Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SOLUTIZING AGENTS
Document Type and Number:
WIPO Patent Application WO/2001/090245
Kind Code:
A1
Abstract:
The invention relates to solutizing agents containing (a) products of the addition of ethylene oxide to fatty alcohols, (b) products of the addition of ethylene oxide and propylene oxide to fatty alcohols, and (c) products of the addition of ethylene oxide to triglycerides.

Inventors:
CORBELLA ALBERTO (IT)
SOMIGLIANA CHRISTIAN (IT)
Application Number:
PCT/EP2001/005501
Publication Date:
November 29, 2001
Filing Date:
May 15, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COGNIS DEUTSCHLAND GMBH (DE)
CORBELLA ALBERTO (IT)
SOMIGLIANA CHRISTIAN (IT)
International Classes:
A61K8/30; A61K8/37; A61K8/39; A61K47/34; A61K8/86; A61K8/90; A61Q5/00; A61Q19/00; C08G65/26; C08G65/28; C08L71/02; C08L71/08; (IPC1-7): C08L71/02; A61K7/06; A61K7/48
Foreign References:
DE19824359A11999-12-02
US4832868A1989-05-23
US4155936A1979-05-22
Other References:
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 11 30 September 1999 (1999-09-30)
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03 31 March 1999 (1999-03-31)
Download PDF:
Claims:
Patentansprüche
1. Lösungsvermittler, enthaltend (a) Anlagerungsprodukte von Ethylenoxid an Fettalkohole, (b) Anlagerungsprodukte von Ethylenoxid und Propylenoxid an Fettalkohole, und (c) Anlagerungsprodukte von Ethylenoxid an Triglyceride.
2. Lösungsvermittler nach Anspruch 1, dadurch gekennzeichnet, dass sie als Kompo nente (a) Anlagerungsprodukte von Ethylenoxid an Fettalkohole der Formel (I) enthal ten, R"O(CHZCH20)"H (I) in der Rl für einen linearen oder verzweigten Alkylund/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen und n für Zahlen von 1 bis 20 steht.
3. Lösungsvermittler nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass sie als Komponente (a) Anlagerungsprodukte von durchschnittlich 5 bis 10 Mol E thylenoxid an Fettalkohole mit 12 bis 18 Kohlenstoffatome enthalten.
4. Lösungsvermittler nach mindestens einem der Ansprüche 1 bis 3, dadurch gekenn zeichnet, dass sie als Komponente (b) Anlagerungsprodukte von Ethylenoxid und Pro pylenoxid an Fettalkohole der Formel (II) enthalten, in der R2 für einen linearen oder verzweigten Alkylund/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, p für Zahlen von 1 bis 10 sowie ml und m2 unabhängig voneinan der für Zahlen von 0 bis 20 stehen, mit der Maßgabe, dass die Summe (ml+m2) un gleich 0 ist.
5. Lösungsvermittler nach mindestens einem der Ansprüche 1 bis 4, dadurch gekenn zeichnet, dass sie als Komponente (b) Anlagerungsprodukte von durchschnittlich 5 bis 10 Mol Ethylenoxid und 1 bis 2 Mol Propylenoxid an Fettalkohole mit 12 bis 18 Kohlen stoffatome enthalten.
6. Lösungsvermittler nach mindestens einem der Ansprüche 1 bis 5, dadurch gekenn zeichnet, dass sie als Komponente (c) Anlagerungsprodukte von durchschnittlich 20 bis 100 Mol Ethylenoxid an Triglyceride enthalten, deren Acylreste sich von Fettsäuren mit 6 bis 22 Kohlenstoffatomen ableiten.
7. Lösungsvermittler nach mindestens einem der Ansprüche 1 bis 6, dadurch gekenn zeichnet, dass sie als Komponente (c) Anlagerungsprodukte von durchschnittlich 30 bis 50 Mol Ethylenoxid an Castoröl oder dessen Härtungsprodukt enthalten.
8. Lösungsvermittler nach mindestens einem der Ansprüche 1 bis 7, dadurch gekenn zeichnet, dass sie (a) 30 bis 50 Gew.% Anlagerungsprodukte von Ethylenoxid an Fettalkohole, (b) 20 bis 40 Gew.% Anlagerungsprodukte von Ethylenoxid und Propylenoxid an Fett alkohole, und (c) 10 bis 30 Gew.% Anlagerungsprodukte von Ethylenoxid an Triglyceride mit der Maßgabe enthalten, dass sich die Mengenangaben gegebenenfalls zusammen mit Wasser zu 100 Gew.% ergänzen.
9. Lösungsvermittler nach mindestens einem der Ansprüche 1 bis 8, dadurch gekenn zeichnet, dass die Lösungsvermittler 1 bis 20 Gew.% Wasser enthalten.
10. Verwendung von Mischungen, enthaltend (a) Anlagerungsprodukte von Ethylenoxid an Fettalkohole, (b) Anlagerungsprodukte von Ethylenoxid und Propylenoxid an Fettalkohole, und (c) Anlagerungsprodukte von Ethylenoxid an Triglyceride als Lösungsvermittler zur Herstellung von kosmetischen und/oder pharmazeutischen Zu bereitungen.
Description:
Lösungsvermittler

Gebiet der Erfindung Die ErFindung befindet sich auf dem Gebiet der Kosmetik und betrifft neue Lösungsvermittler mit einem erhöhten Lösungsvermögen insbesondere für Parfümöle und UV-Lichtschutzfilter.

Stand der Technik Lipophile Stoffe, wie beispielsweise Vitamine, Parfümöle oder UV-Lichtscchutzfilter lassen sich vielfach nur schwer in kosmetische oder pharmazeutische Zubereitungen einarbeiten, insbesondere dann, wenn diese einen überwiegend polaren Charakter aufweisen. In solchen Fällen kommen Lösungsvermittler zum Einsatz, bei denen es sich um einzelne Stoffe oder Mischungen mit mittleren HLB-Werten handelt, die also gewissermaßen eine Brücke von der polaren Umgebung zum unpolaren Substrat bilden. Sehr effektive Hydrotrope stellen die Sulfonate kurzkettiger Alkylaromaten, wie z. B. Toluol-oder Cumolsulfonat dar, die wegen ihrer unzureichenden hautkosmetischen Verträglichkeit aber im Bereich der Kosmetik keine Bedeutung haben. Andere kosmetische Solubilisatoren, wie z. B. spezielle hydrophilisierte Öle, sind zwar hautverträglich, besitzen aber kein ausreichendes Lösungsvermögen und/oder ein schlechtes Kälteverhalten, d. h. zeigen schon bei Raumtemperatur die Tendenz zur Aus- trübung. Aus diesem Grunde besteht vor allem in der kosmetischen Industrie der Wunsch nach neuen Lösungsvermittlern, die frei von den oben geschilderten Nachteilen sind.

Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, neue Lösungsvermittler zur Verfügung zu stellen, die gegenüber den Produkten des Stands der Technik ein verbessertes Lösungsvermögen insbesondere gegenüber lipophilen Stoffen, wie z. B. Parfüm- ölen, Vitaminen, UV-Lichtschutzfilter und dergleichen aufweisen, dabei bei Raumtemperatur flüssig sind und einen Kältetrübungspunkt unterhalb von 10 °C aufweisen.

Beschreibung der Erfindung Gegenstand der Erfindung sind Lösungsvermittler, enthaltend (a) Anlagerungsprodukte von Ethylenoxid an Fettalkohole, (b) Anlagerungsprodukte von Ethylenoxid und Propylenoxid an Fettalkohole, und (c) Anlagerungsprodukte von Ethylenoxid an Triglyceride.

Überraschenderweise wurde gefunden, dass Zubereitungen der genannten Art gegenüber Produkten des Stands der Technik ein deutlich verbessertes Lösungsvermögen insbesondere gegenüber Parfümölen, Vitaminen und UV-Lichtschutzfiltern aufweisen. Ein weiterer Vorteil besteht darin, dass die Mischungen bei Raumtemperatur flüssig sind, sich daher leicht verar- beiten lassen und zudem einen Kältetrübungspunkt im gewünschten Bereich, nämlich unter 10 °C aufweisen.

Anlagerungsprodukte von Ethylenoxid an Fettalkohole Bei den Anlagerungsprodukten von Ethylenoxid an Fettalkohole, die als Komponente (a) in Frage kommen, handelt es sich um bekannten nichtionische Tenside vom Typ der Alkohol- polyethylenglycolether, die vorzugsweise der Formel (I) folgen, <BR> <BR> k'O(CH2CH20) nH<BR> (I) in der Ru für einen linearen oder verzweigten Alkyl-und/oder Alkenylrest mit 6 bis 22, vor- zugsweise 12 bis 18 Kohlenstoffatomen und n für Zahlen von 1 bis 20 steht. Die Herstellung der Produkte erfolgt großtechnisch durch basenkatalysierte Anlagerung von Ethylenoxid an die primäre Hydroxylfunktion der Alkohole, wobei in Abhängigkeit des gewähren Katalysa- tors Produkte mit einer konventionell breiten oder aber eingeschränkten Homologenvertei- lung resultieren. Typische beispiele sind die Anlagerungsprodukte von durchschnittlich 1 bis 20 und vorzugsweise 5 bis 10 Mol Ethylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylal- kohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petro- selinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoley- alkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mi-

schungen. Besonders bevorzugt ist der Einsatz von Anlagerungsprodukten von durchschnitt- lich 5 bis 10 Mol Ethylenoxid an Fettalkohole mit 12 bis 18 Kohlenstoffatome.

Anlagerungsprodukte von Ethylen-und Propylenoxid an Fettalkohole Bei den Anlagerungsprodukten von Ethylen-und Propylenoxid an Fettalkohole, welche die Komponente (b) bilden, handelt es sich um analoge Verbindungen zu den Stoffen der Grup- pe (a), die jedoch mindestens eine Propylenoxideinheit in der Polyetherkette aufweisen. Die Fettalkoholpolyethylen/polypropylenglycolether folgen vorzugsweise Formel (II), in der R2 für einen linearen oder verzweigten Alkyl-und/oder Alkenylrest mit 6 bis 22, vor- zugsweise 12 bis 18 Kohlenstoffatomen, p für Zahlen von 1 bis 10, vorzugsweise 1 bis 2 sowie ml und m2 unabhängig voneinander für Zahlen von 0 bis 20, vorzugsweise 2 bis 15 stehen, mit der Maßgabe, dass die Summe (ml+m2) ungleich 0 ist. Typische Beispiele sind die Anlagerungsprodukte von durchschnittlich 1 bis 20 Mol Ethylenoxid und 1 bis 10 Mol Propylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylal- kohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylafkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylal- kohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen. Bezogen auf die Polyetherkette können die Ethylen-und Propylenoxideinheiten dabei in Block-oder Randomverteilung vor- liegen ; vorzugsweise bilden Ethylenoxideinheiten der Abschluß der Polyetherkette. Besonders bevorzugt sind Anlagerungsprodukte von durchschnittlich 5 bis 10 Mol Ethylenoxid und 1 bis 2 Mol Propylenoxid an Fettalkohole mit 12 bis 18 Kohlenstoffatome.

Anlaaerungsprodukte von Ethylenoxid an Triglyceride Auch bei den Anlagerungsprodukten von Ethylenoxid an Triglyceride, die die Komponente (c) bilden, handelt es sich um bekannte nichtionische Tenside. In Frage kommen beispielsweise Anlagerungsprodukte von durchschnittlich 20 bis 100 und vorzugsweise 30 bis 50 Mol Ethy- lenoxid an Triglyceride, deren Acylreste sich von Fettsäuren mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen ableiten. Die Triglyceride können synthetischer Natur sein, vor-

zugsweise handelt es sich jedoch um natürliche, speziell pflanzliche Fette und Öle, die nach Raffination und gegebenenfalls Härtung mit Ethylenoxid umgesetzt werden. Die Ethoxylie- rung kann dabei durch Einschub von Ethylenoxid in die Carbonylestergruppe erfolgen, leich- ter und daher auch bevorzugt ist jedoch die Anlagerung an im Molekül vorhandene sekundä- re Hydroxylgruppen, weshalb Ricinusöl (Castoröl) sowie dessen Härtungsprodukt als Aus- gangsstoffe besonders bevorzugt sind. Aus anwendungstechnischer Sicht empfiehlt sich ins- besondere der Einsatz von Anlagerungsprodukten von durchschnittlich 30 bis 50 Mol Ethy- lenoxid an Castoröl oder dessen Härtungsprodukt.

Lösungsvermittler In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die Lösungs- vermittler (a) 30 bis 50, vorzugsweise 35 bis 45 Gew.-% Anlagerungsprodukte von Ethylenoxid an Fettalkohole, (b) 20 bis 40, vorzugsweise 25 bis 35 Gew.-% Anlagerungsprodukte von Ethylenoxid und Propylenoxid an Fettalkohole, und (c) 10 bis 30,15 bis 25 Gew.-% Anlagerungsprodukte von Ethylenoxid an Triglyceride mit der Maßgabe, dass sich die Mengenangaben gegebenenfalls zusammen mit Wasser zu 100 Gew.-% ergänzen. Der Wassergehalt der Mischungen liegt üblicherweise im Bereich von 1 bis 20, vorzugsweise 5 bis 15 Gew.-%.

Gewerbliche Anwendbarkeit Ein weiterer Gegenstand der Erfindung betrifft die Verwendung von Mischungen, enthaltend (a) Anlagerungsprodukte von Ethylenoxid an Fettalkohole, (b) Anlagerungsprodukte von Ethylenoxid und Propylenoxid an Fettalkohole, und (c) Anlagerungsprodukte von Ethylenoxid an Triglyceride als Lösungsvermittler zur Herstellung von kosmetischen und/oder pharmazeutischen Zube- reitungen, in denen sie in Mengen von 1 bis 20, vorzugsweise 3 bis 15 und insbesondere 5 bis 10 Gew.-% enthalten sein können.

Kosmetische und/oder pharmazeutische Zubereitungen Die erfindungsgemäßen Lösungsvermittler können zur Herstellung von kosmetischen und/oder pharmazeutischen Zubereitungen, wie beispielsweise Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Mund-und Zahnpflegemittel, Cremes, Gele, Lotionen, alkohol- sche und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/Fett-Massen, Stiftpräparaten, Pudern oder Salben dienen. Diese Mittel können ferner als weitere Hilfs-und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, UV-Lichtschutzfaktoren, Antioxidantien, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentierungsmittel), Co-Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten.

Tenside A) s oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder ampho- tere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsul- fonate, Alkylethersulfonate, Glycerinethersulfonate, a-Methylestersulfonate, Sulfofett-säuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hy- droxymischethersulfate, Monoglycerid (ether) sulfate, Fettsäureamid (ether) sulfate, Mono-und Dialkylsulfosuccinate, Mono-und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, E- thercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretau- ride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanz- liche Produkte auf Weizenbasis) und Alkyl (ether) phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycol-ester, Fett- säureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw.

Mischformale, gegebenenfalls partiell oxidierte Alk (en) yloligoglykoside bzw. Glucoronsäure- derivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxi- de. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine

konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typi- sche Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispiels- weise das Dimethyidistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazo- liniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf ein- schlägige Übersichtsarbeiten beispielsweise J. Falbe (ed.),"Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder JFalbe (ed.),"Katalysa- toren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123- 217 verwiesen. Typische Beispiele für besonders geeignete milde, d. h. besonders hautver- tägliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, a-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglu- camide, Alkylamidobetaine, Amphoacetate und/oder Proteinfettsäurekonden-sate, letztere vorzugsweise auf Basis von Weizenproteinen. polkörper Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit li- nearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-C13- Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z. B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristyle- rucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, I- sostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleyl- palmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmy- ristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Cl8-C38-Alkylhy- droxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen (vgl. DE 19756377 A1), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z. B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder

Guerbetalkoholen, Triglyceride auf Basis C6-Cio-Fettsäuren, flüssige Mono-/Di- /Triglyceridmischungen auf Basis von C6-Ct8-Fettsäuren ; Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Cl2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Koh- lenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und ver- zweigte C6-C22-Fettalkoholcarbonate, wie z. B. Dicaprylyl Carbonate (Cetiol CC), Guer- betcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z. B. Finsolve TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z. B. Dicaprylyl Ether (Cetiol (D OE), Ringöffnungs- produkte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Silici- ummethicontypen u. a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z. B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.

Emulgatoren Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage : > Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest ; > Alkyl-und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk (en) ylrest und deren ethoxylierte Analoga ; Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Rizinusöl ; Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl ; Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid ; Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polye- thylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zucker- alkoholen (z. B. Sorbit), Alkylglucosiden (z. B. Methylglucosid, Butylglucosid, Laurylgluco-

sid) sowie Polyglucosiden (z. B. Cellulose) mit gesättigten und/oder ungesättigten, linea- ren oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycar- bonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethy- lenoxid ; > Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.

> Mono-, Di-und Trialkylphosphate sowie Mono-, Di-und/oder Tri-PEG-alkylphosphate und deren Salze ; > Wollwachsalkohole ; > Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate ; > Block-Copolymere z. B. Polyethylenglycol-30 Dipolyhydroxystearate ; > Polymeremulgatoren, z. B. Pemulen-Typen (TR-1, TR-2) von Goodrich ; > Polyalkylenglycole sowie > Glycerincarbonat.

Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fett- säuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar.

Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Ver- hältnis der Stoffmengen von Ethylenoxid und/oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Clziis-Fettsäuremono-und-diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfet- tungsmittel für kosmetische Zubereitungen bekannt.

Alkyl-und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glu- cose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüg- lich des Giycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oli- gomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homolo- genverteilung zugrunde liegt.

Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Öl- säuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linol- <BR> <BR> säuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid,

Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglyce- rid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfelsäuremonoglycerid, Äpfelsäure- diglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungs- produkte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Par- tialglyceride.

Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandii- sostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrieru- cat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricino- leat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesquitartrt, Sorbitanditartrat, Sor- bitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugs- weise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.

Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehymuls0 PGPH), Polyglycerin-3-Diisostearate (Lameforme TGI), Polyglyceryl-4 Isostea- rate (Isolane GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Iso- land3 PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care@ 450), Polyglyceryl-3 Bees- wax (Cera Bellina@), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexanee NL), Polyglyceryl-3 Distearate (Cremophore GS 32) und Polyglyce- ryl Polyricinoleate (Admule WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemi- sche. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di-und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Talgfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behen- säure und dergleichen.

Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterio- nische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat-und eine Sul- fonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Be- taine wie die N-Alkyl-N, N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldi- methylammoniumglycinat, N-Acylaminopropyl-N, N-dimethylammoniumglycinate, bei- spielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-car-

boxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl-oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäu- reamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/18-Alkyl-oder-Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine-COOH-oder-S03H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylamino- propionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkyl- aminopropionat, das Kokosacylaminoethylaminopropionat und das C, 2/18-Acylsarcosin.

Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester-Salze, be- sonders bevorzugt sind.

Fette und Wachse Typische Beispiele für Fette sind Glycerid, d. h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u. a. natürliche Wachse, wie z. B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohr- wachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Woll- wachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse ; chemisch modifizierte Wachse (Hartwachse), wie z. B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z. B. Polyalkylenwachse und Polye- thylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine ver- steht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC) bezeichnet. Als Beispiele für natürliche Lecithine seien die Kephalin genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1, 2-Diacyl-sn-glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono-und vorzugsweise Diester der Phosphorsäure mit Glycerin

(Glycerinphosphate), die aligemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.

Periglanzwachse Als Perlglanzwachse kommen beispielsweise in Frage : Alkylenglycolester, speziell Ethylengly- coldistearat ; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid ; Partialglyceride, speziell Stearinsäuremonoglycerid ; Ester von mehrwertigen, gegebenenfalls hydroxysubsti- tuierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure ; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, spe- ziell Lauron und Distearylether ; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Be- hensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoff- atomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.

Konsistenzgener und Verdickungsmittel Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkylo- ligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Po- lyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil- Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono-und-diester von Fettsäuren, Polyacrylate, (z. B.

Carbo, oolet und Pemulen-Typen von Goodrich ; Synthalenee von Sigma ; Keltrol-Typen von Kelco ; Sepigel-Typen von Seppic ; Salcare-Typen von Allied Colloids), Polyacrylamide, Poly- mere, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fett- säureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Tri- methylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloli- goglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.

Überfettungsmittel Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin-und Lecithinderivate, Polyolfettsäureester, Monogly- ceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.

Stabilisatoren Als Stabilisatoren können Metallsalze von Fettsäuren, wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat bzw.-ricinoleat eingesetzt werden.

Polymere Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z. B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400e von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Ac- rylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z. B. Luviquats (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryidimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat@L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z. B. Amo- dimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretineo/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquate3 550/Chemviron), Polyaminopolyamide, wie z. B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie bei- spielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensations- produkte aus Dihalogenalkylen, wie z. B. Dibrombutan mit Bisdialkylaminen, wie z. B. Bis- Dimethylamino-1, 3-propan, kationischer Guar-Gum, wie z. B. Jaguar@ CBS, Jaguar@ C-17, Jaguar@ C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z. B. Mirapole A-15, Mirapole AD-1, Mirapole AZ-1 der Firma Miranol.

Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielswei- se Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylace- tat/Butylmaleat/Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copoly- mere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamido- propyltrimethylammoniumchlorid/Acrylat-Copolymere, Octylacrylamid/Methylmethacry- lat/tert. Butylaminoethylmethacrylat/2-Hydroxyproylmethacrylat-Copolym ere, Polyvinylpyrro-

lidon,Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/Dimethylaminoethylmethacry- lat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cosmetics & Toiletries Vol. 108, Mai 1993, Seite 95ff aufgeführt.

Siliconverbindungen Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpoly- siloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, gly- kosid-und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüs- sig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicate handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm. Toil."27 (1976).

UV-Lichtschutzfilter und Antioxidantien Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z. B. Wärme wieder abzugeben. UVB-Filter können öiiösiich oder wasserlöslich sein. Als öllösliche Substanzen sind z. B. zu nennen : 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z. B. 3- (4- Methylbenzyliden) campher wie in der EP 0693471 B1 beschrieben ; P 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino) benzoesäure-2-ethylhexyl- ester, 4-(Dimethylamino) benzoesäure-2-octylester und 4-(Dimethylamino) benzoesäure- amylester ; Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4- Methoxyzimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimt- säure-2-ethylhexylester (Octocrylene) ; Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4- isopropylbenzylester, Salicylsäurehomomenthylester ;

> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon ; > Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexyl- ester ; > Triazinderivate, wie z. B. 2,4,6-Trianilino- (p-carbo-2-ethyl-r-hexyloxy)-1,3,5-triazin und Octyl Triazon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorbe HEB) ; > Propan-1, 3-dione, wie z. B. 1- (4-tert. Butylphenyl)-3- (4methoxyphenyl) propan-1, 3-dion ; > Ketotricyclo (5.2.1.0) decan-Derivate, wie in der EP 0694521 B1 beschrieben.

Als wasserlösliche Substanzen kommen in Frage : > 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylam- monium-, Alkanolammonium-und Glucammoniumsalze ; > Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo- phenon-5-sulfonsäure und ihre Salze ; > Sulfonsäurederivate des 3-Benzylidencamphers, wie z. B. 4- (2-Oxo-3-bornylidenme- thyl) benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden) sulfonsäure und deren Salze.

Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4-tert. Butylphenyl)-3-(4-methoxyphenyl) propan-1, 3-dion, 4-tert.-Butyl-4- methoxydibenzoylmethan (Parsol 1789), 1-Phenyl-3- (4-isopropylphenyl)-propan-1, 3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate des Benzoylmethans"z. B. 4-tert.-Butyl- 4-methoxydibenzoylmethan (Parsol 1789) und 2-Cyano-3, 3-phenylzimtsäure-2-ethylhexyl- ester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4-Methoxy- zimtsäure-2-ethylhexylester und/oder 4-Methoxyzimtsäurepropylester und/oder 4-Meth- oxyzimtsäureisoamylester. Vorteilhaft werden derartige Kombinationen mit wasserlöslichen Filtern wie z. B. 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium- Alkylammonium-, Alkanolammonium-und Glucammoniumsalze kombiniert.

Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Licht- schutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeig- nete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze kön- nen Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze

werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und deko- rative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weni- ger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoid oder in sonstiger Weise von der sphäri- schen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d. h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandi- oxide, wie z. B. Titandioxid T 805 (Degussa) oder EusolexS T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro-oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P. Finkel in SÖFW-Journal 122, 543 (1996) sowie Parf. Kosm. 1 (1999) zu entnehmen.

Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut ein- dringt. Typische Beispiele hierfür sind Aminosäuren (z. B. Glycin, Histidin, Tyrosin, Tryp- tophan) und deren Derivate, Imidazole (z. B. Urocaninsäure) und deren Derivate, Peptide wie D, L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z. B. Anserin), Carotinoide, Caroti- ne (z. B. a-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Deri- vate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure), Aurothioglucose, Propylthiou- racil und andere Thiole (z. B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl-und Lauryl-, Palmitoyl-, Oleyl-, y- Linoleyl-, Cholesteryl-und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distea- rylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr ge- ringen verträglichen Dosierungen (z. B. pmol bis, umol/kg), ferner (Metall)-Chelatoren (z. B. a-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), a-Hydroxysäuren (z. B. Citro- nensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Bili- verdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z. B. y-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z. B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z. B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Deri- vate, a-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butyl-

hydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophe- non, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z. B. ZnO, ZnS04) Selen und dessen Derivate (z. B. Selen- Methionin), Stilbene und deren Derivate (z. B. Stilbenoxid, trans-Stilbenoxid) und die erfin- dungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Pep- tide und Lipide) dieser genannten Wirkstoffe.

Biogene Wirkstoffe Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherol- palmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzen- extrakte und Vitaminkomplexe zu verstehen.

Deodorantien und keimhemmende Mittel Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dement- sprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibito- ren, Geruchsabsorber oder Geruchsüberdecker fungieren. Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4- Hydroxybenzoesäure und ihre Salze und Ester, N- (4-Chlorphenyl)-N'- (3, 4 dichlorphenyl)- harnstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3, 5-dimethyl-phenol, 2,2 -Methylen-bis (6-brom-4-chlorphenol), 3-Methyl-4- (1-methylethyl)-phenol, 2-Benzyl-4- chlorphenol, 3- (4-Chlorphenoxy)-1, 2-propandiol, 3-Iod-2-propinylbutyl-carbamat, Chlorhexi- din, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, <BR> <BR> Nelkenöl,Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonocaprinat, Glycerinmono- caprylat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N- alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.

Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagene CAT, Henkel KGaA, Düssel- dorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbil-

dung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin-und Sitosterinsulfat bzw-phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutar- säure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremono- ethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarb- nonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat.

Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfums unbe- einträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als"Fixateure"bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wur- zeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen.

Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum.

Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Al- dehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa- licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die line- aren Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsäch- lich die Terpene und Balsam. Bevorzugt werden jedoch Mischungen verschiedener Riech- stoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lin- denblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandi- nöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Pheny- lethylalkohol, o-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boi-

sambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Flo- ramat allein oder in Mischungen, eingesetzt.

Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkri- nen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typi- scherweise folgende Inhaltsstoffe : >adstringierende Wirkstoffe,<BR> >Ölkomponenten, > nichtionische Emulgatoren, > Coemulgatoren, > Konsistenzgeber, > Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder > nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.

Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z. B.

Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquich- lorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1, 2. Aluminiumhydroxy- allantoinat, Aluminiumchloridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium- Zirkonium-tetrachlorohydrat, Aluminium-Zirkonium-pentachlorohydrat und deren Komplex- verbindungen z. B. mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien üb- liche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z. B. sein : > entzündungshemmende, hautschützende oder wohlriechende ätherische Öle, > synthetische hautschützende Wirkstoffe und/oder öllösliche Parfümöle.

Übliche wasserlösliche Zusätze sind z. B. Konservierungsmittel, wasserlösliche Duftstoffe, pH- Wert-Stellmittel, z. B. Puffergemische, wasserlösliche Verdickungsmittel, z. B. wasserlösliche natürliche oder synthetische Polymere wie z. B. Xanthan-Gum, Hydroxyethylcellulose, Polyvi- nylpyrrolidon oder hochmolekulare Polyethylenoxide.

Filmbildner Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quater- niertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Sal- ze und ähnliche Verbindungen.

Antischuppenwirkstoffe Als Antischuppenwirkstoffe kommen Pirocton Olamin (1-Hydroxy-4-methyl-6- (2, 4,4- trimythylpentyl)-2- (lH)-pyridinonmonoethanolaminsalz), Baypivalp (Climbazole), Ketocona- <BR> <BR> zoos,(4-Acetyl-1- {-4- [2- (2. 4-dichlorphenyl) r-2- (lH-imidazol-1-ylmethyl)-1, 3-dioxylan-c-4-<BR> ylmethoxyphenyl} piperazin, Ketoconazol, Elubiol, Selendisulfid, Schwefel kolloidal, Schwefel- polyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel-teer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexylensäure Monoethanolamid Sulfosuccinat Na-Salz, Lamepone UD (Protein-Undecylensäurekondensat), Zinkpyrithion, Aluminiumpyrithion und Magnesiumpyrithion/Dipyrithion-Magnesiumsulfat in Frage.

Quellmittel Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen so- wie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw.

Quellmittel können der Übersicht von R. Lochhead in Cosm. Toil. 108,95 (1993) entnom- men werden.

Insekten-Repellentien Als Insekten-Repellentien kommen N, N-Diethyl-m-toluamid, 1,2-Pentandiol oder Ethyl Buty- lacetylaminopropionate in Frage

Selbstbräuner und Depigmentierunqsmittel Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispiels- weise Arbutin, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage.

Hydrotrope Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, be- sitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind > Glycerin ; Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Buty- lenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Moleku- largewicht von 100 bis 1.000 Dalton ; technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-% ; > Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethy- lolbutan, Pentaerythrit und Dipentaerythrit ; > Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl-und Butylglucosid ; > Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit, > Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose ; > Aminozucker, wie beispielsweise Glucamin ; > Dialkoholamine, wie Diethanolamin oder 2-Amino-t, 3-propandiol.

Konservierungsmittel Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikver- ordnung aufgeführten weiteren Stoffklassen.

Parfümöle Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Na- türliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang- Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Ange- lica, Sellerie, Kardamon, Costus, Iris, Camus), Hölzern (Pinien-, Sande-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie bei- spielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Pro- dukte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riech- stoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Lina- lylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropi- onat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Alde- hyden z. B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronel- lyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Keto- nen z. B. die Jonone, a-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsam. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aro- makomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, <BR> <BR> Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, a-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzy- acetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.

Farbstoffe Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation"Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Che- mie, Weinheim, 1984, S. 81-106 zusammengestellt sind. Diese Farbstoffe werden üb- licherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mi- schung, eingesetzt.

Der Gesamtanteil der Hilfs-und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-%- bezogen auf die Mittel-betragen. Die Herstellung der Mittel kann durch übliche Kalt-oder Heißprozesse erfolgen ; vorzugsweise arbeitet man nach der Phaseninversionstemperatur- Methode.

Beispiele Zur Überprüfung des Lösungsvermögen wurden 10 g Lösungsvermittler solange mit ver- schiedenen Testsubstanzen versetzt, bis die Löslichkeitsgrenze erreicht wurde. Die Ergebnis- se sind in Tabelle 1 zusammengefaßt. Beispiel 1 ist erfindungsgemäß, die Beispiele V1 und V2 dienen zum Vergleich.

Tabelle 1 Lösungsvermögen (Mengenangaben als Gew-%) ens ung/l h i t L. l Zusa keit 1 : :'/ Cocoeth-8 40 100 PPG1-PEG9Lauryl Glycol Ether 30 PEG-40 Hydrogenated Castor Oil 20 100 Wasser 10 Löslichkeit/10 Lösungsvermittlerl Citrus Bergamia 3, 15 1, 00 0, 90 Citrus Sinensis 5 88 0 65 0 55 Citrus Limonum 1, 70 0, 70 0, 71 Menthol 4 80 1 10 1 05 Thymus 1, 60 0, 66 0, 68 Triticum Vulgare 0, 90 0, 05 0, 04 Geranium 12, 5 1, 12 1, 10 Mentha 7, 14 1, 40 1, 20 Tocopheryl Acetate 3, 85 0, 66 0, 70 Tocopherol 0, 90 0, 40 0, 50 Persea Gratissima 0, 72 < 0105 < 0, 05 Ricinus Communis 0, 42 < 0,05 < 0, 05 Placentalipo 11, 1 Zantzix Oil 9,00 1 12 0 90 Tea Tree Oil 2, 80 0, 95 0, 90 Citronella 1, 20 0, 22 0, 30 I Benzophenone-3 0, 44 0, 40 0, 20 Octyl Methoxycinnamate 1, 60 0 45 0, 60 Isoamyl Methoxycinnamate 1, 10 0, 60 0, 70 4-Methylbenzylidene Camphor 1, 10 0, 50 0, 38