Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SPECTROGRAPHIC MONITORING USING A NEURAL NETWORK
Document Type and Number:
WIPO Patent Application WO/2018/102222
Kind Code:
A1
Abstract:
A method of processing a substrate includes subjecting a substrate to processing that modifies a thickness of an outer layer of the substrate, measuring a spectrum of light reflected from the substrate during processing, reducing the dimensionality of the measured spectrum to generate a plurality of component values, generating a characterizing value using an artificial neural network, and determining at least one of whether to halt processing of the substrate or an adjustment for a processing parameter based on the characterizing value. The artificial neural network has a plurality of input nodes to receive the plurality of component values, an output node to output the characterizing value, and a plurality of hidden nodes connecting the input nodes to the output node.

Inventors:
CHERIAN BENJAMIN (US)
Application Number:
PCT/US2017/063155
Publication Date:
June 07, 2018
Filing Date:
November 22, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
APPLIED MATERIALS INC (US)
International Classes:
H01L21/67; H01L21/304; H01L21/66
Domestic Patent References:
WO2010028180A22010-03-11
Foreign References:
US20070224915A12007-09-27
US7037172B12006-05-02
US20030153246A12003-08-14
US20100130100A12010-05-27
Attorney, Agent or Firm:
GOREN, David, J. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A computer program product for controlling processing of a substrate, the computer program product tangibly embodied in a non-transitory computer readable media and comprising instructions for causing a processor to:

receive, from an in-situ optical monitoring system, a measured spectrum of light reflected from a substrate undergoing processing that modifies a thickness of an outer layer of the substrate;

reduce the dimensionality of the measured spectrum to generate a plurality of component values;

generate a characterizing value using an artificial neural network, the artificial neural network having a plurality of input nodes to receive the plurality of component values, an output node to output the characterizing value, and a plurality of hidden nodes connecting the input nodes to the output node; and

determine at least one of whether to halt processing of the substrate or an adjustment for a processing parameter based on the characterizing value.

2. The computer program product of claim 1, comprising instructions to perform feature extraction on a plurality of reference spectra to generate a plurality of components.

3. The computer program product of claim 2, wherein the instructions to perform feature extraction comprise instructions to perform principal component analysis, singular value decomposition, independent component analysis, or autoencoding.

4. The computer program product of claim 2, comprising instructions to perform dimensional reduction on two or more of the plurality of reference spectra that have known characteristic values to generate training data.

5. The computer program product of claim 4, comprising instructions to train the artificial neural network by backpropagation using the training data and the known characteristic values.

6. The computer program product of claim 5, wherein the two or more spectra are less than all of the plurality of spectra.

7. The computer program product of claim 5, comprising instructions to perform dimensional reduction on a plurality of reference spectra that have known characteristic values to generate training data.

8. The computer program product of claim 1, wherein the neural network comprises at least one input node configured to receive at least one of a prior measurement of the substrate, a measurement of a prior substrate, a measurement from another sensor in the processing system, a measurement from a sensor that is outside the processing system, a value from a processing recipe stored by the controller, or a value of a variable tracked by the controller.

9. A method of processing a substrate, comprising:

subjecting a substrate to processing that modifies a thickness of an outer layer of the substrate;

measuring during the processing with an in-situ optical monitoring system a measured spectrum of light reflected from the substrate undergoing processing;

reducing the dimensionality of the measured spectrum to generate a plurality of component values;

generating a characterizing value using an artificial neural network, the artificial neural network having a plurality of input nodes to receive the plurality of component values, an output node to output the characterizing value, and a plurality of hidden nodes connecting the input nodes to the output node; and

determining at least one of whether to halt processing of the substrate or an adjustment for a processing parameter based on the characterizing value.

10. The method of claim 9, wherein the processing comprises chemical mechanical polishing.

11. The method of claim 9, comprising performing feature extraction on a plurality of reference spectra to generate a plurality of components.

12. The method of claim 11, comprising performing dimensional reduction on two or more of the plurality of reference spectra that have known characteristic values to generate training data.

13. A polishing system, comprising:

a support to hold a polishing pad;

a carrier head to hold a substrate in contact with the polishing pad;

a motor to generate relative motion between the support and the carrier head;

an in-situ optical monitoring system to measure a spectrum of light reflected from the substrate during polishing; and

a controller configured to

receive, from the optical in-situ monitoring system, a measured spectrum of light reflected from the substrate undergoing processing,

reduce the dimensionality of the measured spectrum to generate a plurality of component values,

generate a characterizing value using an artificial neural network, the artificial neural network having a plurality of input nodes to receive the plurality of component values, an output node to output the characterizing value, and a plurality of hidden nodes connecting the input nodes to the output node, and

determine at least one of whether to halt processing of the substrate or an adjustment for a processing parameter based on the characterizing value.

14. The system of claim 13, wherein the controller is configured to perform feature extraction on a plurality of reference spectra to generate a plurality of components.

15. The system of claim 14, wherein the controller is configured to perform dimensional reduction on two or more of the plurality of reference spectra that have known characteristic values to generate training data.

Description:
SPECTROGRAPHS MONITORING USING A NEURAL NETWORK

TECHNICAL FIELD

The present disclosure relates to optical monitoring of a substrate, e.g., during processing such as chemical mechanical polishing. BACKGROUND

An integrated circuit is typically formed on a substrate by the sequential deposition of conductive, semi conductive, or insulative layers on a silicon wafer. One fabrication step involves depositing a filler layer over a non-planar surface and planarizing the filler layer. For some applications, the filler layer is planarized until the top surface of a patterned layer is exposed. For example, a conductive filler layer can be deposited on a patterned insulative layer to fill the trenches or holes in the insulative layer. After planarization, the portions of the conductive layer remaining between the raised pattern of the insulative layer form vias, plugs, and lines that provide conductive paths between thin film circuits on the substrate. For other applications, the filler layer is planarized until a predetermined thickness is left over an underlying layer. For example, a dielectric layer deposited can be planarized for

photolithography .

Chemical mechanical polishing (CMP) is one accepted method of planarization. This planarization method typically requires that the substrate be mounted on a carrier head. The exposed surface of the substrate is typically placed against a rotating polishing pad with a durable roughened surface. The carrier head provides a controllable load on the substrate to push it against the polishing pad. A polishing liquid, such as a slurry with abrasive particles, is typically supplied to the surface of the polishing pad.

One problem in CMP is using an appropriate polishing rate to achieve a desirable profile, e.g., a substrate layer that has been planarized to a desired flatness or thickness, or a desired amount of material has been removed. Variations in the initial thickness of a substrate layer, the slurry distribution, the polishing pad condition, the relative speed between the polishing pad and a substrate, and the load on a substrate can cause variations in the material removal rate across a substrate, and from substrate to substrate. These variations cause variations in the time needed to reach the polishing endpoint and the amount removed. Therefore, it may not be possible to determine the polishing endpoint merely as a function of the polishing time, or to achieve a desired profile merely by applying a constant pressure.

In some systems, a substrate is monitored in-situ during polishing, e.g., by an optical monitoring system. Thickness measurements from the in-situ monitoring system can be used to adjust pressure applied to the substrate to adjust the polishing rate and reduce within-wafer non-uniformity (WIWNU).

SUMMARY

In one aspect, a computer program product for controlling processing of a substrate, has instructions for causing a processor to receive from an in-situ optical monitoring system a measured spectrum of light reflected from a substrate undergoing processing that modifies a thickness of an outer layer of the substrate, reduce the dimensionality of the measured spectrum to generate a plurality of component values, generate a characterizing value using an artificial neural network, and determine at least one of whether to halt processing of the substrate or an adjustment for a processing parameter based on the characterizing value.

In another aspect, a method of processing a substrate includes subjecting a substrate to processing that modifies a thickness of an outer layer of the substrate, measuring during the processing with an in-situ optical monitoring system a measured spectrum of light reflected from the substrate undergoing processing, reducing the dimensionality of the measured spectrum to generate a plurality of component values, generating a characterizing value using an artificial neural network, and determining at least one of whether to halt processing of the substrate or an adjustment for a processing parameter based on the characterizing value.

In another aspect, a polishing system includes a support to hold a polishing pad, a carrier head to hold a substrate in contact with the polishing pad, a motor to generate relative motion between the support and the carrier head, an in-situ optical monitoring system to measure a spectrum of light reflected from the substrate during polishing, and a controller configured to receive a measured spectrum of light reflected from the substrate undergoing processing, reduce the dimensionality of the measured spectrum to generate a plurality of component values, generate a characterizing value using an artificial neural network, and determine at least one of whether to halt processing of the substrate or an adjustment for a processing parameter based on the characterizing value. The artificial neural network has a plurality of input nodes to receive the plurality of component values, an output node to output the characterizing value, and a plurality of hidden nodes connecting the input nodes to the output node.

Implementations may include one or more of the following features.

Feature extraction may be performed on a plurality of reference spectra to generate a plurality of components. Feature extraction may comprise performing principal component analysis, singular value decomposition, independent component analysis, or autoencoding. Dimensional reduction may be performed on two or more of the plurality of reference spectra that have known characteristic values to generate training data. The artificial neural network may be trained by backpropagation using the training data and the known characteristic values. The two or more spectra may be less than all of the plurality of spectra. Dimensional reduction may be performed on a plurality of reference spectra that have known

characteristic values to generate training data. The artificial neural network may be trained by backpropagation using the training data and the known characteristic values.

The neural network may include at least one input node configured to receive at least one of a prior measurement of the substrate, a measurement of a prior substrate, a

measurement from another sensor in the processing system, a measurement from a sensor that is outside the processing system, a value from a processing recipe stored by the controller, or a value of a variable tracked by the controller.

Reduction of dimensionality and generation of the characteristic value may be performed by calculation of the characteristic value (CV) according to

CV = Ci*tanh(0.5(NrS)+0.5bi) + C2*tanh(0.5(N2-S)+0.5b 2 ) + ... + CL*tanh(0.5(NL-5)+0.5b L ) where S is the measured spectrum, Nk = (<¾iVi-+ aki\r+ ... + <¾LVL), aid, bi and Ci are weights set by the neural network, and Vi are eigenvectors for the dimensional reduction.

The processing may be chemical mechanical polishing, etching or deposition.

Certain implementations may have one or more of the following advantages. The thickness of a layer on a substrate can be measured more accurately and/or more quickly. Within-wafer thickness non-uniformity and wafer-to-wafer thickness non-uniformity

(WIWNU and WTWNU) may be reduced, and reliability of an endpoint system to detect a desired processing endpoint may be improved. The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a schematic cross-sectional view of an example of a polishing apparatus.

FIG. 2 illustrates a schematic top view of a substrate having multiple zones.

FIG. 3 illustrates is a schematic top view showing locations where in-situ

measurements are taken on a first substrate.

FIG. 4 illustrates a neural network used as part of the controller for the polishing apparatus.

FIG. 5 illustrates a controller that includes multiple neural networks.

FIG. 6 illustrates a graph of characterizing values output by the control system as a function of time.

Like reference numbers and designations in the various drawings indicate like elements.

DETAILED DESCRIPTION

One monitoring technique is to measure a spectrum of light reflected from a substrate being polished. A variety of techniques have been proposed to determine a characteristic value, e.g., a thickness of the layer being polished, from the measured spectrum. For example, a reference spectrum that best matches the measured spectrum can be selected from a library of reference spectra, and the characteristic value of the reference spectrum can be used. As another example, a position of a peak in the spectrum can be tracked, and the position of the peak can be correlated to the characteristic value. However, these techniques can be problematic when the relationship between the measured spectrum and thickness is too complicated to be captured effectively in a small library or a single feature.

Although one might statistically correlate spectra to thicknesses via an empirical model, since the spectra have many data points there is a danger of overfitting (i.e., the statistical model winds up describing random error or noise instead of the underlying relationship). However, the danger of overfitting can be decreased by reducing the dimensionality of the spectra and then inputting the reduced dimensionality data to a neural network to generate a thickness measurement.

FIG. 1 illustrates an example of a polishing apparatus 20. The polishing apparatus 20 can include a rotatable disk-shaped platen 22 on which a polishing pad 30 is situated. The platen is operable to rotate about an axis 23. For example, a motor 24 can turn a drive shaft

26 to rotate the platen 22. The polishing pad 30 can be detachably secured to the platen 22, for example, by a layer of adhesive. The polishing pad 30 can be a two-layer polishing pad with an outer polishing layer 32 and a softer backing layer 34.

The polishing apparatus 20 can include a polishing liquid supply port 40 to dispense a polishing liquid 42, such as an abrasive slurry, onto the polishing pad 30. The polishing apparatus 20 can also include a polishing pad conditioner to abrade the polishing pad 30 to maintain the polishing pad 30 in a consistent abrasive state.

A carrier head 50 is operable to hold a substrate 10 against the polishing pad 30.

Each carrier head 50 also includes a plurality of independently controllable pressurizable chambers, e.g., three chambers 52a-52c, which can apply independently controllable pressurizes to associated zones 12a-12c on the substrate 10 (see FIG. 2). Referring to FIG. 2, the center zone 12a can be substantially circular, and the remaining zones 12b-12c can be concentric annular zones around the center zone 12a.

Returning to FIG. 1, the chambers 52a-52c can be defined by a flexible membrane 54 having a bottom surface to which the substrate 10 is mounted. The carrier head 50 can also include a retaining ring 56 to retain the substrate 10 below the flexible membrane 54.

Although only three chambers are illustrated in FIGS. 1 and 2 for ease of illustration, there could be two chambers, or four or more chambers, e.g., five chambers. In addition, other mechanisms to adjust the pressure applied to the substrate, e.g., piezoelectric actuators, could be used in the carrier head 50.

Each carrier head 50 is suspended from a support structure 60, e.g., a carousel or track, and is connected by a drive shaft 62 to a carrier head rotation motor 64 so that the carrier head can rotate about an axis 51. Optionally each carrier head 50 can oscillate laterally, e.g., on sliders on the carousel, by motion along the track; or by rotational oscillation of the carousel itself. In operation, the platen 22 is rotated about its central axis 23, and the carrier head 50 is rotated about its central axis 51 and translated laterally across the top surface of the polishing pad 30.

The polishing apparatus also includes an in-situ monitoring system 70, which can be used to control the polishing parameters, e.g., the applied pressure in one or more of the chambers 52a-52c, to control the polishing rate of one or more of the zones 12a-12c. The in- situ monitoring system 70 generates a signal indicative of the thickness of the layer being polished in each of the zones 12a-12c. The in-situ monitoring system can be an optical monitoring system, e.g., a spectrographic monitoring system.

The optical monitoring system 70 can include a light source 72, a light detector 74, and circuitry 76 for sending and receiving signals between a controller 90, e.g., a computer, and the light source 72 and light detector 74. One or more optical fibers can be used to transmit the light from the light source 72 to a window 36 in the polishing pad 30, and to transmit light reflected from the substrate 10 to the detector 74. For example, a bifurcated optical fiber 78 can be used to transmit the light from the light source 62 to the substrate 10 and back to the detector 74. As a spectrographic system, then the light source 72 can be operable to emit white light and the detector 74 can be a spectrometer.

The output of the circuitry 76 can be a digital electronic signal that passes through a rotary coupler 28, e.g., a slip ring, in the drive shaft 26 to the controller 90. Alternatively, the circuitry 76 could communicate with the controller 90 by a wireless signal. The controller 90 can be a computing device that includes a microprocessor, memory and input/output circuitry, e.g., a programmable computer. Although illustrated with a single block, the controller 90 can be a networked system with functions distributed across multiple computers.

In some implementations, the in-situ monitoring system 70 includes a sensor 80 that is installed in and rotate with the platen 22. For example, the sensor 80 could be the end of the optical fiber 78. The motion of the platen 22 will cause the sensor 80 to scan across the substrate. As shown in FIG. 3, due to the rotation of the platen (shown by arrow 38), as the sensor 80 travels below the carrier head, the in-situ monitoring system makes measurements at a sampling frequency; as a result, the measurements are taken at locations 14 in an arc that traverses the substrate 10 (the number of points is illustrative; more or fewer measurements can be taken than illustrated, depending on the sampling frequency). Over one rotation of the platen, spectra are obtained from different positions on the substrate 10. In particular, some spectra can be obtained from locations closer to the center of the substrate 10 and some can be obtained from locations closer to the edge. The controller 90 can be configured to calculate a radial position (relative to the center of the substrate 10) for each measurement from a scan based on timing, motor encoder information, platen rotation or position sensor data, and/or optical detection of the edge of the substrate and/or retaining ring. The controller can thus associate the various measurements with the various zones 12a-12c (see FIG. 2). In some implementations, the time of measurement can be used as a substitute for the exact calculation of the radial position.

Returning to FIG. 1, the controller 90 can derive a characterizing value for each zone of the substrate based on the signal from the in-situ monitoring system. In particular, as polishing progresses, the controller 90 generates a sequence over time of characterizing values. The controller 90 can generate at least one characterizing value for each zone for each scan of the sensor below the substrate 10, or generate a characterizing value for each zone at a measurement frequency (which need not be the same as the sampling frequency), e.g., for polishing systems that do not scan the sensor across the substrate. In some implementations, a single characterizing value is generated per scan, e.g., multiple measurements can be combined to generate the characterizing value. In some

implementations, each measurement is used to generate a characterizing value.

The characterizing value is typically the thickness of the outer layer, but can be a related characteristic such as thickness removed. In addition, the characterizing value can be a more generic representation of the progress of the substrate through the polishing process, e.g., an index value representing the time or number of platen rotations at which the measurement would be expected to be observed in a polishing process that follows a predetermined progress.

The controller 90 can use a two-step process to generate a characterizing value from a measured spectrum from the in-situ spectrographic monitoring system 70. First, the dimensionality of the measured spectrum is reduced, and then the reduced dimensionality data is input to an artificial neural network, which will output the characterizing value. By performing this process for each measured spectrum, the artificial neural network can generate a sequence of characterizing values. The combination of the in-situ spectrographic monitoring system 70 and the controller 90 can provide an endpoint and/or polishing uniformity control system 100. That is, the controller 90 can detect a polishing endpoint and halt polishing and/or adjust polishing pressures during the polishing process to reduce polishing non-uniformity, based on the series of characterizing values.

FIG. 4 illustrates the functional blocks implemented by the controller 90, which include a dimensional reduction module 110 to carry out the dimensional reduction, a neural network 120, and a process control system 130 to adjust the polishing process, e.g., detect a polishing endpoint and halt polishing and/or adjust polishing pressures during the polishing process to reduce polishing non-uniformity, based on the series of characterizing values. As noted above, these functional blocks can be distributed across multiple computers.

The neural network 120 includes a plurality of input nodes 122 for each principal component, a plurality of hidden nodes 124 (also called "intermediate nodes" below), and an output node 126 that will generate the characteristic value. In a neural network having a single layer of hidden nodes, each hidden node 124 can be coupled to each input node 122, and the output node 126 can be coupled to each hidden node 124.

In general, a hidden node 124 outputs a value that a non-linear function of a weighted sum of the values from the input nodes 122 to which the hidden node is connected.

For example, the output of a hidden node 124, designated node k, can be expressed as:

tanh (0.5*<¾ 1 1 )+α¾ 2 2 )+ ... + akM(lM)+bk) Equation 1 where tanh is the hyperbolic tangent, akx is a weight for the connection between the k" 1 intermediate node and the x th input node (out of M input nodes), and IM is the value at the M 111 input node. However, other non-linear functions can be used instead of tanh, such as a rectified linear unit (ReLU) function and its variants.

The dimensional reduction module 110 will reduce a measured spectrum to a more limited number of component values, e.g., L component values. The neural network 120 includes an input node 122 for each component into which the spectrum is reduced, e.g., where the module 110 generates L component values the neural network 120 will include at least input nodes Ni, N 2 . . . NL. Thus, where the number of input nodes corresponds the number of components to which the measured spectrum is reduced (i.e., L=M), the output Hk of a hidden node 124, designated node k, can be expressed as:

Hk = tanh (0.5*α¾ι(Ιι)+α¾ 2 (ΐ2)+ ... + akh(Ih)+bk)

Assuming that the measured spectrum S is represented by a column matrix (ii, 12, ... , i«), the output of an intermediate node 124, designated node k, can be expressed as:

Hk = tanh (0.5*afci(Vi-S)+<¾2(V2-.-»)+ ... + Equation 2 where Vx is a row matrix (vi, v 2 , ... , vn) that will provide a transformation of the measured spectrum to a value for the x th component of the reduced dimensionality data (out of L components). For example, Vx can be provided by the X TH column (out of L columns) of the matrix W or W described below, i.e., Vx is the X TH row of W T . Thus, W x can represent an X TH eigenvector from the dimensional reduction matrix.

The output node 126 can generate a characteristic value CV that is a weighted sum of the outputs of the hidden nodes. For example, this can be expressed as

CV = Ci*Hi+ C 2 *H 2 + . . . + CL*HL

where Ck is the weight for the output of the k" 1 hidden node.

However, neural network 120 may optionally include one or more other input nodes (e.g., node 122a) to receive other data. This other data could be from a prior measurement of the substrate by the in-situ monitoring system, e.g., spectra collected from earlier in the processing of the substrate, from a measurement of a prior substrate, e.g., spectra collected during processing of another substrate, from another sensor in the polishing system, e.g., a measurement of temperature of the pad or substrate by a temperature sensor, from a polishing recipe stored by the controller that is used to control the polishing system, e.g., a polishing parameter such as carrier head pressure or platen rotation rate use for polishing the substrate, from a variable tracked by the controller, e.g., a number of substrates since the pad was changed, or from a sensor that is not part of the polishing system, e.g., a measurement of a thickness of an underlying films by a metrology station. This permits the neural network 120 to take into account these other processing or environmental variables in calculation of the characterizing value.

Before being used for, e.g., device wafers, the dimensional reduction module 1 10 and the neural network 120 need to be configured. As part of a configuration procedure for the dimensional reduction module 1 10, the controller 90 can receive a plurality of reference spectra and a characterizing value, e.g., thickness, associated with each reference spectrum of the plurality of reference spectra. For example, reference spectra can be measured at particular locations on one or more test substrates. In addition, measurements of the thickness at the particular locations can be performed with metrology equipment, e.g., a contact profilometer or ellipsometer. A thickness measurement can thus be associated with the reference spectrum from the same location on a substrate. The plurality of reference spectra can include, for example, five to ten reference spectra.

As a further part of the configuration procedure for the dimensional reduction module

1 10, the controller 90 can generate a group of eigenvectors for the covariant matrix of the data set of the reference spectra. Once the group of eigenvectors have been generated, the eigenvectors can be ranked and a pre-set number of eigenvectors having the largest eigenvalues, e.g., the top four to eight, can be retained.

Ranking the eigenvectors by their associated eigenvalues shows the directions in which the dataset varies the most. A projection of a measured spectrum onto the highest ranked eigenvectors provides an efficient representation of the original vector in a significantly reduced basis.

As explanation, each reference spectrum can be represented by a matrix:

where /} represents the light intensity at the j th wavelength of a total of n wavelengths. The spectrum can include, for example, two-hundred to five-hundred intensity measurements; n can be two-hundred to five-hundred.

Suppose that m reference spectra are generated, the m matrixes R can be combined to form the following m rix:

where / represents the light intensity at the tf h wavelength of the j th reference spectrum. Each row of the matrix A represents a reference spectrum (e.g., a measurement at one location on a substrate).

A dimensional reduction process, such as principal component analysis (PCA), is applied to the matrix A. PCA performs an orthogonal linear transformation that transforms the data in the A matrix (m x n dimensions) to a new coordinate system such that the greatest variance by any projection of the data comes to lie on the first coordinate (called the first principal component), the second greatest variance on the second coordinate, and so on. Mathematically, the transformation is defined by a set of ^-dimensional vectors of weights w¾ = (wki, Wk2, Wkp) that map each w-dimensional row vector Ai of the matrix A to a new vector of principal component scores = (tki, tk2, tip), where & is:

tki= Ar Wk.

Each vector w¾ is constrained to be a unit vector. As a result, the individual variables of ti inherits the maximum possible variance from the matrix A. The decomposition of the matrix A can be written as:

T=AW,

where W is a n-by-p matrix whose columns are the eigenvectors of A T A.

Details of PCA are also discussed in Functional Data Analysis by James Ramsay and B.W. Silverman (Springer; 2nd edition (July 1, 2005)), and Principal Component Analysis by IT. Jolliffe (Springer; 2nd edition (October 2, 2002).

Instead of PCA, the controller can use SVD (Singular Value Decomposition), which is a generalized eigen-decomposition of the reference spectrum dataset, or ICA (Independent Component Analysis), in which a pre-specified number of statistically independent signals are found whose additive combinations give rise to the reference spectrum dataset.

Next, the dimensionality can be reduced by keeping only the highest ranked eigenvectors. In particular, instead of p principal components, a total of L principal components, with L being an integer between 0 and p, e.g., three to ten, can be kept. For example, the T matrix can be reduced to a m x L matrix T', e.g., by keeping using the leftmost L columns of the T matrix. Similarly, the W matrix can be reduced to a n x L matrix W, e.g., by keeping the leftmost L columns of the W matrix.

As another example, a non-linear dimensionality reduction technique such as autoencoding could be used. An autoencoder used could be implemented as a neural network which attempts to reconstruct the original input (which may have a dimensionality of N) by passing it through multiple layers. One of the intermediate layers will have a reduced number of hidden neurons. The network is trained by minimizing the difference between the output layer and input layer. The values of the hidden neurons can be considered to be the reduced dimensionality spectra in such a case. This technique can provide an advantage over PCA and other similar techniques due to the fact that the dimensionality reduction is no longer a linear process.

As of the configuration procedure for the neural network 120, the neural network 120 is trained using the component values and characteristic value for each reference spectrum.

Each row of the matrix T' corresponds to one of the reference spectra, and is thus associated with a characteristic value. While the neural network 120 is operating in a training mode, such as a backpropagation mode, the values (ti, t2, t ) along a particular row are fed to the respective input nodes Ni, N 2 . . . NL for the principle components while the characteristic value V for the row is fed to the output node 126. This can be repeated for each row. This sets the values for aki, etc., in Equations 1 or 2 above.

Determination of the principal components, e.g., by PCA, SVD, ICA, etc., can be performed using a larger data than the data set used for training of the neural network. That is, the number of spectra used for determination of the principal components can be larger than the number of spectra having known characteristic values that are used for training.

The system is now ready for operation. A spectrum measured from a substrate during polishing using the in-situ spectrographic monitoring system 70. The measured spectrum can be represented by a column matrix S=(ii, 12, in), where /} represents the light intensity at the jth wavelength of a total of n wavelengths. The column matrix S is multiplied by the W matrix to generate a column matrix, i.e., S-W'=P, where Ρ=(Ρι, P2, PL), with Pi representing the component value of the 1 th principle component.

While the neural network 120 is used in an inference mode, these values (Pi, P2, Pz,) are fed as inputs to the respective input nodes Ni, N2, . . . NL. AS a result, the neural network 120 generates a characteristic value, e.g., a thickness, at the output node 126.

The combined calculation performed by the dimensional reduction module 110 and the neural network 120 to generate the characteristic value CV can be expressed as follows: CV = Ci*tanh(0.5(NrS)+0.5bi) + C2*tanh(0.5(N2-S)+0.5b 2 ) + ... + CL*tanh(0.5(NL-5)+0.5b L ) where Nk = (<¾iVi-+ a¾2V2-+ . . . + <¾LVL) with the weights aid being the weights set by the neural network 120 and the vectors Vi being the eigenvectors determined by the dimensional reduction module 1 10.

The architecture of the neural network 120 can vary in depth and width. For example, although the neural network 120 is shown with a single column of intermediate nodes 124, it could include multiple columns. The number of intermediate nodes 124 can be equal to or greater than the number of input nodes 122.

As noted above, the controller 90 can associate the various measured spectra with different zones 12a- 12c (see FIG. 2) on the substrate 10. The output of each neural network 120 can be classified as belonging to one of the zones based on the position of the sensor on the substrate 10 at the time the spectrum is measured. This permits the controller 90 to generate a separate sequence of characteristic values for each zone.

The characterizing values are fed to the process control module 130, e.g., a characteristic value for each zone can then be used by the process control module 130 to adjust process parameters to reduce non-uniformity across the substrate and/or to detect the polishing endpoint.

In some implementations, referring to FIG. 5, the controller 90 can be configured to have multiple neural networks 120. The neural networks 120 can operate in parallel to generate the characteristic values for the zone based on the measured spectra for that zone. The number of neural networks can match the number of zones. For example, there can be a first neural network 120a for the first zone 12a, a second neural network 120b for the second zone 12b and a third neural network for the third zone 12c. The output of each neural network 120 can be fed to the process control module 130.

The reliability of the computed characteristic value can be evaluated by

reconstructing the spectrum and then determining a difference between the reconstructed spectrum and the original measured spectrum. For example, once the principal component values (Pi, P2, PL), have been calculated, a reconstructed spectrum Q can be generated by P-W' T =Q. A difference between P and S can then be calculated, e.g., using sum of squared differences. If the difference is large, the associated characteristic value can be ignored by the process module 130. For example, referring to FIG. 6, a first function 204 can be fit to the sequence 200 of characteristic values 202 for a first zone, and a second function 214 can be fit to the sequence 210 of characteristic values 212 for a second zone. The process controller can calculate the times Tl and T2 at which the first and second functions are projected to reach a target value V, and calculate an adjusted processing parameter, e.g., an adjusted carrier head pressure, that will cause one of the zones to be polished at a revised rate (shown by line 220) such that the zones reach the target at approximately the same time.

A polishing endpoint can be triggered by the process controller 130 at the time that a function indicates the characteristic values reaches the target value V.

Embodiments of the invention and all of the functional operations described in this specification can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structural means disclosed in this specification and structural equivalents thereof, or in combinations of them. Embodiments of the invention can be implemented as one or more computer program products, i.e., one or more computer programs tangibly embodied in a machine-readable storage media, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple processors or computers. A computer program (also known as a program, software, software application, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file. A program can be stored in a portion of a file that holds other programs or data, in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub-programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.

The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).

The above described polishing apparatus and methods can be applied in a variety of polishing systems. Either the polishing pad, or the carrier heads, or both can move to provide relative motion between the polishing surface and the substrate. For example, the platen may orbit rather than rotate. The polishing pad can be a circular (or some other shape) pad secured to the platen. The polishing system can be a linear polishing system, e.g., where the polishing pad is a continuous or a reel-to-reel belt that moves linearly. The polishing layer can be a standard (for example, polyurethane with or without fillers) polishing material, a soft material, or a fixed-abrasive material. Terms of relative positioning are used relative orientation or positioning of the components; it should be understood that the polishing surface and substrate can be held in a vertical orientation or some other orientation with respect to gravity.

Although the description above has focused on chemical mechanical polishing, the control system can be adapted to other semiconductor processing techniques, e.g., etching or deposition, e.g., chemical vapor deposition. In addition, the technique can be applied to an in-line or stand-alone metrology system rather than in-situ monitoring.

Particular embodiments of the invention have been described. Other embodiments are within the scope of the following claims.