Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SOLUBLE 3D PRINTED CUSTOM ARTIFICIAL NAILS DESIGNED THROUGH A MOBILE APPLICATION
Document Type and Number:
WIPO Patent Application WO/2020/176560
Kind Code:
A1
Abstract:
The current disclosure pertains to the nail service/care industry and includes providing a unique method of offering a nail care service and artificial nail product, to increase nail health for users and environmental safety for employees, as well as offering a custom fit press on nail. The disclosure provides an artificial nail manicure set personalized by the user through a mobile application and 3D printed to each user's natural nail custom specifications with a soluble material.

Inventors:
COCHRAN BRIANNA STORM (US)
Application Number:
US2020/019789
Publication Date:
September 03, 2020
Filing Date:
February 26, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COCHRAN BRIANNA STORM (US)
International Classes:
A45D31/00; A45D29/18; G06Q30/06
Domestic Patent References:
WO2015126533A12015-08-27
WO2017174703A22017-10-12
Foreign References:
US20160309877A12016-10-27
US20160095411A12016-04-07
US20060016455A12006-01-26
US7622511B12009-11-24
US20160302550A12016-10-20
US20110212140A12011-09-01
US7875212B22011-01-25
KR20110101106A2011-09-15
US20140159279A12014-06-12
US20110087351A12011-04-14
US20140183769A12014-07-03
US20200105007A12020-04-02
Attorney, Agent or Firm:
BENNETT-PARIS, Joseph (US)
Download PDF:
Claims:
CLAIMS

1. A method for making soluble 3D custom artificial nails for a user comprising a measuring tool;

a mobile application residing on the mobile device of the user;

wherein the method provides an interactive experience allowing the user to choose and purchase an artificial nail set with the mobile application based on information obtained from the measuring tool and the artificial nail set is constructed for the user from the measurements made via the measuring tool and selections from the mobile application.

2. The method of claim 1, wherein a nail coating is optionally applied to each nail of the artificial nail set wherein the hard coating is selected from the group comprising a gel polish or gel coating which can be UV-cured, catalyst cured, or temperature cured.

3. The method of claim 2, wherein the nail coating is a colored specialty rubber based insulating coating such as a synthetic rubber or any artificial elastomer.

4. The method of claim 1, wherein a non-toxic nail adhesive is optionally applied to each nail of the artificial nail set, wherein the adhesive is selected from a hydrogel adhesive, a natural polymer such as a dextrin or starch, or a synthetic polymer selected from the group comprising polyvinyl alcohol, cellulose ethers, methylcellulose, carboxymethylcellulose, and polyvinylpyrrolidone.

5. The method of claim 1, wherein the nails of the artificial nail set comprise a soluble polymer selected from the group comprising polyvinyl alcohol, butenediol vinyl alcohol co polymer, and polyvinyl alcohol composites.

6. The method of claim 1, wherein the nails of the artificial nail set comprise a soluble thermoplastic followed by ultraviolet curing.

7. The method of claim 1, further comprising an adhesive such as a rapid-curing adhesive such as cyanoacrylate or a medical grade biocompatible cyanoacrylate.

8. The method of claim 1, wherein a color pigment is pre-mixed into 3D printing material.

9. The method of claim 2, wherein nail coating contains raw color pigments.

10. The method of claim 1, wherein the artificial nails are made of non-soluble material comprising metal, wood, or gemstones.

11. The method of claim 1, wherein using the measuring tool comprises the following steps:

a) placing a camera in front of a single designated nail;

b) selecting a desired shape classification overlay closely matching the single designated nail;

c) scaling the shape classification overlay to match the natural nail; d) repeating steps a)-d) for all remailing nails; and,

e) wherein all the scaling and measurements are stored either locally or in a centralized database.

12. A method for customizing nails, comprising:

identifying a shape of a natural nail with a measuring tool;

selecting an overlay profile that is similar to the shape of the natural nail from a database of overlay profiles;

generating a model of an artificial nail based on the overlay profile; modifying the model to include user-selectable options; and

creating an artificial nail based on the modified model.

13. The method of claim 12, further comprising creating the artificial nail with a 3D printer wherein at least a portion of the artificial nail is formed from a water-soluble material.

14. The method of claim 13, further comprising creating the artificial nail at least partially from a water-soluble material and applying a water insoluble material to an outer surface of the artificial nail.

15. The method of claim 14, further comprising applying an adhesive to the artificial nail, the adhesive having a release liner applied thereto that is selectively removable to expose the adhesive to apply the artificial nail to the natural nail.

16. The method of claim 13, further comprising applying a reinforced nail top to the artificial nail.

17. The method of claim 13, further wherein the measuring tool includes a camera on a device and the identifying a shape step utilizes the camera to analyze the shape of the natural nail.

18. The method of claim 13, further wherein all of the steps except for the creating an artificial nail step are executed on a mobile device.

19. The method of claim 13, further comprising repeating all of the steps for each natural nail of a user and generating a complete set of artificial nails.

20. The method of claim 13, further including drug loading the artificial nail.

Description:
SOLUBLE 3D PRINTED CUSTOM ARTIFICIAL NAILS DESIGNED THROUGH A

MOBILE APPLICATION

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to Provisional Patent Application Serial No. 62/812,186 having the title“Soluble 3D Printed Custom Artificial Nails Designed Through A Mobile Application,” filed February 28, 2019, the disclosure of which is incorporated herein by reference in its entirety.

FIELD OF THE DISCLOSE RE

[0002] The disclosure pertains to the nail service/care industry and includes providing a unique method of offering a nail care service and artificial nail product, to increase nail health for users and environmental safety for employees, as well as offering a custom fit press on nail. The disclosure provides an artificial nail manicure set personalized by the user through a mobile application and 3D printed to each user’s natural nail using custom specifications and a soluble material.

BACKGROUND

[0003] Artificial nails, also known as fake nails, false nails, fashion nails, nail enhancements, nail wraps, or nail extensions, are extensions placed over fingernails or toenails as fashion accessories. Putting them on and taking them off can involve abrasion of the natural nail and strong adhesives such as cyanoacrylate and harsh acids and other chemicals that can cause allergic reactions and weaken users’ real/natural nails. Small breaks in artificial nails or poor fitting to the natural nail bed can allow water retention between the artificial nail and the natural nail and create an ideal environment for fungal infections. Other damage (breaking, cracking, or otherwise structurally compromising the artificial nail) can compromise the natural nail.

[0004] A nail salon or nail bar is a specialty beauty salon establishment that primarily offers nail care services such as manicures, pedicures, and nail enhancements. Employees that work at these establishments are potentially exposed to dozens of chemicals including acrylates, liquids, solvents, and biocides as dusts, aerosols, or vapors, both when applying artificial nails and when removing them. A small but growing number of studies have examined links between nail technicians’ work and health outcomes, such as respiratory, neurological, and musculoskeletal effects, as well as other health conditions.

[0005] Limitations of Current Artificial Nails:

[0006] The main types of currently available artificial nails are: 1) Acrylic/SNS Nails/Gel Nails; and 2)“Press-On” Nails. The disadvantages of each are discussed in greater detail below.

[0007] Disadvantages of Acrylic/SNS Nails/Gel Nails

[0008]“SNS” stands for Signature Nail Systems ™ which is a powder-dipping system, accompanied by a brush-on, gel-based polish. Essentially, the nail technician applies the polish to your nail, dips it in the powder and repeats the process. SNS comes in an array of colors and shades and consists of benzoyl peroxide, titanium dioxide and acrylic ester polymer. These ingredients are touted to work to help strengthen nails rather than wear them down.

[0009] Acrylic nails are a type of artificial nail enhancement created from a mixture of both liquid and powder acrylates. They do not require photocuring. Gels are a type of acrylic-based nail polish. They are composed of a mixture of acrylate monomers that require ultraviolet (UV) light for polymerization and hardening. Gel manicure systems are a variant of acrylic nail gel and contain the traditional nail lacquer plus a base coat. The base contains photo-initiators and UV-curable acrylate oligomers instead of solvent/resin bases. During the curing process solvents evaporate and small channels form in the layer of nail polish. These channels are connected by acetone- dissolvable polymers.

[0010] The application process of gel-based manicures includes serial applications to the nail plate with a base primer, followed by a color coat and a topcoat. The nails must then be cured by UVA rays or photocuring after each coat. Nail salons predominantly use fluorescent UV lamps. Removal of gel manicures requires soaking the nail plate with 100% acetone for 10 to 15 minutes, followed by manual debridement of remaining polish if necessary.

[0011] There are several other side effects of gel manicures. Although touted as easy to remove, gel polish is often firmly adhered. The removal process may be associated with generalized nail thinning, weakness, and brittleness. In addition, pseudo-leukonychia, and onychoschizia are often associated with continual artificial nail removal. Leukonychia is a white discoloration of the underlying nailbed. In true leukonychia, the white discoloration is caused by pathology that lies in the nail matrix itself. In apparent leukonychia, there is underlying pathology is in the subungual tissue underneath the nail. Pseudo-leukonychia results from an exogenous source such as fungal infection, keratin granulation from nail polish, and psoriasis. Onychoschizia, commonly known as nail splitting but also known as onychoschisis or lamellar dystrophy, is a condition that causes horizontal splits within the nail plate. Nail splitting is often seen together with onychorrhexis— long-wise (longitudinal) splitting or ridging of the nail plate— and these 2 diseases together are called "brittle nail syndrome. " Frequent wetting and drying of the hands is the most common cause of nail splitting, so this condition is, therefore, common among house cleaners, nurses, and hairdressers. Nail splitting may also be caused by nail cosmetics (hardeners, polish, and polish removers/solvents), nail procedures, and occupational exposure to various chemicals (alkalis, acids, cement, solvents, thioglycolates, salt, sugar solutions). Injury and other medical problems may also play a role in the development of brittle nails.

[0012] Acrylic chemicals have been known to penetrate the nail plate and irritate the nail bed. This irritation can occur in patients who are sensitive to chemicals or have thin nails. Known risks of traditional manicures include procedure-related infections (bacterial, fungal, mycobacterial, and viral, including human papilloma virus and herpes simplex virus). Inadequately sterilized instruments, such as clippers, blades, abrasive files, and electric drills, may harbor and abet the growth of micro-organisms. Micro and macro-traumas may be induced through the cleaning, filing, and trimming of cuticles, thus allowing the infiltration of micro-organisms. Materials, such as nail polish and nail enhancers, contain certain chemicals that can serve as contact sensitizers when accidentally applied to periungual skin. Chemicals, including acrylates, formaldehyde, and toluene sulphonamide-formaldehyde resin, may lead to contact dermatitis and chronic paronychia. Primers and polish removers, which are largely solvents, can dry nails and contribute to brittleness.

[0013] The following are some of the clinical examples that are less frequently reported, but not uncommon disorders related to nail cosmetics.

[0014] Traumatic onycholysis is often associated with chronic paronychia. Such infections occur as manicure removal of the cuticle breaks an essential barrier to micro-organism infiltration of the nail. In patients wearing acrylic nails, traumatic onycholysis is very common. These patients usually wear very long nails, and adhesion of the acrylic nail to the nail plate is stronger than adhesion of the nail plate to the nail bed.

[0015] Keratin degranulation may also occur. The process of nail polish binding to and subsequently being removed from the nail plate may result in keratin degranulation. The clinical features of this finding are white striations, macules, and patches on the nail plate.

[0016] Contact dermatitis is also commonly seen. Although the risk of allergic contact dermatitis to nail cosmetics is well-established, there have been an increased number of cases of acrylate monomer-associated contact dermatitis with the increased utilization of photo-bonded acrylic gel nails. Cases typically include periungual eczematous dermatitis, but there exist reports of eczematous lesions in more proximal locations of the hand and face, purportedly via airborne transit of nail dust.

[0017] Peripheral neuropathy, a rare complication of acrylic cosmetic nails, has been reported in a few cases of patients with positive patch testing to methacrylates. Although the mechanism of toxicity is unknown, it may be associated with local neuropathy induced by methylmethacrylate.

[0018] Worn down or over-filed nails represent the direct result of patient or nail salon operator- induced mechanical trauma. This phenomenon is typically seen in patients wearing acrylic nails, as complete removal of the nails often requires mechanical abrasion. Nails are filed tangentially to eliminate resin residues, reduce superficial irregularities, and improve texture and appearance. [0019] Clinically the nails show distal thinning with a triangular or half-moon morphology extending distally from the mid-plate, and forming a mirror image to the lunula

[0020] Pseudo-psoriatic nails describe a clinical pattern that has been reported in patients wearing acrylic nails. Clinical features, including onycholysis and severe subungual hyperkeratosis, are often quite similar to those of psoriatic nails. In fact, cases have been misdiagnosed and mistreated with topical and intralesional corticosteroids or even immunosuppressants if there is coincident joint pain. Although this clinical pattern theoretically may be triggered by traumatic removal of firmly attached acrylic nails via Koebnerization, the authors have seen patients with pseudo- psoriatic nails that developed before the removal of acrylic nails. These patients have had positive patch testing to methylmethacrylate, suggesting that acrylate sensitization can cause this clinical phenotype.

[0021] Disadvantages of Press-on Nails

[0022] Press-on nails are simply artificial nails that are applied or pressed on to the nail and affixed with glue. While their popularity has fluctuated over the years, they still remain a popular means of a quick manicure. Press-on nails do not require any specialized application procedures and are widely available to consumers. However, there are many disadvantages and problems associated with repeated use of press-on nails.

[0023] Glue toxicity can occur when the cuticles and surrounding tissues are allergic to the ethyl cyanoacrylate glue. About 5% of the population can become sensitized to cyanoacrylate fumes after repeated exposure, resulting in flu-like symptoms. Traditional nail glue is harmful by inhalation, and irritating to the eyes, respiratory system, and skin.

[0024] A long application time is often a major difficulty because of variability in the user’s nail plate shape. Typically, a user receives up to 24 nails in normal commercially available pack of press-on nails. The user must estimate which nail to place over their natural nail plate. If the artificial nails have a different curve than the natural nail plate, then it forces the nail plate to shape into a deeper curve causing discomfort. Usually this process of fitting and subsequently gluing is time-consuming. It is prone to user-error as well, such as poor-fit, too much or too little glue, etc.

[0025] Removal issues are also quite common with press-on nails. For example, if the user desires immediate removal, then they must forcibly remove the artificial nail by prying the product. This action can cause damage to the natural nail plate. The user alternatively can wait for the product to naturally release itself, but not all artificial nails will release at the same time, causing an unsightly look.

[0026] Glue residue is often an after effect of press-on nails. After the artificial nails are removed, a white crust from the glue is usually left all over the user’s natural nail plate. In order to remove this glue, the user must apply acetone and rub over the natural nail plate.

[0027] What is needed is an artificial nail alternative that does not put the user’s nail health at risk but gives a pleasing aesthetic look that the user can personalize to their liking and have control over the removal process— without harsh chemicals involved.

SUMMARY OF THU INVENTION

[0028] The invention is drawn to methods utilized to create soluble 3D printed artificial nails from user measurements captured and designed through a mobile application. 3D printed artificial nails offer a unique chance to achieve mass customization and deliver a non-damaging biocompatible product, employing water-solubility is viable in a temporary product. The base of the nail is water- soluble, but protected by a non-toxic outer coating. The base attaches to the nail, and through its solute properties, it reduces overall nail damage during removal, as well as the environmental footprint of current artificial product use. If implemented, drug-loaded nails could heal infections on users who may otherwise not be able to wear artificial nails.

[0029] According to one aspect of the present disclosure, a method for making soluble 3D custom artificial nails for a user may include a measuring tool, an artificial nail set, and a mobile application. The mobile application may reside on the mobile device of the user. This method may provide an interactive experience for the user, allowing the user to choose and purchase the artificial nail set. The artificial nail set may be constructed for the user from measurements made using the measuring tool. In one embodiment, a color pigment may be mixed into 3D printing material.

[0030] In some embodiments, the nail coating can be optionally applied, at the discretion of the user, to each nail of the artificial set. This method may comprise an adhesive, which may be a rapid-curing adhesive. The rapid-curing adhesive may be a cyanoacrylate, and this cyanoacrylate may be a medical grade biocompatible cyanoacrylate. This adhesive may be non-toxic. The adhesive may be a hydrogel adhesive. The adhesive may also be selected from a natural polymer or a synthetic polymer, such as dextrin or starch. The adhesive may also be a synthetic polymer. This synthetic polymer may be selected from the group comprising polyvinyl alcohol, cellulose ethers, methylcellulose, carboxymethylcellulose, and polyvinylpyrrolidone.

[0031] In some embodiments, the nail set may comprise a soluble polymer selected from the group comprising polyvinyl alcohol, butenediol vinyl alcohol co-polymer, and polyvinyl alcohol composites. The nails of the artificial nail set may also be formed from a soluble thermoplastic followed by ultraviolet curing.

[0032] In some embodiments, the nail coating may be a hard coating selected from the group comprising a gel polish or gel coating. This gel coating may be UV-cured, catalyst cured, or temperature cured. The nail coating may be a colored specialty rubber based insulating coating. This colored specialty rubber based insulating coating may be a synthetic rubber or any artificial elastomer. The nail coating may further contain raw color pigments. In some embodiments, the artificial nails may be made of non-soluble material comprising metal, wood, or gemstones.

[0033] In another embodiment, the measuring tool comprises of the following steps. First, the user places a camera In front of a single designated nail; then the user selects a desired shape classification overlay which closely matches the user's natural nail. Then, the user scales the shape classification overlay to match the natural nail. The user repeats these steps for all remaining nails. The measurements taken are stored either locally or in a centralized database. [0034] These and other features of the present disclosure will become more apparent from the following description of the illustrative embodiments.

BRIEF DESCRIPTION OF DRAWINGS

[0035] Figure 1 depicts a typical artificial nail of the disclosure. Each artificial nail will be covered with a protective insoluble top coating; the artificial nail may have an adhesive release liner tab protecting the adhesive to be removed before application; the artificial nail may have a reinforced nail tip.

[0036] Figure 2 is an example of a set of artificial nails contained within a recyclable/reusable box or other form of packaging; coated with the adhesive release liner tab which is removed just before application.

[0037] Figure 3 is a sagittal cross-section of the artificial nail including the adhesive release liner tab. Each nail has: an adhesive coating; adhesive release liner tab; reinforced nail tip; protective insoluble top coating; and artificial nail soluble base.

[0038] Figure 4 is a sagittal cross-section of an artificial nail adhered to a user’s finger; Figure 4 shows the natural nail bed; adhesive coating; reinforced nail tip; protective insoluble top coat; and the artificial nail soluble base.

[0039] Figure 5 is a schematic flow chart showing two different versions of a measuring tool method.

[0040] Figure 6 is a flow chart depicting the use of a mobile application.

[0041] Figure 7 is a flow chart depicting a method for creating artificial nails.

[0042] Corresponding reference characters indicate corresponding parts throughout the several views. Although the exemplification set out herein illustrates embodiments of the present application, in several forms, the embodiments disclosed below are not intended to be exhaustive or to be construed as limiting the scope of the present application to the precise forms disclosed.

DETAILED DESCRIPTION

[0043] While exemplary embodiments incorporating the principles of the present disclosure have been disclosed herein, the present disclosure is not limited to the disclosed embodiments. Instead, this application is intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains.

[0044] The disclosure is directed to a 3D-printed, soluble, biocompatible, custom-fit artificial nail designed through a Mobile Application 21. The nail products of the disclosure have several advantages of what is currently known in the art: 1) the nail is custom fit to the shape, curvature, width, and length of the user’s natural nail bed 8; 2) the nail readily dissolves in water rather than acetone; 3) the nail is fully personalized by nail tip shape, the length, the color, the design or image overlay, texture and finish through the Mobile Application 21 to create a unique user design 47; 4) the nail is non-toxic; and 5) the nail has minimal to no harm upon ecosystems or the environment.

[0045] In addition, the current disclosure provides solutions to many problems with current nail technologies including but not limited to: 1) a custom shape, size, and curvature allows the artificial nail to fit better to the natural nail, meaning a stronger (and subsequently more toxic) glue is not necessary to keep the nails adhered; 2) the material the nail is made from is compatible with more non-toxic glues and coating/films/wraps that will be safer for nail adherence; 3) the dissolution in water allows for the user to remove nails at any time they wish and without the use of acetone (which strips and dries out the nail); 4) there is no forceful removal (filing, pulling, etc.) which means the layers that make up the natural nail stay intact; 5) the non-toxic materials used do not pose a health-risk for inhalation, skin contact, or nail absorbance; 6) the materials used to make the nails of the current disclosure fully dissolves in water and reduce microplastics pollution; 7) there is no excess nail material; and 8) the nails and adhesive can be drug-loaded to improve user nail health rather than degrade it.

[0046] The Soluble 3D Printed Custom Artificial Nails:

[0047] The methods described herein consist of a system of five components: i) the Measuring Tool 9 to measure the dimensions and shape of the nail for storage and subsequent creation of an Artificial Nail Set 50; ii) the Mobile Application 21 which is a mobile interface residing on the user’s mobile device that includes the Measuring Tool 9 and an interactive experience allowing the user to choose and purchase the Artificial Nail Set 50; iii) the Artificial Nail Set 50 constructed for the user from the measurements made via the Measuring Tool 9; iv) an easily removable protective insoluble top coating 1; and v) a non-toxic nail adhesive coating 5. The advantages of the disclosure includes the biocompatibility with the nail plate and natural keratinization process, the easy removal process, the ability to modify the materials to heal fungal infections and other nail damage(s), as well as the full customizability of the design, curvature, shape, and size of the press on nail. Augmented reality gives users the ability to personalize their manicures and pedicures with their own unique user design 47. The nails are easily removed because they are formed from a soluble polymer such as polyvinyl alcohol, butenediol vinyl alcohol co-polymer, polyvinyl alcohol composites, and such which prevents damage to the nail bed 8 regularly caused by conventional products. Using the disclosure, there is the further advantage to reduce the use of harmful chemicals in salon environments, capitalize on drug loading abilities of materials, and maintain nail bed health 8.

[0048] Measuring Tool 9:

[0049] The Measuring Tool 9 is typically built into the Mobile Application21 but alternatively can be used as a stand-alone tool.

[0050] Figure 5 depicts a flow chart showing how the Measuring Tool 9 would operate showing two alternative versions 9a and 9b. In a first version shown as Measuring Tool 9a, the user first places a camera with front of a single designated nail in view (10). The camera would typically be part of the users’ mobile device (i.e. smartphone, tablet etc.). The user then selects a desired shape classification overlay which most closely matches the nail in the camera view. (11). Shape classifications of natural nails or cuticle shapes will be derived from standard available cuticle shapes and from accumulated data derived from the Mobile Application 21 stored in a database of shape classifications. The user then can scale the shape classification overlay to match the natural nail. (12). the above steps are repeated for all the remaining nails. (13). All the scaling and measurements are stored either locally or in a centralized database. (14). Alternatively, following (13), the user can place the camera with top of a nail in view (15) where the Measuring Tool 9 measures the width of the arc length of the nail by unit per pixel or captures picture of with arc in view. (16). The user then repeats the top view steps for all remaining nails. (17). As above, all the scaling and measurements are stored either locally or in a centralized database. (14).

[0051] Figure 5 also depicts an alternate embodiment for the use of the Measuring Tool 9b. In this embodiment, the user begins by placing a nail in view of camera. (18) The Measuring Tool 9b recognizes the nail designation, shape, and scale. (19) The user then places the camera with top of a nail in view. (15). The Measuring Tool 9b then measures the width of arc the length of each nail by unit per pixel. In one non-exclusive embodiment, the Measuring Tool 9b may also capture a picture of arc length. (16) The user then repeats all previous steps for all the remaining nails. (13). Similarly, the user then repeats the top view steps for all remaining nails. (17). All the measurements are stored in database of user profiles either locally or in a centralized database. (20)

[0052] Mobile Application 21:

[0053] Figure 6 depicts a flow chart showing the typical user interface in the form of the Mobile Application 21 the user will utilize to measure and order their artificial nails. The process begins when the user downloads (22) and opens (23) the Mobile Application 21. The user is first asked if they are a first time user (24). If“Yes”, the user is taken to the Measuring Tool 9 to begin that process. If the user is not a first time user, the user enters an Augmented Reality view or screen. (26). The Augmented Reality view is similar to the user’s camera view, but with a computer- generated image of a user's view of the real world, superimposed with nail-like objects on a simulation of a user’s finger 7, thus providing a composite view of the user’s expected manicure.

[0054] Users then pick a nail tip shape (27), color and finish (28). The nail tip is the extension of the artificial nail that goes beyond the distal edge of the nail plate from a zero point where there is no extension to natural nail plate to a higher length of their choosing. Nail tip shapes can include, but are not limited to, rounded, oval, stiletto, flare, square, edge, lipstick, mountain peak, ballerina, squoval, almond, and arrowhead. The nail tip shape can also be any unique design created by the user if design specifications are met. Nail tip shapes can also be selected and interchanged on each nail.

[0055] Color choices can be any color in a color palette and for example can range from any available color or combination thereof, for example, red, orange, yellow, green, blue, indigo, purple and their respective shades, hues, saturations, and other. Finish or textures can be selected and can include velvet, metal, marble, glitter, and plastic, a rough or raised finish, glossy or matte. As part of the finish selection process, any pattern or images could be selected or uploaded (such as stripes, dots, stars, etc.) and overlaid onto the artificial nails.

[0056] The user can view the selected artificial nail preferences as an overlay to their natural nail bed 8 (29). The user can modify the length of all or any of the artificial nails in real time. (30). The user can also search from pre-made designs or create their own. (31). The artificial nail set design can be saved to the user’s profile. (32). The user is then asked if they want to purchase the set (33) and if yes, the Artificial Nail Set 50 is created (34). If not, then a new design can be started (35).

[0057] The Mobile Application 21 contemplates that users log into the application or sign up for an account using their email and a user-designated password. The Mobile Application 21 will store their initial measurements from the Measuring Tool 9 process and the user will be able to update said measurements at any time while using the Mobile Application 21. The Measuring Tool 9 process as describe above then initiates. [0058] The Mobile Application 21 in conjunction with the Measuring Tool 9, measures the curvature of the user’s natural nail plate from cross-section view of the fingertip by placing a point on one side of the lateral nail groove and then placing another point on the opposite side lateral nail groove, and the distance between the two points is calculated using parallax imaging, or similar imaging processing. Then a point is placed at the midpoint of this line and above this line on the highest point on the distal edge of the nail plate. The Mobile Application 21 then uses geometric relationships to approximate the user’s natural nail plate curvature. Alternatively, other methods of measurement can be used to measure the nail curvature. For example, many points along the curve can be placed to reconstruct the curve for a reading of the user’s curvature and translated to a real-world measurement by a“pixels per metric” ratio. The Mobile Application 21, in conjunction with the Measuring Tool 9, will perform curve fitting around the perimeter of each nail and generate measurements to be used in printing each artificial nail. The disclosure contemplates that as an alternative to curve-fitting, image recognition or an artificial intelligence (AI) system can be used to process an image of the user’s nail (the visual information) by relying on computer vision, and identifying the nail to categorize the image based on the nail shape.

[0059] All measurements are then used to modify and customize the existing models (e.g. CAD) to the user’s nail shape. The method can also be replicated on toenails to achieve the same measurements. If the Mobile Application 21 is not used, stand-alone software can complete this process or alternatively, the process can be manually completed with a person using proper images of the user’s nails.

[0060] The disclosure contemplates that users are able to build individual profiles with desired personal information including for example, name, profile pictures, usernames, biographies, self- made nail designs, nail designs from other users, wish lists, etc. A nail design created by the user in the Mobile Application 21 would typically encompass length, color, texture, pattern or image, and shape specified by the user.

[0061] In the Mobile Application 21, users are able to create a nail design for their manicure, as well as view in real-time what the manicure looks like on either one or both of their hand(s) through Augmented Reality view. [0062] The Mobile Application 21 can allow for unique artist designs to be used. For example, the user may submit designs created in or outside the application. In addition, professional artists or general users can submit their work to the application.

[0063] Users can request and purchase their custom Artificial Nail Set 50 through the application, which is then 3D-printed and sent to the user’s designated shipping address or printed in a store for user to pick up. Alternatively, the user may send the Artificial Nail Set 50 to a local 3-D printer.

[0064] It is also contemplated that the Mobile Application 21 can give personalized recommendations for design variables based on skin tone and hand shape. Alternatively, the Mobile Application 21 can suggest designs based on previous history, trends, and other relevant data metrics.

[0065] Artificial Nail Set 50:

[0066] The Artificial Nail Set 50 is composed of a number of artificial nails with a nail design 47 specified by the user, unique to each nail. After the nails are designed in the Mobile Application 21 and the measurements of the nails are taken with the Measuring Tool 9, the nail design 47 variables (nail curvature, area of the nail, shape, length, color, texture, material, or pattem/image) are sent to a database under the account of the user. From the database the variables are extracted and used to modify an existing CAD or similar 3D modeling software file. The file will depend on the shape, length, or texture selected and the area of the nail and curvature will be modified accordingly.

[0067] Each artificial nail is created using a 3D printer by sending the specifications through a software to a 3D printer where the Artificial Nail Set 50 (typically and traditionally 10 nails) can begin printing in the user-specified dimensions. Note that the Artificial Nail Set 50 is not limited to 10 and can be modified to be any number of nails. [0068] Each nail is custom fit to the shape, curvature, width, and length of all the user’s natural nail beds 8. The material composition of the nail is water-soluble, with a coating/film/wrap around the nail to protect it from dissolving prematurely. Each artificial nail can be hardened/stiffened with a special coating or enhancement of the material composition if necessary (for example, if the user selects a long length of the nail 4mm or greater). The nail is customized to the user’s dimensions and then personalized by the user. The personalization of the nail includes: a reinforced nail tip 3, shape, length, the color, the design or image overlay, texture and finish.

[0069] Figure 7 depicts a flow chart showing how the Artificial Nail Set 50 can typically be generated. First the Artificial Nail Set 50 variables that were input by the user and saved are pulled for model creation. (35). An existing 3D model is opened for a particular specified nail shape variable type. (36). A 3D nail shape model is modified according to arc length and scale dimensions that are contained in the database. (37). Models for the Artificial Nail Set are stored to the user profile for more efficient future use. (38). Alternatively and/or simultaneously, after the Artificial Nail Set 50 variables that were input by the user and saved are pulled for model creation (35), the existing 3D model is opened for specified tip selection variable type (41) and the 3D tip model is modified according to length specified in the database. (40). The process is repeated until all nails in Artificial Nail Set 50 are created. (42). The nail shape model and tip selection model are then merged (39) to create a user design 47. The full Artificial Nail Set 50 is sent to 3D printer. (43). The 3D printer is loaded or preloaded with water-soluble material to create the Artificial Nail Set 50. (44). The 3D printer begins (45) and then completes printing the Artificial Nail Set 50. (46).

[0070] The 3D printing material which forms the artificial nail soluble base 6 includes polymers such as polyvinyl alcohol, butenediol vinyl alcohol co-polymer, a composite of polyvinyl alcohol and other similar materials. Alternatively, the 3D printing material can be a water-soluble thermoplastic made through the polymerization of acrylol morpholine monomers via ultraviolet curing. Typically, each nail in the Artificial Nail Set 50 will have a soluble polymer, up to 100%, to maintain the removal process functionality. [0071] As described herein, each nail of the Artificial Nail Set 50 is printed from measurements gathered by the Measuring Tool 9. Once each nail has completed printing, the nails will be removed from the print bed and post-processed, including but not limited to: cleaning and surface/edge refinement stage with sandpaper, heat, or other chemical processes. At this stage, colors, patterns and/or image overlays can be applied. In addition, the protective insoluble top coating 1 and/or the reinforced nail tip 3 can be applied. The adhesive coating 5 and an adhesive release liner tab 2 are also applied to each nail. The reinforced nail tip 3, especially for nail tips exceeding 0.3mm extension from the natural nail bed 8, can be covered in an acrylic coating or a similar hardener coating.

[0072] Nail Coating:

[0073] Multiple layers of coatings may optionally be applied to the underlying soluble polymer to achieve the user’s desired effect. For example, the initial coating may be a primer over the artificial nail soluble base 6, with the next coating layer to be the color coating until fully coated, and followed by a top coat with a glossy, semi-glossy, matte sheen, or another type of protective insoluble top coating 1. The coating may be sprayed, dipped, or otherwise layered onto each artificial nail. The coating may be a coating that allows color pigments to be mixed into the user’ s desired shade. These pigments may include raw color pigments. Additionally, a user-specified design 47 may be added at any time of the coating process. For example, a paper substrate or a label such as a piece of printed paper, plastic, vinyl, or other material with pressure sensitive adhesive on one side can be applied to top of one or more of each nail of the Artificial Nail Set 50. The protective insoluble top coating 1 can then be applied.

[0074] The protective insoluble top coating 1 protects the artificial nail soluble base 6 from environmental solvent exposure. To remove each nail, the protective insoluble top coating 1 or other hard coating is abraded or peeled or otherwise compromised to expose the artificial nail soluble base 6, and the user soaks their fingertip in a solvent solution (typically water) until the artificial nail soluble base 6 becomes soft enough to remove without damaging the natural nail bed 8 beneath. [0075] Nail Adhesive:

The adhesive coating 5 is typically pre-applied on the back of each artificial nail to attach the artificial nail to the user’s natural nail bed 8. The properties of the adhesive coating 5 to attach the artificial nail to the natural nail bed 8 are as follows: 1) biocompatible, i.e. not harmful to living tissue; 2) will not dry out the natural nail bed 8; 3) will maintain natural keratinization of the natural nail bed 8; and, 4) additional nanoparticles can be added to the adhesive coating 5 such as undecylenic acid, clotrimazole, terbinafme, or mentholated cream to fight nail fungal infection while wearing the Artificial Nail Set 50. In an alternative embodiment, the adhesive coating 5 may be supplied separately with one or two adhesive release liner tabs 2 to allow the user to apply to the nail or their natural nail bed 8 themselves. In yet another embodiment, the Artificial Nail Set 50 is supplied without any adhesive coating 5 to allow the user to utilize any adhesive of their choosing.

[0076] The adhesive coating 5 can be from any type of material including but not limited to natural polymers derived from vegetable sources such as dextrins, or starches and the like; protein sources such as casein, blood, fish, soybean, milk albumen and the like; and animal sources such as hides, bones or the like. Water-soluble synthetic polymers may also be used, which can include polyvinyl alcohol, cellulose ethers, methylcellulose, carboxymethylcellulose, and polyvinylpyrrolidone and the like. The adhesive may also be a hydrogel adhesive.

[0077] Finalization and Delivery of the Final Artificial Nail Set 50:

A post-processed nail set will be packaged in a recyclable/reusable box or similar packaging 4. The disclosure contemplates that other materials will be included in the packaging 4 and specifically tools necessary to apply and remove nails. These tools include, but are not limited to: 1) a nail file; 2) tweezers or the like to assists in application of the artificial nail to the natural nail; and 3) a blade or similar tool used to cut/abrade/peel the hard coating of the artificial nail to expose the soluble base for removal. [0078] Other Embodiments:

[0079] The Mobile Application 21 can be optional. All other steps in the process are applicable, but the Measuring Tool 9 is used by the user. The variables (length, shape, color, texture, material, design) can be gathered verbally, electronically, or through another medium not listed, with the user stating directly what they want without the need for the Mobile Application 21. It is contemplated that the Measuring Tool 9 can be utilized independently with only a mobile device or other camera wherein the Measuring Tool 9 will measure the nails of a user.

[0080] Additionally, the adhesive could be a rapid-curing adhesive such as cyanoacrylate, nail glue for artificial tips, the resin used for dip nails or fiberglass wraps, or household super glues. The adhesive can also be a medical grade biocompatible cyanoacrylates.

[0081] Other options include but are not limited to: 1) color pigments can be pre-mixed into 3D printing material; 2) the hard coating could be a gel polish or gel coating, which could be UV- cured, catalyst cured, or temperature cured, for example; 3) the artificial nails can be coated with a colored specialty rubber based insulating coating, for example a synthetic rubber or any artificial elastomer that is peelable, flexible, waterproof, non-slip, and insulating; 4) the artificial nails can be coated with a clear UV-curable gel coating that has added raw pigments that create the desired shade of color specified by the user; and, 5) the artificial nails could be made of material that is not soluble, such as metal, wood, precious gemstones, etc.