Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SOLID-SOURCE DIFFUSED JUNCTION FOR FIN-BASED ELECTRONICS
Document Type and Number:
WIPO Patent Application WO/2016/010515
Kind Code:
A1
Abstract:
A solid source-diffused junction is described for fin-based electronics. In one example, a fin is formed on a substrate. A glass of a first dopant type is deposited over the substrate and over a lower portion of the fin. A glass of a second dopant type is deposited over the substrate and the fin. The glass is annealed to drive the dopants into the fin and the substrate. The glass is removed and a first and a second contact are formed over the fin without contacting the lower portion of the fin.

Inventors:
HAFEZ WALID M (US)
JAN CHIA-HONG (US)
Application Number:
PCT/US2014/046525
Publication Date:
January 21, 2016
Filing Date:
July 14, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INTEL CORP (US)
International Classes:
H01L29/786; H01L21/336
Foreign References:
US7235436B12007-06-26
US20110049613A12011-03-03
US20120168913A12012-07-05
US20130043536A12013-02-21
US20110180871A12011-07-28
Other References:
See also references of EP 3170207A4
Attorney, Agent or Firm:
LINDEEN III, Gordon R. (Sokoloff Taylor & Zafman LLP,1279 Oakmeand Parkwa, Sunnyvale California, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A method comprising:

forming a firs on a substrate;

depositing a glass of a first dopant type over the substrate and over a lower portion of the fin;

depositing a glass of a second dopant type over the substrate and the fin;

annealing the glass to drive the dopants into the fm and the substrate;

removing the glass; and

forming a first and a second contact over the fin without contacting the lower portion of the fm.

2. The method of Claim 5 , further comprising formirsg a control gate over the fm, the control gate being a conductive material over the top and on the sides of the fm to cosurol current flow through the fin between the first and second contacts.

3. The method of Claim I or 2, wherein forming a control gate comprises patterning polysilkon over the firs, removing the polysilkon and backfilling the void from the po!ysihcon with metal,

4. The method of Claim I , 2, or 3, wherein forming a control gate comprises forming a control gate over the fin after removing the glass and before forming the first and second contacts.

5. The method of Claim 1 , wherein the first contact comprises a source, the second contact comprises a drain, the method further comprising forming a gate over the fm between the source and the drain without contacting the lower portion of the fin.

6. The method of Claim 5, further comprising depositing an oxide over the silicon substrate after removing the glass, the oxide having a depth to cover the lower portion of the fm, the oxide isolating the lower portion of the fin before forming the doped source, gate, and drain.

7. The method of any one or more of claims I -6, wherein depositing a glass of a first dopant type comprises:

depositing the glass of the first dopant type over the substrate and the fin; depositing a blocking material over the substrate and a portion of the fin; removing the deposited glass that is not covered in the blocking material; arid removing the blocking material

8. The method of Claim 7, wherein depositing glass of a second dopant type comprises removing the glass of the first dopant type from a portion of the fm and depositing the glass of the second dopant type over the portion of the fin and over the glass of the first dopant type.

9. An apparatus comprising:

a substrate;

a fin above the substrate, the fin having a channel of a first dopant type and at least a portion of a well of a second dopant type; and

a first contact and a second contact of the fin formed without contacting the well of the fin;

10. The apparatus of Ciaim 17, further comprising a control gate between the first and contact formed over and around the fin to control resistance between the first and the contact.

1 1 , The apparatus of Claim 21 , wherein the first and second contacts comprise a m the fin,

12. The apparatus of Claim 17, wherein the control gate extends over and around the channel of the fin on two sides,

13. The apparatus of any one or more of claims 9- 12, wherein the first contact comprises a source and the second contact comprises a dram, the apparatus further comprising a gate of the second dopant type formed of the fin between the source and the drain formed without contacting the well of the fin.

14. The apparatus of Claim 13. wherein the gate is over the fin of epitaxial growth.

15. The apparatus of any one or more of Claims 9- 14, wherein the channel of the first dopant type is a current channel between the source and the drain and wherein a voltage applied to the gate determines whether current flows in the channel.

16. The apparatus of any one or more of Claims 9- 15, further comprising a control gate between the source and the drain, the control gate extending over and around the channel of the fin on two sides arid being configured to restrict current flow through the channel

17. A computing system comprising:

a communication chip;

a power supply; and

a processor having a plurality of transistors, at least one transistor being a junction gate field effect transistor having a substrate, a fin above the substrate, the fin having a channel of a first dopant type and at least a portion of a well of a second dopant type, a source and a drain of the first dopant type of the fin formed without contacting the weil of the fin, and a gate of the second dopant type formed of the fin between the source and the drain formed without contacting the well of the fin.

18. The computing system of Claim 17, wherein the gate is formed in the fin by depositing a doped glass over the fin, annealing the glass, and removing the glass

19. The computing system of Claim 17, wherein the junction gate field effect transistor further includes a control gate between die sonrce and the gate, the control gate being formed over and around the fin to control resistance between the source and the drain.

20. The computing system of Claim 19, wherein the control gate is formed by patterning poiysilicon over the fin, removing the poiysilicon and backfilling the void from the poiysilicon with metal.

Description:
SOLID-SOURCE DIFFUSED JUNCTION FOR FIN-BASED ELECTRONICS HELD

The present disclosure relates to Fin-based electronics and, in particular to junctions using solid source diffusion.

BACKGROUND

Monolithic integrated circuits typically have a large number of transistors, such as metal- oxide semiconductor field-effect transistors (MOSFETs) fabricated over a planar substrate, such as a silicon wafer. Systern-on-a-chip (SoC) architectures use such transistors in both analog and digital circuitry. When high-speed analog circuitry is integrated on a single monolithic structure with digital circuitry, the digital switching can induce substrate, noise that limits the precision and linearity of the analog circuitry.

Junction gate field effect transistors (JFETs) are used primarily in analog applications due to the superior low noise performance they offer compared to standard MOSFET (Metal Oxide Semiconductor FET) devices, JFETs are useful in radio frequency devices such as fillers and equalizers and also in power circuits for power supplies, power conditioners and the like.

JFET transistors are fabricated in the bulk of a planar process technology using implanted junctions to establish a back-gate, channel, and top-gate electrodes. The JFET is made using implanted n and p-type wells to form the top and back gates, as well as the source and drain contacts. This bulk planar process may be replaced for MOSFET devices using fins formed on the substrate. The formation of FET devices on fms has been referred to as a FmFET architecture.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements.

Figures 1 -4 are cross-sectional side view and corresponding front view diagrams of a p- ehannel current flow control gate on a fin architecture according to an embodiment of the invention.

Figure 5 is a cross-sectional side view diagram of an n-ehannei current flow control gate on firs architecture according to an embodiment of the invention. Figure 6 is a cross-sectionai side view diagram of a p-chanrsel current flow control device with multiple gates on fm architecture according to an embodiment of the invention.

Figures 7-22 are cross-sectional side view and corresponding front view diagrams of stages of fabrication for the device of Figure 1 according to an embodiment of the invention.

Figures 23-28 are cross-sectional side view arsd corresponding front view diagrams of alternative stages of fabrication for Figures 13-22 according to an embodiment of the invention.

Figure 29 is a cross-sectional side view diagram of a transistor on a FmFET architecture according to an embodiment of the invention.

Figure 30 is a circuit diagram of the transistor of Figure 29 according to aft esnhodhnent of the invention.

Figures 31 -55 are cross-sectional side view and corresponding front view diagrams of alternative stages of fabrication of the transistor of Figure 29 according to an embodiment of the invention.

Figure 56 is a block diagram of a computing device incorporating an integrated circuit built with a FinFET architecture and including a solid source diffused junction according to an embodiment

DETAILED DESCRIPTION

A high performance JFET may be fabricated on a fin of a FinFET process architecture, Because the electrical characteristics of a JFET rely on its structure as a bulk-transport device, a JFET device built on a fm in the same way as a MOSFET device loses its bulk transport and high current capabilities, A JFET can be built, however, using solid-source diffusion on a fin architecture to obtain a high-performance, scalable device for system-on-chip process technologies.

A similar technique may be used to form a variable resistor. A p-channe! or n-channel may be formed in a fin with a contact on either side, A control gate may be formed over the channel in the fin between the two contacts. Due to the nature of current conduction inside of the fin and the narrow width of the fin, the control gate provides excellent electrostatic control of the carrier density inside the fin, By using this control gate, the carrier density can be increased (through channel accumulation) or decreased (though channel depletion) depending on the bias applied. The same control gate technique may also be used on one or both sides of the gate of a JFET in a fin. The control gates act as a variable resistor bulk into the fm-based JFET architecture. As JFETs are typically longer channel devices lo sustain high voltage operation, these control gates have no added layout area penalty and may improve ihe pinch-off voltage needed to fully shut off the channel.

Figure 1 is a cross-sectional side view diagram of a current flow control gate in FinFET architectures. It shows a portion of a fin on a substrate in a FinFET architecture. The firs 106, 1 OS protrudes from the substrate Ϊ 02 which is covered in an isolation oxide 104. A device 101 is built on the substrate 102 and the fin. An n~wel! 106 is formed on the fin and may extend partially into the substrate and a p-type channel 108 has been formed over the n-weii on the fin. The fin as shown is made up of these two parts, however, the fin may extend beyond the device and beyond the n-wel! and the p-ehannel on either side of the device. A pair of contacts 1 10, 1 12 is formed in the p-channei, one on each side of the channel. A control gate 1 14 is formed between the two contacts over the fin. Current flow from one channel contact i 10 to the other channel contact S 12 through the p-channe! 108 is controlled by the control gate 1 14,

A part of the device 301 of Figure 1 is shown in the cross-sectional front view diagram of Figure 2. This view is taken as a cross-section through the control gate 1 14, throngh the line 2-2 of Figure 1 , As shown, the isolation oxide 102 and the n-well 106 are directly over the substrate 102. The p-channe! 1 OS is formed over the n-weli 106.

The control gate 1 14 is formed over and around the p-channe! surrounding it on three sides. This allows the control gate to electrically pinch carrier flow through the p-channei between the two contacts HO, Π2. The p-channe! is surrounded by a barrier layer 1 18 between the p-ehannel and the control gate to prevent diffusion between the p-ehannel and the gate.

The n-weii extends through the isolation oxide. The n-well also extends above and below the top of the isolation oxide 104. This allows the control gate to extend all the way around the p~channel to more effectively control carrier flow through the p-ehannel. As shown, the control gate extends deeper on the fin than does the p-ehannel , This ensures that the p-channef is more than completely enclosed on three sides. Alternatively, the gate may be made smaller to allow a leakage current through the p-channel even when the maximum voltage has been applied to the control gate,

Figure 3 is a cross-sectiorsal front view diagram of the fin and device 101 of Figure 1 taken through either one of the two contacts 1 10, 1 12 and in this example through line 3-3 of Figure I , As shown, the ft- well is deep through the isolation oxide 104 to the substrate 102. The contact is formed over the p-channel 108 to provide a suitable connection from an externa! source to the p~chanrsel. The contact does not extend over the n-well and is not as deep as the control gate 1 14, Electrodes 120 and 122 are formed on the two contacts 1 10, 1 12 so that a current may be applied to one or the other of the two contacts. The current flow between the two contacts is then controlled by the control gate.

Figure 4 is a cross-sectional front view diagram of an alternative contact 1 10-1 . Figure 4 presents the same view as Figure 3 but For an alternative embodiment. The contact of Figure 4 may be formed by adding an isolation oxide 124 to the contact of Figure 3. The same isolation oxide 104 and n-wel! 106 are formed over a substrate 102 such as a silicon substrate. The p- channel 108 is built over the n-well 106 and the top is covered with a contact 1 10, 126, similar to the contact 1 30 of Figure 3. In the example of Figure 4 an additional fin spacer 124 is applied between the isolation oxide and the contact 126 to prevent diffusion from between the n-well and the p-type contact. In practice, the fin is first formed and then doped to form an rs-well and p- channel. The fin spacer 124 is then built up arotsnd the fin with the doped contact 326 over it.

Figure 5 is a cross-sectional side view diagram of an n-channel variable current How device in FinFET architecture. It shows an alternative variable resistor device 200 in which an n-channel is used instead of a p-channel. In this example no substrate is shown for simplicity, however, the device is formed using a FinFET architecture similar to the device of Figure 1. A fin is built up over the substrate. The fm is doped to form a deep p-well 206. The fin is surrounded by an isolation oxide 204, The upper part of the fin is doped to form art n-channel 208 above the p-weil 206.

A pair of contacts, in this case n-type contacts 210, 222, is formed one contact on either side of the n-channel. Electrodes 220, 224 are attached to the contacts to allow a current to be applied to one of the contacts, Flow through the n-channel 208 is controlled by a control gate 214 which has an electrode 230 to which a variable voltage may be applied. The variable resistor 200 of Figure 2 operates similarly to the variable resistor 101 of Figure I . An increasing voltage applied to the terminal 230 allows more current to flow through the H-charmeS by the control gate 214, In this case, the current is in the form of electrons rather than holes, however, the fundamental operation is the same.

Figure 6 is a cross-sectional side view diagram of a p-channei device with variable current flow controlled by multiple gates in FinFET architecture. P-type contacts 310, 312 as in Figure 2 are combined with an n-type contact 318 to make a double gated p~iype device 300. This device has a fin with a deep n-welf 306, The upper part of the fin is doped as a p-channel 308 and the fin is surrounded by an isolation oxide 304. P-type contacts 310, 312 are formed at either end of ihe p-channel. An n-type contact 318 is formed between the two p-type channels, A first control gate 314 is placed between the left side p-type contact 310 and the center n-type contact 318. A second control gate 316 is placed between the n-type contact 31 S and the right side p-type contact 312. The three contacts 310, 312, 318 each have a terminal 32G, 324, 322 to which a enrrent may be applied. The two control gates 314, 316 also have terminals 326, 328 to which a voltage may he applied, By controlling the voltage in one or both of the control gates, the current flow through the p-channel may be regulated. In addition, the n~type contact 318 may also be used to regulate current flow through the device 300. This three contact device allows for a very precise control of current flow which may be used for any of a variety of different purposes.

As shown in Figures 1 -6, a variety of different devices may be formed using a fin architecture and solid surface annealing. The most simple device has a contact at each end of a current channel The contacts can be coupled to an electrode or another device. This supplies an isolated electrical conduit between two points. The structure can he augmented by one or more control gates as shown in Figures I and 6. The structure can be augmented with transistor gates as shown in Figure 29 or the device may have a combination of different types of gates, A variety of different types of transistor, resistor, and other current control devices cars be formed using the techniques described herein.

Figures 7-28 are cross-sectional side view diagrams and corresponding front view diagrams of stages of fabrication for a variable resistor described, for example, in Figures 1 and 5, In Figures 7 and 8 a substrate 402 such as a silicon substrate has been processed so that it has a fin 404 while only one fin is shown, typically a substrate will have many hundreds of fins or thousands depending upon the intended application.

In Figures 9 and 10 an n doped glass is deposited over the substrate. The n-type glass 406 contains a doped oxide and may be in the form, for example, of a phosphosiiicate. The glass may be applied by chemical vapor deposition or a variety of other processes,

Figures i 1 and 12 show that a spin-on hard mask 408 has been applied over the substrate arid the glass as a thick blanket coat. The mask covers the substrate and a lower part of the fin. The mask layer leaves only the upper part of the fin exposed. The glass on the rest of the structure is covered, A blanket coat of such a blocking material, by protecting some areas and not others, allows additional layers lo be applied selectively.

Irs this case, as shown in Figures 13 and 14 the spin-on hard mask has been used to protect the n-doped glass on the lower part of the fin and the substrate from an etch process. As a result, the n-doped glass applied to the top of the fin has been removed, As shown in Figures 13 and 14, the exposed top of the firs sets the depth of the p-type channel which is to be formed and also sets the back gate depth. Irs Figures 13 and 14 the glass over the upper part of the fin has beers removed the carbon hard mask has beers removed aud a low doped p-type glass has been deposited over the entire structure.

In Figures 15 and S6 the structure of Figures 13 and 14 has been annealed and all of the glass has then been removed. The anneal drives the dopants from the glass into the silicon or other thin material. The glass can then be removed using a standard oxide etching process or any of a variety of other processes. As a result of the glass deposition and annealing, the structure of Figures 15 and 16 has a lower silicon portion 402 with an n-type substrate area 412 and an rt-type lower portion of the fin 414. Note that tipper part of the substrate closest to the fin is also doped due to the n~type glass that was deposited over the substrate. This allows a very deep n-well to be formed imder the p-ehanne! at the top part of the fin. The top of the firs 416 is doped as p-type to later form a p-channel over a deep n-we!l.

In this example, the doped glass forms a solid source of dopants. The dopants are diffused into the fin from the solid source when the structure is annealed. The particular process parameters of this solid source diffusion may be adjusted to suit the particular materials, the desired doping levels, and the overall process flow for fabricating the devices. While doped glass is described other solid source diffusion methods and technologies may be used depending on the particular application and process parameters.

In Figures 17 and I S an isolation oxide 418 is applied, this isolation oxide may be any of a variety of oxides including silicon dioxide. The oxide is then planarked in Figures 19 and 20 and patterned to allow a polysiltcon control gate 420 structure to be applied over the fin. The polysiiieon material may then be removed and backfilled with metal to form a metal control gate.

In Figures 21 and 22, contacts 420, 422 are applied over the firs and a spacer 426 is applied to separate the control gate 420 from the two contacts 422, 424. The spacers may be formed by deposition and may be left in place to control epitaxial growth which may be applied to the structure in a later process. As shown in Figures 19 and 20, the control gate surrounds the fin on three sides, the top and two vertical sides of the fin. Similarly, the contacts 420 » 422 also surround the fin on the top and both sides. As a result the current flow from the contact through the p-chartrsel is maximized and the effect of the control gate on the p~charsnel is also maximized.

Figures 23 to 28 are side eross-seetional and corresponding front view diagrams of a stage of fabrication to show an alternative fabrication process. In the example of Figures 23 and 24, a deposition oxide has been applied over the structure of Figure 4G. The structure of 4G has been formed and this structure has then been annealed. However, instead of then removing the doped glass from the structure, an oxide isolation layer 518 is applied over the tin, the substrate and the glass. As a result of the anneal, a portion 532 of the silicon substrate 502 is n~doped, a portion of the fin 514 and the substrate 512 forms the deep n-weSl with a more highly doped p- type channel 556 on the upper part of the fin. Due to the oxide isolation structure, the p-doped glass 510 covers the fin and the n-type glass 506 covers the fin and the substrate.

In Figures 25 and 26 the deposited oxide 518 has been planarized and removed down to below the n-wel! area or the start of the n-type portion of the fin 514. This exposes most of the fin. All of the deposited glass above the oxide layer 518 is then removed and a polysiiicon structure 520 is formed over and around the fin to start the fabrication of the control gate.

In Figures 27 and 28 the control gate has been formed, the extra oxide has been removed, and the device is in a preliminary stage ready for application of the contacts as shown in Fignres 21 and 22. By applying the isolation oxide before removing the deposited glass layers, several steps in the fabrication process may be avoided, reducing costs.

Figure 29 is a cross-sectional side view diagram of a transistor device formed on a fin of a FinFET architecture. As described above, solid-source diffusion may be used along with implantation to form contacts for a resistor. The same techniques may be used for the source 612, drain 614, and top back-gate contacts 626, 628of a JFET. In a JFET 600 as shown in Figure 29, current flows from a p~type source 612 to a p-type drain 614 through, m this case, a p-type channel 636 when a gate 620 between the source and drain is off. The p-cbaonel, the source, gate and drain are all formed in a fin 622 of a FinFET device architecture. The n-type gate has a contact 624 that is also coupled to an n-type top gate 626 and a back gate 628 that are also formed on the fin electrically coupled to the p-channel but spaced apart from the source, gate, and drain. As the gate voltage is increased, the n-type back 626 and top 620 gates deplete the narrow p-channel of carriers in between the source and the drain. This pinches off the channel and reduces the current that can flow from the source to the drain. A similar design may be applied to an n-type channel in a fin with an n-type source and drain and a p-type gate.

Using a fin-based architecture additional control gates 630, 632 similar to the control gate of the variable resistor described herein may be used to further enhance or retard current flow through the p-channel. The control gates may be formed inside the JFET on one or both sides of the gate. Similar to the variable resistor of Figure 1, the control gates of Figure 29 are fabricated over the fin covering the fin on the top and on two sides to substantially surround the p-channel.

Due to the nature of current conduction inside of the fin and the narrow width of the fin, the three sided enclosure of the gate enables excellent electrostatic control of the carrier density inside the fin. The control gate is able to alternately increase the carrier density through channel accumulation and decrease the carrier density though channel depletion depending on the bias applied. As described above, in this way the control gates are acting as a variable resistor built in to the fin-based JFET architecture. As JFETs are typically longer channel devices to sustain high voltage operation, these control gates typically have no added layout area penalty and improve the pinch-off voltage needed to fully shut off the channel.

Figure 30 shows a corresponding circuit representation of the FmFET transistor showing the gale 620 to control current flow from the source 612 to the drain 614 and connections for the two control gates 630, 632.

An example process sequence on a 14nm like technology is illustrated below. Standard processing is used to define the fins, and an n-type glass is subsequently deposited on top of the fins con formally. The glass is patterned using, for example a spin-on hard mask recessed to expose the top of the fins. A conformal p-type glass is then deposited. An anneal is performed to drive in the dopants from the glass into the silicon fins, and the glass is subsequently removed. Standard isolation oxide is deposited, planarized, and recessed to set the active fin height. The midsection gate spacers are then deposited.

In some embodiments, the spacer is completely or partially left on the fin to enable downstream epitaxial patterning of the JFET device. Epitaxial silicon undercut etch and growth may then be performed using conventional techniques and the gate isolation oxide may then be deposited to enable contact formation. The contacts for the source, drain, and gates are then constructed. Figures 31 -55 are cross-sectional side and front view diagrams of stages of fabrication of a JFET in a FinFET architecture. Irs Figures 31 arid 32 a substrate 702 has one or more fins 704 formed on it. The fin may be formed in any of a variety of different ways depending on the particular implementation. In Figures 33 and 34 an n-type glass 706 is deposited over the fin and substrate. This glass may be formed by a variety of different deposition processes and contains a moderate dopant concentration of n-type dopant. As mentioned above borosilicate or phosphosi!icate may be applied by chemical vapor deposition or any other technique may be used.

In Figures 35 and 36 a blocking material 708, such as a planarizing spin-on hard mask is applied and patterned over the substrate. In the illustrated example a thick blanket is used so that the top of the fin is exposed while the bottom of the fin and the top of the substrate are coated. The height of the mask layer determines the depth of the p-channel.

In Figures 37 and 38 the n-type glass has been removed where it is exposed, that is where it is not covered by the spin-on hard mask, and after the glass has been etched away the blocking material is also removed. A highly concentrated p~type doped glass is then applied over the entire fin and substrate. The p-iype glass 7 SO will allow the fin to be doped as a p-iype material to build the p-channej.

In Figures 39 and 40 the substrate, Fm, and glass have been annealed. This drives dopants in from the glass into the silicon material. The glass is then removed using, for example, an oxide etch to leave the structure shown in Figures 39 and 40, This structure has a silicon substrate at its base and an n-doped well at the top of the substrate 712. In addition, the fin has a lower portion 714 that is also n-doped to form the back gate. The fin has an upper portion 716 which is p-doped to form the current How channel.

In Figures 41 and 42 the entire structure is covered with an oxide layer 718, such as silicon dioxide or another oxide. The oxide forms an isolation oxide which is then planarized to a determined level as shown in Figures 43 and 44 to expose a certain portion of the fin. The oxide is removed away to expose a portion of the part of the fin that is n-doped 714. As shown in Figures 43 and 44 the fm is exposed so that the entire p-channel is exposed as is a portion of the N doped hack gate 714. A control gate 720 may then be formed around the entire exposed area of the fm down to the level of the oxide. The height or level of the oxide accordingly determines the size of the control gate. The control gate is deeper than the p-channe! and covers Ae entire active fin height. The control gates are typically metal and may be formed in any of a variety of different ways. In the illustrated example, the control gates are formed first by polysiiicon patterning to build a structure corresponding to the desired shape 720 of the control gates. After the patterning is completed at this level the polysilicon is thert removed leaving a void in the shape of the desired control gate. The void is then back filled with metal to form the control gate. Electrodes and other connectors may then be attached to the metal. In the illustrated example there are two control gates however there may be one or no control gates depending upon ihe intended final form of the JFET.

In Figures 45 and 46 a residual spacer has beers applied to the fin to control subsequent epitaxial growth. The spacer 722 is applied around the base of the fin over the oxide layer which remains in place.

Figures 47 to 55 are cross-sectional side and front view diagrams of stages of farther fabrication of the device of Figure 29. In these figures source, gate, and drain are added. The cross-sectional front view of Figures 48, 51 , and 54 are taken at the position of the source which is similar to the view at the drain. The front cross-sectional view of Figures 49, 52 » and 55 are taken at the position of the gate, rather than at the position of the control gate as in Figures 31 to 46. This is because the control gates, at least in polysilicon form have already been formed and are not affected by the other stages,

In Figures 47, 48, and 49 the source gate and drain of the JFET have been formed. The source 730 and drain 732 are formed by epitaxial growth of a p-4ype element and the gate 734 is formed by n-type epitaxial growih. The source and drain are formed over the fin and the spacer using patterning and epitaxial growth. The source and drain are prevented by the spacer 722 from corning into contact with or coming too close to the deep n-weil or back gate 714 of the fin. As a result, each contact node makes contact only with the p-channel. The source and drain can be formed by applying a doped material over the p-ehannel or by doping the actual p-channel. Similarly, the n-type gate is formed in the fin or over the fin and is blocked by the. fin spacer 722 from coming too close to the n-type back gate. On the other hand, as shown in Figure 22 for example the control gate wraps all the way around the p~channe! and is physically contacting the n~type back gate,

As illustrated a first control gate is between and in contact with the source and the gate and the second control gate is between and in contact with the gate and the drain. As shown, an isolation barrier is applied over and surrounding the control gates to prevent conduction and electrical contact between the control gates and the source, gate, and drain. The control gates may be isolated with any of variety of dielectric barriers and may also be physically spaced apart from any other structure.

In figures 30, 5 S , and 52 the entire structure is covered in a deep layer of isolation oxide 738 this isolates the source, gate, and drain as well as the coretrol gates from each other. The top layer of the isolation oxide may be pianarized using any of a variety of different processes to be, for example, at the level of the top of the control gates, electrodes and other structures. The fin, together with the source, gate, and drain are well below the isolation oxide in this example.

In Figures S3, 54, and 55 contacts are formed over the gates, these contacts 740, 742 and 744 allow connections to be made to the source, gate, and drain of the transistor device. In addition, the polysilicon control gates may be dissolved and backfilled with metal depending upon the particular implementation for the control gates. The top layer of dielectric 738 may be used as an interlayer dielectric in the event thai additional components are to be formed over the JFET structure. The electrodes may be formed of any of a variety of different materials depending on the fabrication technology including tungsten.

As described, a very common and widely used transistor type (JFET) may be used in a SoC, power application, or other type of 1C that is fabricated using a non-planar transistor process technology. Furthermore, the resistor or JFET device provides unique FinFET transport characteristics thai are not seen in a planar fabrication technology.

Figure 55 illustrates a competing device 100 in accordance with one implementation of the invention. The computing devsce 100 houses a system board 2. The board 2 may include a number of components, including but not limited to a processor 4 and at least one

communication package 6. The communication package is coupled to one or more antennas 16. The processor 4 is physically and electrically coupled to the board 2, In some implementations of the invention, any one or more of the components, controllers, hubs, or interfaces are constructed using a FinFET architecture that includes solid source-diffused junctions.

Depending on its applications, computing device 100 may include other components that may or may not be physically and electrically coupled to the board 2. These other components include, but are not limited to, volatile memory (e.g., DRAM) 8, non-volatile memory (e.g., ROM) 9, flash memory (not shown), a graphics processor 12, a digital signal processor (not shown), a crypto processor (not shown), a chipset 14, an antenna 16, a display I S such as a touchscreen display, a touchscreen controller 20, a battery 22, an audio codec (not shown), a video codec (not shown), a power amplifier 24, a global positioning system (GPS) device 26, a compass 28, an aecelerometer (not shown), a gyroscope (not shown), a speaker 30, a camera 32 » and a mass storage device (such as hard disk drive) 10, compact disk (CD) (not shown), digital versatile disk (DVD) (not shown), and so forth). These components may be connected to the system hoard 2, mounted to the system board, or combined with any of the other components.

The communication package 6 enables wireless and/or wired communications for the transfer of data to and from the computing device 100, The term "wireless" and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication package 6 may implement any of a number of wireless or wired standards or protocols, including but not limited to Wi-Fi (IEEE 802. 1 1 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DG, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, Ethernet derivatives thereof, as well as any other wireless and wired protocols that are designated as 3G, 4G, 5G, and beyond, The computing device 100 may include a plurality of communication packages 6, For instance, a first communication package 6 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication package 6 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.

The processor 4 of the computing device 100 includes an integrated circuit die packaged within the processor 4. The term "processor" may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.

In various implementations, the computing device 100 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set - top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. The computing device may be fixed, portable, or wearable, in farther implementations, the computing device 100 may be any other electronic device that processes data. Embodiments may be implemented as a part of one or more memory chips, controllers, CPUs (Central Processing Unit), microchips or integrated circuits interconnected using a motherboard, an application specific integrated circuit (ASIC), artd/or a field programmable gate array (FPGA)„

References to "one embodiment", "an embodiment", "example embodiment", "various embodiments", etc., indicate that the embodiment(s) of the invention so described may include particular features, structures, or characteristics, but not every embodiment necessarily includes the particular features, structures, or characteristics. Further, some embodiments may have some, all, or none of the features described for other embodiments,

In the following description and claims, the term "coupled" along with its derivatives, may be used. "Coupled" is used to indicate that two or more elements co-operate or interact with each other, but they may or may not have intervening physical or electrical components between them.

As used in the claims, unless otherwise specified, the use of the ordinal adjectives "first", "second", "third", etc., to describe a common element, merely indicate that different instances of like elements are being referred to, and are not intended to imply that the elements so described mast he in a givers sequence, either temporally, spatially, In ranking, or in any other manner.

The drawings and the forgoing description give examples of embodiments. Those skilled in the art will appreciate that one or more of the described elements may well be combined into a single functional element, Alternatively, certain elements may be split into multiple functional elements. Elements from one embodiment may be added to another embodiment. For example, orders of processes described herein may be changed arsd are not limited to the manner described herein. Moreover, the actions of any flow diagram need not be implemented in the order shown; nor do all of the acts necessarily need to be performed. Also, those acts that are not dependent on other acts may be performed in parallel with the other acts. The scope of embodiments is by no means limited by these specific examples. Numerous variations, whether explicitly given in the specification or not, such as differences in structure, dimension, and use of material, are possible. The scope of embodiments is at least as broad as given by the following claims.

The following examples pertain to further embodiments. The various features of the different embodiments may be variously combined with some features included and others excluded to suit a variety of different applications. Some embodiments pertain to a method including forming a fin on a substrate, depositing a glass of a first dopant type over the substrate and over a lower portion of the fin, depositing a glass of a second dopant type over the substrate and the fin, annealing the glass to drive the dopants into the firs and the substrate, removing the glass, and forming a first and a second contact over the fin without contacting the lower portion of the fin,

Further embodiments include forming a control gate over the fin, the control gate being a conductive material over the top and on the sides of the fin io control current flow through the fin between the first and second contacts,

In further embodiments, forming a control gate comprises patterning polysilicon over the fin, removing the polysilicon and backfilling the void front the polysilicon with metal. Forming a control gate comprises forming a control gate over the fin after removing the glass and before forming the first and second contacts. The, first contact comprises a source, the second contact comprises a drain, the method further comprising forming a gate over the fin between the source and the drain without contacting the lower portion of the fin,

Further embodiments include depositing art oxide over the silicon substrate after removing the glass, the oxide having a depth to cover the lower portion of the fin, the oxide isolating the lower portion of the fin before forming the doped sonrce, gate, and drain.

Further embodiments include forming an isolation spacer over the lower portion of the fin before forming the source, gate, and drain to prevent the source, gate, and drain from contacting the lower portion of the fin.

In further embodiments, the substrate and the firs are silicon.

In further embodiments depositing a glass of a first dopant type includes depositing the glass of the first dopant type over the substrate and the fin, depositing a blocking material (carbon hard mask) over the sisbstrate and a portion of the fin, removing the deposited glass that is not covered in the blocking material, and removing the blocking material.

In further embodiments the blocking material is n carbon hard mask. Depositing glass of a second dopant type comprises removing the glass of the first doparst type from a portion of the fm and depositing the glass of the second dopant type over the portion of the fin and over the glass of the first dopant type. Removing the glass comprises removing the glass using an oxide etcher. Further embodiments include forming a control gate over the fin, the control gate being a conductive material over the top arsd on the sides of the fin io control current flow through the fin between the source arsd the drain.

In further embodiments, forming a control gate comprises patterning polysilicon over the fin, removing the polysilicon and backfilling the void from the polysilicon with metal. Forming a control gate comprises forming a control gate over the fin after removing the glass and before forming the source, gate, and drain.

Some embodiments pertain to an apparatus including a substrate, a fm above the substrate, the fin having a channel of a first dopant type and at least a portion of a well of a second dopant type, arsd a first contact and a second contact of the fin formed without contacting the well of the fin;

Further embodiments include a control gate between the first and second contact formed over and aroimd the fm io control resistance between the first and the second contact.

In further embodiments, the control gate is metal. The control gale is formed of polysilicon which is then removed and a void caused by removing the polysilicon is filled with metal. The first and the second contacts are formed of the first dopant type. The first and second contacts are formed over the fin of epitaxial growth. The first and second contacts are formed in the fm of a dopant in the fin. The channel of the First dopani type is a current channel between the first and second contacts. The control gate extends over and around the channel of the fin on two sides.

In further embodiments, the first contact comprises a source and ihe second contact comprises a drain, the apparatus further comprising a gate of the second dopant type formed of the fin between the. source and the drain formed without contacting the well of the fin.

In farther embodiments, the gate is formed over the fin of epitaxial growth. The gate is formed in the fm of a dopant in the fin, The gate is formed in the fm by depositing a doped glass over the fin, annealing the glass, and removing the glass. The channel of the first dopant type is a current channel between the source and the drain and wherein a voltage applied to the gate determines whether carrent flows in the channel.

Further embodiments include a control gate between the source and the drain, the control gate extending over and around the channel of the fin on two sides and being configured to restrict current flow through the channel. In further embodiments, the control gate is between the source and the gate, the transistor further composing a second control gate between the gate and the drain. The control gate is metal The control gate is formed of polysificon which is then removed and a void caused by removing the polysiiieon is filled with metal.

Some embodiments pertain to a computing system including a communication chip, a power supply and a processor having a plurality of transistors, at least one transistor being a junction gate field effect transistor having a substrate, a fin above the substrate, the fm having a channel of a first dopant type and at least a portion of a well of a second dopant type, a source and a drain of the first dopant type of the fin formed without contacting the well of the fm, and a gate of the second dopant type formed of the fm between the source and the drain formed without contacting the well of the fin.

In further embodiments, the gate is formed in the fin by depositing a doped glass over the fin, annealing the glass, and removing the glass, The junction gate field effect transistor further includes a control gate between the source and the gate, the control gate being formed over and around the fin to control resistance between the source and the drain. The control gate is formed by patterning polysificon over the fin, removing the polysiiieon and backfilling the void from the poiysllicon with metal

Some embodiments pertain to a junction gate field effect transistor including a substrate, a fm above the substrate, the fin having a channel of a first dopant type and at least a portion of a well of a second dopant type, a source and a drain of the first dopant type of die fin formed without contacting the wel l of the fin, and a gate of the second dopant type formed of the fin between the source and the drain formed without contacting the well of the fin.

Some embodiments pertain to a variable resistor including a substrate, a fin above, the substrate, the fin having a channel of a first dopant type and at least a portion of a well of a second dopant type, a first contact and a second contact of the fin formed without contacting the well of the fin, and a control gate between the first and second contact formed over and around the fin to control resistance between the first and the second contact.