Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SOLAR THERMODYNAMIC POWER STATION
Document Type and Number:
WIPO Patent Application WO/2009/018632
Kind Code:
A2
Abstract:
The solar thermodynamic power station is a highly effective structure, containing several energy-carrying components, like wind and solar heat, of a different character but practically inexhaustible and fully renewable, turning them into electricity without any adverse effects on the environment. The solar thermodynamic power station contains generator, coaxially connected to turbine, moved by the air flow, heated on a number of fire-proof bodies and by the heat of the sun, the fire- proof bodies being black and mounted on a base are covered by a transparent lid. The incoming air device is disposed lower than the outgoing air device. Specific for the system is the fact that the fire-proof bodies represent two profile plates set one above the other and, which, along with a transparent lid and the base, form a separate module, mounted on a slope, whereas the turbine is disposed at the outlet of module.

Inventors:
TODOROV TODOR (BG)
Application Number:
PCT/BG2008/000008
Publication Date:
February 12, 2009
Filing Date:
June 24, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TODOROV TODOR (BG)
International Classes:
F03G6/04
Foreign References:
FR1590838A1970-04-20
US5115612A1992-05-26
FR2406168A11979-05-11
DE102006009908A12007-09-06
US4433544A1984-02-28
EP0003185A21979-07-25
US4481774A1984-11-13
CN1587690A2005-03-02
CN1168447A1997-12-24
BG60419B11995-03-31
Attorney, Agent or Firm:
KESOVA, Lusia (4003 Plovdiv, BG)
Download PDF:
Claims:

PATENT CLAIMS

1. The solar thermodynamic power station contains generator 15, coaxially connected to turbine 16, moved by the air flow, heated on a number of fire-proof bodies 2 and 3 by the heat of the sun, the fire-proof bodies being black and mounted on a base 4 are covered by a transparent lid 1 , the incoming air device is disposed lower than the outgoing air device, whereas specific for the system is the fact that the fire-proof bodies represent two profile plates set one above the other 2 and 3, which, along with a transparent lid 1 and the base 4, form a separate module 9, mounted on a slope, whereas the turbine is disposed at the outlet of module 9, and the inlet of the module 9 represents an incoming air device 6, and at the outlet of the turbine 16, the outgoing device 20 is a rotating one.

2. The solar thermodynamic power station, according to Claim 1 , is specific in the fact that the profile plates 2 are made of copper, and the additional profile plates 3 - of cast iron, while the base 4 has the form of a rectangular insulating plate and the transparent lid 1 is a semi-cylindrical empty glass body.

3. The solar thermodynamic power station, according to Claims 1 and 2, is specific in the fact that the aerodynamic incoming device 6 consists of a large 8 and a small 7 stabilising profile, having an aerodynamic form, made of profile blocks of fire-proof material and painted black, mounted on a heat insulating base 4, support steel profiles 10 are mounted between them, bearing the cover structure 13, which also has an aerodynamic profile and is painted black and covered by a glass lid 12 with a superstructure 11.

4. The solar thermodynamic power station, according to Claims 1 , 2 and 3, is specific in the fact that the rotating outgoing air device 20 consists of a lower movable part 21 , containing a bearing body 19 and an upper part 22 with vertical walls, forming the stabilising plates 23, used to orientate the outgoing air device to the direction of the wind.

5. The solar thermodynamic power station, according to Claims 1 , 2, 3 and 4, is specific in the fact that there may be more than one modules 9, mounted in a series, forming a tunnel on a slope with a grade of 20-60 degrees, facing southeast-southwest.

Description:

SOLAR THERMODYNAMIC POWER STATION

Technical field

The Solar Thermodynamic Power Station is designed to generate electric power on industrial scale and is a kind of renewable power sources which is environmentally friendly.

Prior art

US Patent No. 4433544 is about a wind and solar powered turbine, based on a generator kept in motion by solar heat via turbines, an axial and a radial ones, mounted coaxially. In it a first plurality of radially extending air passages direct the ambient wind to a radial flow wind turbine, disposed in a centrally located opening in a substantially disc-shaped structure. The air flow is heated on a number of fire-proof black bodies mounted on a base. The whole structure is covered by a transparent lid and the incoming opening for the air flow is situated lower in comparison to the outgoing opening.

The second plurality of air passages direct the ambient wind as a result of a temperature misbalance, created by the black bodies at the base of the turbine, which is also propelled by the air flow from the radial turbine. The rotating shaft of the turbines drives the generator. The wind-and-solar driven power generating system operates in electrical cogeneration mode with a fuel powered prime mover.

The system is particularly adapted to satisfy the power requirements of a relatively small community, located in a geographic area with favourable climatic conditions for wind and solar driven power generation.

This type of solar-and-wind driven power generating system has limited application as it can be mounted only on flat surface and the natural power of the two air flows in this case is small, leading to a lower efficiency.

Technical innovation

The task of the invention is to create a solar thermodynamic power station on the principle of the the thermodynamic effect of the heated air going up, which is to be more efficien but still is an example of renewable energy sources with no adverse effect on environment.

The solar thermodynamic power station consists of a power generator with a turbine, coaxially mounted to it, which is propelled by the air flow, heated on a plurality of fire-proof black bodies by the heat of the sun; the black bodies are mounted on a base and covered by a transparent lid.

The fire-proof bodies represent base profile plates, disposed one above the other, and additional profile plates, which, along with the transparent lid and the base, form a separate module. There may be more than one module, which are to be mounted in series, forming a tunnel and should be on a slope with a certain grade. In such a case the incoming opening for

the air flow is situated lower in comparison to the outgoing opening. The turbine is disposed at the outgoing opening of the module and the generator is mounted coaxially.

The incoming opening of the module has the form of an. aerodynamic entrance device, while the outgoing opening of the turbine has the form of a propelling outgoing device. The turbine is enclosed into a thermo-insulating blanket, while the generator, using disk brakes, is disposed below it and out of the blanket.

The base profile plates may be made of copper and the additional profile plates - of cast iron. The base is in the form of a rectangular insulation plate and the transparent lid is a semi- cylinder empty glass body.

The aerodynamic incoming device consists of a large and a small stabilising profiles, made of profile blocks of fire-proof material, painted in black and mounted on the thermo- insulating base; the support steel profiles are mounted between them. The steel profiles support the cover structure with an aerodynamic profile, its upper part painted in black; there is a glass lid on top with a superstructure to reduce its load. The small and large support profiles have also an aerodynamic form.

The outgoing propelling device consists of a lower movable part, containing a bearing body and an upper part with vertical walls, forming the stabilising plates, used to direct the wind flow according to its blast.

There are maintenance shop rooms to facilitate the maintenance of the generator and the turbine.

The solar thermodynamic power station is a highly effective structure, containing several energy-carrying components, like wind and solar heat, of a different character but practically inexhaustible and fully renewable, turning them into electricity without any adverse effects on the environment.

Moreover, the solar thermodynamic power station is a highly effective structure, with a low production cost per kW/h of electric power and with a low investment cost, compared to other electricity generating sources, which make it very competitive.

Description of the drawings

The description of the invention is supported by drawings, as follows:

Fig. 1 - General view of the solar thermodynamic power station with a partial section view.

Fig. 2 - Longitudal section of the outgoing device along B-B.

Fig. 3 - Vertical section of the outgoing device along C-C.

Fig. 4 - Vertical section A-A of the module.

Fig. 5 - A view from above of the module.

Fig. 6 - A front view of the incoming device with a partial section view.

Fig. 7 - A view from above of the incoming device with a partial section view.

Possible construction of the invention

The solar thermodynamic power station consists of a power generator 15, with a turbine 16, coaxially mounted to it, which is propelled by the air flow, heated on a plurality of fire-proof black bodies by the heat of the sun; the black bodies are mounted on a base and covered by a transparent lid.

The fire-proof bodies represent base profile plates 2, disposed one above the other, having loops 5, and additional profile plates 3, having loops 5, which, along with the transparent lid and the base, form the separate module 9. The top surfaces of the base profile plates 2 and the additional profile plates 3 are covered in black. There may be more than one module 9, which are to be mounted in series, forming a tunnel and should be on a slope with a certain grade, using the loops in the four ends of the transparent lid 1 , which is actually a glass semi- cylinder. In such a case the incoming opening for the air flow is situated lower in comparison to the outgoing opening.

The turbine 16 is disposed at the outgoing opening of the module 9 and the generator 15 is mounted coaxially.

At the entrance of module 9 there is an aerodynamic incoming device 6, and an outgoing propelling device 20 is mounted at the outlet of the turbine. The turbine 16 is enclosed into a thermo-insulating blanket 17, while the generator 15, using disk brakes 14, is disposed below it and out of the blanket 17.

The base profile plates 2 may be made of copper and the additional profile plates 3 - of cast iron. The base is in the form of a rectangular insulating plate 4 and the transparent lid 1 is a semi-cylinder empty glass body.

The aerodynamic incoming device 6 consists of a large 8 and a small 7 stabilising profile with aerodynamic form. They are made of profile blocks of fire-proof material and black cover, mounted on a thermo-insulating plate 4; the support steel profiles 10 are mounted between them. The cover structure 13 is mounted on the support steel profiles 10; it also has an aerodynamic profile and is black on top. A glass lid 12 is mounted on it, with a superstructure 11, used to reduce the load on the glass lid 12.

The outgoing propelling device 20 consists of a lower movable part 21 , containing a bearing body 19 and an upper part 22 with vertical walls, forming the stabilising plates 23, used to direct the wind flow according to its blast.

There are maintenance shop rooms 24 to facilitate the maintenance of the generator and the turbine.

Application of the invention

The solar thermodynamic power station may be constructed of prefabricated components on prepared sites on slopes, hills and mountains with a slope grade of 20-60

degrees, oriented from southeast to southwest. The greater the difference between the incoming and the outgoing devices, the higher capacity of the system.

After a sloped site is selected and prepared, steps and rail beds shall be mounted, along which a servicing platform with a mini-crane will move. Then the insulation plates 4 shall be mounted on the slope, using foundation bolts. Cast iron profile plates 3 and copper profile plates 2 shall be placed on the insulating plates 4, and on top a glass lid 1 is mounted, using loops 5 and foundation bolts to fasten it to the slope; those are later set in concrete. Thus module 9 is formed, and several modules may be mounted in a series to form glass tunnels.

On the periphery of the profile of the glass semi-cylinder, at its both ends, a metal strap is inlaid reaching the loops 5, similar to those on the profile plate 3. These are used to fasten the whole structure to the ground.

The next element is represented by the cast iron plates 3, two in each semi-cylinder, identical in size and configuration; they are mounted with allowance for the thermal expansion of the metal. The copper profile plate 2 shall be set on them, the lower end needs to be ground for tighter fit to the cast iron profiles 3, whose contact surfaces shall be ground, too. The clearance between the glass semi-cylinder 1 and the cast iron plates 3, resulting from the thermal expansion and contraction of the metal plates 3, shall be taken care of by heat-resistant rubber seals. The sunlit surfaces shall be painted in black by the electrostatic method for better heat absorption. Thus the glass semi-cylinder 1 and the heating profile plates 2 and 3 are ready for usage. As an alternative, the copper profile plates 2 and the cast iron profile plates 3 may be replaced by fire-proof material plates in the same form and also painted black for better heating.

As the small and the large stabilising profiles 7 and 8 have aerodynamic form, this helps the laminar air flow and increases the speed of the incoming flow of air. In rainy weather, the dynamic airflows will bring in some water, too, but it will be specially drained out.

Next is the construction of the maintenance shop rooms 25, of concrete, in two storeys, the first floor containing the generator 15 moved by the hot air turbine 16. Turbine 16 shall be serviced form the second floor, after the disk breaks 14 stop it. It is centred by a double axial bearing 19. The outgoing device 20 is mounted on top of the blanket 17 of the turbine 16. it is made of aluminium through casting, containing a lower part 21 , en extension of the blanket fixed to the upper axial bearing 19. The upper part 22 of the outgoing device is formed in a way so that the vertical walls my form the stabilising plates 23, which orientate it according to the direction of the wind blast.

After the air flow passes through the incoming device 6 it is heated by the small and the large stabilising profiles 7 and 8, the temperature of them both and of the incoming air rises, the air moving up the profiles 7 and 8 and into the incoming device 6. The reinforcing steel profiles 10 are also heated, and they themselves add heat the air flow and stabilise it. The air thus heated flows over the lower end of the metal cover structure 13 with an inverted aerodynamic

profile, painted in black on the outside and covered by the glass lid 12 to save the temperature. This system of profiles and the covering structure 13 comprise the incoming aerodynamic device 6, which heats up the air and gives it a high initial speed even before it enters the glass semi-cylinders 1. Then the air moves to the central part of the incoming device 6, where its is sucked in by the first module of the glass semi-cylinder 1 and goes up along the glass tunnel, continuously heated and speeded up till it enters the turbine 16. Each module is made of glass semi-cylinders 1 with a specific length, the first and last ones might differ in length for construction purposes. The copper profile plate 2 has longitudal channels, which do not hamper or swirl the air flow but heat it optimally. The air flow is heated on the copper 2 and cast iron profile plates 3, themselves heated by the sun, and the heat and the speed of the air rise till it flows into the turbine 16, connected to the generator 15, having disk breaks 14 for emergency stops and prophylactics.

The outgoing device 20 is situated above the turbine 16, letting the hot air in the atmosphere but not letting the speed of the turbine fall down, which otherwise will result in lower efficiency.

The outgoing device 20 may rotate along with the wind, following the direction of its blast all the time. In this way the wind, flowing around the outgoing device 20, sucks out the hot air from the turbine, facilitating its operation and raising the efficiency of the system.

When the sun sets, the power station shall continue its performance, due to the heated profile plates 2 and 3 in the glass tunnels, till they cool down completely. During the night the system will use the natural atmospheric circulations and in case of its absence, it will operate due to the temperature differences at the incoming device 6 and at the outgoing device 20, i.e. completely cool.