Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SOLAR POWER PLANT DESIGN WITH UNDERGROUND LIGHT ROOM
Document Type and Number:
WIPO Patent Application WO/2019/132788
Kind Code:
A1
Abstract:
A new solar power plant design that utilizes a "Light Room" built underground, commercially available mirrors used in CSP and CPV power plants, and also commercially available PV modules. The usage of a Light Room built underground significantly increases sunlight to electricity conversion efficiency by a higher percentage of sunlight directed towards the PV modules, which are kept cool and clean via fans. Construction, operations and maintenance become easier, faster and cheaper. Overall land usage requirement, investment cost per unit installed power and LCOE are significantly reduced. The design allows installation in rural and urban areas, making it possible for applications not feasible with the current state of the art.

Inventors:
ÜNAL CAN BARAN (TR)
Application Number:
PCT/TR2017/050695
Publication Date:
July 04, 2019
Filing Date:
December 26, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UENAL CAN BARAN (TR)
International Classes:
H02S10/00; H01L31/00; H02S20/32; H02S40/22; H02S99/00
Foreign References:
KR20110046070A2011-05-04
JP2009270919A2009-11-19
EP0641896A21995-03-08
Other References:
WILLIAM SHOCKLEY; HANS J. QUEISSER: "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells", JOURNAL OF APPLIED PHYSICS, vol. 32, 1961, pages 510 - 519, XP055529240, DOI: doi:10.1063/1.1736034
DAN M.J. DOBLE; JOHN W. GRAFF: "Fraunhofer Center For Sustainable Energy Systems", MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Download PDF:
Claims:
Claims

Wha† is claimed is :

1. A solar power plan† design, wherein PV modules for generating electricity are placed underground.

2. The industrial, residential and commercial usage of claim 1 , wherein the design can be implemented in rural areas with grid connection; under residential or commercial buildings with grid connection or off-grid usage; in hospitals, universities, recreational areas like parks or similar establishments.

3. A Light Room, built underground with one wall covered with any number of PV modules; two side walls, floor and the ceiling covered with mirrors and a protrusion†o trap sunlight in, keep outside elements away from the PV modules and their temperature low for increased efficiency in electricity production.

4. The cooling system of claim 3, wherein a positive differential air pressure is created inside the Light Room†o keep dust, dir† and outside elements away from the PV modules, while keeping their surfaces cool.

5. A quick-mount system for PV modules, with fas† and easy installation, as well as easy access for maintenance, servicing or replacement; in front of one wall of the Light Room.

6. A service chamber built behind the Light Room of claim 3, to carry out the acitivities outlined in claim 5.

7. A gate for the passage of sunlight underground, equipped with adjustable rotating flaps for optimal operational and shut down capabilities in the case of serious events like thunder, storm, heavy rain or snow†o protect critical equipment.

AMENDED CLAIMS

received by the International Bureau on 02 April 2019 (02.04.2019)

Claims

Wha† is claimed is :

1. A solar power plan† design, shown in FIG. 1 to 4; wherein sunlight is directed by way of curved arrays of mirrors†o an underground“Light Room” 9, which is specially constructed†o contain one wall fully covered with PV modules 1 1 ; two side walls, the floor, the ceiling and the protrusion 12 covered with mirrors 10, and one side wall covered with fans 18 as par† of a cooling system. The design may use commercially available mirror arrays, PV modules, balance of plan† equipment, fans, cooling and grid connection equipment. The solar power plan† design enables higher efficiency for sunlight†o electricity conversion via utilization of different sets of mirrors 5, 6, 10 for multiple sunlight reflections towards PV modules, keeping dust and dir† away from PV module surfaces 11 by generating a positive air pressure inside the Light Room 9, and keeping PV module temperatures low by utilizing fans 18. A tracking mechanism 13 may be utilized if chosen. The design, if chosen so, also enables easier and cheaper construction by the installation of quick- mount racks for PV modules, lower operation and maintenance costs due†o protection of the PV modules from dust, dir†, heavy rain, lightning, snow, storm, sand strom, etc. The design also frees up valuable land that current state-of-the-art solar plants use†o generate electricity, which may be utilized for farming, infrastructure or buildings, rural or urban areas, or any other public or private use.

2. The industrial, residential and commercial usage of Claim 1 ; wherein the design can be implemented in rural areas with grid connection; under residential or commercial buildings with grid connection or off-grid usage; in hospitals, universities, recreational areas like parks or similar establishments.

3. A Light Room, shown in FIG. 4; built underground with one wall covered with any number of PV modules; two side walls, the floor, the ceiling and the protrusion 12 covered with mirrors, one side wall covered with fans 18 as par† of a cooling system and a gate 8 to let sunlight in. The Light Room 9 design makes it possible†o reflect the sunlight that is no† absorbed by the PV modules multiple times and direct it back†o the PV modules for increased electricity production, as shown in FIG. 2. The adjustable rotating flaps 7 of the gate 8 make it possible†o pause electricity production by closing the gate in the events of heavy rain, lightning, snow, storm, sand storm, etc. A cooling system with fans 18 placed on side wall enables higher sunlight†o electricity production efficiency by keeping the temperature of PV modules low, while keeping dust and dir† away from the PV modules by creating a positive differential pressure. The cooling system also lowers operation and maintenance costs by keeping the PV module surfaces clean and protecting the PV modules from harm in the events of heavy rain, lightning, snow, storm, sand storm, etc.

4. The cooling system of claim 3, wherein a positive differential air pressure is created inside the Light Room of claim 3 to keep dust and dir† away from the PV modules, while keeping their surfaces cool.

5. A quick-mount rack for PV modules, with fas† and easy installation, as well as easy access for maintenance, servicing or replacemen†; in front of one wall of the Light Room of claim 3.

6. A service chamber built behind the Light Room of claim 3, to carry out the acitivities outlined in claim 5.

Description:
SOLAR POWER PLANT DESIGN WITH UNDERGROUND LIGHT ROOM

DESCRIPTION Technical Field

The present disclosure relates to a new solar power plant design that utilizes a “Light Room” built underground, commercially available mirrors used in concentrated solar power (CSP) and concentrated photovoltaic (CPV) solar power plants, and also commercially available photovoltaic (PV) modules. Contrary to conventional PV and CSP power plants, the PV modules are placed underground in a Light Room. Sunlight is directed and trapped inside the Light Room by utilizing various arrays of mirrors. This design facilitates higher electricity generation by redirecting sunlight reflected off the PV modules back on†o them, keeping the surface of the PV modules clean and also their temperatures below the operational values of conventional solar power plan† designs †o increase electricity production per uni† area. Maintenance and operational costs are decreased by keeping dust, dir† and outside factors away from the PV modules, thus lowering or eliminating the need for periodic cleaning. The design facilitates easy servicing of and access†o PV modules and cabling, from a service chamber constructed behind the wall of PV modules. Construction is easier, cheaper and permits faster installation, possibly by utilizing pre-assembled frames or cassettes carrying the PV modules†o be put into place. Environmental footprint is decreased by moving PV frames and modules underground, only†o leave above ground three sets of mirror arrays and a gate with adjustable rotating flaps for the passage of sunlight. A big portion of the land usage associated with conventional solar power plant designs is saved by utilizing a Light Room built underground, making way for farming or other conventional purposes.

Background Art

This section provides background information related †o the present disclosure.

Mirrors are generally used in CSP and CPV solar power plants in many different configurations. All different solar facility designs incorporate above ground construction elements. Electric power is generated either directly by concentrating sunlight over PV modules, or over tubes carrying molten sal† or other high heat capacity fluids, which in turn transfer their heat†o boil water, which then turns a steam turbine - generator set †o produce electricity.

Shockley-Queisser limit or detailed balance limit refers†o the calculation of the maximum theoretical efficiency of a solar cell made from a single P-N junction. I† was firs† calculated by William Shockley and Hans Queisser.

Ref. : William Shockley and Hans J. Queisser: "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells", Journal of Applied Physics, Volume 32, pp. 510-51 9 ( 1 961 )

Main hurdles in front of solar plants†o operate near the theoretical Shockley- Queisser limit can be gathered under these main topics:

Effect of Light Reflection : Sunlight reflected from the PV modules reduce the percentage of absorbed sunlight and thus the power generated.

Maximum photovoltaic module efficiency requires that incident sunlight is no† reflected en route†o the absorber layer, and that light that does enter this layer is no† subsequently reflected back out, or transmitted through the cell. A variety of anti-reflection technologies have been deployed in PV modules and the topic remains the subject of active research. Anti-reflection technologies can be broadly split into two categories: 1 ) Anti-reflective coatings (ARCs) reduce reflection at interfaces above the light absorbing layer of cells; and 2) Texturized surfaces serve the dual purpose of increasing light transmittance and also trapping light within the absorber layer. Often the most effective strategies employ a combination of these techniques.

Ref. : Dan M.J. Doble, John W. Graff, Fraunhofer Center For Sustainable Energy Systems, Massachusetts Institute of Technology, Cambridge MA USA, http://www.renewableenergyworld.com/articles/2009/03/minimiz ation-of- reflected-light-in-photovoltaic-modules.html

Effect of Temperature : PV module temperature and yield are inversely related, therefore overall efficiency is lowered as the PV modules are exposed to more sunlight and heat up. The blackbody radiation from a solar cell at room temperature (300 °K) cannot be captured by the cell, and represents about 7% of the available incoming energy. Energy lost in a cell is generally turned into heat, so any inefficiency in the cell increases the cell temperature when it is placed in sunlight. As the temperature of the cells increases, the blackbody radiation also increases, until equilibrium is reached. In practice this equilibrium is normally reached at temperatures as high as 360 °K, and cells normally operate at lower efficiencies than their room temperature rating.

An unwanted side-effect of the encapsulation of solar cells into a PV module is that the encapsulation alters the heat flow into and out of the PV module, thereby increasing the operating temperature of the PV module. These increases in temperature have a major impact on the PV module efficiency by reducing its voltage, thereby lowering the output power. In addition, increases in temperature are implicated in several failure or degradation modes of PV modules, as elevated temperatures increase stresses associated with thermal expansion and also increase degradation rates by a factor of about two for each 10°C increase in temperature.

Ref.:

http://ph.qmul.ac.uk/sites/default/files/u75/Solar%20cell s environmental 0impact.pdf

Effect of outside elements like dust, dirt, rain, wind, snow, storm, etc.: Effects of climatic parameters on the performance of PV panels were examined through detailed analysis of the performance of two existing PV installations in relation to their weather exposure. Results for the indoor experiments showed that even a small amount of fine particles could reduce light transmittance by as much as 1 1 %. Distribution analysis of dust collected from the exposed glass units revealed particle sizes were smaller than 400 microns with the highest frequency under 20 microns but the impact on solar transmission through the glass was mere 5% after exposure of four weeks due to the frequent rainy days. Amongst a wide range of climatic parameters used in the statistical analysis, high humidity, rain and snow were found to have significant effects to the efficiencies of the two PV installations, which in some cases could annihilate any system output. This study has also revealed the geographical issue of birds in this coastal city as their droppings can create overheated spots on the PV panel and reduce its output.

Ref. : The effect of weather conditions on the efficiency of PV panels in southeast of UK https://www.researchqate.net/publication/261218699 The effect of weat her conditions on the efficiency of PV panels in southeast of UK Effect of land usage : A fourth factor that is no† directly related†o solar power efficiency but has negative effects in general is the large amount of land usage necessary for solar power plants.

The amount of land usage necessary for conventional PV and CSP solar power plants sometimes produce the adverse effect of giving up the opportunity of farming in exchange for electricity production. One study published in 2015 and carried out by Rebecca R. Hernandez of Carnegie Mellon University (now a† UC-Berkley and Lawrence Berkeley National Lab), Madison K. Hoffacker (now a† UC-Riverside's Center for Conservation Biology), and colleagues, published in the Proceedings of the National Academy of Sciences, assessed the siting impacts of 161 existing, under construction, and planned utility-scale solar energy facilities in California.

The study found that 30% of all such solar power plan† installations lay in croplands or pasture, adversely affecting farming practices and food production capacity. One possible cure suggested by the study was†o reduce the space between rows of PV modules and arrays of mirrors.

With the new solar power plan† design presented herein, the impact of solar power plan† installation is massively reduced since PV modules and associated equipment for electricity production is moved underground, only †o leave the primary and secondary array of mirrors, the adjustable rotating flaps and the gate above ground.

Ref. : https://carnegiescience.edu/news/solar-energy 's-land-use-impact

Reducing the need for land usage also has the advantage of a lesser impact on wildlife. Disclosure of Invention

This section provides a general summary of the disclosure, and is no† a comprehensive disclosure of its full scope or all of its features.

The present disclosure provides a a different approach†o a solar power plan† design than current CSP and PV designs by combining existing reflection- based solar power technology and commercially available PV modules. Two primary arrays of concave mirrors that are placed in straight lines opposing each other gather and focus sunlight towards the inner reflective side of a secondary array of mirrors which is placed higher above ground and runs parallel†o a gate. The focused sunlight is in turn reflected in angles that direct the rays towards the focal point of the secondary array of mirrors. The sunlight that is thus reflected, is transmitted pas† a gate, an open channel dug on the ground which runs along a line intersecting the projection of the secondary array of mirrors. The gate is equipped with a pair of adjustable rotating flaps which are also covered with mirrors on the inner sides facing each other. The sunlight passes through the gate into a“Light Room” built underground; whereby sunlight is directed towards a“Wall of PV modules” †o produce electricity. Light that is no† absorbed and reflected off the PV modules gets trapped inside the Light Room by means of mirrors mounted on two side walls, floor and the ceiling of the Light Room, the inside surfaces of the adjustable rotating flaps and the two sides of a protrusion which runs parallel†o the wall of PV modules and hangs from the ceiling of the Light Room. This way, light that is reflected off the PV modules is reflected back towards the them for virtually an unlimited number of times, thus significantly enhancing the conversion efficiency of PV modules and generating much more power per uni† of installation. The Light Room is a chamber constructed underground which houses the following: - A gate dug along a line parallel†o the projection of the secondary array of mirrors; equipped with a pair of adjustable rotating flaps whose inner surfaces are covered with mirrors and whose angles can be changed for maximum amount of sunlight directed inside the Light Room

One wall covered fully with commercially available PV modules †o produce electricity

Two side walls, floor and the ceiling covered with mirrors designed†o trap sunlight that is reflected off the PV modules inside the room and send them back†o the PV modules

A protrusion that runs parallel†o the gate and placed on the ceiling, both sides of which are also covered with mirrors

A cooling and pressurizing HVAC system composed of a wall covered with fans†o create a positive differential air pressure inside the Light Room†o keep dust, dirt and other outside elements away; while also keeping the PV modules cool in order†o increase electricity production. This cooling and pressurizing HVAC system may be of a conventional design and use commercially available components. However, if may be designed in any other way no††o cover one full side wall, for the purpose of employing more mirrors †o increase sunlight directed towards the PV modules and thus increasing the electricity production - A service chamber behind the wall of PV modules†o facilitate easy access for maintenance, servicing, periodic checks or replacement of the PV modules, which also houses the cabling running from the PV modules†o a combiner box Electricity produced this way is then transmitted from the combiner box†o a s†ep-up transformer and finally†o the grid in any one way of conventional electricity transmission system designs. Other use cases may include urban or rural, on-grid or off-grid, commercial and residential buildings, recreational areas, hospital, universities and similar establishments.

Brief Description of Drawings

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.

FIG.l illustrates the general setup of the presented solar power plant design. Different paths of sunlight beams can be seen reflecting from various mirror surfaces, seen as solid and dashed black lines, before they reach inside the Light Room. The system utilizes two primary arrays of commercially available concave mirrors placed opposite each other on the ground, a secondary array of concave mirrors placed higher from the primary arrays and facing downward, a pair of adjustable rotating flaps, a gate and a Light Room; one wall of which is fully covered with PV modules, two side walls, floor and the ceiling of which are fully covered with mirrors and one wall of which contains fans to create a positive differential air pressure to keep outside elements like dust and dirt away from PV modules and also cool them.

FIG. 2 illustrates the working principle of the electricity production, whereby sunlight is reflected back and forth inside the Light Room, which effectively traps as much sunlight as possible. Many representations of sunlight initially reaching the primary array of mirrors with different angles can be traced till they either reach the wall covered with PV modules directly; or reach the PV modules after they get reflected from either of the surfaces covered with mirrors, inside and outside surfaces of the adjustable rotating gates or the protrusion, seen as returning lines. The back side of the wall covered with PV modules contain a service chamber for easy access to the PV modules for installation, maintenance and operational purposes; and also cabling that runs from the PV modules to a combiner box. FIG. 3 illustrates a perspective view of FIG. 2, with the addition of the way electricity thus produced is transmitted from the PV modules for end usage for two different examples shown together. The grid connection example is shown†o contain the path from respectively string inverters, a combiner box, a s†ep-up transformer and the grid. The commercial building example is shown with the connection from the combiner box†o the building.

FIG. 4 illustrates a perspective section view of the Light Room from the point of view of the wall facing the PV modules. The front wall is fully covered with PV modules, the let† side wall contains the fans which cool the PV modules, create a positive differential air pressure and help keep the Light Room free of outside elements; while the other two walls and the ceiling are covered with mirrors†o reflect and trap the sunlight inside.

Best Mode for Carrying Out the Invention

Example embodiments will now be described more fully with reference to the accompanying drawings.

FIG. 1 illustrates two sets of primary arrays of mirrors 5, which are of commercially available concave type, placed opposite†o each other on the ground. Primary arrays of mirrors 5 run parallel†o the gate 8 and have curvatures and focal points adjusted such that sunlight is reflected towards the secondary array of mirrors 6, which in turn reflect the sunlight pas† the adjustable rotating flaps 7, the gate 8 and into the Light Room 9. The inside surfaces of the adjustable rotating flaps 7 are also covered with mirrors†o increase the amount of sunlight reflected towards inside the Light Room 9. The primary array of mirrors 5, secondary array of mirrors 6, the adjustable rotating flaps 7, as well as the gate 8 may have amounts, types, focal points and type of mirrors, as well as lengths chosen with respect†o the design criteria and planned power capacity of the solar power plan†. The foundations above the ground and orientations with respect†o each other, of the primary arrays of mirrors 5, secondary arrays of mirrors 6, adjustable rotating flaps 7 and the gate 8 is for illustrative purposes only and can be changed with respect†o the design criteria and optimum power output of the solar power plan†. The side wall of the Light Room 9 which is covered with PV modules 11 , and the floor of the Light Room 9 covered with mirrors 10 can be seen partially. The length of the floor of the Light Room 9 is illustrated†o be running underground towards the other side that contains the fans, with dashed lines. The Light Room 9 is illustrated as a rectangular space built underground, however it can be constructed in another three dimensional shape so as†o optimize the construction process and power output of the solar power plan† design. FIG. 2 illustrates the way sunlight travels respectively from the primary array of mirrors 5, to the secondary array of mirrors 6, passing directly through or reflected from the adjustable rotating flaps 7, pas† the gate 8, into the Light Room 9, reelecting from various surfaces and with various angles from the mirrors 10 covered on the floor, ceiling, two side walls and both sides of the protrusion 12; finally reaching the PV modules 11 placed on the other side wall. Solid lines represent the rays of sunlight directly reaching the PV modules 11 , while returning lines represent rays of sunlight reflected off the PV modules once and returning back towards them after being reflected several times from the mirror covered surfaces. The Light Room 9 facilitates virtually an unlimited amount of reflection, thus effectively trapping the sunlight inside it and feeding the PV modules 11 with much more sunlight than conventional designs. The primary array of mirrors 5, secondary array of mirrors 6 may or may no† be equipped with a tracking mechanism 13, and the adjustable rotating flaps 7 may be positioned by opening or closing radially†o capture the maximum amount of sunlight inside the Light Room 9 during the day. For maintenance, replacement of the PV modules 11 , other operational reasons or in an emergency situation like heavy rain, snow, storm, earthquake, flood, etc., the adjustable rotating flaps 7 may be closed†o shut down the plan† and protect sensitive equipment. The mirrors 10 may be flat or of any other geometry; and placed in line or with any other orientation designed for maximum electricity production. FIG. 2 shows an example design whereby only the corner side of the floor is covered with flat mirrors placed in an inclined way. A service chamber 14 houses the cabling 16 running from behind the PV modules 11 , passing through string inverters 15, towards a combiner box 17; all equipment also of the commercially available type and installed in one of the conventional layout designs. The layout of the electricity transmission equipment is shown †o contain commercially available string inverters 15 between the PV modules 11 and the combiner box 17, however this configuration is intended for representational purposes only and no† intended†o limit the scope of the design; any one type of solar power plan† designs conventionally used may be chosen for the installation. The service chamber 14 may be designed as a plain space with a staircase, a chamber with appropriate gangways for cabling or as a control room with online energy production monitoring with space for working personnel. The primary function of the service chamber 14 is†o provide easy access†o the PV modules 1 1 for installation, maintenance or replacemen†.

FIG.3 is a perspective view of the solar power plan† design thus far explained, illustrating the final par† of the path that the electricity produced is transmitted. Two examples of industrial and commercial applicability is shown on the same drawing for ease of understanding; one is a rural application with a grid connection, wherein produced electricity gets transmitted respectively from the PV modules 11 , to the combiner box 17, a s†ep-up transformer 19 and the grid connection 20. The other example is a commercial or residential building 21 with off-grid usage employing different pieces of solar power equipment, no† shown in detail. Both of the example applications are for illustrative purposes only and do no† intend†o limit the scope of the design or equipments†o be used.

FIG. 4 illustrates a cut away view of the Light Room 9, showing the side wall that is covered with PV modules 11. The type, amount, number or rows and amount per row of PV modules 11 can be chosen in any way with respect †o the design criteria and power output requirements of the solar power plan†. The ceiling, floor and right side wall of the Light Room 9 can be seen covered with mirrors 10, the type and orientation of which can also be chosen with respect†o design criteria. Fans 18 can be seen installed on the let† side wall, which perform the tasks of creating a positive differential air pressure inside the Light Room 9 to keep dust, dir† and other outside elements that negatively effect the power output of the plan† or pose operational risks; and also cooling the PV modules 11 to increase their electricity production efficiency. The intake port of the fans can be placed in any convenient location. Suitable filtering equipment, possibly of HEPA type, shall be used no††o degrade the conversion efficiency of the PV modules 11. This design layout is for illustrative purposes only and does no† intend†o limit the scope of creating the pressurizing and cooling functions of the system. The usage of fans on one side wall of the Light Room 9 produces the outcome of decreasing the amount of sunlight reflection towards the PV modules 11 , and thus electricity production. Therefore, another design using less wall space in the Light Room 9, or an HVAC system placed completely outside the Light Room 9, possibly behind the wall covered with PV modules 11 , to achieve a positive differential air pressure and enough cooling effect on the PV modules can also be employed.

Industrial Applicability

The presented disclosure is a new solar power plant design utilizing a different configuration of existing technology.

The solar power plan† design makes use of an underground Light Room†o install PV modules for electricity production. This design, as presented in the Background Art section solves many different problems currently faced in the solar industry.

Firstly, the use of an underground Light Room significantly increases the amount of sunlight converted†o electricity by the PV modules, by utilizing mirrors.

Secondly, the cooling system in the Light Room increases the electricity production further by cooling the PV modules†o a desired temperature.

Thirdly, the isolating property of the Light Room due†o a positive differential air pressure keeps dust, dir† and outside particles away from the PV modules, thereby increasing the electricity production further.

Fourthly, the design of the Light Room facilitates cheaper and faster construction and installation, easier servicing, keeping critical equipment out of danger in serious natural events, as well as less operation and maintenance costs during the lifetime of the solar power plan†.

Fifthly, the installation of PV modules, cooling system and the service chamber underground saves valuable land which can be used for farming or other conventional purposes.

Sixthly, land that is thus saved lets this design be applicable for both rural, grid-connected types, and also commercial or residential grid-connected or off-grid types of investments. All of these factors together significantly reduce the levelized cost of energy (LCOE) for the presented design, amount of investment for unit installed power, as well as the need for large scale land usage. The presented design therefore opens up new possibilities for investments that are not feasible with the current state of the art.

The presented solar power plant design can be applied for rural areas, commercial and residential buildings, hospitals, universities, parks, recreational areas or similar establishments.