Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
STEEL COATED METAL STRUCTURES AND METHODS OF FABRICATING THE SAME
Document Type and Number:
WIPO Patent Application WO/2018/009633
Kind Code:
A1
Abstract:
An elongated hollow component includes a body extending from a first end to a second end and defining a longitudinal axis. The body includes a plurality of layers each circumscribing the longitudinal axis. The plurality of layers includes a base layer including a first steel material, and an inner surface coating coupled to a radially inner surface of the base layer. The inner surface coating includes a second steel material.

Inventors:
ABERNATHY MARK SCOTT (US)
ROBINSON MARLON EDWIN (US)
Application Number:
PCT/US2017/040860
Publication Date:
January 11, 2018
Filing Date:
July 06, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BULL MOOSE TUBE COMPANY (US)
International Classes:
B32B15/01; A62C35/58; A62C35/68; C23C10/02; C23C10/28; C23C10/58; C23C10/60; C23C28/02; F16L58/00; F16L58/02; F16L58/04; F16L58/08
Domestic Patent References:
WO2014169367A22014-10-23
WO2014169365A22014-10-23
Foreign References:
DE102008048969A12009-12-24
US20120204992A12012-08-16
EP0944443A11999-09-29
EP0071261A11983-02-09
GB1443172A1976-07-21
US4026583A1977-05-31
US3559276A1971-02-02
EP1118355A12001-07-25
Other References:
None
Attorney, Agent or Firm:
LONGMEYER, Michael H. et al. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. An elongated hollow component comprising: a body extending from a first end to a second end and defining a longitudinal axis, said body comprising a plurality of layers each circumscribing said longitudinal axis, said plurality of layers comprising: a base layer comprising a first steel material; and an inner surface coating coupled to a radially inner surface of said base layer, said inner surface coating comprising a second steel material.

2. The elongated hollow component in accordance with Claim 1 , wherein said second steel material comprises a higher chromium content than said first steel material.

3. The elongated hollow component in accordance with Claim 2, wherein said first steel material comprises a chromium content of less than 10.5% by mass and said second steel material comprises a chromium content of at least 10.5% by mass.

4. The elongated hollow component in accordance with Claim 1 , wherein said first steel material comprises a black steel material and said second steel material comprises a stainless steel material.

5. The elongated hollow component in accordance with Claim 1 , wherein said second steel material comprises a decreased surface roughness relative to said first steel material.

6. The elongated hollow component in accordance with Claim 1 , wherein said second steel material comprises an increased corrosion resistance relative to said first steel material.

7. The elongated hollow component in accordance with Claim 1, wherein said second steel material comprises an increased resistance to microbiological growth relative to said first steel material.

8. The elongated hollow component in accordance with Claim 1 , wherein said plurality of layers further comprises an outer surface coating coupled to a radially outer surface of said base layer.

9. The elongated hollow component in accordance with Claim 8, wherein said outer surface coating comprises a third steel material.

10. The elongated hollow component in accordance with Claim 8, wherein said outer surface coating comprises a paint material.

11. The elongated hollow component in accordance with Claim 1 , wherein said body comprises a welded longitudinal seam.

12. The elongated hollow component in accordance with Claim 8, wherein a thickness of said inner surface coating is substantially uniformly distributed across said seam.

13. A fire suppression sprinkler system comprising: a plurality of pipes, each of said pipes comprising a body extending from a first end to a second end and defining a longitudinal axis, said body comprising a plurality of layers each circumscribing said longitudinal axis, said plurality of layers comprising: a base layer comprising a first steel material; and an inner surface coating coupled to a radially inner surface of said base layer, said inner surface coating comprising a second steel material; and at least one sprinkler head coupled in flow communication to said plurality of pipes.

14. The fire suppression sprinkler system in accordance with Claim 13, wherein said second steel material comprises a higher chromium content than said first steel material.

15. The fire suppression sprinkler system in accordance with Claim 13, wherein said first steel material comprises a chromium content of less than 10.5% by mass and said second steel material comprises a chromium content of at least 10.5% by mass.

16. The fire suppression sprinkler system in accordance with Claim 13, wherein said system is configured to maintain stagnant liquid in said pipes when said system is not being tested or used to suppress a fire.

17. The fire suppression sprinkler system in accordance with Claim 13, wherein said system is configured to maintain said pipes substantially empty of liquid when said system is not being tested or used to suppress a fire.

18. A method of fabricating an elongated hollow component, said method comprising: coupling an inner surface coating to a base layer to form a plurality of layers, wherein the base layer is formed from a first steel material and the inner surface coating is formed from a second steel material; and forming the plurality of layers into a body of the elongated hollow component, such that the plurality of layers each circumscribe a longitudinal axis extending from a first end to a second end of the body, and the inner surface coating is on a radially inner surface of the base layer.

19. The method in accordance with Claim 18, further comprising: unrolling the base layer from a coil as a sheet; and stamping the base layer such that the base layer is cut from the coil.

20. The method in accordance with Claim 18, wherein said coupling the inner surface coating to the base layer comprises at least one one of diffusion bonding and annealing.

Description:
STEEL COATED METAL STRUCTURES AND

METHODS OF FABRICATING THE SAME

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit and priority of U.S. Application Serial No. 15/642,509 filed July 6, 2017, entitled "STEEL COATED METAL STRUCTURES AND METHODS OF FABRICATING THE SAME," and further claims the benefit and priority of U.S. Provisional Application Serial No. 62/359,452 filed July 7, 2016, entitled "STAINLESS STEEL COATED STRUCTURES AND METHODS OF FABRICATING THE SAME," the disclosures of both of which are hereby incorporated by reference in their entireties.

BACKGROUND

[0002] The field of this disclosure relates generally to metal structures and, more particularly, to a metal structure having a coating.

[0003] Many known structures are made of a less expensive metal material that is generally suited for the structure's use in the field, but has at least one undesirable surface property. For example, some known structures are made entirely of a metal material having an increased susceptibility to corrosion, and other known structures are made entirely of a metal material having an increased surface roughness. In many instances, a different metal material (e.g., stainless steel) may be better suited for the structure's use in the field, but it may be too costly to fabricate the entire structure from such a material. It would be useful, therefore, to provide a structure having a base that is made of the less expensive metal material, and a surface coating that is made of the more expensive metal material, thereby making the structure better suited for its field of use in a more cost-effective manner.

BRIEF DESCRIPTION

[0004] In one aspect, an elongated hollow component is provided. The elongated hollow component includes a body extending from a first end to a second end and defining a longitudinal axis. The body includes a plurality of layers each circumscribing the longitudinal axis. The plurality of layers includes a base layer including a first steel material, and an inner surface coating coupled to a radially inner surface of the base layer. The inner surface coating includes a second steel material.

[0005] In another aspect, a fire suppression sprinkler system is provided. The system includes a plurality of pipes. Each of the pipes includes a body extending from a first end to a second end and defining a longitudinal axis. The body includes a plurality of layers each circumscribing the longitudinal axis. The plurality of layers includes a base layer including a first steel material, and an inner surface coating coupled to a radially inner surface of the base layer. The inner surface coating includes a second steel material. The system also includes at least one sprinkler head coupled in flow communication to the plurality of pipes.

[0006] In yet another aspect, a method of fabricating an elongated hollow component is provided. The method includes coupling an inner surface coating to a base layer to form a plurality of layers. The base layer is formed from a first steel material and the inner surface coating is formed from a second steel material. The method also includes forming the plurality of layers into a body of the elongated hollow component, such that the plurality of layers each circumscribe a longitudinal axis extending from a first end to a second end of the body, and the inner surface coating is on a radially inner surface of the base layer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Figure 1 is a schematic exploded illustration of an exemplary fire suppression sprinkler system; and

[0008] Figure 2 is a schematic cross-sectional illustration of a hollow component, such as a component of the sprinkler system shown in Figure 1 and taken along plane 2-2 of Figure 1. DETAILED DESCRIPTION

[0009] The following detailed description illustrates steel coated structures and methods of fabricating the same by way of example and not by way of limitation. The description should enable one of ordinary skill in the art to make and use the structures, and the description describes several embodiments of structures, including what is presently believed to be the best modes of making and using the structures. Exemplary structures are described herein as being used in a fire suppression sprinkler system. However, it is contemplated that the structures have general application to a broad range of systems in a variety of fields other than fire suppression sprinkler systems.

[0010] Figure 1 is a schematic exploded illustration of an exemplary fire suppression sprinkler system 100. In the exemplary embodiment, fire suppression sprinkler system 100 includes a plurality of elongated hollow components 102, such as pipes. In the exemplary embodiment, the plurality of elongated hollow components includes a hollow component 104, a hollow component 106, and a hollow component 108. Sprinkler system 100 also includes a plurality of sprinkler heads 110 (e.g., a first sprinkler head 112 and a second sprinkler head 114) coupled in flow communication with hollow components 102. In one embodiment, hollow component 104 functions as a main (or feed) line of sprinkler system 100, while hollow component 106 and hollow component 108 function as branch lines of sprinkler system 100. In other embodiments, each hollow component 102 may function as any suitable type of line in sprinkler system 100. Although sprinkler system 100 has three hollow components 102 in the exemplary embodiment, sprinkler system 100 may have any suitable number of hollow components 102 in other embodiments.

[0011] In the exemplary embodiment, elongated hollow component 104 has a first end 1 16, a second end 1 18, and an elongated hollow body 120 extending between first end 116 and second end 118 along a longitudinal axis 122 that extends from first end 1 16 to second end 1 18, such that first end 116 and second end 1 18 are open ends. Body 120 has a seam 124 (shown in Figure 2), such as, for example, a welded seam, that extends longitudinally from first end 116 to second end 1 18, a first aperture 126 facing outward in a first direction 128 adjacent second end 118, and a second aperture 130 facing outward in a second direction 132 adjacent second end 1 18, wherein first direction 128 is substantially opposite (i.e., oriented substantially 180° away from) second direction 132. Although hollow component 104 has one longitudinally-extending seam 124 and two oppositely-facing apertures 126 and 130 in the exemplary embodiment, hollow component 104 may have any suitable number of seams and/or apertures oriented in any suitable manner in other embodiments. For example, in some embodiments, hollow component 104 may not have seam 124, first aperture 126, and/or second aperture 130 (e.g., hollow component 104 may be seamless in one embodiment). Moreover, although first aperture 126 and second aperture 130 are adjacent second end 118 in the exemplary embodiment, first aperture 126 and second aperture 130 may be defined at any suitable locations along body 120 (e.g., in one embodiment, first aperture 126 may be adjacent first end 116, while second aperture 130 is adjacent second end 118). Additionally, although first end 116 and second end 118 are open ends in the exemplary embodiment, at least one of first end 116 and second end 118 may be a closed end in the other embodiments.

[0012] In the exemplary embodiment, hollow component 106 has a first end 134, a second end 136, and an elongated hollow body 138 extending between first end 134 and second end 136 such that first end 134 and second end 136 are open ends. Similarly, hollow component 108 has a first end 140, a second end 142, and an elongated hollow body 144 extending between first end 140 and second end 142 such that first end 140 and second end 142 are open ends. Body 138 of hollow component 106 has a seam (not shown) extending from first end 134 to second end 136, and a body 144 of hollow component 108 likewise has a seam (not shown) extending from first end 140 to second end 142. Notably, in the exemplary embodiment, the seams of hollow component 106 and/or hollow component 108 are the same as seam 124 of hollow component 104 (i.e., the seams of hollow component 106 and/or hollow component 108 are welded seams in the exemplary embodiment). In some embodiments, hollow component 106 may not have a seam (i.e., hollow component 106 may be seamless in one embodiment), and/or hollow component 108 may not have a seam (i.e., hollow component 108 may be seamless in one embodiment). In other embodiments, first end 134 and/or second end 136 of hollow component 106 may be a closed end, and/or first end 140 and/or second end 142 of hollow component 108 may be a closed end.

[0013] In the exemplary embodiment, first sprinkler head 112 is coupled to second end 136 of hollow component 106 via a first fitting 150, and second sprinkler head 114 is coupled to second end 142 of hollow component 108 via a second fitting 152. In other embodiments, first sprinkler head 112 may be coupled to hollow component 106 at any suitable location along body 138 of hollow component 106, and second sprinkler head 114 may be coupled to hollow component 108 at any suitable location along body 144 of hollow component 108. Moreover, although each of hollow component 106 and hollow component 108 has only one sprinkler head 110 coupled thereto in the exemplary embodiment, any suitable number of sprinkler heads 110 may be coupled to hollow component 106 and hollow component 108 in other embodiments.

[0014] In the exemplary embodiment, when joining hollow component 106 to hollow component 104, hollow component 106 either is mechanically coupled to hollow component 104 at first aperture 126 via a suitable hollow component fitting (not shown), or is alternatively bonded (e.g., welded) directly to hollow component 104 at first aperture 126, such that hollow component 106 extends substantially perpendicular to longitudinal axis 122 of hollow component 104 along first direction 128 adjacent second end 118. Likewise, when joining hollow component 108 to hollow component 104, hollow component 108 either is mechanically coupled to hollow component 104 at second aperture 130 via a suitable hollow component fitting (not shown), or is alternatively bonded (e.g., welded) directly to hollow component 104 at second aperture 130, such that hollow component 108 extends substantially perpendicular to longitudinal axis 122 of hollow component 104 along second direction 132 adjacent second end 118. In other embodiments, hollow component 106 and hollow component 108 may be joined to hollow component 104 in any suitable manner, and may be oriented in any suitable direction, that facilitates enabling sprinkler system 100 to function as described herein.

[0015] During operation of fire suppression sprinkler system 100, a liquid (not shown) such as water, for example, flows to first sprinkler head 112 via hollow component 104 and hollow component 106, and to second sprinkler head 114 via hollow component 104 and hollow component 108. In some embodiments, hollow components 102 may be substantially filled with the liquid until sprinkler system 100 is tested or otherwise used to suppress a fire (i.e., the liquid may sit stagnant in hollow components 102, flowing therealong only periodically during a testing event or when used to suppress a fire). In other embodiments, hollow components 102 may be substantially empty (i.e., substantially not filled with liquid) until sprinkler system 100 is tested or otherwise used to suppress a fire (i.e., the liquid may not be supplied to hollow components 102 until a testing event or fire-suppression event occurs). Notably, to facilitate increasing the rate that the liquid flows through hollow components 102 and/or to facilitate reducing pressure loss along hollow components 102, it is desirable to minimize the frictional interaction between the liquid and at least one hollow component 102 (i.e., it is desirable to minimize the surface roughness on the inside of at least one hollow component 102). Moreover, to facilitate increasing the useful life of sprinkler system 100 and to facilitate ensuring proper functionality of sprinkler system 100, it is desirable to minimize the amount of corrosion that occurs within hollow components 102. Additionally, it is desirable to minimize the growth of bacteria and other microbiological organisms within hollow components 102.

[0016] Figure 2 is a schematic cross-sectional illustration of first hollow component 104 taken along plane 2-2 of Figure 1. In the exemplary embodiment, first hollow component 104 has a radius 154 extending outward from longitudinal axis 122, and first hollow component 104 also has a plurality of body layers 156 circumscribing longitudinal axis 122, namely a base layer 158, a radially inner surface coating 160 coupled to a radially inner surface 159 of base layer 158, and optionally a radially outer surface coating 162 coupled to a radially outer surface 161 of base layer 158. Although first hollow component 104 is illustrated as having a tubular body 120 that includes a circular cross- section, in other embodiments first hollow component 104 has any suitable cross-section, such as square, rectangular, triangular, etc. Thus, as used herein, the term "radius" (or any variation thereof) refers to a dimension extending outwardly from a center of any suitable shape (e.g., a square, a rectangle, a triangle, etc.) and is not limited to a dimension extending outwardly from a center of a circular shape. Similarly, as used herein, the term "circumference" (or any variation thereof) refers to a dimension extending around a center of any suitable shape (e.g., a square, a rectangle, a triangle, etc.) and is not limited to a dimension extending around a center of a circular shape.

[0017] In the exemplary embodiment, base layer 158 is made from a first steel material (e.g., a carbon (or black) steel material), inner surface coating 160 is made from a second steel material (e.g., a stainless steel material, or alternatively a galvanized steel material), and outer surface coating 162 is made from a third steel material (e.g., a stainless steel material, or alternatively a galvanized steel material) that is optionally the same composition as the second steel material of inner surface coating 160. For example, in one embodiment, base layer 158 may be made from a steel material having a chromium content of less than about 10.5% by mass, and coating(s) 160 and/or 162 may be made from a steel material having a chromium content of at least about 10.5% by mass. Alternatively, base layer 158, inner surface coating 160, and outer surface coating 162 may be made from any suitable steel materials having any suitable comparative chromium content. Moreover, in another embodiment, base layer 158, inner surface coating 160, and/or outer surface coating 162 may not be made from a steel material. In some embodiments, one of inner surface coating 160 and outer surface coating 162 may be made from (or may be at least partly covered in) a non-metallic material such as, for example, a paint material. In other embodiments, first hollow component 104 may not have inner surface coating 160, or may not have outer surface coating 162.

[0018] To fabricate first hollow component 104 (and optionally second hollow component 106 and/or third hollow component 108 in the same manner), base layer 158 is provided as a sheet of material that is unrolled from a coil. After it is unrolled from the coil, inner surface coating 160 and/or outer surface coating 162 is applied to base layer 158 (e.g., using a diffusion bonding and/or annealing process). After inner surface coating 160 and/or outer surface coating 162 is applied to base layer 158, base layer 158 is stamped to cut a segment of base layer 158 from the coil, and optionally to define apertures 126 and 130 in the cutaway segment of base layer 158. The cutaway segment of base layer 158 is then rolled into a tubular shape corresponding to a cross-section of hollow component 104, and opposed edges 164 thereof are welded together to define seam 124. In some embodiments, apertures 126 and 130 may alternatively be cut in the field by an installer of fire suppression sprinkler system 100, as opposed to being cut during the fabrication of first hollow component 104. In other embodiments, first hollow component 104 may be fabricated in any suitable manner that facilitates enabling first hollow component 104 to function as described herein.

[0019] In the exemplary embodiment, base layer 158 and inner surface coating 160 extend from first end 116 to second end 118 along longitudinal axis 122, such that inner surface coating 160 completely circumscribes longitudinal axis 122 to circumferentially span seam 124. More specifically, inner surface coating 160 has a first thickness 166 on a first side 168 of seam 124, a second thickness 170 on a second side 172 of seam 124, and a third thickness 174 circumferentially between first side 168 and second side 172. In that regard, inner surface coating 160 is substantially uniformly distributed across seam 124 such that first thickness 166, second thickness 170, and third thickness 174 are substantially the same. In some embodiments, an anti-corrosive weld wire (not shown) may be used to weld seam 124 in this manner. In other embodiments, seam 124 may be welded in any suitable manner that facilitates distributing inner surface coating 160 substantially uniformly across seam 124. Notably, to test a thickness of first hollow component 104 (e.g., third thickness 174 of inner surface coating 160) before or after installation of sprinkler system 100, it is contemplated to use ultrasonic testing (UT) techniques and/or corrosion monitoring stations, and/or to remove samples of hollow component(s) 102 from sprinkler system 100 for testing.

[0020] In the exemplary embodiment, because inner surface coating 160 is made from a steel material having a higher chromium content, first hollow component 104 is provided with a decreased surface roughness that facilitates a smoother flow of liquid and/or reduced pressure loss therealong, first hollow component 104 is provided with an increased resistance to corrosion, and first hollow component 104 is also provided with a resistance to the growth of bacteria and other microbiological organism. Moreover, because base layer 158 has a lower chromium content than inner surface coating 160, it is possible to fabricate first hollow component 104 with the above-mentioned properties at a reduced cost of manufacture. Although Figure 1 illustrates only a schematic cross-section of first hollow component 104, it is understood that the configuration of first hollow component 104 illustrated in Figure 1 is equally useful for second hollow component 106 and/or third hollow component 108 without departing from the scope of this disclosure. Moreover, although the exemplary embodiment includes hollow components in the form of pipes for use in sprinkler system 100, it is also contemplated that hollow components 102 may be fabricated in a similar manner for use in other structures or systems, such as but not limited to: (1) a hollow structural section (HSS) for a building exterior, an oil platform, a trailer body, construction/agri cultural equipment, roadway equipment (e.g., roadway signs, guardrails, etc.); (2) at least one component of a healthcare-related device (e.g., a hospital bed, a wheelchair, etc.); (3) at least one component of a piece of equipment for use outdoors (e.g., the handle(s) thereof); (4) at least one component of a piece of outdoor furniture; and (5) at least one component of sporting and/or fitness goods/equipment. Thus, although hollow component 102 is described above with respect to fire suppression sprinkler system 100, other suitable uses for the systems and methods described herein are also contemplated without departing from the scope of this disclosure.

[0021] The methods and systems described herein facilitate providing improvements in elongated hollow metal structures such as, for example, metal pipes for fire suppression sprinkler systems. More specifically, the methods and systems facilitate providing elongated hollow structures with an interior surface coating having stainless steel properties. The methods and systems thus facilitate reducing surface roughness, inhibiting corrosion, and inhibiting the growth of bacteria and other microbiological organisms on an interior surface of a hollow structure. As such, the methods and systems facilitate increasing the flow rate of liquids through a hollow structure, and facilitate increasing the useful life of a hollow structure.

[0022] Exemplary embodiments of steel coated structures and methods of fabricating the same are described above in detail. The methods and systems described herein are not limited to the specific embodiments described herein, but rather, components of the methods and systems may be utilized independently and separately from other components described herein. For example, the methods and systems described herein may have other applications not limited to practice with sprinkler systems, as described herein. Rather, the methods and systems described herein can be implemented and utilized in connection with various other industries.

[0023] While the disclosure has been described in terms of various specific embodiments, those skilled in the art will recognize that the disclosure can be practiced with modification within the spirit and scope of the claims.