Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SUBSTITUTED 1,2-AZABORINE HETEROCYCLES
Document Type and Number:
WIPO Patent Application WO/2011/017129
Kind Code:
A1
Abstract:
Aromatic heterocycles incorporating boron and nitrogen atoms, in particular, 1,2-azaborine compounds having the formula (I) and their use as synthetic intermediates.

Inventors:
LIU SHIH-YUAN (US)
MARWITZ ADAM (US)
ABBEY ERIC (US)
LAMM ASHLEY (US)
Application Number:
PCT/US2010/043444
Publication Date:
February 10, 2011
Filing Date:
July 27, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
STATE OF OREGON ON BEHALF OF THE UNIVERSITY OF OREGON (US)
LIU SHIH-YUAN (US)
MARWITZ ADAM (US)
ABBEY ERIC (US)
LAMM ASHLEY (US)
International Classes:
C07F3/02
Other References:
MARWITZ ET AL.: "Diversity through Isosterism: The Case of Boron-Substituted 1,2-Dihydro-1,2 -azaborines", ORGANIC LETTERS, vol. 9, 2007, pages 4905 - 4908, XP008152005
JASKA ET AL.: "Synthesis, Characterization, and Fluorescence Behavior of Twisted and Planar B2N2-Quaterphenyl Analogues", JOURNAL OF ORGANIC CHEMISTRY, vol. 72, 2007, pages 5234 - 5243, XP008152006
PAN ET AL.: "Electrophilic Aromatic Substitution Reactions of 1,2-Dihydro-1,2-azaborines", ORGANIC LETTERS, vol. 9, 2007, pages 679 - 681, XP009135602
PAN ET AL.: "1,2-Azaboratabenzene: A Heterocyclic -Ligand with an Adjustable Basicity at Nitrogen", ORGANOMETALLICS, vol. 23, 2004, pages 5626 - 5629, XP009135566
ABBEY ET AL.: "in Crystal Clear Structural Evidence for Electron Delocalization in 1,2-Dihydro-1,2 - azaborines.", JOURNAL OF AMERICAM CHEMICAL SOCIETY, vol. 130, 2008, pages 7250 - 7252, XP009135557
ASHE: "in Aromatic Borataheterocycles: Surrogates for Cyclopentadienyl in Transition-Metal Complexes", ORGANOMETTALICS, vol. 28, 6 July 2009 (2009-07-06), pages 4236 - 4248, XP008152007
See also references of EP 2459573A4
Attorney, Agent or Firm:
KLARQUIST SPARKMAN, LLP (121 S.W. Salmon Street Suite 160, Portland Oregon, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A method of preparing a substituted 1 ,2-azaborine, comprising: treating a starting 1 ,2-azaborine compound with a nucleophile Nu" to generate an intermediate compound having a boron-Nu bond;

treating the intermediate compound with an electrophile E+ to generate a substituted 1 ,2-azaborine having a boron-Nu bond and a nitrogen-E bond.

2. The method of claim 1 , wherein the 1 ,2-azaborine compound is 1 ,2-dihydro-1 ,2-azaborine.

3. The method of claim 1 , wherein the intermediate compound is not isolated.

4. The method of claim 1 , wherein the nucleophile Nu" is an oxygen-based nucleophile or a carbon-based nucleophile.

5. The method of claim 4, wherein the nucleophile Nu" is a carbon- based nucleophile derived from an organolithium reagent or a Ghgnard reagent.

6. The method of claim 1 , wherein the electrophile E+ is derived from an alkyl halide or silyl halide.

7. The method of claim 1 , further comprising brominating the 1 ,2- azaborine at the 3-position.

8. An azaborine having the formula

9. An azaborine having the formula

wherein R1 is hydrogen, deuterium, halogen, alkyl having 1-6 carbons, aryl having 1-carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, - OR7, an amine protecting group, or Si(R8)3, where each R7 is independently hydrogen, alkyl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, tert-butyloxycarbonyl, or sulfonyl, and each R8 is independently alkyl having 1-6 carbons, aryl having 1 -6 carbons, alkoxy having 1 -6 carbons, acyl having 1 -6 carbons, alkenyl having 1 -6 carbons, and tert- butyloxycarbonyl;

R5 is hydrogen, deuterium, halogen, alkyl having 1-6 carbons, acyl having 1-6 carbons, amide, alkenyl having 1 -6 carbons, alkynyl having 1 -6 carbons, -OR7, hydroxyl, -CN, -SR7, sulfonyl, aryl having 1 -6 carbons, heteroaryl having 1 -6 carbons, or a leaving group LG.

10. The azaborine of claim 9, wherein R1 is alkyl having 1 -6 carbons.

11. The azaborine of claim 9, wherein R1 is tert-butyl.

12. An azaborine having the formula

wherein R1 is hydrogen, deuterium, halogen, alkyl having 1 -6 carbons, aryl having 1-carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, - OR7, an amine protecting group, or Si(R8)3, where R7 is hydrogen, alkyl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, tert-butyloxycarbonyl, or sulfonyl, and each R8 is independently alkyl having 1 - 6 carbons, aryl having 1 -6 carbons, alkoxy having 1-6 carbons, acyl having 1 - 6 carbons, alkenyl having 1-6 carbons, and tert-butyloxycarbonyl;

R2 is an alkenyl or alkynyl moiety;

R5 is hydrogen, deuterium, halogen, alkyl having 1-6 carbons, aryl having 1-carbons, heteroaryl having 1-6 carbons, acyl having 1 -6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, -OR7, an amine protecting group, or Si(R8 )3.

13. The azaborine of claim 12, wherein R2 is a vinyl moiety.

14. The azaborine of claim 12 wherein R2 is a phenylacetylenyl moiety.

15. A substituted 1 ,2-azaborine having the formula

wherein R1 is halogen, alkyl having 1-6 carbons, aryl having 1- carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, -OR7, an amine protecting group, or Si(R8)3, where R7 is hydrogen, alkyl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, tert-butyloxycarbonyl, or sulfonyl, and each R8 is independently alkyl having 1 -6 carbons, aryl having 1-6 carbons, alkoxy having 1 -6 carbons, acyl having 1 -6 carbons, alkenyl having 1-6 carbons, and tert-butyloxycarbonyl;

R2 is halogen, acyl having 1-6 carbons, amide, -CN, alkenyl having 1-6 carbons, alkynyl having 1 -6 carbons, or a leaving group LG; or R2 is an aromatic heterocycle; alternatively R1 and R2 taken in combination form a fused 5- or 6-membered ring that optionally incorporates one or more heteroatoms, and that is itself optionally further substituted by alkyl having 1-6 carbons, aryl having 1-6 carbons, acyl having 1-6 carbons, tert- butyloxycarbonyl or Si(R8)3;

R3 is halogen, alkyl having 1-6 carbons, acyl having 1-6 carbons, amide, alkenyl having 1 -6 carbons, alkynyl having 1-6 carbons, or a leaving group LG;

R5 is halogen, alkyl having 1-6 carbons, aryl having 1 -carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, -OR7, an amine protecting group, or Si(R8)3.

16. The substituted 1 ,2-azaborine of claim 15 wherein the amine protecting group is a carbobenzyloxy, p-methoxybenzyl carbonyl, tert- butyloxycarbonyl, 9-Fluorenylmethyloxycarbonyl, acetyl, benzoyl, benzyl, p- methoxybenzyl, 3,4-dimethoxybenzyl, p-methoxyphenyl, tosyl, or a sulfonamide.

17. The substituted 1 ,2-azaborine of claim 15 wherein the leaving group LG is a tosylate, a mesylate, an -O-sulfonyl, or a cyano moiety.

18. A substituted 1 ,2-azaborine having the formula:

wherein R1 is hydrogen, deuterium, halogen, alkyl having 1 -6 carbons, aryl having 1-carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, - OR7, an amine protecting group, or Si(R8)3, where R7 is hydrogen, alkyl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, tert-butyloxycarbonyl, or sulfonyl, and each R8 is independently alkyl having 1 - 6 carbons, aryl having 1 -6 carbons, alkoxy having 1 -6 carbons, acyl having 1 - 6 carbons, alkenyl having 1-6 carbons, and tert-butyloxycarbonyl;

R3-R6 and R13-R15 are independently hydrogen, halogen, alkyl having 1-6 carbons, aryl, acyl having 1 -6 carbons, amide, alkenyl having 1 -6 carbons, alkynyl having 1-6 carbons, or a leaving group LG; and R Ϊ16 : i,s hydrogen, halogen, alkyl having 1 -6 carbons, aryl, acyl having 1-6 carbons, amide, alkenyl having 1 -6 carbons, alkynyl having 1 -6 carbons, or a leaving group LG; or R16 is an aromatic or heteroaromatic ring system.

19. The substituted 1 ,2-azaborine of claim 18 having the formula

wherein R ,17- πR20 are independently hydrogen, halogen, alkyl having 1 -6 carbons, aryl, acyl having 1-6 carbons, amide, alkenyl having 1 -6 carbons, alkynyl having 1-6 carbons, or a leaving group LG.

20. An octahedral metal complex comprising:

at least one octahedral metal; and

at least one substituted 1 ,2-azaborine compound according to claim 18 or 19 coordinated with the octahedral metal.

21. The octahedral metal complex of claim 20, wherein 2 or 3 substituted 1 ,2-azaborine compounds, which may be the same or different, are coordinated with the octahedral metal.

22. The octahedral metal complex of claim 20, wherein the octahedral metal is Ir, Mo, Cr, Fe, Co, Mn, Rh, Os, Re, Al, Si, Eu, Tb, Gd, Ag, Cu, Ni, Zn, Tl, or K.

23. The octahedral metal complex of claim 22, wherein the octahedral metal is Ru, Rh, Os, Co, Eu, Tb, or Ir,

24. An azabohne indole having the formula

wherein R is halogen, alkyl having 1-6 carbons, acyl having 1-6 carbons, amide, alkenyl having 1-6 carbons, alkynyl having 1 -6 carbons, or a leaving group LG;

R4-R6 and R9-R11 are independently hydrogen, deuterium, halogen, alkyl having 1-6 carbons, aryl having 1 -carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1 -6 carbons, alkynyl having 1-6 carbons, sulfonyl, -OR7, an amine protecting group, or Si(R8)3, where R7 is hydrogen, alkyl having 1-6 carbons, acyl having 1 -6 carbons, alkenyl having 1-6 carbons, tert-butyloxycarbonyl, or sulfonyl, and each R8 is independently alkyl having 1-6 carbons, aryl having 1 -6 carbons, alkoxy having 1-6 carbons, acyl having 1 -6 carbons, alkenyl having 1 -6 carbons, and tert-butyloxycarbonyl .

25. An organic polymer incorporating a plurality of aromatic azaborine moieties.

26. The organic polymer of claim 25, wherein the aromatic azaborine moieties are incorporated into the polymer backbone.

27. The organic polymer of claim 25, wherein the aromatic azaborine moieties depend from the polymer backbone.

Description:
SUBSTITUTED 1,2 -AZABORINE HETEROCYCLES

[0001] As provided for by the terms of Grant No. DE-FG36-08GO18143 awarded by the Department of Energy, the U.S. Government has certain rights in the invention.

Cross-Reference to Related Applications

[0002] This applications claims the benefit under 35 U. S. C. § 119(e) of the priority of U.S. Provisional Patent Application No. 61/228,883 titled 1 ,2- AZABORINE HETEROCYCLES filed July 27, 2009; U.S Provisional Patent Application No. 61/228,893 titled AZABORINE COMPOUNDS AS HYDROGEN STORAGE SUBSTRATES filed July 27 2009; U.S. Provisional Patent Application No. 61/301 ,475 titled AZABORINE ISOSTERES OF ACETAMINOPHEN AND L-DOPA filed February 4, 2010; and U.S. Provisional Patent Application No. 61/348,673 titled SYNTHESIS AND MODIFICATION OF SELECTED BN-SUBSTITUTED HETEROCYCLES filed May 26, 2010, all hereby incorporated by reference.

Background

[0003] Heterocycles, or heterocyclic compounds, are cyclic organic compounds, either aromatic or nonaromatic, that have at least one non- carbon ring atom, typically sulfur, oxygen or nitrogen. Heterocyclic compounds often exhibit chemical reactivities distinct from that of their pure carbon analogs, and such compounds have been found to possess utility in a variety of industries including medicine, materials science, synthetic chemistry, and nanotechnology, among others. Heterocyclic analogs of benzene may be found to possess particularly advantageous properties.

Summary

[0004] Aromatic heterocycles incorporating boron and nitrogen atoms are prepared. In particular, 1 ,2-azaborine compounds selectively substituted at one or more of the 1 , 2, 3, 4, 5, and 6 positions are prepared. Detailed Description

[0005] The compounds of the present disclosure may be described by the following formula

where the R 1 substituent is hydrogen, halogen, alkyl having 1 -6 carbons, aryl having 1-6 carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, -OR 7 , an amine protecting group APG, or Si(R 8 )3. Each R 7 is independently hydrogen, alkyl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, tert-butyloxycarbonyl, or sulfonyl. Each R 8 is independently alkyl having 1 -6 carbons, aryl having 1-6 carbons, alkoxy having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, and tert-butyloxycarbonyl.

[0006] The R 2 substituent is hydrogen, halogen, -CN, acyl having 1-6 carbons, amide, alkenyl having 1 -6 carbons, alkynyl having 1-6 carbons, aryl having 1 -6 carbons, or R 2 is an aromatic heterocycle. Alternatively R 1 and R 2 taken in combination form a fused 5- or 6-membered ring that optionally incorporates one or more heteroatoms, and that is itself optionally further substituted by alkyl having 1-6 carbons, aryl having 1-6 carbons, acyl having 1-6 carbons, tert-butyloxycarbonyl or Si(R 8 )3. In yet another alternative, the R 2 moiety is a leaving group LG.

[0007] The R 3 substituent is hydrogen, halogen, alkyl having 1-6 carbons, acyl having 1-6 carbons, amide, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, -OR 7 , -CN, thiol, SR 7 , sulfonyl, aryl having 1 -6 carbons, heteroaryl having 1 -6 carbons, deuterium, or a leaving group LG. [0008] The R 5 substituent is hydrogen, deuterium, halogen, alkyl having

1-6 carbons, acyl having 1-6 carbons, amide, alkenyl having 1 -6 carbons, alkynyl having 1-6 carbons, -OR 7 , hydroxyl, -CN, -SR 7 , sulfonyl, aryl having 1- 6 carbons, heteroaryl having 1-6 carbons, or a leaving group LG.

[0009] By "leaving group" (LG) is meant a functional group that is readily displaced or otherwise labile. That is, it may be readily displaced by an incoming reagent to form a new compound. A particular class of leaving groups is the "protecting group", a functional group or associated chemical moiety that protects a molecule or portion of a molecule from undesired reactions, but may be readily removed under the appropriate conditions (deprotection).

[0010] Typically a leaving group LG is displaced with a concomitant heterolytic cleavage of the bond to the LG. Preferred leaving groups include halides, diazonium salts, nonaflates, thflates, fluorosulfonat.es, tosylates, and mesylates, among others. Preferred leaving groups are tosylate, mesylate, - O-sulfonyl, and cyano.

[0011] The amine protecting group APG is a functional group bound to the amine that prevents the amine from taking part in any undesired reactions, but which can still be removed when desired. Typicaly amine protecting groups include carbobenzyloxy, p-methoxybenzyl carbonyl, tert- butyloxycarbonyl, 9-Fluorenylmethyloxycarbonyl, acetyl, benzoyl, benzyl, p- methoxybenzyl, 3,4-dimethoxybenzyl, p-methoxyphenyl, tosyl, and sulfonamide, among others.

[0012] In one embodiment, the R 1 moiety is alkyl, aryl, vinyl, acyl, BOC, or Si(R 8 ) 3 ; R 2 is Cl; R 3 is Br, Cl, F, OH, OTf, or OR 7 ; and R 5 is Br, Cl, F, OH, OTf, OR 7 , where each R 7 and R 8 is as defined above.

[0013] In an alternative embodiment, the compounds of the disclosure have the formula

where the R 1 moiety may be hydrogen, deuterium, halogen, alkyl having 1-6 carbons, aryl having 1 -carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, -OR 7 , an amine protecting group, or Si(R 8 J 3 . The R 7 substituent is hydrogen, alkyl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, tert-butyloxycarbonyl, or sulfonyl, and each R 8 is independently alkyl having 1-6 carbons, aryl having 1 -6 carbons, alkoxy having 1 -6 carbons, acyl having 1-6 carbons, alkenyl having 1 -6 carbons, and tert- butyloxycarbonyl.

[0014] The R 5 moiety is hydrogen, deuterium, halogen, alkyl having 1 -6 carbons, aryl having 1 -carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, -OR 7 , an amine protecting group, or Si(R 8 )3, where R 7 and R 8 are as defined above. In one aspect of the disclosed compound, R 5 is iodide.

[0015] In one aspect of the above compound the R 1 moiety is alkyl having 1-6 carbons, preferably R 1 is tert-butyl .

[0016] In another aspect of the disclosed compounds, the azabohne has the formula

where the R 1 moiety is as defined above, and the R 2 substituent is an alkenyl or alkynyl moiety. The R 5 moiety is hydrogen, deuterium, halogen, alkyl having 1-6 carbons, aryl having 1-carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, -OR 7 , an amine protecting group, or Si(R 8 ) 3 , where R 7 and R 8 are as defined above. IN one aspect of the compounds, R 2 is a vinyl moiety. In another aspect, R 2 is a penylacetylenyl moiety.

[0017] Selected compounds of the present disclosure may possess significant synthetic utility, in that a substituent at R 3 or R 5 that is readily displaced permits functionalization of the compound at that position. Furthermore, the R 2 substituent may also be selected to be particularly labile (i.e., a good leaving group) providing a synthetic route to additionally substituted 1 ,2-azaborine compounds. In particular, compounds having a diverse range of substituents at R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 may be readily prepared from the disclosed compounds. Such compounds are difficult or impossible to prepare using previously disclosed azabohne compounds.

[0018] A general scheme for the preparation of 1 ,2-azaborines is shown below as Scheme 1.

M-R'

TBAF

Scheme 1

[0019] This synthetic strategy may include: Treatment of the known (N- TBS, B-Cl) starting material with Br 2 to produce the C(3) brominated material through an electrophilic aromatic substitution (EAS) reaction. Subsequent treatment of this intermediate with I 2 generates the C(5) iodinated heterocycle also via an EAS reaction. This compound serves as a versatile intermediate to a variety of 1 ,2,3,5-substituted 1 ,2-azabohnes. For instance, nucleophilic displacement of the B-Cl bond with a nucleophile (e.g., BuLi) installs a butyl group as the R 2 group. Subsequent Suzuki coupling introduces the R 5 substituent. The C(3) Br can then be further functionalized by for example a Stille reaction to install the C(3) substituent. Removal of the N-TBS group enables the introduction of the R 1 substituent by a substitution reaction. [0020] In particular, the azaborine having the formula

is a useful precursor for a variety of new azaborine compounds. Without wishing to be bound by theory, the presence of a halogen at the 2-position activates the position ortho to the halogen with respect to substitution reactions.

[0021] In particular, such a compound where R 1 is alkyl, aryl, vinyl, acyl

BOC, or Si(R 8 ) 3 is preferred, particularly trialkylsilyl, useful, as each substituent then exhibits a distinct degree of reactivity, permitting selective substitution. In one aspect, R 1 is SiMe2 t-Bu.

[0022] The following compounds represent individual exemplary embodiments of the compounds of this disclosure. While they may represent particularly advantageous compounds, they should not be considered to limit the scope of the disclosure.

where X is Br or Cl;

where R 1 is defined as above; X is Br, Cl, F, OH, OTf, OTs, or OR 7 ; and Y is I, Br, Cl , F 1 OH , OTf, or OR 7 ; and

where R 1 , R 2 , R 3 , R 7 , and X have been previously defined.

[0023] A general scheme for the preparation of 1 ,2-azaborines is shown below as Scheme 2.

[0024]

X = Br, Cl

RCM = ring closing metathesis

EAS = electrophilic aromatic substitution

Scheme 2

[0025] This synthetic strategy may include: 1 ) Condensation of a desired allyl amine and a desired allylboron dichloride that is generated in situ; 2) Ring-closing metathesis, for example in the presence of 2% first generation Grubbs catalyst; 3) Dehydrogenation of the resulting heterocycle, for example using palladium as a catalyst in the presence of a hydrogen acceptor; 4) Electrophilic aromatic substitution; and 5) Nucleophilic displacement. It should be appreciated that through careful selection of starting materials and nucleophilic agents a variety of desired compounds may be prepared.

[0026] A particularly useful precursor to additional novel compounds may be described by the formula:

where one or more of R 1 , R 2 , R 3 , and R 5 is selected to be readily displaced. A particular example where each of R 1 , R 2 , R 3 , and R 5 is a replaceable moiety is

Br

R 1 Displacement

[0027] 1 ,2-azabohne compounds having a nonhydrogen substituent at

R 1 provide a useful synthetic precursor for a variety of substituted 1 ,2- azaborine structures. A facile and cheap synthesis of such a compound would greatly simplify the preparation of azabohne analog compounds. To this end, Scheme 3 depicts a relatively inexpensive synthetic route to a compound substituted at the azaborine nitrogen by a labile protecting group (compound 1). Complexation of homoallylic amine 2 with BH 3 » THF produces 2. Intramolecular hydroboration of 2 occurs in toluene at elevated temperatures to furnish the cyclized BN heterocycle 3. Dehydrogenation of 3 produces the desired compound 1.

2) heat, toluene

3)- 3H 2 , catalyst

Scheme 3

[0028] The compound 1 , where the nonhydrogen substituent PTG at R 1 is TBS, may also be synthesized by the following route as depicted in Scheme 4.

Scheme 4 The compound 1 , where the nonhydrogen substituent PTG at R 1 is t-Bu, may also be synthesized by the following route as depicted in Scheme 5. The known (N-TBS, B-Cl) starting material is treated with LiBHEt 2 to afford the 1 ,2- azaborine with a t-Butyl substituent at position 1 and where R 2 - R 6 are hydrogens.

Scheme 5

R 2 Displacement

[0029] Selected azaborine compounds that are substituted at the boron atom (substituent R 2 ) by a facile leaving group, such as triflate (OTf) among other, may exhibit enhanced electrophilicity at the boron atom, making them particularly useful in the preparation of novel cationic 1 ,2-azabohne derivatives. The preparation has been accomplished using silver halide metathesis as shown in Scheme 6:

AgOTf benzene

Room Temperature

where R 1 is ethyl, t-butyl, or SiMe2(t-Bu).

Scheme 6

[0030] The reactivity of the compound 1 ,2-dihydro-1 ,2-azabohne

(compound 5) has not previously been extensively explored due to the lack of practical synthetic methods for its preparation. The successful synthesis of compound 5 permits the preparation of a variety of azaborine derivatives via a variety of successful synthetic strategies, including a large selection of compounds that previously could not be made. We have recently succeeded in the preparation of 5 and investigated some of its properties.

[0031] For example, compound 5 readily undergoes nucleophilic aromatic substitution, a reactivity pattern that is not readily observed for the benzene molecule itself (see Scheme 7). Typically, the parent 1 ,2-dihydro- 1 ,2-azabohne 5 is reacted with a nucleophile (Nu " ) and quenched with an electrophile (E + ) to give the substituted product 6.

Scheme 7

[0032] In a typical protocol, 5 is treated with two equivalents of a nucleophile (Nu-) followed by quenching with the desired electrophile (E+). A broad variety of appropriate nucleophiles and electrophiles may be used in the reaction, as shown in Table 1 below. Fore example, oxygen-based reagents ncluding te/f-butoxide, and allyloxide are suitable nucleophiles, producing the desired products in moderate to good yields. A variety of carbon nucleophiles also work very well. For instance sp 3 -, sp 2 -, and sp- hybridized carbon nucleophiles also generate the desired products efficiently. The reaction also seems to be independent of the steric demand of the nucleophile, as both the te/t-butyl and n-butyllithium produced the desired adducts in good yield. The reaction is not restricted to organolithium reagents, as Grignard reagents are similarly effective. A variety of electrophiles, such as TMSCI, MeI and BnBr, among other, can also be used. Table 1. Nucleophilic Aromatic Substitution of 1 ,2-Dihydro-1 ,2-Azaborine

Nu-M E Yield (%) a

Na-OfBu H 63

K-OaIIy! H 79

LkBu H 81

Li-r?Bu H 80

Li-Ph H 98

BrMg-viny! H 59

BrMg— ^≡ ~~~ Ph H 71

Li-ziBϋ TMS 89

Li-r?Bu Me 67

Li-ziBϋ Bn 60

a Isolated yield.

This discovery significantly expands the synthetic toolbox for 1 ,2-azaborine as it readily installs two substituents on the 1 ,2-azaborine nucleus in a one-pot reaction.

[0033] The method of preparing a substituted 1 ,2-azaborine, as described above, can be considered to include a) treating a starting 1 ,2- azaborine compound with a nucleophile Nu " to generate an intermediate compound having a boron-Nu bond; and b) treating the intermediate compound with an electrophile E + to generate a substituted 1 ,2-azaborine having a boron-Nu bond and a nitrogen-E bond. In one aspect of the method, the starting 1 ,2-azaborine compound is 1 ,2-dihydro-1 ,2-azaborine. Typically, the intermediate compound in the reaction is not isolated.

[0034] The nucleophile Nu " is typically an oxygen-based nucleophile or a carbon-based nucleophile such as may be derived from an organolithium reagent or a Grignard reagent. The electrophile E + may derived from an alkyl halide or silyl halide.

Analogs of Polypyridyl Compounds

[0035] In one embodiment, the disclosed azaborine compounds are substituted at R 2 by an aromatic heterocycle, which may in turn be substituted by another aromatic heterocycle. The resulting compounds can be considered to be azaborine analogs of bipyridyl and terpyridyl, respectively. Such compounds have been previously unavailable by conventional synthetic methods.

[0036] In one embodiment, the azaborine compounds have the formula

[0037] Wherein R 1 is hydrogen, deuterium, halogen, alkyl having 1-6 carbons, aryl having 1 -carbons, heteroaryl having 1-6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, alkynyl having 1-6 carbons, sulfonyl, -OR 7 , an amine protecting group, or Si(R 8 )3, where R 7 is hydrogen, alkyl having 1-6 carbons, acyl having 1 -6 carbons, alkenyl having 1-6 carbons, tert-butyloxycarbonyl, or sulfonyl, and each R 8 is independently alkyl having 1 -6 carbons, aryl having 1-6 carbons, alkoxy having 1 -6 carbons, acyl having 1-6 carbons, alkenyl having 1-6 carbons, and tert-butyloxycarbonyl.

[0038] Remaining substituents R 3 -R 6 and R 13 -R 15 are independently hydrogen, halogen, alkyl having 1-6 carbons, aryl, acyl having 1-6 carbons, amide, alkenyl having 1 -6 carbons, alkynyl having 1-6 carbons, or a leaving group LG.

[0039] The R 16 substituent is is hydrogen, halogen, alkyl having 1 -6 carbons, aryl, acyl having 1-6 carbons, amide, alkenyl having 1 -6 carbons, aallkkyynnyyll hhaavviinngg 11--66 ccaarrbboonnss,, or a leaving group LG; or R 16 is an aromatic or heteroaromatic ring system.

[[00004400]] WWhheerree RR 1166 iiss an aromatic or heteroaromatic ring system, the resulting azaborine compound has the formula

where substituents R 17 -R 20 are independently hydrogen, halogen, alkyl having 1-6 carbons, aryl, acyl having 1-6 carbons, amide, alkenyl having 1 -6 carbons, alkynyl having 1-6 carbons, or a leaving group LG.

[0041] A nonlimiting selection of examples of such bipyhdyl and terpyhdyl analogs is provided below:

3N1-apy BN2-Blρy 5N1-teφV BN2-tef$V

BN1-B8pyH BN2-BipyH2 BN1-terpyH BN2-terpyH2

[0042] Through substitution of a C=C bond with the isoelectronic and isostructural inorganic B-N unit, 1 ,2-azabohne structures uniquely combine two important concepts in chemistry, i.e., aromaticity and BN/CC isostehsm in one structural framework. As a result, the azaborine polypyhdyls may provide new applications in materials science. In particular, 1 ,2-azabohnes may be used as electronically distinct mimics of pyridine in solar energy conversion applications. We have found that the replacement of CC with BN in conjugated systems leads to materials with optoelectronic properties that are distinct from their analogous all-carbon systems. For example, substitution of BN for CC in such systems may lead to a significant red shift in the absorption spectrum and an enhancement in the molar absorptivity (ε).

[0043] The synthetic route to azaborine-bipy ligands is shown below in

Scheme 8. Treatment of the N-protected 1 ,2-azabohne precursor 7 with orthometallated pyridine results in heterocycle 8. Subsequent removal of the protecting group then yields the desired protonated azaborine bipy 9. Alternatively, the reaction of 7 with lithium metal in the presence of naphthalene (C 10 H 8 ) generates the B-Li species 10. Reaction of 10 with another equivalent of starting material 10 furnishes the desired azaborine- bipyH 2 11 , which can then be deprotected to yield the desired compound.

Scheme 8

[0044] A similar strategy can be employed for the synthesis of azaborine-terpy ligands as shown in Scheme 9 Treatment of 7 with the known ortho-Nth iated bipy produces compound 12, which is then deprotected to yield the desired azabohne-terpyH 13.

Scheme 9

[0045] Alternatively, as shown in Scheme 10 precursor 7 may be reacted with bis-ortho-stannylated pyridine to give the bis-N-protected azaborine-terpy 14. Subsequent removal of the N-protecting groups furnishes the desired azaborine-terpyH 2 15. Similarly, sequential treatment of 7 with ortholithiated bromopyridine produces 16, and metal-halogen exchange of this intermediate with Bu-Li gives the lithiated heterocycle 17. Reaction of 15 with precursor 7 yields 14. Deprotection then gives the desired azaborine-terpyH 2 .

MecSn

Scheme 10

[0046] Of particular utility are the octahedral metal complexes formed by coordinating one, two, or three such azaborine polypyridine compounds (which may be the same or different) with at least one octahedral metal. By utilizing azaborine polypyhdyls in place of conventional bipyhdyl and terpyhdyl as ligands in octahedral metal complexes, novel sensitizer dyes may be prepared and their properties investigated. For example, such compounds may have significant utility as components in solar energy conversion applications.

[0047] A selection of representative ruthenium complexes of azaborine polyridyl compounds are provided below (where SCN is thiocyanate). However, analogous complexes of metals such as Ir, Mo, Cr, Fe, Co, Mn, Rh, Os, Re, Al, Si, Eu, Tb, Gd, Ag, Cu, Ni, Zn, Tl, K, among others, may be readily envisioned and are accessible using synthetic techniques known in the art. Similarly, a variety of ligands other than thiocyanate may be used to occupy binding sites around the octahedral metal center.

N24!

Azabohne Polymers

[0048] By replacing one or more aromatic ring structures in selected organic polymers with their azabohne analogs, a wide variety of new azaborine polymers may be prepared, with potential utility in materials science and other applications. Typically such organic polymers incorporate a plurality of aromatic azaborine moieties, which may be incorporated into the polymer backbone, or which may depend from the polymer backbone as pendant groups.

[0049] For example, via addition of an alkenyl substituent to the azaborine, an azaborine analog of styrene may be prepared, which may therefore be incorporated into members of the family of styrene-dehved polymers (see Scheme 11).

BN Styrene Monomer polymerization

conditions

poly BN Styrene

Scheme 11

[0050] The synthesis of a BN-styrene may be accomplished using the parent 1 ,2-dihydro-1 ,2-azabohne (5) as the starting material. The addition of 2 equivalents of a vinyl magnesium Grignard reagent followed by quenching with HCI furnishes the desired BN-styrene in 60% yield (see Scheme 5).

[0051] The polymerization of BN-styrenes can be used to produce poly

BN-styrene of a given molecular weight in a controlled fashion, using conventional polymerization techniques (e.g. anionic, radical, or cationic pathways using appropriate catalysts).

[0052] By replacing the aromatic heterocyclic rings in such polymers as polyaniline, polyaminopyridine, polymethylquinoline, polypyrrole, and polythiophene with a corresponding azabohne ring system, a novel family of polymeric solids may be prepared having applications as organic conductors for use in batteries, thin-layer displays, catalysis, anti-static and anti-corrosive materials, sensors, and gas separation membranes.

[0053] Similarly, azaborine analogs of fire-resistant polymers such as polyimides, polybenzoxazoles, polybnezimidazoles and polybenzthiazoles may offer polymers having improved properties. Where liquid crystal polymers incorporate aromatic rings, the substitution of azaborine in the polymer may result in similarly inert and fire-resistant polymers. Additionally, mixed polymers of azaborines and porphyrins, or other photoconductive azaborine polymers, may be useful as photorefractive materials.

Azaborine Polvphenyl Compounds

[0054] Given the structural similarity of arene and 1 ,2-azabohne discussed above, azaborine analogs of polyphenyl compounds may be prepared. These materials where selected C=C bonds are replaced with a BN bond pair may serve as novel scintillators, that is, molecules that exhibit luminescent emission when excited by ionizing radiation (e.g., He 2+ , Li + , v- rays). Such high-energy particles are typically produced during a boron neutron capture reaction, and typical scintillator materials are aromatic compounds (e.g., terphenyl, quaterphenyl, POPOP, PPO etc). Selected azaborine analogs of such materials are illustrated below:

anthracene BN anthracene

tetraphenylbutadiene BN4 tetraphenylbutadiene

di phenyl anthracene BN2 diphenylanthracene stilbene BN2 stilbene

triphenylbenzene BN3 triphenylbenzene polystyrene BN polystyrene

1,4-bis(5-p-n-butoxyphenyloxazol-2-yl)-benzene

dibutoxy-POPOP

BN POPOP

[0055] Although the azaborine heterocycles materials disclosed herein are novel, their preparation may be accomplished using adaptations of synthetic methods previously reported in the literature. Azaborine anthracene may be synthesized from 3-vinyl-2-aminonaphthalene and boron trichloride (see Scheme 9). An alternative synthetic approach may be taken in the preparation of azaborine stilbene. The Liu group has established a versatile nucleophilic substitution protocol for the incorporation of the 1 ,2-azabohne motif into various structures via intermediate A (Scheme 12, eq. (2)). As a representative example, azaborine stilbene may be prepared using intermediate A and (E)-1 ,2-dibromoethene (after metal-halogen exchange) via the nucleophilic substitution approach. This general approach can be adapted to the synthesis of BN2 diphenylanthracene and BN3 triphenylbenzene. The Liu group has already accomplished the synthesis of a BN styrene monomer (R = Et, Scheme 9, eq (3), where R = ethyl). Polymerization of the monomer according to known methods furnishes the desired azaborine polystyrene.

BN styrene

monomer

Scheme 12

[0056] A typical neutron-sensing device contains the following components:

(1 ) A material containing hydrogen to modulate fast neutrons;

(2) Boron-containing compounds to capture the modulated slow thermal neutrons; and

(3) Scintillators that capture the particles generated from the boron neutron capture reaction and produce a detectable response.

[0057] While the poly BN-styrene discussed above can serve as component (1 ) and/or (2) in such neutron sensing devices, the BN-polyphenyl scintillators may incorporate all three components (1 )-(3) into a single material and may exhibit improved properties as compared to the current state of the art devices.

Azabohne Tolan Analogs

[0058] By combining azabohne substitution in phenyl moieties and elements of unsaturation in their substituents, organic materials exhibiting novel optical/electronic properties may be prepared. For example, azabohne analogs of diphenylacetylene (tolan) demonstrate the potential utility of such azaborine compounds.

[0059] In particular, the two tolan derivatives were prepared, tolan(1 ) and tolan(2), according to Schemes 13 and 14 below. The synthesis of tolan(1 ) begins with nucleophilic substitution of B-Clazabohne with phenylethynyl magnesium bromide furnished N-TBS protected compound 18 in 76% isolated yield. The reaction of 18 with (MeCN) 3 Cr(CO) 3 gave the piano-stool complex 19 in 91 % yield. Deprotection of the N-TBS group with HF-pyridine afforded the chromium tricarbonyl complex 20 in 85% yield. Simple dissolution of 20 in MeCN, followed by chromatographic purification gave 21 in good yield.

18

(MeCN) 3 Cr(CO) 3

JBS

MeCN

21

Scheme 13

[0060] As shown in Scheme 14, in situ generation of Ghgnard reagent and reaction with 7 gave N-TBS protected compound 22 in good yield. The complexation of 22 with Cr(O) yielded complex 24 in 20% yield. N-TBS deprotection with HF-pyridine afforded 25 as a highly-insoluble orange solid, which was dissolved directly in MeCN to yield compound 26 (47%, two steps).

26 23

Scheme 14

[0061] The azaborine tolan analogs both exhibit a red shift in emission spectra, as well as a significant increase in fluorescence quantum yield, relative to the original (carbonaceous) tolan compound. These enhanced photophysical properties, suggesting a variety of uses for azaborine compounds in new optoelectronic materials in materials and sensing applications.

Biomedical Applications

[0062] Azabohne-containing pharmaceuticals may prove highly beneficial, as boron's electrophilic character and unique bonding properties should lead to new mechanisms of biological activity that are not attainable by carbon-based compounds; 2) these novel pathways to interfere with targeted pathogens and boron's low "recognition" by mother nature should reduce the development of drug resistance. At the very minimum, the development of boron-based pharmaceuticals should widen the angles of attack against malignant organisms.

[0063] In addition, it is thought that boron's ability to form strong covalent bonds with hydroxyl groups may produce advantageous physiological effects. For instance, the proposed mechanism by which AN2690® exerts its antifungal activity is formation of strong inhibitory boron- oxygen bonds with the pathogen's Aminoacyl-transfer RNA (tRNA) synthetase. Specifically, the boron atom in AN2690 binds to the 2'- and 3'- oxygen atoms of leucyltRNA's 3'-terminal adenosine in the editing site of the enzyme, ultimately blocking the synthesis of proteins that are essential for the survival of the pathogen. Similarly, the family of diazabohnes, six-membered heterocycles bearing two nitrogen and a boron, has been shown to exhibit antibacterial properties against Gram-negative bacteria. Their mechanism of action is thought to involve inhibition of NAD(P)H-dependent enoyl acyl carrier protein reductase (ENR), which ultimately prevents the synthesis of lipopolysaccharides - essential outer membrane ingredients of Gram-negative bacteria. X Ray structural analysis of a number of E. coli ENR-NAD+- diazaborine complexes revealed covalent bonding between the boron atom and the 2'-hydroxyl of the nicotinamide ribose in the active site

[0064] The azaborine isostere of the medication STRATTERA can be prepared via the nucleophilic aromatic substitution. STRATTERA is a selective norepinephrine reuptake inhibitor used in the treatmeant of ADHD.

Strattera® BN-Strattera [0065] Indoles are one of the most ubiquitous heterocycles in Nature. Indole and its derivatives play pivotal roles in chemistry and biology. As discussed above, the R 1 and R 2 substituents, taken in combination, may form a 5-membered ring, resulting in an azabohne analog of indole, as exemplified below:

[0066] The members of the indole family of azaborines may be similarly substituted at any ring position, to yield the desired azaborine indole derivative. For example but not limited to the following:

[0067] Important natural indoles include tryptamines, melatonin, and serotonin, which act as vital elements in brain function, as well as auxin, a ubiquitous plant hormone that regulates gene expression associated with plant growth. 5,6-Dihydroxyindole serves as a universal precursor for natural pigments, and it is implicated in malignant melanoma. Natural indole alkaloids have been exploited for the treatment of a variety of human diseases. Currently in clinical use are anticancer agents vinblastine and vincristine, the antimigraine drug ergotamine, and the antiarrythmic ajmalicine. Because of the rich chemistry and biological activity of indole-containing natural products, chemists have been attracted to synthesis and study of non-natural indole derivatives. Synthetic variants of indole natural products have found wide- ranging applications as pharmaceuticals (e.g., iphndole, pindolol, and indomethacin). A special natural indole derivative is the gene-encoded amino acid tryptophan. It is the biological precursor to the majority of aforementioned indole natural products.

[0068] The exploration of azabohne analogs of such biologically active compounds may offer insights into metabolism or mechanisms of action of a myriad of biological processes. Potential benefits of research into boron- based drugs include discovery of novel boron-specific mechanisms of biological activity that are unattainable by conventional organic molecules and attenuated development of drug resistance by targeted pathogens.

[0069] An exemplary synthesis of a BN-indole compound is shown in

Scheme 15.

1. nBuLi

2. TBSCI

Scheme 15

[0070] The BN-indole synthesis commences with the selective installation of a TBS group on the terminal nitrogen atom in diamine 26 using butyllithium and TBSCI. The resulting diamine 27 can then be reacted with the in-situ generated allylborondichlohde to furnish diene 28. A ring-closing metathesis of 28 with Grubbs first generation catalyst produces 29, which can be dehydrogenated in the presence of Pd/C at high temperatures to yield the /V-TBS protected BN-indole. Removal of the TBS protecting group with TBAF furnishes the desired BN-indole in a five-step synthetic sequence.

[0071] L-DOPA (L-3,4-dihydroxyphenylalanine) is a naturally-occurring dietary supplement and psychoactive drug found in certain kinds of food and herbs, and is synthesized in the mammalian body and brain from the essential amino acids L-phenylalanine (PHE) and L-tyrosine (TYR). L-DOPA is the precursor to the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline) collectively known as catecholamines. Aside from its natural and essential biological role, L-DOPA is also used in the clinical treatment of Parkinson's disease (PD) and dopamine-responsive dystonia (DRD).

[0072] L-DOPA is an electron rich arene which can form quinones upon oxidation. The toxic effects of L-DOPA may be related to these quinones and their formation may be avoided by azaborine analogs of the compound.

[0073] Several distinct azaborine analogs of L-DOPA may be prepared, as shown below. These analogs may be further substituted, as desired, at various positions.

BN L-DOPA Compounds

[0074] Acetaminophen (Tylenol) is a commonly used drug against fever and pain. Overdose and drug abuse can lead to severe liver toxicity. The metabolic intermediate responsible for toxicity of acetaminophen is N-acetyl- p-benzoquinoneimine, which is produced in the liver after oxidative metabolism (Scheme 16). N-acetyl-p-benzoquinoneimine is a reactive electrophilic species which can irreversibly bind and arylate critical cell proteins, therefore causing cell damage.

acetaminophen N-acetyl-p-benzoquinoneimine

(toxic metabolite)

Scheme 16

[0075] An azaborine acetaminophen isostere may provide similar pharmacological properties as acetaminophen, while also eliminating the possibility of the formation of the toxic quinoidal intermediate (Scheme 17).

BN acetaminophen

Scheme 17

[0076] Similar to L-DOPA, a variety of boron -nitrogen containing analogs of acetaminophen may be envisioned:

[0077] An exemplary synthesis of an azabohne analog of acetaminophen is given below as Scheme 18:

Scheme 18

[0078] Alternatively, by taking advantage of nucleophilic aromatic substitution on 1 ,2-dihydro-1 ,2-azabohne, an alternative route to the azaborine acetaminophen can be formulated (see Scheme 19).

BN-phenacetin

if PTG = Et

Scheme 19

[0079] Treatment of 1 ,2-azaborine 39 with deprotonated acetamide produces compound 40. Removal of the protecting group (PTG) in 40 furnishes the desired BN acetaminophen. If the PTG group in 41 is an ethyl group the compound is analogous to phenacetin, another important member of the family of aniline analgesics.

[0080] Scheme 20 depicts a retrosynthetic analysis of 39, which involves ring-closing metathesis of 44 with subsequent dehydrogenation to form 42 as key steps. Alternatively, compound 39 can also be produced from the halogenated precursor 45. Halogenated 1 ,2-Azabohne 45 can be synthesized again using a ring-closing metathesis-dehydrogenation sequence starting from compound 48.

X=CI, Br

Scheme 20

[0081] 1 ,2-Azaborine 39 can also serve as a precursor toward an isomer of the targeted BN acetaminophen. Scheme 21 illustrates that treatment of 36 with Na-OMe should lead to 40. Subsequent Buchwald- Hartwig amination using acetamide as a substrate furnishes 41, an isomeric derivative of BN acetaminophen.

Scheme 21 [0082] The treatment of 1 ,2-dihydro-1 ,2-azaborine with deprotonated acetamide provides an azaborine acetanilide (BN acetanilide, a member of the aniline analgesics) as shown in Scheme 22.

1 ,2-dihydro- BN acetanilide 1 ,2-azaborine

Scheme 22

[0083] Selected alternative azaborine substituted anesthetics are provided below:

lidocaine BN lidocaine

[0084] The compounds of the present disclosure represent a synthetic gateway to a large range of modified derivatives, including those that are substituted by leaving groups (LG), reactive functional groups (RF), or conjugated substances (CS).

[0085] By "reactive functional group" is meant a functional group capable of forming a covalent attachment with another molecule or substance. Reactive groups may vary in their reaction specificity, and are typically selected to possess the desired reactivity to form a covalent bond with a desired molecule or substance. A reactive group may be bound directly to the compound of the disclosure, or may be attached via some covalent spacer or linkage. [0086] Reactive functional groups may be used to form conjugates of a substance of interest. Such conjugated substances may include for example amino acids, peptides, proteins, nucleosides, nucleotides, nucleic acids, or other biologically relevant substance. Alternatively, the conjugated substance may be a member of a specific binding pair.

[0087] Although the present invention has been shown and described with reference to the foregoing operational principles and preferred embodiments, it will be apparent to those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the invention. The present invention is intended to embrace all such alternatives, modifications and variances that fall within the scope of the appended claims.