14 square receptacle 132 are shown at a position proximate to motion dampening or resistance member 201. Optionally , as shown in Figure 14 by way of illustration and not limitation, motion dampening or resistance member 201 may be attached to square receptacle 132, although other attachments for the resistance member 201 and square receptacle 132 are also within the scope of the invention. By way of illustration and not limitation, Figure 14 shows stabilizer arm 130 protruding from upright 126 at a position proximate top corner bracket 128. Stabilizer arm 130 may be an element attached to upright 126 or may be formed as an integral part of upright 126. As Figure 14 also shows, when stabilizer arm 130 is engaged in square receptacle 132 upper crossbar 134 and lower crossbar 112 are separated and cannot become entangled. [0055] Figures 15 and 16 illustrate the position of the goal just after the stabilizer arms engage the square receptacles. At this stage of collapse, upper support member 104 is vertically above upright 126 and ground member 102. Also, at this stage of collapse, upper support member 104 is completely within region 950.

[0056] Figures 17, 18 and 19 illustrate the position of the goal at the end of the first stage of collapse, from 3 different views, i.e., when the goal is completely folded vertically. . At this stage of collapse, upper support member 104 has partially crossed back over plane 915, as shown in FIG 9a , such that a portion of upper support member 104 is in region 950 behind or below upright 126 and a portion of upper support member 104 is in region 930 above or on top of upright 126. At this stage of collapse, most of lower support member 106 is positioned above ground member 102, upper support member 104 and upright 126, as well as upper and lower crossbars 134 and 112.

[0057] After being vertically collapsed, the goal according to the invention is ready to be collapsed laterally. Figure 20 illustrates the beginning stage of lateral collapse. A user unlocks the joints 120 and 136 on the lower and upper crossbars, respectively, by sliding the lock slider sleeves 315 to the open position. The user then begins to move the left and right sections of the goal, as shown in Figure 20, toward each other, by folding joints 120 and 136. Typically, the user would accomplish this movement by applying pressure from behind the goal to disengage the upper and lower crossbar joints 120 and 136, by pushing them toward what had been the front plane or scoring plane of the goal, i.e., the open area of the goal in the upright position.

[0058] Figure 21 is another view of a goal according to the invention as it is collapsed laterally. Figure 21 shows the position of the top corner bracket 128 and the rear, bottom corner joint assembly 200 when the goal is collapsed vertically and in the initial stage of lateral collapse. A more detailed discussion of these brackets follows. [0059] Figure 22 illustrates one configuration of a top corner bracket 128 when the goal according to the invention is in the upright position. Top corner bracket 128 connects upright 126, upper rear support member 104 and upper crossbar 134. Figure 22 illustrates that upper crossbar 134 is connected to top corner bracket 128 at fastening points or bolts 301 and that upright 126 is connected to top bracket 128 with pivoting connection 303, as discussed further herein. Figure 22 also illustrates that upper rear support member 104 connects to transition member 305, which may be a reduced end of upper rear support member 104. One end of flexible link 307 connects to the reduced end of 305 of upper rear support member 104. A second end of flexible link 307 connects to one end of rotating tube 309. A second end of rotating tube 309 connects to rotating link 311, preferably formed of flat metal. Rotating tube 309 and rotating link 311 together form rotating arm 310. Rotating link 311 fits in a slot 318 in the top bracket 128 and operates as discussed further herein. [0060] Figure 23, which is provided for purposes of illustration, shows the arrangement discussed in Figure 22 with the top bracket 128 not shown and rotating tube 309 as if it were translucent.

[0061] Figure 24 provides a more detailed view of the rotating link 311 and its operation, with bracket 128 removed from the drawing and rotating tube 309 and upright 126 shown as translucent for purposes of illustration. As shown in Figure 24, one purpose of rotating link 311 is to provide a stabilizing fit when the goal is in the open position for use. Such a stabilizing fit can be accomplished with a rotating link 311 shaped to protrude into a notch 127 in the top of upright 126 when the goal is open or unfolded. Such a notch 127 is shown in Figure 25. Preferably, as shown in Figure 24, the protrusion portion 313 of the rotating link 311 extends through the notch 127 to a wall 129 of upright 126 opposite the opening in the upright 126 which forms notch 127. Rotating link 311 has a flattened stop section 315 which contacts wall 129 to prevent further rotation of rotating member 311 when the goal is in the upright position. This contact also adds stability to the open goal. This helps to properly position the upright 126 relative to the other elements of the goal in the upright position. As the goal is folded vertically rotating link 311 turns on crossbar 134 and protrusion portion 313 is disengaged from notch 127 in upright 126. This allows upright 126 to pivot on pivot point 303, during the lateral collapsing of the goal.

[0062] Preferably, protrusion portion 313 of rotating link 311 only exists on one side of the rotating link 311. As a result, the rotating link 311 rotates during vertical collapse around crossbar 134 and no protrusion is present in notch 127 during lateral collapse. The absence of a protrusion into the notch 127 during lateral collapse allows upright 126 to pivot relative to upper crossbar 134 and the top corner bracket 128 as the goal is collapsed. However, when the goal is in the open position, protrusion 313 is engaged in notch 127 and an interference fit between the notch 127 and the protrusion portion 313 prevents lateral movement of upright 126. In other words, when the goal is in the open position, with protrusion 313 engaged in notch 127, there is an interference fit between upright 126 and rotating link 311 preventing upright 126 from moving on pivot connection 303. This interference fit between protrusion 313 and notch 127 works to stabilize the goal when in use. [0063] Figure 24 further illustrates portion 317 extending from rotating link 311 into rotating tube 309 to connect the rotating tube to the rotating link.

[0064] Figure 26 is a more detailed illustration of the mechanism shown in Figures 22-25 with the top corner bracket 128 and rotating tube 309 and upright 126 shown in place transparently with the goal in the open position. Note that the bracket 128 has a slot 129 aligned with the notch 127 in upright 126 in order to accommodate rotation of section 313 of rotating link 311. Top bracket 128, which has a generally right angle shape, connects through rotating pivot 303 to upright 126 at one end of the bracket and to top crossbar 134, at fastening points 301 at the other end of the bracket.

[0065] Figure 27 illustrates one possible configuration of the rear bottom corner brackets assembly 200 in a goal according to the invention. Ground bracket 110 provides a means for connecting lower rear support member 106 to ground member 102 by means of fastening points or bolts 207 and pivot point 210. As previously discussed, square receptacle 132 is connected to the ground member 102. Angle bracket element 202 of rear bottom corner bracket 110 provides support to lower rear support member 106 on the inside of lower rear support member 106, i.e., the center of the goal. When the goal is in the upright position, angle member 202 supports the lower rear support member 106, thereby helping to keep the rear support members square under the weight of the net. Rear ground corner bracket 110 also connects section 114 of lower crossbar 112 by a bolt and pivot connection 204 to facilitate lateral collapse of the goal. As previously discussed, motion dampening or resistance member 201 provides a safety by preventing the goal from collapsing too fast. Preferably, resistive element 201 is unidirectional in the compression mode, so that the goal raises easily but provides a controlled collapse, for example by requiring the user to apply pressure to the goal to overcome the resistance of resistive element 201 when vertically collapsing the goal.

[0066] Figure 28 is a side view of the rear ground corner bracket assembly 200 with additional elements shown. As shown in Figure 2, resistive element 201 is connected between the ground member 102 and lower rear support member 106 to provide a controlled collapse. By way of illustration and not limitation, in Figure 28, the connection of resistive element 201 is made by pivotal connection 206 to the lower rear support member 106 and pivotal connection 208 to the square receptacle 132, which is connected to the ground member 102. Figure 28 also shows pivot point 210 which one end of lower rear support member 106 rotates on.

[0067] Figure 29 illustrates the goal according to the invention in a further stage of lateral collapse, as the goal is collapsed from the sides toward the center. Figure 30 illustrates the same stage of collapse, as seen from another angle. During lateral collapse, joints 136 and 120 permit upper and lower crossbars 134 and 112 respectively to approach each other and to move toward the area corresponding to the open portion of the goal in the upright position. Top bracket 128 and pivot 303 permits the upper crossbar 134 to pivot relative to upright 126. In a similar fashion, bolt and pivot 204, which is pivotally connected to ground section 114 of lower crossbar 112 permits the lower crossbar 112 to pivot relative to the ground member 102. Simultaneously, flex link 307 flexes and twists to allow upper rear support member 104 to remain stationary as top corner bracket 128 pivots on pivot point 303. [0068] Figures 31 and 32 illustrate the goal in a still further stage of lateral collapse. Figures 33 and 34 illustrate the goal according to the invention in the fully collapsed position.