Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SPARC ASSAY
Document Type and Number:
WIPO Patent Application WO/2019/121345
Kind Code:
A1
Abstract:
The present invention relates to an assay for detecting secreted proteome acidic and rich in cysteine (SPARC), and more specifically to its use in evaluating lung cancer.

Inventors:
KEHLET STEPHANIE (DK)
ØRSNES-LEEMING DIANA (DK)
KARSDAL MORTEN (DK)
Application Number:
PCT/EP2018/084841
Publication Date:
June 27, 2019
Filing Date:
December 13, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NORDIC BIOSCIENCE AS (DK)
International Classes:
G01N33/574; C07K16/18
Domestic Patent References:
WO2011123395A12011-10-06
Foreign References:
US20110319405A12011-12-29
Other References:
YAN HUANG ET AL: "SPARC expression and prognostic value in non-small cell lung cancer", AIZHENG - CHINESE JOURNAL OF CANCER, 10 October 2012 (2012-10-10), CN, XP055559768, ISSN: 1000-467X, DOI: 10.5732/cjc.012.10212
ZHIPING ZHANG ET AL: "Correlation of KLF4 and SPARC expression with the clinical characteristics of non-small cell lung cancer", ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER, 1 December 2012 (2012-12-01), China, pages 720 - 724, XP055559772, Retrieved from the Internet [retrieved on 20190220], DOI: 10.3779/j.issn.1009-3419.2012.12.05
LANE TF; SAGE EH: "The biology of SPARC, a protein that modulates cell-matrix interactions", FASEB J., vol. 8, 1994, pages 163 - 73
BRADSHAW AD: "The role of SPARC in extracellular matrix assembly", JOURNAL OF CELL COMMUNICATION AND SIGNALING, vol. 3, 2009, pages 239 - 46
BREKKEN RA; SAGE EH: "SPARC, a matricellular protein: at the crossroads of cell-matrix", MATRIX BIOLOGY, vol. 19, 2000, pages 569 - 80, XP027377946
CHIODONI C; COLOMBO MP; SANGALETTI S: "Matricellular proteins: From homeostasis to inflammation, cancer, and metastasis", CANCER AND METASTASIS REVIEWS, vol. 29, 2010, pages 295 - 307, XP019815060
YAN Q; SAGE EH: "SPARC, a Matricellular Glycoprotein with Important Biological Functions", J HISTOCHEM CYTOCHEM, vol. 47, 1999, pages 1495 - 505, XP001024996
EMERSON RO; SAGE EH; GHOSH JG; CLARK JI: "Chaperone-like activity revealed in the matricellular protein SPARC", J CELL BIOCHEM., vol. 98, 2006, pages 701 - 5
ROSSET EM; BRADSHAW AD: "SPARC/osteonectin in mineralized tissue", MATRIX BIOLOGY, vol. 52-54, 2016, pages 78 - 87, XP029544408, DOI: doi:10.1016/j.matbio.2016.02.001
BRADSHAW AD; BAICU CF; RENTZ TJ; VAN LAER AO; BOGGS J; LACY JM ET AL.: "Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: Role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing", CIRCULATION, vol. 119, 2009, pages 269 - 80
BRADSHAW AD; PUOLAKKAINEN P; DASGUPTA J; DAVIDSON JM; WIGHT TN: "Sage EH. SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength", J INVEST DERMATOL, vol. 120, 2003, pages 949 - 55
DELANY AM; AMLING M; PRIEMEL M; HOWE C; BARON R; CANALIS E: "Osteopenia and decreased bone formation in osteonectin-deficient mice", J CLIN INVEST, vol. 105, 2000, pages 915 - 23
RENTZ TJ; POOBALARAHI F; BORNSTEIN P; SAGE EH; BRADSHAW AD: "SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts", J BIOL CHEM., vol. 282, 2007, pages 22062 - 71
TROMBETTA-ESILVA J.: "The Function of SPARC as a Mediator of Fibrosis", OPEN RHEUMATOL J., vol. 6, 2012, pages 146 - 55
TROMBETTA JM; BRADSHAW AD; JOHNSON RH: "SPARC/Osteonectin Functions to Maintain Homeostasis of the Collagenous Extracellular Matrix in the Periodontal Ligament", J HISTOCHEM CYTOCHEM, vol. 58, 2010, pages 871 - 9
SASAKI T; GOHRING W; MANN K; MAURER P; HOHENESTER E; KNAUPER V ET AL.: "Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens", J BIOL CHEM., vol. 272, 1997, pages 9237 - 43
SASAKI T; MIOSGE N; TIMPL R: "Immunochemical and tissue analysis of protease generated neoepitopes of BM-40 (osteonectin, SPARC) which are correlated to a higher affinity binding to collagens", MATRIX BIOL., vol. 18, 1999, pages 499 - 508
GILLES C; BASSUK J A; PULYAEVA H; SAGE EH; FOIDART JM; THOMPSON EW: "SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines", CANCER RES., vol. 58, 1998, pages 5529 - 36
JACOB K; WEBBER M; BENAYAHU D; KLEINMAN HK: "Osteonectin promotes prostate cancer cell migration and invasion: A possible mechanism for metastasis to bone", CANCER RES., vol. 59, 1999, pages 4453 - 7, XP008148451
TREMBLE PM; LANE TF; SAGE EH; WERB Z: "SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway", J CELL BIOL., vol. 121, 1993, pages 1433 - 44
SANGALETTI S; TRIPODO C; CAPPETTI B; CASALINI P; CHIODONI C; PICONESE S ET AL.: "SPARC oppositely regulates inflammation and fibrosis in bleomycin-induced lung damage", AM J PATHOL., vol. 179, 2011, pages 3000 - 10
STRANDJORD TP; MADTES DK; WEISS DJ; SAGE EH: "Collagen accumulation is decreased in SPARC-null mice with bleomycin-induced pulmonary fibrosis", AM J PHYSIOL., vol. 277, no. 3, 1999, pages L628 - 35, Retrieved from the Internet
WANG J-C; LAI S; GUO X; ZHANG X; DE CROMBRUGGHE B; SONNYLAL S ET AL.: "Attenuation of fibrosis in vitro and in vivo with SPARC siRNA", ARTHRITIS RES THER., vol. 12, 2010, pages 1 - 9
PICHLER RH; HUGO C; SHANKLAND SJ; REED MJ; BASSUK JA; ANDOH TF ET AL.: "SPARC is expressed in renal interstitial fibrosis and in renal vascular injury", KIDNEY INT., vol. 50, 1996, pages 1978 - 89
CAMINO AM; ATORRASAGASTI C; MACCIO D; PRADA F; SALVATIERRA E; RIZZO M ET AL.: "Adenovirus-mediated inhibition of SPARC attenuates liver fibrosis in rats", J GENE MED, vol. 10, 2008, pages 993 - 1004, XP008161886, DOI: doi:10.1002/jgm.1228
NEUZILLET C; TIJERAS-RABALLAND A; CROS J; FAIVRE S; HAMMEL P; RAYMOND E: "Stromal expression of SPARC in pancreatic adenocarcinoma", CANCER AND METASTASIS REVIEWS, vol. 32, 2013, pages 585 - 602, XP035326393, DOI: doi:10.1007/s10555-013-9439-3
WONG SLI; SUKKAR MB: "The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease", BR J PHARMACOL, vol. 174, 2017, pages 3 - 14
FRIZELL E; LIU SL; ABRAHAM A; OZAKI I; EGHBALI M; HELENE SAGE E ET AL.: "Expression of SPARC in normal and fibrotic livers", HEPATOLOGY, vol. 21, 1995, pages 847 - 54
KUHN C; MASON RJ: "Immunolocalization of SPARC, tenascin, and thrombospondin in pulmonary fibrosis", AM J PATHOL, vol. 147, 1995, pages 1759 - 69
LEEMING D; HE Y; VEIDAL S; NGUYEN Q; LARSEN D; KOIZUMI M ET AL.: "A novel marker for assessment of liver matrix remodeling: An enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M", BIOMARKERS, vol. 16, 2011, pages 616 - 28
COMBET C; BLANCHET C; GEOURJON C; DELEAGE G: "NPS@: network protein sequence analysis", TRENDS BIOCHEM SCI, vol. 25, 2000, pages 147 - 50, XP004202549, Retrieved from the Internet DOI: doi:10.1016/S0968-0004(99)01540-6
GEFTER ML; MARGULIES DH; SCHARFF MD: "A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells", SOMATIC CELL GENET, vol. 3, 1977, pages 231 - 6, XP009510277, DOI: doi:10.1007/BF01551818
Attorney, Agent or Firm:
BECK GREENER LLP (GB)
Download PDF:
Claims:
CLAIMS

1. A method of immunoassay for detecting and/or monitoring progression of lung cancer in a patient, the method comprising contacting a patient biofluid sample with a monoclonal antibody specifically reactive with an N- terminus amino acid sequence LLARDFEKNY (SEQ ID NO:l), wherein the monoclonal antibody does not specifically recognise or bind an N-extended elongated version of said N-terminus amino acid sequence or an N-truncated shortened version of said N-terminus amino acid

sequence, determining the amount of binding between said monoclonal antibody and peptides comprising said N-terminus amino acid sequence, and correlating said amount of binding with values associated with normal healthy subjects and/or values associated with known lung cancer severity and/or values obtained from said patient at a previous time point and/or a predetermined cut-off value.

2. The method as claimed in claim 1, wherein the

predetermined cut-off value is at least 9.0 ng/mL.

3. The method of claims 1 or 2, wherein the patient

biofluid sample is blood, urine, synovial fluid, serum or plasma.

4. The method of claims 1 to 3, wherein the immunoassay is a competition assay or a sandwich assay.

5. The method of claims 1 to 4, wherein the immunoassay is an enzyme-linked immunosorbent assay or a

radioimmunoassay .

6. A method for determining whether a patient is

responding positively to a treatment for lung cancer, wherein said method comprises using the method of claims 1 to 5 to quantify the amount of peptides comprising the N-terminus amino acid sequence

LLARDFEKNY (SEQ ID NO: 1) in at least two biological samples, said biological samples having been obtained from said patient at a first time point and at at least one subsequent time point during a period of

administration of the treatment to said patient, and wherein a reduction in the quantity of peptides

comprising the N-terminus amino acid sequence

LLARDFEKNY (SEQ ID NO: 1) from said first time point to said at least one subsequent time point during the period of treatment is indicative of said patient responding positively to said treatment.

7. A method of immunoassay for detecting and/or monitoring progression of idiopathic pulmonary fibrosis (IPF) in a patient, the method comprising contacting a patient biofluid sample with a monoclonal antibody specifically reactive with an N-terminus amino acid sequence

LLARDFEKNY (SEQ ID NO: 1), wherein the monoclonal antibody does not specifically recognise or bind an N- extended elongated version of said N-terminus amino acid sequence or an N-truncated shortened version of said N-terminus amino acid sequence, determining the amount of binding between said monoclonal antibody and peptides comprising said N-terminus amino acid

sequence, and correlating said amount of binding with values associated with normal healthy subjects and/or values associated with known IPF severity and/or values obtained from said patient at a previous time point and/or a predetermined cut-off value.

8. The method of claim 7, wherein the patient biofluid

sample is blood, urine, synovial fluid, serum or plasma .

9. The method of claims 7 or 8, wherein the immunoassay is a competition assay or a sandwich assay.

10. The method of claims 7 to 9, wherein the immunoassay is an enzyme-linked immunosorbent assay or a

radioimmunoassay .

Description:
SPARC Assay

Field of the Invention

The present invention relates to an assay for detecting secreted proteome acidic and rich in cysteine (SPARC) , and more specifically to its use in evaluating lung cancer.

Background Art

Secreted proteome acidic and rich in cysteine (SPARC) , also referred to as osteonectin or basement membrane protein 40 (BM-40), is a 32-kDa matricellular protein regulating

extracellular matrix (ECM) assembly and deposition, growth factor signaling and interactions between cells and their surrounding ECM [1,2] . The expression of SPARC is elevated during embryonic development and is decreased in normal adult tissues. However, its expression is increased in

epithelial/endothelial cells with a high ECM turnover, during abnormal tissue growth associated with neoplasia and during tissue injury and inflammation, highlighting the importance of SPARC in tissue remodeling [3-5] .

SPARC has been shown to have chaperone like activity by inhibiting thermal aggregation of alcohol dehydrogenase in a concentration-dependent manner [6]. Furthermore, several studies have shown that SPARC binds different collagens in the ECM and is important for correct collagen deposition and assembly [7-13] . The chaperone activity of SPARC is regulated by different factors. A moderate extracellular concentration of Ca 2+ has been shown to be necessary for binding of SPARC to its ECM partners. The presence of extracellular proteases is another important switch in the regulation of its collagen binding activity. Studies have shown that different metalloproteinases (MMP's) can cleave SPARC at a specific site which increases the affinity for collagens up to 20-fold [14, 15] . Interestingly, SPARC has been shown to increase the expression of MMP's in fibroblasts [16-18] causing a positive feedback loop. If this feedback mechanism becomes

uncontrolled, it might be involved in the pathology of fibrotic disorders with increased collagen deposition.

Fibrosis is a part of the pathology and/or an end-point in many diseases such as cancer, hypertension, liver cirrhosis and fibrotic lung disorders. Fibrosis is characterized by an increased deposition of ECM, including collagens, which interferes with normal tissue function leading to organ failure. SPARC is known to be an important factor for fibrogenesis [19-23]. Wild-type mice with bleomycin induced pulmonary fibrosis have been shown to have an increased amount of collagens within the lungs compared to SPARC-null mice suggesting a higher fibrotic response occurring when SPARC is present [19, 20] . Furthermore, SPARC expression has been shown to be upregulated in fibrosis and cancer [24-27] .

Summary of the invention

The present inventors have now developed a highly sensitive SPARC assay that correlates, to a high degree, with patients suffering from lung cancer. The assay can distinguish between lung cancer and other fibrotic diseases and thus shows excellent diagnostic utility in the evaluation of lung cancer. The assay has also been found to have promising utility in the evaluation of idiopathic pulmonary fibrosis (IPF) . Accordingly, in a first aspect the present invention relates to a method of immunoassay for detecting and/or monitoring the progression of lung cancer in a patient, the method comprising contacting a patient biofluid sample with a monoclonal antibody specifically reactive with an N-terminus amino acid sequence LLARDFEKNY (SEQ ID NO: 1), wherein the monoclonal antibody does not specifically recognise or bind an N-extended elongated version of said N-terminus amino acid sequence or an N-truncated shortened version of said N- terminus amino acid sequence, determining the amount of binding between said monoclonal antibody and peptides

comprising said N-terminus amino acid sequence, and

correlating said amount of binding with values associated with normal healthy subjects and/or values associated with known lung cancer severity and/or values obtained from said patient at a previous time point and/or a predetermined cut off value.

As noted above, the monoclonal antibody does not specifically recognise or bind an N-extended elongated version of said N- terminus amino acid sequence or an N-truncated shortened version of said N-terminus amino acid sequence. In this regard "N-extended elongated version of said N-terminus amino acid sequence" means one or more amino acids extending beyond the N-terminus of the sequence H2N-LLARDFEKNY (SEQ ID NO: 1) . For example, if the N-terminal amino acid sequence ¾N- LLARDFEKNY (SEQ ID NO: 1) was elongated by a glutamic acid residue then the corresponding "N-extended elongated version" would be H 2 N-ELLARDFEKNY (SEQ ID NO: 2) . Similarly, "N- truncated shortened version of said N-terminus amino acid sequence" means one or more amino acids removed from the N- terminus of the sequence H2N-LLARDFEKNY (SEQ ID NO: 1) . For example, if the N-terminal amino acid sequence H2N-LLARDFEKNY (SEQ ID NO: 1) was shortened by one amino acid residue then the corresponding "N-truncated shortened version" would be H 2 N-LARDFEKNY (SEQ ID NO: 3) .

The predetermined cut-off value is preferably at least 9.0 ng/mL, more preferably at least 15.0 ng/mL, even more

preferably at least 20.0 ng/mL, even more preferably at least 25.0 ng/mL, and most preferably at least 30 ng/mL. In this regard, through the combined use of various statistical analyses it has been found that a measured amount of binding between the monoclonal antibody (described above) and the N- terminus biomarker of at least 9 ng/mL or greater may be determinative of the presence of lung cancer. By having a statistical cutoff value of at least 9 ng/mL, more preferably at least 15.0 ng/mL, even more preferably at least 20.0 ng/mL, even more preferably at least 25.0 ng/mL, and most preferably at least 30 ng/mL, it is possible to utilise the method of the invention to diagnose lung cancer with a high level of confidence. Or, in other words, applying the statistical cutoff value to the method of the invention is particularly advantageous as it results in a standalone diagnostic assay; i.e. it removes the need for any direct comparisons with healthy individuals and/or patients with known disease severity in order to arrive at a diagnostic conclusion. This may also be particularly advantageous when utilising the assay to evaluate patients that already have medical signs or symptoms that are generally indicative of lung cancer (e.g. as determined by a physical examination and/or consultation with a medical professional) as it may act as a quick and definitive tool for corroborating the initial prognosis and thus potentially remove the need for more invasive procedures, such as endoscopy or biopsy, and expedite the commencement of a suitable treatment regimen.

In the particular case of lung cancer, an expedited

conclusive diagnosis may result in the disease being detected at an earlier stage, which may in turn improve overall chances of survival.

The patient biofluid sample may be, but is not limited to, blood, urine, synovial fluid, serum or plasma.

The immunoassay may be, but is not limited to, a competition assay or a sandwich assay. Similarly, the immunoassay may be, but is not limited to, an enzyme-linked immunosorbent assay or a radioimmunoassay.

In a second aspect, the present invention relates to a method for determining whether a patient is responding positively to a treatment for lung cancer, wherein said method comprises using the method described supra to quantify the amount of peptides comprising the N-terminus amino acid sequence

LLARDFEKNY (SEQ ID NO: 1) in at least two biological samples, said biological samples having been obtained from said patient at a first time point and at at least one subsequent time point during a period of administration of the treatment to said patient, and wherein a reduction in the quantity of peptides comprising the N-terminus amino acid sequence

LLARDFEKNY (SEQ ID NO: 1) from said first time point to said at least one subsequent time point during the period of treatment is indicative of said patient responding positively to said treatment.

The above method may also be used to determine the efficacy of a novel therapeutic for treating lung cancer. In that regard, a novel therapeutic will be considered efficacious if the quantity of peptides comprising the N-terminus amino acid sequence LLARDFEKNY (SEQ ID NO: 1) is reduced from the said first time point to said at least one subsequent time point during the period of treatment using said novel therapeutic.

In another aspect, the present invention relates to a method of immunoassay for detecting and/or monitoring the

progression of idiopathic pulmonary fibrosis (IPF) in a patient, the method comprising contacting a patient biofluid sample with a monoclonal antibody specifically reactive with an N-terminus amino acid sequence LLARDFEKNY (SEQ ID NO: 1), wherein the monoclonal antibody does not specifically

recognise or bind an N-extended elongated version of said N- terminus amino acid sequence or an N-truncated shortened version of said N-terminus amino acid sequence, determining the amount of binding between said monoclonal antibody and peptides comprising said N-terminus amino acid sequence, and correlating said amount of binding with values associated with normal healthy subjects and/or values associated with known IPF severity and/or values obtained from said patient at a previous time point and/or a predetermined cut-off value .

The patient biofluid sample may be, but is not limited to, blood, urine, synovial fluid, serum or plasma.

The immunoassay may be, but is not limited to, a competition assay or a sandwich assay. Similarly, the immunoassay may be, but is not limited to, an enzyme-linked immunosorbent assay or a radioimmunoassay. Definitions

As used herein the term "N-terminus" refers to the extremity of a polypeptide, i.e. at the N-terminal end of the

polypeptide, and is not to be construed as meaning in the general direction thereof.

As used herein the term, the term "competitive ELISA" refers to a competitive enzyme-linked immunosorbent assay and is a technique known to the person skilled in the art.

As used herein the term "sandwich immunoassay" refers to the use of at least two antibodies for the detection of an antigen in a sample, and is a technique known to the person skilled in the art.

As used herein the term "amount of binding" refers to the quantification of binding between antibody and biomarker, which said quantification is determined by comparing the measured values of biomarker in the biofluid samples against a calibration curve, wherein the calibration curve is produced using standard samples of known concentration of the biomarker. In the specific assay disclosed herein which measures in biofluids the N-terminus biomarker having the N- terminus amino acid sequence LLARDFEKNY (SEQ ID NO: 1), the calibration curve is produced using standard samples of known concentration of the calibration peptide LLARDFEKNY (SEQ ID NO:l) . The values measured in the biofluid samples are compared to the calibration curve to determine the actual quantity of biomarker in the sample. The present invention utilises spectrophotometric analysis to both produce the standard curve and measure the amount of binding in the biofluid samples; in the Examples set out below the method utilises HRP and TMB to produce a measurable colour intensity which is proportional to the amount of binding and which can be read by the spectrophotometer. Of course, any other suitable analytical method could also be used.

As used herein the "cut-off value" means an amount of binding that is determined statistically to be indicative of a high likelihood of a lung cancer or IPF in a patient, in that a measured value of biomarker in a patient sample that is at or above the statistical cutoff value corresponds to at least a 70% probability, preferably at least an 80% probability, preferably at least an 85% probability, more preferably at least a 90% probability, and most preferably at least a 95% probability of the presence or likelihood of a lung cancer or IPF.

As used herein the term "values associated with normal healthy subjects and/or values associated with known disease severity" means standardised quantities of SPARC determined by the method described supra for subjects considered to be healthy, i.e. without a lung cancer or IPF and/or

standardised quantities of SPARC determined by the method described supra for subjects known to have a lung cancer or IPF of a known severity.

As used herein, "SPARC-M ELISA" refers to the specific competitive ELISA disclosed herein which quantifies in a sample the amount peptides having the N-terminus amino acid sequence LLARDFEKNY (SEQ ID NO : 1 ) .

Figures

Figure 1 . Specificity of the SPARC-M monoclonal antibody:

Monoclonal antibody reactivity towards (A) the standard peptide (LLARDFEKNY; SEQ ID NO: 1), the elongated peptide (ELLARDFEKNY; SEQ ID NO: 2), the truncated peptide (LARDFEKNY; SEQ ID NO: 3) a non-sense peptide (VPKDLPPDTT ;

SEQ ID NO: 4) and a non-sense coating peptide (VPKDLPPDTT- biotin; SEQ ID NO: 5); and (B) Von Willebrand factor (VWF) , ADAMTS15 (A15) , SPARC-like protein 1 (SLP1) and glucagon (GCG) , were tested for in the competitive SPARC-M ELISA assay. Signals are shown as optical density (OD) at 450 nm (subtracted the background at 650 nm) as a function of peptide concentration.

Figure 2. Cleavage of SPARC by collagenases : SPARC was incubated with different MMP' s and SPARC-M levels were measured after 24 hours. Data were normalized by subtracting the background measured in buffer alone. The graph below is representative of two experiments.

Figure 3. Serum SPARC-M levels in patients with fibrotic disorders and healthy controls: (A) Cohort 1: Serum SPARC-M was assessed in healthy controls (n=6) , IPF patients (n=7), COPD patients (n=8) and lung cancer patients (n=8) . Groups were compared using Kruskal-Wallis adjusted for Dunn's multiple comparisons test; (B) Cohort 2: Serum SPARC-M was assessed in healthy controls (n=20) and lung cancer patients (n=40) . Groups were compared using unpaired, two-tailed Mann- Whitney test; (C) Lung cancer patients (from cohort 2) were stratified according to their cancer stage (stage I-IV, n=10 in each group) . Data were compared using one-way ANOVA adjusted for Tukey' s multiple comparisons test. All Data are shown as Tukey box plots. Significance level: ***: p<0.001,

****: p<0.0001.

Examples The presently disclosed embodiments are described in the following Examples, which are set forth to aid in the

understanding of the disclosure, and should not be construed to limit in any way the scope of the disclosure as defined in the claims which follow thereafter. The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the described embodiments, and are not intended to limit the scope of the present disclosure nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some experimental errors and

deviations should be accounted for. Unless indicated

otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.

In the following examples, the following materials and methods were employed.

Development of SPARC-M ELISA

Selection of peptides

The following cleavage site ( ) on SPARC was previously identified by Edman degradation [14] :

211 HPVE i LLARDFEKNYNMYIFP 230 · To generate an antibody

specific for the N-terminal of the cleavage fragment, a sequence of 10 amino acids adjacent to the site was chosen as the target: 1215 LLARDFEKNY 224 ( SEQ ID NO: 1) . The sequence was blasted for homology to other human secreted extracellular matrix proteins using NPS@: Network Protein Sequence Analysis with the UniprotKB/Swiss-prot database [29]. Synthetic peptides used for monoclonal antibody production and validation of the ELISA assay were purchased from

Genscript (Piscataway, NJ, USA) and shown in Table 1.

Table 1. Synthetic peptides used for development and

validation of the SPARC-M ELISA assay

Peptide name Amino acid sequence SEQ ID NO

Standard peptide LLARDFEKNY 1 Immunogenic peptide LLARDFEKNY-GGC-KLH 6 Biotinylated coating peptide LLARDFEKNY-K-biotin 7 Elongated peptide ELLARDFEKNY 2 Truncated peptide LARDFEKNY 3 Non-sense standard peptide VPKDLPPDTT 4 Non-sense coating peptide VPKDLPPDTT-biotin 5 Von Willebrand factor (VWF) LLARDCQDHS 8 Glucagon (GCG) LAARDFINWL 9

SPARC-like protein 1 (SLP1) LLLRDFKKNY 10 ADAMTS15 (A15) LLARDQCNLH 11

The target sequence was used as the standard peptide

(LLARDFEKNY; SEQ ID NO: 1) . A biotinylated peptide

(LLARDFEKNY-K-biotin; SEQ ID NO: 7) was included as a coating peptide with addition of a lysine residue to the C-terminal end to ensure biotin linking. The specificity of the antibody was tested by including an elongated standard peptide with an additional amino acid added to the N-terminal of the target peptide sequence (ELLARDFEKNY; SEQ ID NO: 1), a truncated standard peptide with a removal of the first N-terminal amino acid (LARDFEKNY; SEQ ID NO: 3) as well as a non-sense standard peptide (VPKDLPPDTT; SEQ ID NO: 4) and a non-sense

biotinylated coating peptide (VPKDLPPDTT-biotin; SEQ ID NO: 5) in the assay validation. Four peptides (Von Willebrand factor, glucagon, SPARC-like protein 1 and ADAMTS15) with one amino acid mismatch compared to the first six amino acids in the target sequence were also included to further test the antibody specificity. The immunogenic peptide (LLARDFEKNY- GGC-KLH; SEQ ID NO: 6) was generated by covalently cross- linking the standard peptide to Keyhole Limpet Hemocyanin (KLH) carrier protein using Succinimidyl 4- (N- maleimidomethyl) cyclohexane-l-carboxylate, SMCC (Thermo

Scientific, Waltham, MA, USA, cat.no. 22336). Glycine and cysteine residues was added at the C-terminal end to ensure right linking of the carrier protein.

Monoclonal antibody production

Four to six week old Balb/C mice were immunized by

subcutaneous injection of 200 yL emulsified antigen

containing 50 yg immunogenic peptide (LLARDFEKNY-GGC-KLH; SEQ ID NO: 6) mixed with Freund's incomplete adjuvant (Sigma- Aldrich, St. Louis, MO, USA) . Consecutive immunizations were performed at 2-week intervals until stable sera titer levels were reached. The mouse with the highest titer rested for four weeks and was then boosted with 50 yg immunogenic peptide in 100 yL 0.9% NaCl solution intravenously. Hybridoma cells were produced by fusing spleen cells with SP2/0 myeloma cells as previously described [30] . The resultant hybridoma cells were then cultured in 96-well microtiter plates and standard limited dilution was used to secure monoclonal growth. The supernatants were screened for reactivity using the biotinylated peptide (LLARDFEKNY-K-biotin; SEQ ID NO: 7) as coating agent in the competitive immunoassays.

Clone characterization The reactivity of the monoclonal antibody was evaluated by displacement using human serum samples and the standard peptide (LLARDFEKNY; SEQ ID NO:l) in a preliminary ELISA using 10 ng/mL biotinylated coating peptide on streptavidin- coated microtiter plates (Roche, Basel, Switzerland, cat. #11940279) and the supernatant from the antibody producing monoclonal hybridoma cells. The clone with the best

reactivity towards the standard peptide was purified using protein-G-columns according to the manufacturer' s

instructions (GE Healthcare Life Sciences, Little Chalfont, UK, cat. #17-0404-01) .

SPARC-M ELISA protocol

Optimal incubation -buffer, -time and -temperature, as well as the optimal concentrations of antibody and coating peptide were determined and the finalized SPARC-M competitive ELISA protocol was as follows:

A 96-well streptavidin-coated microtiter plate was coated with 1.1 ng/mL biotinylated coating peptide dissolved in assay buffer (50 mM Tris-BTB, 4 g/L NaCl, pH 8.0) and

incubated for 30 min. at 20°C in darkness shaking (300 rpm) . Twenty pL standard peptide or pre-diluted serum (1:4) were added to appropriate wells, followed by the addition of 100 pL monoclonal antibody dissolved in assay buffer to a

concentration of 14 ng/mL to each well and incubated 1 hour at 20°C in darkness shaking (300 rpm) . One hundred pL of goat anti-mouse POD-conj ugated IgG antibody (Thermo Scientific, Waltham, MA, USA, cat. #31437) diluted 1:6000 in assay buffer was added to each well and incubated 1 hour at 20 °C in darkness shaking. All incubation steps were followed by five washes in washing buffer (20 mM Tris, 50 mM NaCl, pH 7.2) . Finally, 100 pL tetramethylbenzidine (TMB) (cat. 4380H, Kem- En-Tec Diagnostics, Denmark) was added to each well and the plate was incubated for 15 minutes at 20°C in darkness shaking. The enzymatic reaction was stopped by adding 0.18 M H 2 SO 4 and absorbance was measured at 450 nm with 650 nm as reference. A calibration curve was plotted using a 4- parameter logistic curve fit. Data were analyzed using the SoftMax Pro v.6.3 software.

Technical evaluation of the SPARC-M ELISA

To evaluate the technical performance of the SPARC-M ELISA, the following validation tests were carried out: Inter- and intra-assay variation, linearity, lower limit of detection, upper limit of detection, analyte stability (freeze/thaw and storage) and interference.

The inter- and intra-assay variation was determined by ten independent runs on different days using seven quality control samples covering the detection range, with each run consisting of double-determinations of the samples. The seven quality control samples consisted of: two human serum samples and five samples with standard peptide in buffer. Intra-assay variation was calculated as the mean coefficient of variance (CV%) within plates and the inter-assay variation was

calculated as the mean CV% between the ten individual runs analyzed on different days. To assess linearity of the assay, two-fold dilutions of human serum samples were performed and dilution linearity was calculated as a percentage of recovery of the un-diluted sample. The lower limit of detection (LLOD) was determined from 21 measurements using assay buffer as sample and was calculated as the mean + three standard deviations. The upper limit of detection (ULOD) was

determined from ten independent runs of the highest standard peptide concentration and was calculated as the mean back- calibration calculation + three standard deviations. Analyte stability was first determined by the effect of repeated freeze/thaw of serum samples by measuring the SPARC-M level in three human serum samples in four freeze/thaw cycles. The freeze/thaw recovery was calculated with the first cycle as reference. Second, analyte stability in relation to storage was determined by a 48 hour study performed at 4°C or 20°C. The SPARC-M level in three human serum samples was measured after 0 h, 4h, 24h and 48 h of storage and recovery was calculated with samples stored at -20°C as reference.

Interference was determined by adding a low/high content of hemoglobin (0.155/0.310 mM) , lipemia/lipids (4.83/10.98 mM) and biotin (30/90 ng/mL) to a serum sample of known

concentration. Recovery percentage was calculated with the serum sample as reference.

Cleavage of SPARC in vitro

Recombinant human SPARC (PeproTech, New Jersey, USA, cat. #120-36) was reconstituted to a final concentration of 1000 ug/mL in MMP-buffer (50 mM Tris-HCl, 150 mM NaCl, 10 mM

CaC12 , 1 OuM ZnCl, 0.05%Brij35, pH 7.5). MMP-2, MMP-8, MMP-9 and MMP-13 (Giotto, Firenze, Italy, cat. #G04MP02C,

#G04MP08C, #G04MP09C, #G04MP13C) were added 1:10 (1 yg MMP and 10 yg SPARC) . A positive control protein with known cleavage by the above proteases was included. The solutions incubated at 37°C for 24h. The reaction was stopped by adding 1 yM EDTA to the solutions. MMP-buffer with the different proteases were included as controls. Samples were stored at - 80°C until analysis. The activity of the proteases was confirmed by silverstaining according to the manufacturer' s instructions ( SilverXpress®, Invitrogen, cat. #LC6100) and coomassie blue (data not shown) . Clinical validation of SPARC-M

Patient serum samples were obtained from the commercial vendor ProteoGenex (Culver City, CA, USA) . Cohort 1 consisted of patients with lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and colonoscopy-negative controls with no symptomatic or chronic disease (Table 2) . Cohort 2 included 40 men and women with different stages of lung cancer, and 20 age-matched

colonoscopy-negative controls with no symptomatic or chronic disease (Table 2). Appropriate Institutional Review

Board/Independent Ethical Committee approved sample

collection and all subjects filed informed consent. Table 2. Clinical sample overview and patients demographics

Statistical analysis The level of SPARC-M in serum samples was compared using unpaired, two-tailed Mann-Whitney test and Kruskal-Wallis adjusted for Dunn's multiple comparisons test. Patients were stratified according to their tumor stage and the level of SPARC-M in each group was compared using one-way ANOVA adjusted for Tukey' s multiple comparisons test. D'Agostino- Pearson omnibus test was used to assess the normality of the data. The diagnostic power was investigated by the area under the receiver operating characteristics (AUROC) .

Graph design and statistical analyses were performed using GraphPad Prism version 7 (GraphPad Software, Inc., CA, USA) .

Results

Specificity of the SPARC-M ELISA assay

The target sequence, LLARDFEKNY (SEQ ID NO:l), was blasted for homology to other human secreted extracellular matrix proteins using NPS@: Network Protein Sequence Analysis with the UniprotKB/Swiss-prot database. The target sequence was found to be unique to human SPARC when compared to other secreted ECM proteins. Allowing one amino acid mismatch, four secreted extracellular matrix proteins, Von Willebrand factor, glucagon, SPARC-like protein 1 and ADAMTS15, were identified with mismatches at the 6 th , 2 nd , 3 rd and 6 th

position, respectively (Table 1) . There was no reactivity against the sequence of the four peptides (Figure IB) suggesting high specificity of the antibody for the target sequence. The specificity of the competitive SPARC-M ELISA was further evaluated by analyzing the reactivity towards the standard peptide, a non-sense peptide, an elongated peptide, a truncated peptide and using a non-sense biotinylated coating peptide. All peptide sequences are shown in Table 1 and results are shown in Figure 1A. The antibody only reacted with the standard peptide and the standard peptide clearly inhibited the signal in a dose-dependent manner compared to the other peptides. No detectable signal was observed when using the non-sense biotinylated coating peptide.

Together, these data suggest that the selected antibody

exhibits high neo-epitope specificity.

Technical evaluation of the SPARC-M ELISA assay

The technical performance of the SPARC-M ELISA assay was

further evaluated according to inter- and intra-assay

variation, linearity, lower limit of detection, upper limit of detection, analyte stability (freeze/thaw and storage) and interference. The different validation steps and SPARC-M

performance are shown in Table 3.

Table 3. Technical validation data of the SPARC-M ELISA assay

Tecnical validation step SPARC-M performance

Detection range (LLOD-ULOD) 2.7 - 300.7 ng/mL

Intra-assay variation 6%

Inter-assay variation 10%

Dilution of serum samples 1:4

Dilution recovery (1:4 pre-dilution) 96% (77-102%) Freeze/thaw recovery (4 cycles) 92% (86-103%)

Analyte stability up to 48h, 4°C and 4h, 20 ° C 88% (84-96%)

Interference Lipids, low/high 96%/97%

Interference Biotin, low/high 96%/98%

Interference Hemoglobin, low/high 96%/80%

Percentages are reported as mean with range shown in brackets

The measuring range (LLOD to ULOD) of the assay was

determined to be 2.7 - 300.7 ng/mL. The intra- and inter

assay variation was 6% and 10%, respectively. The acceptance criterion was below 10% for the intra-assay variation and below 15% for the inter-assay variation and therefore

acceptable. To obtain linearity, human serum needed to be diluted 1:4 and the mean dilution recovery for 1:4 pre diluted human serum was 96%. The analyte stability was analyzed according to freeze/thaw cycles and storage

stability at 4°C and 20°C with an acceptance criterion of the recovery within 100%±20%. The analyte recovery in serum was 92% after 4 freeze/thaw cycles. After storage at 4°C for 48 hours the recovery was 84%. Analyte stability was also tested at 20°C for 4, 24 and 48 hours. The recovery after 4 hours was 88%. However after 24 hours the analyte could not be recovered within the acceptance range (50% recovery) . These data indicate that the analyte in serum is stable at 4°C up to 48 hours, however upon analysis serum samples should not be stored above 20°C for more than four hours. No

interference was detected from either low or high contents of biotin, lipids or hemoglobin with recoveries ranging from 80- 98%. The acceptance criterion was a recovery within 100%±20%.

Degradation of SPARC by collagenases (MMP-8 and MMP-13)

To further evaluate the specificity of the antibody and to investigate which proteases generate SPARC-M, different gelatinases (MMP-2 and MMP-9) and collagenases (MMP-8 and MMP-13) were incubated with recombinant full-length SPARC. As shown in Figure 2, the collagenases were able to generate the fragment, with MMP-13 giving the highest level of SPARC-M. In contrast, no SPARC-M was generated without the proteases or when incubated with MMP-9. MMP-2 was able to generate a small amount of SPARC-M as compared to the collagenases.

These results indicate that the antibody is specific for the cleavage site and that collagenases compared to gelatinases have a higher preference for SPARC at this specific site. Clinical evaluation of SPARC-M

To investigate whether SPARC-M had clinical disease relevance and biomarker potential, SPARC-M was measured in patients with different fibrotic lung disorders and healthy controls. Cohort 1 consisted of patients with lung cancer, IPF, COPD and healthy controls. As shown in figure 3A, SPARC-M was significantly elevated in lung cancer patients compared to healthy controls and COPD patients. IPF patients also had an increased level of SPARC-M compared to healthy controls. To confirm these findings, SPARC-M was measured in a second and larger cohort including 40 lung cancer patients and 20 healthy controls. A significant increase in SPARC-M in lung cancer patients as compared to healthy controls was confirmed (Figure 3B) . The area under the receiver operating

characteristics (AUROC) was used to evaluate the

discriminative power of SPARC-M in relation to lung cancer patients and healthy controls (cohort 2) . SPARC-M was able to discriminate between patients and healthy controls with an AUROC of 0.87 ( 95%CI : 0.78-0.96).

To examine if the level of SPARC-M was different in patients with metastasis (high tumor burden) compared to patients with localized tumors, patients from cohort 2 were stratified according to their tumor stage (stage I-IV) . No significant difference was observed between the tumor stages, however an increasing trend of SPARC-M was observed with increasing tumor stage (Figure 3C) .

Conclusion

The present study describes the development and biological validation of a competitive ELISA assay quantifying a

fragment of SPARC in serum. The main findings of this study were: 1) the investigated fragment was detectable in serum and significantly elevated in lung cancer patients compared to healthy controls, 2) the assay was technically robust and specific towards a unique MMP-8/MMP-13 degraded fragment of SPARC, SPARC-M, and 3) the assay shows potential for use in evaluating IPF.

In this specification, unless expressly otherwise indicated, the word 'or' is used in the sense of an operator that returns a true value when either or both of the stated conditions is met, as opposed to the operator 'exclusive or' which requires that only one of the conditions is met. The word 'comprising' is used in the sense of 'including' rather than in to mean 'consisting of' . All prior teachings

acknowledged above are hereby incorporated by reference.

References

1. Lane TF, Sage EH. The biology of SPARC, a protein that modulates cell- matrix interactions. FASEB J. 1994;8:163-73.

2. Bradshaw AD. The role of SPARC in extracellular matrix assembly.

Journal of Cell Communication and Signaling. 2009;3:239-46.

3. Brekken RA, Sage EH. SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biology. 2000;19:569-80.

4. Chiodoni C, Colombo MP, Sangaletti S. Matricellular proteins: From homeostasis to inflammation, cancer, and metastasis. Cancer and

Metastasis Reviews. 2010;29:295-307.

5. Yan Q, Sage EH. SPARC, a Matricellular Glycoprotein with Important Biological Functions. J Histochem Cytochem. 1999;47:1495-505.

doi : 10.1177/002215549904701201.

6. Emerson RO, Sage EH, Ghosh JG, Clark JI . Chaperone-like activity revealed in the matricellular protein SPARC. J Cell Biochem. 2006;98:701-

5. 7. Rosset EM, Bradshaw AD. SPARC/osteonectin in mineralized tissue.

Matrix Biology. 2016; 52-54 : 78-87.

8. Bradshaw AD, Baicu CF, Rentz TJ, Van Laer AO, Boggs J, Lacy JM, et al . Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: Role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing.

Circulation. 2009;119:269-80.

9. Bradshaw AD, Puolakkainen P, Dasgupta J, Davidson JM, Wight TN, Sage EH. SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J Invest Dermatol. 2003;120:949-55.

10. Delany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E.

Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest. 2000;105:915-23.

11. Rentz TJ, Poobalarahi F, Bornstein P, Sage EH, Bradshaw AD. SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J Biol Chem. 2007;282:22062-71.

12. Trombetta-eSilva J. The Function of SPARC as a Mediator of Fibrosis. Open Rheumatol J. 2012;6:146-55.

13. Trombetta JM, Bradshaw AD, Johnson RH . SPARC/Osteonectin Functions to Maintain Homeostasis of the Collagenous Extracellular Matrix in the Periodontal Ligament. J Histochem Cytochem. 2010;58:871-9.

doi :10.1369/j he.2010.956144.

14. Sasaki T, Gdhring W, Mann K, Maurer P, Hohenester E, Knauper V, et al . Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J Biol Chem. 1997; 272 : 9237-43.

15. Sasaki T, Miosge N, Timpl R. Immunochemical and tissue analysis of protease generated neoepitopes of BM-40 (osteonectin, SPARC) which are correlated to a higher affinity binding to collagens. Matrix Biol.

1999;18:499-508. 16. Gilles C, Bassuk J a, Pulyaeva H, Sage EH, Foidart JM, Thompson EW. SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines. Cancer Res. 1998;58:5529-36.

17. Jacob K, Webber M, Benayahu D, Kleinman HK . Osteonectin promotes prostate cancer cell migration and invasion: A possible mechanism for metastasis to bone. Cancer Res. 1999;59:4453-7.

18. Tremble PM, Lane TF, Sage EH, Werb Z. SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J Cell Biol. 1993;121:1433-44.

19. Sangaletti S, Tripodo C, Cappetti B, Casalini P, Chiodoni C, Piconese S, et al . SPARC oppositely regulates inflammation and fibrosis in bleomycin-induced lung damage. Am J Pathol. 2011;179:3000-10.

20. Strandjord TP, Madtes DK, Weiss DJ, Sage EH. Collagen accumulation is decreased in SPARC-null mice with bleomycin-induced pulmonary fibrosis.

Am J Physiol. 1999;277 3 Pt l:L628-35.

http : //www . ncbi . nlm . nih . gov/pubmed/10484471.

21. Wang J-C, Lai S, Guo X, Zhang X, de Crombrugghe B, Sonnylal S, et al . Attenuation of fibrosis in vitro and in vivo with SPARC siRNA. Arthritis Res Ther. 2010;12:1-9.

22. Pichler RH, Hugo C, Shankland SJ, Reed MJ, Bassuk JA, Andoh TF, et al . SPARC is expressed in renal interstitial fibrosis and in renal vascular injury. Kidney Int. 1996;50:1978-89.

23. Camino AM, Atorrasagasti C, Maccio D, Prada F, Salvatierra E, Rizzo M, et al . Adenovirus-mediated inhibition of SPARC attenuates liver fibrosis in rats. J Gene Med. 2008;10:993-1004.

24. Neuzillet C, Tij eras-Raballand A, Cros J, Faivre S, Hammel P, Raymond E. Stromal expression of SPARC in pancreatic adenocarcinoma. Cancer and Metastasis Reviews. 2013;32:585-602. 25. Wong SLI, Sukkar MB. The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease. Br J Pharmacol. 2017;174:3-14.

26. Frizell E, Liu SL, Abraham A, Ozaki I, Eghbali M, Helene Sage E, et al . Expression of SPARC in normal and fibrotic livers. Hepatology.

1995 ; 21 : 847-54.

27. Kuhn C, Mason RJ . Immunolocalization of SPARC, tenascin, and thrombospondin in pulmonary fibrosis. Am J Pathol. 1995;147:1759-69.

28. Leeming D, He Y, Veidal S, Nguyen Q, Larsen D, Koizumi M, et al . A novel marker for assessment of liver matrix remodeling: An enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M) . Biomarkers. 2011;16:616-28.

doi : 10.3109/135475OX.2011.620628.

29. Combet C, Blanchet C, Geourjon C, Deleage G. NPS@ : network protein sequence analysis. Trends Biochem Sci . 2000;25:147-50.

http://www.ncbi.nlm.nih.gov/pubmed/10694887. Accessed 27 May 2016.

30. Gefter ML, Margulies DH, Scharff MD . A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somatic Cell Genet. 1977;3:231-6.