Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SUBTILASE VARIANTS
Document Type and Number:
WIPO Patent Application WO/2004/041979
Kind Code:
A2
Abstract:
The present invention relates to novel subtilase variants exhibiting alterations relative to the parent subtilase in one or more properties including: Wash performance, thermal stability, storage stability or catalytic activity. The variants of the invention are suitable for use in e.g. cleaning or detergent compositions, such as laundry detergent compositions and dish wash compositions, including automatic dish wash compositions. The subtilase variant has a modification in at least one of the positions 62, 68, 97, 98, 99, 106, 131, 170, 245 and/or 252 in combination with one or more modifications in other positions (159 specified positions), or one or more modification in position 68 (no combination). Further claimed are 56 subtilase variants not linked to the variants specified above.

Inventors:
DRAGBORG HENRIETTE
HANSEN PETER KAMP
BJOERNVAD MADS ESKELUND
NOERREGAARD-MADSEN MADS
MIKKELSEN MIKAEL
Application Number:
PCT/DK2003/000756
Publication Date:
May 21, 2004
Filing Date:
November 05, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NOVOZYMES AS (DK)
International Classes:
C11D3/386; C12N9/54; (IPC1-7): C11D/
Domestic Patent References:
WO1999020727A11999-04-29
WO2000071686A12000-11-30
WO2000037621A12000-06-29
WO2000037599A12000-06-29
WO2000037658A22000-06-29
WO1996027671A11996-09-12
Foreign References:
US6312936B12001-11-06
US6436690B12002-08-20
Download PDF:
Claims:
CLAIMS
1. A protease variant comprising: a) an insertion, substitution or deletion of one of the amino acid residues K, H, R, E, D, Q, N, C, V, L, I, P, M, F, W, Y, G, A, S, T in one or more of the positions 62,68, 97,98, 99,106, 131,170, 245,252 in combination with at least one of the following modifications *OAQSVPWG; A1T, V; Q2L; S3T, A, L; V4L, A ; 18V, T; S9G, D, R, K, L, V; R10H, K; V11A ; Q12D; A13V; P14S, T, D, A, M, V, K, Q, L, H, R, 1 ; A15M, T; A16P; H17R; N18S, H; R19W, K, L, F, G, I ; G20*, R, A; L21F, LP, LW, LA, LG; T22S, A, K, TV, TG, TL, TW, TV, G, L, TY; G23S; S24P; K27R, V281 ; V301 ; 135T, V; T38S; P40L; N43D; R45H, K; G46D; A48T; S49N; F50S; V51A, I, D; P52V, A; P55S, A; S57P; G61E, D, S, R, GP; N62D, ND, NE, DE, NG, E, S; V68A, S, L, I ; T71A ; 172V ; L751 ; N76S, D; N77S; S78T; V81A; A85T; S87C; A88V, T; E89G; K94N; V95C, T; L96LA, LG; G97E, D, W, A, GG, GA, GV, N, GS; A98S, D, E, T, AS, AD, AV, AE, AH, Q, N, M, L, G, R, V, S; S99D, L, A, AD, SD, SM, SG, DA, P, G, N, C, M, V, 1 ; G100S, GE, C; S101SA, SK; G102D, S; S103D, E, Y, L, Q, H, T; V104T, S, R, I, N, M, L, D; S106D, E, T, M, G, A, L, F, I ; 1107T, V, M; A108V, T, S; L1111, V; A114V; N116S, D; G118D; M119L, I, V, A, S; H120N, D, Q, K, E, Y, S; V121A; L124C; L1261 ; G127E; S128N, I, G, C; P129PSN, T, E, D, S, N, A; S130P, T, C, *; P131M, F, W, L, A, H, T, *, PA, S, Q, R, E, G, D, C; S132G, T; A133ASA ; T134A ; Q137H, E, D; A138G, V; V139L, I ; N140D, K; T143A; S144D, N, P; R145G; V1501 ; A151V, G; A152P; A158T, V, C, E, L, D, M ; G160A, D; S163G, C, N, A; Y167K, A, I ; A168G; A169G; R170C, S, H, L; Y171C; A172V; N173D; A174V; M175L, I, V, A, S, T; N183D; N184D, S; N185S, D; R186L, C, H; S188G; S190A; Y192H ; G195F, E; V203S, A, L, Q, M, F, I ; N204T, D, S; Q206L; Y209C, H; G211D ; S212N, L; T213A; Y214C, H; A215D, T; N218D, S; M222L, I, V, A, S; A223G; T224A, S; A228T; A230V; A232S, L, T, P; V2341 ; Q236A, L, D, T, C, M, F, S; K237R; N238D; P239T, S; S240F; S242T; V2441, M, A; Q245R, K, E, D, T, F, N, V, W, G, I, S, C, L, A, M; N248P, D, S; K251E, R; N252G, H, D, V, M, S, T, E, Y, S, Q, K, A, L; A254S; T255A, S; S256N, R, G; L257G; G258K, S259A, N, G; T260A, R; N261D ; L262S, Q, V; Y263H, F; G264E; S265G, R, N; V268L, I ; N269T; N296K; E271A; T274S, L, A, R, or b) one of the following combination variants A108T+L111V ; L1241+S125A ; P129S+S130AT ; L96LA+A151G+V203A ; S49N+V203L+N218D ; S3T+A16P+R45C+G100S+A230V ; 18V+R19K+V1391 ; N76D+A174AL+A194P+A230V ; N185R; N62NE; H120Q+Q137E, G61GE, G61GS, G100L, A133D, V68A, N123D, L111F+Y263H, V11A+G61GE+V227A+S240F, A133E+S144K+N218D, S128A+P129S+S130SP, S9R+A15T+T22TQ+S101 P, S9R+A15T+H120R+Q137D+N173S, G97E, Q245W, S9R+A15T+L96LG+Q137E+Y209H, S9R+A15T+L111V+Q137E+G211D, S9R+A15T+L111I+Q137E, S9R+A15T+L111I+H120N+Q137E, S9R+A15T+L96LG+H120Q+Q137E, S9R+A15T+T260M, S9R+A15T, Q2451, S9R+A15T+H120G+Q137E+N218D, S9R+A15T+S130P, Q245F, S9R+A15T+N218D, G63E+N76D+A194P+A230V, S9R+A15T+T224A, G100S, S9R+A15T+D60DG, A1 38V+V1 391+A1 94P+N21 8D+A230V, A1 08V+A1 69G+R1 70A+Y171 H, 18V+P14L+R19L+V301+135V+S57P+P129S+Q137D+S144D+S256N, A133D+T134S+Q137A, Q137D, A98AH, V51D, Q12E+P14L+A15T, G63E+N76D+A194P+A230V, Q12E+P14L+A15T, G97GS, V51A+S163T ; V1391+A151G ; S9R+A15T+L96LG+S130* ; A169G+R170H or c) one or more modifications in position 68, wherein said modification (s) comprise (s): deletion, insertion and/or substitution of an amino acid residue selected from the group con sisting of K, H, R, E, D, Q, N, C, V, L, I, P, M, F, W, Y, G, A, S and T.
2. A protease variant according to claim 1 comprising the combination of one or more of the modifications X62D, E, S, XD, XE, XG, DE X68A, S, L, I X97E, D, W, A, N, XG, XA, XV, XS X98S, D, E, T, N, M, L, G, R, V, XS, XD, XV X99D, L, A, P, G, N, C, M, V, I, AD, XD, XM, XG, DA X106D, E, T, M, G, A, L, F, I X131 M, F, W, L, A, H, T, *, S, Q, R, E, G, D, C, XA X170C, S, H, L X245R, K, E, D, T, F, N, V, W, G, I, S, C, L, A, M X252G, H, D, V, M, S, T, E, Y, S, Q, K, A, L with at least one of the following modifications *OAQSVPWG; A1T, V; Q2L; S3T, A, L; V4L, A ; 18V, T; S9G, D, R, K, L, V; R10H, K; V11A ; Q12D ; A13V; P14S, T, D, A, M, V, K, Q, L, H, R, 1 ; A15M, T; A16P; H17R; N18S, H; R19W, K, L, F, G, I ; G20*, R, A; L21 F, LP, LW, LA, LG; T22S, A, K, TV, TG, TL, TW, TV, G, L, TY; G23S; S24P; K27R, V281 ; V301 ; 135T, V; T38S; P40L; N43D; R45H, K; G46D; A48T; S49N; F50S; V51A, I, D; P52V, A; P55S, A; S57P; G61E, D, S, R, GP; N62D, ND, NE, DE, NG, E, S; V68A, S, L, i ; T71A; 172V ; L751 ; N76S, D; N77S; S78T; V81A; A85T; S87C; A88V, T; E89G; K94N; V95C, T; L96LA, LG; G97E, D, W, A, GG, GA, GV, N, GS; A98S, D, E, T, AS, AD, AV, AE, AH, Q, N, M, L, G, R, V, S; S99D, L, A, AD, SD, SM, SG, DA, P, G, N, C, M, V, 1 ; G100S, GE, C; S101SA, SK; G102D, S; S103D, E, Y, L, Q, H, T; V104T, S, R, I, N, M, L, D; S106D, E, T, M, G, A, L, F, # ; 1107T, V, M; A108V, T, S; L111I, V; A114V; N116S, D; G118D ; M119L, I, V, A, S; H120N, D, Q, K, E, Y, S; V121A; L124C; L1261 ; G127E; S128N, I, G, C; P129PSN, T, E, D, S, N, A; S130P, T, C, *; P131M, F, W, L, A, H, T, *, PA, S, Q, R, E, G, D, C; S132G, T; A133ASA ; T134A ; Q137H, E, D; A138G, V; V139L, I ; N140D, K; T143A; S144D, N, P; R145G; V1501 ; A151V, G; A152P; A158T, V, C, E, L, D, M; G160A, D; S163G, C, N, A; Y167K, A, I ; A168G; A169G; R170C, S, H, L; Y171C; A172V; N173D; A174V; M175L, I, V, A, S, T; N183D; N184D, S; N185S, D; R186L, C, H; S188G; S190A ; Y192H ; G195F, E; V203S, A, L, Q, M, F, I ; N204T, D, S; Q206L; Y209C, H; G211D ; S212N, L; T213A; Y214C, H; A215D, T; N218D, S; M222L, I, V, A, S; A223G; T224A, S; A228T; A230V; A232S, L, T, P; V2341 ; Q236A, L, D, T, C, M, F, S; K237R; N238D; P239T, S; S240F; S242T; V2441, M, A; Q245R, K, E, D, T, F, N, V, W, G, I, S, C, L, A, M; N248P, D, S; K251E, R; N252G, H, D, V, M, S, T, E, Y, S, Q, K, A, L; A254S; T255A, S; S256N, R, G; L257G; G258K, S259A, N, G; T260A, R; N261D ; L262S, Q, V; Y263H, F; G264E; S265G, R, N; V268L, I; N269T; N296K; E271A; T274S, L, A, R.
3. A subtilase variant according to claim 1 or 2 comprising one or more of the following altera tions: G97E+A98S V281+A98AD+T224S G97D+A98D S99AD+M175V+P131F V95C+G97W+A98E S99AD+P131L V95T+G97A+A98D S9R+S99AD+P131W S103Y+V104M+S106D V68A+N116S+V139L+Q245R V104T+S106D S3T+A16P+R45C+G100S+A230V S3T+A16P+S99SD+S144D+ I8V+S9R+A15T+R19W+V301I+ A158T+A230V+T260R G61D+S99SD+S256N S103D+V104T+S106T V301+S99SD+S256R S103D+V104L+S106M G61S+S99SD+V2441 S103D+V104T+S106G V68A+V139L+S163G+N185S S103D+V104TS+S106A S99SD+Y263H S103H+V104N+S106D V104N+S106T S103E+V1041+S106T S99SG+S144D S103Q+V104T+S106E V301+S99SD S103E+S106T N18H+S99SD S103E+V104R+S106A S9R+T22S+S99SD+K251E A108T+L111V A48T+V68A+P131M L1241+S125A A15M+S99SM+V1391+V2441 L124C+P131* P14T+A15M+S99SD P129S+S130AT 18V+S99SD+S144D+A228T L96LA+A151G+V203A 18V+R19K+V1391 S99SD+A108V+V139L I35T+N63D S99SD+S190A N62D+S265G S99SD+V203A Q2L+N62D S99SD+V139I N62D+N76D S99SD+A108V R45H+G61E+V68A S99SD+S106A+A151G N62D+V121A V68A+S106A N62D+A215D V68A+N185D+V203S N62D+N238D V68A+V139L N62D+R145G V68A+V139I V4L+N62D+E89G V68A+A158V N62D+S188G+K251R V68A+V203A S49N+N62D V68A+V203S N62NE V68A+V203L+S259A V11A+N62DE V68A+S106L N62ND+N184S+S256G V301+V68A+V203S N18S+N62D+I107T+A254S V51A+V68A+S106T+A168G S57P+N62ND V51A+V68A+S106T+A168G N62NE+V2341 V68A+N76S+V203M+P239T Q137H+R170C+G195E V68A+V203L S99A+S101SA V68A+L751+V203Q R1OK+P14A+R19K+A98AS+S128N V68A+T71A+V139L T22A+R45K+A98AS+S128N Y192H+V68A A98AV+S99D+Y167K V68A+S106A+A108TS9G+P14K+Y167A+R170S V68A+S106T+A108T S9D+P14T+Y167A+R170S V68S+A108S S9R+P14M+A98AD V68A+N76S+G211D S9R+R19L+A98AD+E271A V68A+S106T+A108T S9R+P14S+R19F+A98AD A151V+R170C S99DA+P129PSN+P131A P14D+A98AS+H120D+ S99AD+V244M+Q245K+N248D+ G195F+S212N+M222S K251R+T255A+S256N S49N+V203L+N218D S9R+P14V+R19G+A98AD V68A+S106M+N184D S99AD+N248P+T255A+S256G P55S+V68L+A158E+G160A *OAQSVPWG+A98AD V68A+A158C T22A+S99AD V68A+A158L+Y214C K94N+A98T+S99L A88V+S99AD+P131F N76D+A174AL+A194P+A230V P14T+A16P+172V+S99SD+ P40L+N218D+A232S+Q236L+ V2441+T260A Q245E+S259N S99AD+P131F A232L+Q236D+Q245E R10H+N62D A232T+Q236L+Q245D V281+A98AD+T224S R170H+Q236A+Q245R S9K+T22K+S99AD A232L+Q236T+Q245D P14S+S99AD+P131WG97GG+P131 H+Q137E+V268L V68A+172V+P131F A88V+G97GV+P131H S9R+S99AD G97GA+H120Q+S130P+G264E S9K+S99AD G97GG+V139L V281+A88V+G100S+P131 M G97GG+Q137D S103L+V104S+S106G G97GG+H120D+Q137H V68A+T224A N185R V68A+P131F P131H+Q137E A48T+V68A+P131M V1041+H120N+P131H+Q137E V68A+172V+P131F H120Q+Q137E G100GE+P131F S9R+A15T+G97GV+H120D S99AD+P131F+T260A G100S+H120Q+Q137H R19G+A98AS V68A+H120K+Q137E G61R+N62D G97GA+H120E V68A+S106M+N184D H120D+S181I+Q137D P55S+V68L+A158E+G160A G97GG+P131H V68A+A158C G97GG+H120N+L1261 R19W+G61S+S99SD+N204T+ S9R+A15T+G97GA+H120D+P131H+ Y263H+S265R Q137E A232T+Q236C S9R+A15T+G97GV+P131T+Q137H N62D+A232T+Q236C S9R+A15T+G20*+L21F+N62D+Q245N A232P+Q236L+Q245E S9L+A15T+T22TV+V139L+Q245F A232S+Q236L+Q245T+K251E S132G+Q245F S16C+Q236M+Q245T+S256G S9R+A15T+T22TG+N62D+V139L+Q245V N218D+A232L+Q236F+Q245F S9L+A15T+T22TV+V139L+Q245F+L262S S163N+A232L+Q236S+Q245E S9R+A15T+T22TL+N62D+Q245W A232S+Q236S+Q245E V68A+A158L+Y214C V68A+V203L N62D+V105I V68S+A158D S3T+P14Q+A15M+R19K+N62D+S144D 18V+A15T+R19K+A85T+S99SD+ P14Q+R19W+V511+G61E+S99SD+ A114V+V244I+S256N+Y263H V139I+T260R L11F+Y263H S3T+P14L+H17R+S99SD+V139I+S144D P52V+S78T+S99SD S3A+V301+S99SD+S106G+N248S A15M+S99SD+V268I I8V+A15T+S99SD S99G+S128N+N183D+A232L+ S3T+S9R+P14H+A15M+R19L+S99SD+ Q236T+Q245R V1391 S999R+S101SA S9R+A15T+G97GG+H120D+Q137E L96LA+A98T+P131AA S9R+A15T+G20A+G97GV+H120D+P131H A98E+S99PS163N+A232L+Q236A+Q245G V281+S99AD+P131F N173D+A232L+Q236A+Q245N S9R+A15T+G97GV+Q137H P55S+V68A+S106M+A108T+P129T V81A+P131T+A133S+Q137E K27R+V68L+G118D+A158E N43D+V68A+S106F+N238D A98E+S99A+S101SK V68A+V203F V68A+N140D+T143A+S144N V68A+S106E N62D+N140K+T143A+S144D V68A+S106I S9F+P14T+R19L+A98AD V68A+A158M+R170C S9V+P14R+R19F+A98AD V68A+P129T+N218D S99A+S99SD+G258K+L262Q V68S+P129E S87C+S99SA+S99D+P131A V68S+P129D S99A+S99SD+G258K+L262Q V68L+P129E+N261 D V281+S99A+*99aD+P131 F G97GV+H120D A85T+G102D+S106T+K237R P131A+A133ASA V68A+T71A L111F+Y263H G61GS V11A+G61GE+V227A+S240F G100L A133E+S144K+N218D A133D S128A+P129S+S130SP V68A G61GE N123D S9R+A15T+T22TW+N204D+Q2451 Q245W+N252V S9R+A15T+G97GG+P131 S+Q137H R45H+Y171 C+Q245W+N252S S9R+A15T+T22TG+N62D+V139L+Q245G G20R+A48T+R170C+Q245W+N252Q S9R+A15T+T22TL+N62D+I107V+V139L+ S9R+A15T+A16P+G97GA+P131S+Q137D+ Q245W N204S S9G+A15T+G97GA+Q137H N218D+Q245W+N252E S9R+A15T+V68A+Q245R G20R+R170C+Q245R+N252V S9R+A15T+G97GA+H120N+S212L S9R+P141+R19K+A98AD+T274S S9R+A15T+L96LG+H120D+P131H+R186L A98AE+V2031 S9R+A15T+G97GA+H120D+Q137D V51A+V68A+S163G+V203A N62D+N252T N62D+Q245W+N252H V4A+S9R+A15T+G97GV+H120D N62D+Q245W+N252A S9R+A15T+G97GV+H120D+Q137H G20R+N62D+V2441+Q245W+N252E S9R+A15T+L96LG+H120N+P131H+Q137E N204D+Q245S S9R+A15T+L96LG+H120D+P131S+Q137E N62D+Q245W+N252E S9R+A15T+H120N+P131T+N218D N62D+Q245R+N252V S9R+A15T+L21LP+T22TV+M1191+N218D+ S9R+A15T+S24P+G61E+A85T+P239S+ Q2451 Q245A S9R+A15T+L96LG+H120D+G160D G102S+M222S+Q245L+N252D V68A+S106A+G118D+Q245R+T255S+ A15M+V30I+N62D+S99N+L111I+V244A+ L257G+T274L S265N S9R+A15T+G61E+A85T+P239L+Q245C S9R+A15T+T22TG+N62D+V139L+Q245S S9R+A15T+P131H+S144P S3T+Q12D+R19W+V301+S106G+1107M S9R+A15T+G97GA+Q137E V68A+A88T+V139L S9R+A15T+G97GA+H120Q+P131 H+Q137E V51 I+L111 I+G118D+Q245R S9R+A15T+L21LW+G100S+V139L+Q245V V68A+V203L S9R+A15T+G97GA+Q137H+N218S A1T+V68A+N116D+G118D S9R+A15T+L96LG+H120N+P131S+Q137H V68A+G118D+Q245R N62D+V139I+N183D+N185S+V203I+ S9R+A15T+G97GA+H120N+Q137E Q245R+L262S S9R+A15T+L96LG+P131T+Q137H N62D+172V S9R+A15T+L96LG+H120N+P131S N62D+V81A+Q245R S9R+A15T+V68A+Q137D T22A+V68A+S106T+G118D S9R+A15T+G97GA+H120Y+Q137H V68A+L1111+V2031 S9R+A15T+G97GA+Q137D G61E+V68A+A169G S9R+A15T+K94N+H120N+P131H V68A+L111V S9R+A15T+L96LG+P131H+Q137D V68A+G118D+V203A+K251R S9R+A15T+F50S+H120D+P131H V68A+G118D S9R+A15T+G97GA+H120N+Q137D+N248D A1V+V51A+V68A+V2031 S9R+A15T+L96LG+P131Q+Q137D V68A+V139L+A223G S9R+A15T+T22G+V139L+Q245L N62D+Y214H+K237R V139L+Q245R V68A+S106A+G118D+Q245R S9R+A15T+Q245F S9R+A15T+T22A+N62D S9R+A15T+Q245S A98Q+S99D S9R+A15T+G97GV+H120Q S9R+P141+R19K+A98AD S9R+A15T+G97GA+Q137E+L262V S9R+A15M+A16P+T22S+S99AD S9R+A15T+G127E+P131R+Q137H S99AD+T255R+S256N S9R+A13V+A15T+I35V+N62D+Q245F S9R+A15T+T22TQ+S101P S9R+A15T+Q245V S9R+A15T+H120R+Q137D+N173S V139L+Q245F G97E S9R+A15T+T22A+V139L+Q245E Q245W S9R+A15T+T22L+V139L+Q245V+A254S S9R+A15T+L96LG+Q137E+Y209H S9R+R19L+A98AD S9R+A15T+L111V+Q137E+G211 D P14R+A98AD S9R+A15T+L111I+Q137E S9R+A15T+Q245L S9R+A15T+L111I+H120N+Q137E S9R+A15T+G61E+A85T+P239S+Q245V S9R+A15T+L96LG+H120Q+Q137E S9R+A15T+G61E+A85T+Q206L+Q245R S9R+A15T+T260M P239T+Q245R S9R+A15T S9R+A15T+N62NG+Q245T Q2451 S9R+A15T+G61GP+Q245L S9R+A15T+H120G+Q137E+N218D S9R+A15T+G61E+A85T+Q137H+Y209C+ 18V+P14L+R19L+V301+135V+S57P+P129S+ Q245G Q137D+S144D+S256N S9R+A15T+G61E+A85T+P239S+Q245C Q245F V681+A98AD S9R+A15T+N218D V68A+N269K G63E+N76D+A194P+A230V N62D+Q245A+N252G+S265G S9R+A15T+T224A N218D+Q245G+N252H G100S S9R+A15T+G102S+M175T+Q245R+N252D S9R+A15T+D60DG S9R+A15T+N62D+Q245W+N252V A138V+V139I+A194P+N218D+A230V S9R+A15T+N62D+Q245R+N252M A108V+A169G+R170A+Y171H S9R+A15T+N62D+Q245W+N252S S9R+A15T+S130P S99SD+N204S+Q245R A133D+T134S+Q137A N62D+Q245R Q137D N62D+A151G A98AH V68A+S106T V51 D S99A+S99SD+V203L Q12E+P14L+A15T A98AD+A215T G63E+N76D+A194P+A230V N62D+Q245G+N252T Q12E+P14L+A15T A152P+Q245R+N252T G97GS S163N+T213A+Q245R Q245W+N252Y S106L+Q245R+N252E A169G+R170H S9V+P14R+R19F+A98AD Q12E+P14L+A15T S9R+A15T+L111I+Q137E P14R+A98AD S9R+A15T+G97GA+Q137E S9R+A15T+L96LG+Q137E+Y209H S9R+A15T+L96LG+H120N+P131S A98AD+A169G S9R+A15T+G97GV+H120Q A138V+V139I+A194P+N218D+A230V S9R+A15T+L96LG+H120Q+Q137E S99A+S99SD+V203L S9R+A15T+G97GV+P131S V68A+S106T S9R+A15T+K94N+H120N+P131H A98AD+A215T S9R+A15T+N76S+L111V+P131H+Q137D A108V+A169G+R170A+Y171H S9R+A15T+F50S+H120D+P131H S3L+N62D+S163A+S190A S9R+A15T+L96LG+S130* S9R+P141+R19K+A98AD+T274S S9R+A15T+T22TL+N62D+1107V+V139L+ S9R+A15T+G61E+A85T+N218D+P239S+ Q245W Q245L S9R+A15T+G97GA+H120D+Q137H+ S9R+A15T+S24P+G61E+A85T+P239S+ M222V Q245A S99SD+P131F S9R+A15T+G97GA+H120N+Q137D+N248 N62D+P131F+A172V S9R+A15T+L21LW+G100S+V139L+Q245V N62D+P131F S9R+A15T+G20*+L21F+N62D+Q245N S9R+A15T+L21LC+V139L+R186H+Q245M V68A+A88T+V139L S132G+Q245F V68A+G118D+V203A S9R+A15T+T22TG+N62D+V139L+Q245G P40L+V68A+A108T+A138V+V2031 18T+A98AD+T274R S9R+A15T+L96LG+P131Q+Q137D A98AE+V2031 S9R+A15T+T22TQ+S101P S9R+A15T+T22TG+N62D+V139L+Q245V V51A+V68A+S163G+V203A S9R+A15T+T22TL+N62D+Q245W A1V+V51A+V68A+V2031 S9R+A15T+T22TW+N204D+Q2451 V68A+G100S S9R+A15T+T22TG+N62D+V139L+Q245S V68A+V203L S9R+A15T+S130P A1T+V68A+N116D+G118D Q245W N62D+A169G+V2031+Q245R S9R+A15T+L21LP+T22TY+V139L+G160D+ G23S+S99SD+A194P+S242T+Q245R+ Q245L T274R S9R+A15T+G61E+A85T+P239L+Q245C S99SD+N204S+Q245R S9R+A15T+L21LP+T22TV+M119I+N218D+ N62D+V139I+N183D+N185S+V203I+ Q2451 Q245R+L262S S9R+A15T+V68A+Q245R V68A+S106A+G118D+Q245R S9R+A15T+T22A+V139L+Q245E V511+L111I+G118D+Q245R V139L+Q245R N62D+Q245R S9R+A15T+Q245F N62D+172V S9R+A15T+Q245S S9R+R19L+A98AD S9R+A15T+T260M S9G+P14R+R19I+A98AD S9R+A15T S9R+A15T+T22L+V139L+Q245V+A254S S9R+A15T+L21LG+T22TV+V139L+N204D+ S99G+S128N+N183D+A232L+Q236T+ Q245N Q245R V139L+Q245F S9R+A15T+Q245L S9R+A15T+N62NG+Q245T S9R+A15T+T22G+V139L+Q245L S9R+A15T+N62ND+V139L+Q245E S9R+A15T+Q245V Q245F S9R+A15T+N62ND+V139L+N261D S9R+Q245C Y1671+R170L+Q245E Y167I+R170L+Q245R S9R+A15T+N218D Y167I+R170L+Q245M S9R+A13V+A15T+I35V+N62D+Q245F S9R+A15T+T224A Y1671+R170L S163N+A232L+Q236A+Q245G S99SE+Q245R S9R+A15T+A16P+G97GA+P131S+Q137D+ S9R+A15T+G61E+A85T+Q137H+Y209C+ N204S Q245G N218D+A232L+Q236F+Q245F S9R+A15T+G61E+A85T+P239S+Q245C S163N+A232L+Q236S+Q245E G102S+M222S+Q245L+N252D G97GA+H120E N62D+Q245A+N252G+S265G N62D+Q245G+N252T G97GG+P131H S9R+A15T+N62D+Q245W+N252V S9R+A15T+G97GA+H120D+P131H+Q137E S9R+A15T+N62D+Q245R+N252M S9R+A15T+G97GV+Q137H S9R+A15T+N62D+Q245W+N252S S9R+A15T+G97GV+H120N S9R+A15T+G97GG+P131S+Q137H S163N+T213A+Q245R S9R+A15T+G97GG+H120N+Q137D S106L+Q245R+N252E S9R+A15T+H120Q+P131 C+Q137H Q245W+N252Y S9R+A15T+G97GV+H120D+Q137H Q245W+N252V S163C+Q236M+Q245T+S256G G20R+A48T+R170C+Q245W+N252Q S9R+A15T+G97GG+H120D+P131H+ N62D+N252T Q137H S9R+A15T+G97GV+H120E+Q137H N218D+Q245W+N252E S9R+A15T+G97GV+P131T+Q137H G20R+R170C+Q245R+N252V S9R+A15T+G97GV+H120Q+Y263F N62D+Q245W+N252H S9R+A15T+G97GV+S106A+P131 H N62D+Q245W+N252A S9R+A15T+G97GG+L1111+P131T+Q137H G20R+N62D+V2441+Q245W+N252E S9R+A15T+G97GV+P1 31 H+Q137H N204D+Q245S S9R+A15T+G20A+G97GV+H120D+P131H N62D+Q245W+N252E S9R+115T+G97GA+H120D+P131S+Q137E N62D+Q245R+N252V S9G+A15T+G97GA+Q137H A98L+S99C+Q245R S9R+A15T+H120R+Q137D+N173S N62D+A98R+Q245R S9R+A15T+L96LG+H120N+P131H+Q137E S9R+A15T+V68A+S99G+Q245R+N261D S9R+A15T+L96LG+H120D+P131S+Q137E S9R+A15T+G20*+L21F+N62D+Q245R S9R+A15T+H120N+P131T+N218D S9R+A15T+G20*+L21F+N62E+Q245R S9R+A15T+G97GA+H120D+Q137D V681+A98AD S9R+A15T+L96LG+H120D+P131H+R186L S9R+A15T+120D+Q137D S9R+A15T+G97GA+R186C S9R+A15T+N77S+L96LG+H120D+P131Q V4A+S9R+A15T+G97GV+H120D S9R+A15T+G97GA+H120N+Q137E S9R+A15T+L96LG+H120D+G160D S9R+A15T+997GA+Q137E+L262V S9R+A15T+G97GA+H120N+S212L S9R+A15T+P131H+S144P S9R+A15T+G97GA+Q137H+N218S S9R+A15T+G127E+P131R+Q137H M222S+Q245G+N252G S9R+A15T+V68A+S99G+Q245R+N261D V681+V203L N62D+P131F+A172V V51A+S163T N62D+P131F S106A+A138G S99SD+Q245R V1391+A151G S9R+A13T+S99A+S99SD+P131F A98R+G100C+Q245R S9R+A15T+N62S+H120N+P131T+N218D S9R+A15T+S99G+G100S+H120N+P131S+ S9R+A15T+S99C+H120N+P131S+Q137H+ Q137H M222S A15T+N185D+M222S+Q245R+N252V A98G+S99C+Q245R S9R+A15T+T22TL+G61E+L96LG+Q137D+ A98T+S99G+G100S+S240F+Q245R Q245R S9R+T22TL+G61E+G97GG+M119I+P131T S9R+A15T+H120N+P131T+N218D+N269T Y209H+M222S+Q245G+N252L M222S+Q245M+N252E S9R+A15T+G61E+H120S+Q137D+V139L+ S9R+A15T+L96LG+H120N+P131S+Q137H N218D +M222S S9R+A15T+N62D+H120N+P131T S9R+A15T+G61E+A98S+S99M+Q245R S9R+A15T+V68A+N218D+Q245R A98G+G100S+Q245R+N261D S9R+A15T+V68A+H120N+N218D+Q245R S9R+A15T+V68A+A98L+Q245R S9R+A15T+V68A+A174V+Q245R S9R+A15T+V68A+A98G+S99V+Q245R S9R+A15T+G46D+V68A+N218D+Q245R S9R+A15T+V68A+A98M+Q245R+N248D G97D+A98N+S128G+S130T+P131D+ S9R+A15T+G61E+V68A+A98S+S99G+ T134A Q245R S9R+A15T+V68A+A98M+S99G+Q245R+ S9R+A15T+A88V+A98R+S99G+G100C+ T274A H120N+P131S+Q137H S9R+A15T+V68A+A98L+S99G+Q245R A98V+S99C+Q245R S9R+A15T+A98G+S99C+H120N+P131 S+S9R+A15T+G20*+L21 F+G61 E+*61 aP+ Q137H Q245R S9R+A15T+T38S+A98R+S99C+G100S+ S9R+A15T+V68A+A98G+S991+K237R+ H120N+P131S+Q137H Q245R S9R+A15T+A98C+G100S+H120N+P131S+ S9R+A15T+V68A+H120N+P131S+Q137H+ Q137H Q245R S9R+A15T+A98S+G100S+H120N+P131S+ S9R+A15T+V68A+H120D+P131S+Q137H+ Q137H Q245R S9R+A15T+G20*+L21 F+N62D+Q245RA98S+S99G+G1 OOS+Q245R S9R+A15T+G20*+L21F+N62D+Q245R+ S9R+A15T+A98S+S99G+G100S+H120N+ S259G P131S+Q137H A98S+G100S+Q245R A98T+S99G+G100S+Q245R S9R+A15T+G20*+L21F+*61aA+V68A+ S9R+A15T+G20*+L21F+P52T+N62D+ Q245R Q245R S9R+A15T+G20*+L21F+N62E+Q245R A98L+S99C+Q245R V68A+S105G+S106A V68A+S106A+T213A S9R+A15T+Y167I+R170L S9R+A15T+V68A V68A+S106A+N252M+Y263C V68A+S106A+Q245W V68A+S106A+Q245R+N252D V68A+S106A+Q245W+N252K V68A+S106A+A174V+Q245R+N252D S9R+A15T+V68A+Q245R+N252S S9R+A15T+V281+V68A+Q245R+ N252A S9R+A15T+V68A+A194T+Q245R+N252E S9R+A15T+G20*+L21F+*63aG+Q245R+ S9R+A15T+G20*+L21F+*62aS+N218D+ N272V Q245R S9R+A15T+G20*+L21F+*61aS+V68A+ S9R+A15T+V68A+H120N+P13iS+Q137H+ G160D+Q245R Q245M wherein (a) the variant has protease activity, and (b) each position corresponds to a position of the amino acid sequence of subtilisin B PN', shown in SEQ ID NO : 1.
4. The variant according to any of claims 13, wherein the parent subtilase belongs to the sub group IS1.
5. The variant according to any of claims 13, wherein the parent subtilase belongs to the sub group IS2, and wherein the parent preferably is BLSAVI (Savinase@),.
6. An isolated DNA sequence encoding a subtilase variant as defined in any of claims 15.
7. An expression vector comprising the isolated DNA sequence of claim 6.
8. A microbial host cell transformed with the expression vector of claim 7.
9. A microbial host cell according to claim 8, which is a bacterium, preferably a Bacillus, espe cially a B. lentus.
10. A microbial host cell according to claim 9, which is a fungus or yeast, preferably a filamen tous fungus, especially an Aspergillus.
11. A method for producing a subtilase variant as defined in any of claims 15, wherein a host as defined in any of claims 810 is cultured under conditions conducive to the expression and secretion of the variant, and the variant is recovered.
12. A cleaning or detergent composition, preferably a laundry or dish wash composition, com prising the variant as defined in any of claims 15.
13. A composition according to claim 12, which additionally comprises a cellulase, a lipase, an amylase, a cutinase, a protease, a hemicellulase, an esterase, a lactase, a glycoamylase, a polygalacturonase, a betagalactosidase, a ligninase or a mixture thereof.
14. Use of a variant as defined in any of claims 15 in a laundry and/or a dish wash detergent.
15. A s ubtilase v ariant a ccording t o c laim 3, wherein said variant further comprises one or more of the modifications K27R, *36D, S56P, N62D, V68A, N76D, S87N, G97N, S99SE, S101G, S103A, V104A, V1041, V104N, V104Y, S106A, H120D, H120N, N123S, G159D, Y167A, R170S, R170L, A194P, N204D, V2051, Q206E, L217D, N218S, N218D, M222S, M222A, T224S, A232V, K235L, Q236H, Q245R, N248D, N252K, T274A, S101G+V104N, S87N+S101G+V104N, K27R+V104Y+N123S+T274A, N76D+S103A+V1041, S99D+S101R+<BR> S103A+V1041+G160S, S3T+V41+S99D+S101R+S103A+V1041+G160S+V199M+V2051+ L217D, S3T+V41+S99D+S101R+S103A+V1041+G160S+A194P+V199M+V2051+L217D, S3T+V41+S99D+ S101R+S103A+V1041+G160S+V2051 and N76D+V104A.
16. A subtilase variant according to claim 3 comprising the following substitutions: S101G+S103A+V1041+G159D+A232V+Q236H+Q245R+N248D+N252K.
Description:
SUBTILASE VARIANTS TECHNICAL FIELD The present invention relates to novel subtilase variants exhibiting alterations relative to the parent subtilase in one or more properties including : Wash performance, thermal stability, storage stability or catalytic activity. The variants of the invention are suitable for use in e. g. cleaning or detergent compositions, such as laundry detergent compositions and dish wash compositions, including automatic dish wash compositions. The present invention also relates to isolated DNA sequences encoding the variants, expression vectors, host cells, and methods for producing and using the variants of the invention. Further, the present invention relates to cleaning and detergent compositions comprising the variants of the invention.

BACKGROUND OF THE INVENTION In the detergent industry enzymes have for more than 30 years been implemented in washing formulations. Enzymes used in such formulations comprise proteases, lipases, amylases, cellulases, as well as other enzymes, or mixtures thereof. Commercially the most important enzymes are proteases.

An increasing number of commercially used proteases are protein engineered variants of naturally occurring wild type proteases, e. g. Durazym@, Relase@, Alcalase, Savinase, Primas, Duralaseo, Esperasee, Ovozymee and Kannasee (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, FIN3 and FN4M (Genencor International, Inc.). Further, a number of protease variants are described in the art.

A thorough list of prior art protease variants is given in WO 99/27082.

However, even though a number of useful protease variants have been described, there is still a need for new improved proteases or protease variants for a number of industrial uses such as laundry or hard surface cleaning. Therefore, an object of the present invention is to provide improved subtilase variants for such purposes.

SUMMARY OF THE INVENTION Thus, in a first aspect the present invention relates to a subtilase variant comprising at least a) an insertion, substitution or deletion of one of the amino acid residues K, H, R, E, D, Q, N, C, V, L, I, P, M, F, W, Y, G, A, S, T in one or more of the positions 62,68, 97,98, 99,106, 131,170, 245,252

in combination with at least one of the following modifications *OAQSVPWG; A1T, V; Q2L; S3T, A, L; V4L, A ; 18V, T; S9G, D, R, K, L, V; R10H, K; V11A; Q12D; A13V; P14S, T, D, A, M, V, K, Q, L, H, R, I ; A15M, T; A16P; H17R; N18S, H; R19W, K, L, F, G, I ; G20*, R, A; L21 F, LP, LW, LA, LG; T22S, A, K, TV, TG, TL, TW, TV, G, L, TY; G23S; S24P; K27R, V281 ; V301 ; 135T, V; T38S; P40L; N43D; R45H, K; G46D; A48T; S49N; F50S; V51A, I, D; P52V, A; P55S, A; S57P; G61E, D, S, R, GP; N62D, ND, NE, DE, NG, E, S; V68A, S, L, I ; T71A ; 172V ; L751 ; N76S, D; N77S; S78T; V81A; A85T; S87C; A88V, T; E89G; K94N; V95C, T; L96LA, LG; G97E, D, W, A, GG, GA, GV, N, GS; A98S, D, E, T, AS, AD, AV, AE, AH, Q, N, M, L, G, R, V, S; S99D, L, A, AD, SD, SM, SG, DA, P, G, N, C, M, V, 1 ; G100S, GE, C; S101SA, SK; G102D, S; S103D, E, Y, L, Q, H, T; V104T, S, R, I, N, M, L, D; S106D, E, T, M, G, A, L, F, 1 ; I107T, V, M; A108V, T, S; L1111, V; A114V ; N116S, D; G118D ; M119L, I, V, A, S; H120N, D, Q, K, E, Y, S; V121A ; L124C ; L1261 ; G127E; S128N, I, G, C; P129PSN, T, E, D, S, N, A; S130P, T, C, *; P131M, F, W, L, A, H, T, *, PA, S, Q, R, E, G, D, C; S132G, T; A133ASA ; T134A ; Q137H, E, D; A138G, V; V139L, I ; N140D, K; T143A; S144D, N, P; R145G; V1501 ; A151V, G; A152P; A158T, V, C, E, L, D, M; G160A, D; S163G, C, N, A; Y167K, A, I ; A168G; A169G; R170C, S, H, L; Y171C; A172V; N173D; A174V; M175L, I, V, A, S, T; N183D; N184D, S; N185S, D; R186L, C, H; S188G; S190A; Y192H; G195F, E; V203S, A, L, Q, M, F, I ; N204T, D, S; Q206L; Y209C, H; G211D ; S212N, L; T213A; Y214C, H; A215D, T; N218D, S; M222L, I, V, A, S; A223G; T224A, S; A228T; A230V; A232S, L, T, P; V2341 ; Q236A, L, D, T, C, M, F, S; K237R; N238D; P239T, S; S240F ; S242T; V2441, M, A; Q245R, K, E, D, T, F, N, V, W, G, I, S, C, L, A, M; N248P, D, S; K251E, R; N252G, H, D, V, M, S, T, E, Y, S, Q, K, A, L; A254S; T255A, S; S256N, R, G; L257G; G258K, S259A, N, G; T260A, R; N261D ; L262S, Q, V; Y263H, F; G264E; S265G, R, N; V268L, I ; N269T; N296K; E271A; T274S, L, A, R or b) one of the following combination variants A108T+L111V ; L1241+S125A ; P129S+S130AT ; L96LA+A151G+V203A ; S49N+V203L+N218D; S3T+A16P+R45C+G100S+A230V ; 18V+R19K+V1391 ; N76D+A174AL+A194P+A230V ; N185R; N62NE; H120Q+Q137E, G61GE, G61GS, G100L, A133D, V68A, N123D, L111F+Y263H, V11A+G61GE+V227A+S240F, A133E+S144K+N218D, S128A+P129S+S130SP, S9R+A15T+T22TQ+S101P, S9R+A15T+H120R+Q137D+N173S, G97E, Q245W, S9R+A15T+L96LG+Q137E+Y209H, S9R+A15T+L111V+Q137E+G211D, S9R+A15T+L1111+Q137E, S9R+A15T+L1111+H120N+Q137E,<BR> S9R+A15T+L96LG+H120Q+Q137E, S9R+A15T+T260M, S9R+A15T, Q2451, S9R+A15T+H120G+Q137E+N218D, S9R+A15T+S130P, Q245F, S9R+A15T+N218D, G63E+N76D+A194P+A230V, S9R+A15T+T224A, G100S, S9R+A15T+D60DG,<BR> A138V+V1391+A194P+N218D+A230V, A108V+A169G+R170A+Y171 H,<BR> 18V+P14L+R19L+V301+135V+S57P+P129S+Q137D+S144D+S256N, A133D+T134S+Q137A,

Q137D, A98AH, V51D, Q12E+P14L+A15T, G63E+N76D+A194P+A230V, Q12E+P14L+A15T, G97GS or c) one or more modifications in position 68, wherein said modification (s) comprise (s): deletion, insertion and/or substitution of an amino acid residue selected from the group con- sisting of K, H, R, E, D, Q, N, C, V, L, I, P, M, F, W, Y, G, A, S and T.

In a second aspect the present invention relates to a subtilase variant comprising a) the combination of one or more of the modifications X62D, XD, XE, XG, DE X68A, S, L, I X97E, D, W, A, N, XG, XA, XV, XS X98S, D, E, T, XS, XD, XV X99D, L, A, P, G, N, AD, XD, XM, XG, DA X106D, E, T, M, G, A, L, F, 1 X131M, F, W, L, A, H, T, *, S, Q, R, E, G, XA X170C, S, H X245R, K, E, D, T, F, N, V, W, G, I, S, C, L, A X252G, H, D, V, M, S, T, E, Y, S, Q, K with at least one of the following modifications *OAQSVPWG; A1T, V; Q2L; S3T, A, L; V4L, A ; 18V, T; S9G, D, R, K, L, V; R10H, K; V11A ; Q12D ; A13V; P14S, T, D, A, M, V, K, Q, L, H, R, 1 ; A15M, T; A16P; H17R; N18S, H; R19W, K, L, F, G, I ; G20*, R, A; L21 F, LP, LW, LA, LG; T22S, A, K, TV, TG, TL, TW, TV, G, L, TY; G23S; S24P; K27R, V281 ; V301 ; 135T, V; T38S; P40L; N43D; R45H, K; G46D; A48T; S49N; F50S; V51A, I, D; P52V, A; P55S, A; S57P; G61E, D, S, R, GP; N62D, ND, NE, DE, NG, E, S; V68A, S, L, I ; T71A ; 172V ; L751 ; N76S, D; N77S; S78T; V81A; A85T; S87C; A88V, T; E89G; K94N; V95C, T; L96LA, LG; G97E, D, W, A, GG, GA, GV, N, GS; A98S, D, E, T, AS, AD, AV, AE, AH, Q, N, M, L, G, R, V, S; S99D, L, A, AD, SD, SM, SG, DA, P, G, N, C, M, V, 1 ; G100S, GE, C; S101SA, SK; G102D, S; S103D, E, Y, L, Q, H, T; V104T, S, R, I, N, M, L, D; S106D, E, T, M, G, A, L, F, I ; 1107T, V, M; A108V, T, S; L1111, V; A114V; N116S, D; G118D ; M119L, I, V, A, S; H120N, D, Q, K, E, Y, S; V121A; L124C; L1261 ; G127E; S128N, I, G, C; P129PSN, T, E, D, S, N, A; S130P, T, C, *; P131 M, F, W, L, A, H, T, *, PA, S, Q, R, E, G, D, C; S132G, T ; A133ASA ; T134A ; Q137H, E, D; A138G, V; V139L, I ; N140D, K; T143A; S144D, N, P; R145G; V1501 ; A151V, G; A152P; A158T, V, C, E, L, D, M; G160A, D; S163G, C, N, A; Y167K, A, I ; A168G; A169G; R170C, S, H, L; Y171C; A172V; N173D; A174V; M175L, I, V, A, S, T; N183D; N184D, S; N185S, D; R186L, C, H; S188G; S190A; Y192H; G195F, E; V203S, A, L, Q, M, F, I ; N204T, D, S; Q206L; Y209C, H; G211D ; S212N, L;

T213A; Y214C, H; A215D, T ; N218D, S; M222L, I, V, A, S; A223G; T224A, S; A228T; A230V; A232S, L, T, P; V2341 ; Q236A, L, D, T, C, M, F, S; K237R; N238D; P239T, S; S240F; S242T; V2441, M, A; Q245R, K, E, D, T, F, N, V, W, G, I, S, C, L, A, M; N248P, D, S; K251E, R; N252G, H, D, V, M, S, T, E, Y, S, Q, K, A, L; A254S; T255A, S; S256N, R, G; L257G; G258K, S259A, N, G; T260A, R; N261D ; L262S, Q, V; Y263H, F; G264E; S265G, R, N; V268L, I ; N269T; N296K; E271A; T274S, L, A, R.

In a third aspect the present invention relates to a subtilase variant comprising at least one of the alterations disclosed in Table I below : Table I, subtilase variants of the inventions having one or more of the alterations: G97E+A98S V281+A98AD+T224S G97D+A98D S99AD+M175V+P131F V95C+G97W+A98E S99AD+P131L V95T+G97A+A98D S9R+S99AD+P131W S103Y+V104M+S106D V68A+N116S+V139L+Q245R V104T+S106D S3T+A16P+R45C+G100S+A230V S3T+A16P+S99SD+S144D+ 18V+S9R+A15T+R19W+V301+ A158T+A230V+T260R G61 D+S99SD+S256N S103D+V104T+S106T V30I+S99SD+S256R S103D+V104L+S106M G61S+S99SD+V2441 S103D+V104T+S106G V68A+V139L+S163G+N185S S103D+V104S+S106A S99SD+Y263H S103H+V104N+S106D V104N+S106T S103E+V1041+S106T SS9SG+S144D S103Q+V104T+S106E V301+S99SD S103E+S106T N18H+S99SD S103E+V104R+S106A S9R+T22S+S99SD+K251E A108T+L111V A48T+V68A+P131M L124I+S125A A15M+S99SM+V139I+V244I L124C+P131* P14T+A15M+S99SD P129S+S130AT I8V+S99SD+S144D+A228T L96LA+A151 G+V203A 18V+R19K+V1391 S99SD+A108V+V139L 135T+N62D S99SD+S190A N62D+S265G S99SD+V203A Q2L+N62D S99SD+V139I N62D+N76D S99SD+A108V R45H+G61E+V68A S99SD+S106A+A151G N62D+V121A V68A+S106A N62D+A215D V68A+N185D+V203S N62D+N238D V68A+V139L N62D+R145G V68A+V139I V4L+N62D+E89G V68A+A158V N62D+S188G+K251R V68A+V203A S49N+N62D V68A+V203S N62NE V68A+V203L+S259A V11A+N62DE V68A+S106L N62ND+N184S+S256G V301+V68A+V203S N18S+N62D+1107T+A254S V51A+V68A+S106T+A168G S57P+N62ND V51A+V68A+S106T+A168G N62NE+V2341 V68A+N76S+V203M+P239T Q137H+R170C+G195E V68A+V203L S99A+S101SA V68A+L751+V203Q R1OK+P14A+R19K+A98AS+S128N V68A+T71A+V139L T22A+R45K+A98AS+S128N Y192H+V68A A98AV+S99D+Y167K V68A+S106A+A108T S9G+P14K+Y167A+R170S V68A+S106T+A108T S9D+P14T+Y167A+R170S V68S+A108S S9R+P14M+A98AD V68A+N76S+G211D S9R+R19L+A98AD+E271A V68A+S106T+A108T S9R+P14S+R19F+A98AD A151V+R170C S99DA+P129PSN+P131A P14D+A98AS+H120D+ S99AD+V244M+Q245K+N248D+ G195F+S212N+M222S K251R+T255A+S256N S49N+V203L+N218D S9R+R14V+R19G+A98AD V68A+S106M+N184DS99AD+N248P+T255A+S256G P55S+V68L+A158E+G160A*OAQSVPWG+A98AD V68A+A158C T22A+S99AD V68A+A158L+Y214C K94N+A98T+S99L A88V+S99AD+P131F N76D+A174AL+A194P+A230V P14T+A16P+172V+S99SD+ P40L+N218D+A232S+Q236L+ V2441+T260A Q245E+S259N S99AD+P131 F A232L+Q236D+Q245E R10H+N62D A232T+Q236L+Q245D V281+A98AD+T224S R170H+Q236A+Q245R S9K+T22K+S99AD A232L+Q236T+Q245D P14S+S99AD+P131W G97GG+P131H+Q137E+V268L V68A+172V+P131 F A88V+G97GV+P131 H S9R+S99AD G97GA+H120Q+S130P+G264E S9K+S99AD G97GG+V139L V281+A88V+G100S+P131M G97GG+Q137D S103L+V104S+S106G G97GG+H120D+Q137H V68A+T224A N185R V68A+P131F P131H+Q137E A48T+V68A+P131 M V1041+H120N+P131 H+Q137E V68A+172V+P131F H120Q+Q137E G100GE+P131FS9R+A15T+G97GV+H120D S99AD+P131 F+T260A G100S+H120Q+Q137H R19G+A98AS V68A+H120K+Q137E G61R+N62D G97GA+H120E V68A+S106M+N184D H120D+S128I+Q137D P55S+V68L+A158E+G160A G97GG+P131H V68A+A158C G97GG+H120N+L126I R19W+G61S+S99SD+N204T+ S9R+A15T+G97GA+H120D+P131 H+ Y263H+S265R Q137E A232T+Q236CS9R+A15T+G97GV+P131 T+Q137H N62D+A232T+Q236C S9R+A15T+G20*+L21 F+N62D+Q245N A232P+Q236L+Q245E S9L+A15T+T22TV+V139L+Q245F A232S+Q236L+Q245T+K251 E S132G+Q245F S163C+Q236M+Q245T+S256G S9R+A15T+T22TG+N62+V139L+Q245V N218D+A232L+Q236F+Q245F S9L+A15T+T22TV+V139L+Q245F+L262S S163N+A232L+Q236S+Q245ES9R+A15T+T22TL+N62D+Q245W A232S+Q236S+Q245E V68A+A158L+Y214C V68A+V203L N62D+V1501 V68S+A158D S3T+P14Q+A15M+R19K+N62D+S144D 18V+A15T+R19K+A85T+S99SD+ P14Q+R19W+V51 l+G61 E+S99SD+ A114V+V244I+S256N+Y263H V139I+T260R L111F+Y263H S35+P14L+H17R+S99SD+V139I+S144D P52V+S78T+S99SD S3A+V301+S99SD+S106G+N248S A15M+S99SD+V2681 18V+A15T+S99SD S99G+S128N+N183D+A232L+ S3T+S9R+P14H+A15M+R19L+S99SD+ Q236T+Q245R V1391 S99R+S101SA S9R+A15T+G97GG+H120D+Q137E L96LA+A98T+P131AA S9R+A15T+G20A+G97GV+H120D+P131H A98E+S99P S163N+A232L+Q236A+Q245G V28I+S99AD+P131F N173D+A232L+Q236A+Q245N S9R+A15T+G97GV+Q137H P55S+V68A+S106M+A108T+P129T V81A+P131T+A133S+Q137E K27R+V68L+G118D+A158E N43D+V68A+S106F+N238D A98E+S99A+S101SK V68A+V203F V68A+N140D+T143A+S144N V68A+S106E N62D+N140K+T143A+S144D V68A+S106I S9F+P14T+R19L+A98AD V68A+A158M+R170C S9V+P14R+R19F+A98AD V68A+P129T+N218D S99A+S99SD+G258K+L262Q V68S+P129E S87C+S99SA+S99D+P131A V68S+P129D S99A+S99SD+G258K+L262Q V68L+P129E+N261D V281+S99A+*99aD+P131F G97GV+H120D A85T+G102D+S106T+K237R P131A+A133ASA V68A+T71A L111F+Y263H G61GS V11A+G61GE+V227A+S240F G100L A133E+S144K+N218D A133D S128A+P129S+S130SP V68A G61GE N123D S9R+A15T+T22TW+N204D+Q2451 Q245W+N252V S9R+A15T+G97GG+P131S+Q137H R45H+Y171C+Q245W+N252S S9R+A15T+T22TG+N62D+V139L+Q245G G20R+A48T+R170C+Q245W+N252Q S9R+A15T+T22TL+N62D+1107V+V139L+ S9R+A15T+A16P+G97GA+P131S+Q137D+ Q245W N204S S9G+A15T+G97GA+Q137H N218D+Q245W+N252E S9R+A15T+V68A+Q245R G20R+R170C+Q245R+N252V S9R+A15T+G97GA+H120N+S212L S9R+P141+R19K+A98AD+T274S S9R+A15T+L96LG+H120D+P131H+R186L A98AE+V2031 S9R+A15T+G97GA+H120D+Q137D V51A+V68A+S163G+V203A N62D+N252T N62D+Q245W+N252H V4A+S9R+A15T+G97GV+H120D N62D+Q245W+N252A S9R+A15T+G97GV+H120D+Q137H G20R+N62D+V2441+Q245W+N252E S9R+A15T+L96LG+H120N+P131H+Q137E N204D+Q245S S9R+A15T+L96LG+H120D+P131S+Q137E N62D+Q245W+N252E S9R+A15T+H120N+P131T+N218D N62D+Q245R+N252V S9R+A15T+L21LP+T22TV+M1191+N218D+ S9R+A15T+S24P+G61E+A85T+P239S+ Q2451 Q245A S9R+A15T+L96LG+H120D+G160D G102S+M222S+Q245L+N252D V68A+S106A+G118D+Q245R+T255S+ A15M+V301+N62D+S99N+L1111+V244A+ L257G+T274L S265N S9R+A15T+G61E+A85T+P239L+Q245C S9R+A15T+T22TG+N62D+V139L+Q245S S9R+A15T+P131H+S144P S3T+Q12D+R19W+V301+S106G+1107M S9R+A15T+G97GA+Q137E V68A+A88T+V139L S9R+A15T+G97GA+H120Q+P131H+Q137E V511+L1111+G118D+Q245R S9R+A15T+L21LW+G100S+V139L+Q245V V68A+V203L S9R+A15T+G97GA+Q137H+N218S A1T+V68A+N116D+G118D S9R+A15T+L96LG+H120N+P131S+Q137H V68A+G118D+Q245R N62D+V139I+N183D+N185S+V203I+ S9R+A15T+G97GA+H120N+Q137E Q245R+L262S S9R+A15T+L96LG+P131T+Q137H N62D+I72V S9R+A15T+L6LG+H120N+P131S N62D+V81A+Q245R S9R+A15T+V68A+Q137D T22A+V68A+S106T+G118D SR9+A15T+G97GA+H120Y+Q137H V68A+L111I+V203I S9R+A15T+G97GA+Q137D G61E+V68A+A169G S9R+A15T+K94N+H120N+P131H V68A+L111V S9R+A15T+L96LG+P131H+Q137D V68A+G118D+V203A+K251R S9R+A15T+F50S+H120D+P131H V68A+G118D S9R+A15T+G97GA+H120N+Q137D+N248D A1V+V51A+V68A+V2031 S9R+A15T+L96LG+P131Q+Q137D V68A+V139L+A223G S9R+A15T+T22G+V139L+Q245L N62D+Y214H+K237R V139L+Q245R V68A+S106A+G118D+Q245R S9R+A15T+Q245F S9R+A15T+T22A+N62D S9R+A15T+Q245S A98Q+S99D S9R+A15T+G97GV+H120Q S9R+P141+R19K+A98AD S9R+A15T+G97GA+Q137E+L262V S9R+A15M+A16P+T22S+S99AD S9R+A15T+G127E+P131 R+Q137H S99AD+T255R+S256N S9R+A13V+A15T+135V+N62D+Q245F S9R+A15T+T22TQ+S101P S9R+A15T+Q245V S9R+A15T+H120R+Q137D+N173S V139L+Q245F G97E S9R+A15T+T22A+V139L+Q245E Q245W S9R+A15T+T22L+V139L+Q245V+A254S S9R+A15T+L96LG+Q137E+Y209H S9R+R19L+A98AD S9R+A15T+L111V+Q137E+G211 D P14R+A98AD S9R+A15T+L1111+Q137E S9R+A15T+Q245L S9R+A15T+L111I+H120N+Q137E S9R+A15T+G61E+A85T+P239S+Q245V S9R+A15T+L96LG+H120Q+Q137E S9R+A15T+G61E+A85T+Q206L+Q245R S9R+A15T+T260M P239T+Q245R S9R+A15T S9R+A15T+N62NG+Q245T Q2451 S9R+A15T+G61 GP+Q245L S9R+A15T+H120G+Q137E+N218D S9R+A15T+G61E+A85T+Q137H+Y209C+ I8V+P14L+R19L+V30I+I35V+S57P+P129S+ Q245G Q137D+S144D+S256N S9R+A15T+G61E+A85T+P239S+Q245C Q245F V681+A98AD S9R+A15T+N218D V68A+N269K G63E+N76D+A194P+A230V N62D+Q245A+N252G+S265G S9R+A15T+T224A N218D+Q245G+N252H G100S S9R+A15T+G102S+M175T+Q245R+N252D S9R+A15T+D60DG S9R+A15T+N62D+Q245W+N252V A138V+V1391+A194P+N218D+A230V S9R+A15T+N62D+Q245R+N252M A108V+A169G+R170A+Y171H S9R+A15T+N62D+Q245W+N252S S9R+A15T+S130P S99SD+N204S+Q245R A133D+T134S+Q137A N62D+Q245R Q137D N62D+A151G A98AH V68A+S106T V51D S99A+S99SD+V203L Q12E+P14L+A15T A98AD+A215T G63E+N76D+A194P+A230V N62D+Q245G+N252T Q12E+P14L+A15T A152P+Q245R+N252T G97GS S163N+T213A+Q245R Q245W+N252Y S106L+Q245R+N252E S9V+P14R+R19F+A98AD Q12E+P14L+A15T S9R+A15T+L111I+Q137E P14R+A98AD S9R+A15T+G97GA+Q137E G100S S9R+A15T+L96LG+Q137E+Y209H A169G+R170H S9R+A15T+L96LG+H120N+P131S A98AD+A169G S9R+A15T+G97GV+H120Q A138V+V139I+A194P+N218D+A230V S9R+A15T+L96LG+H120Q+Q137E S99A+S99SD+V203L S9R+A15T+G97GV+P131S V68A+S106T S9R+A15T+K94N+H120N+P131H A98AD+A215T S9R+A15T+N76S+L111V+P131H+Q137D A108V+A169G+R170A+Y171H S9R+A15T+F50S+H120D+P131H S3L+N62D+S163A+S190A S9R+A15T+L96LG+S130* S9R+P14I+R19K+A98AD+T274S S9R+A15T+T22TL+N62D+1107V+V139L+ S9R+A15T+G61E+A85T+N218D+P239S+ Q245W Q245L S9R+A15T+G97GA+H120D+Q137H+ S9R+A15T+S24P+G61E+A85T+P239S+ M222V Q245A S9R+A15T+G97GA+H120N+Q137D+N248D S99SD+P131F S9R+A15T+L21LW+G100S+V139L+Q245V N62D+P131F+A172V S9R+A15T+G20*+L21F+N62D+Q245N N62D+P131F S9R+A15T+L21LC+V139L+R186H+Q245M V68A+A88T+V139L S132G+Q245F V68A+G118D+V203A S9R+A15T+T22TG+N62D+V139L+Q245G P40L+V68A+A108T+A138V+V2031 S9R+A15T+L96LG+P131Q+Q137D 18T+A98AD+T274R S9R+A15T+T22TQ+S101P A98AE+V2031 S9R+A15T+T22TG+N62D+V139L+Q245V V51A+V68A+S163G+V203A S9R+A15T+T22TL+N62D+Q245W A1V+V51A+V68A+V2031 S9R+A15T+T22TW+N204D+Q2451 V68A+G100S S9R+A15T+T22TG+N62D+V139L+Q245S V68A+V203L S9R+A15T+S130P A1T+V68A+N116D+G118D Q245W N62D+A169G+V2031+Q245R S9R+A15T+L21LP+T22TY+V139L+G160D+ G23S+S99SD+A194P+S242T+Q245R+ Q245L T274R S9R+A15T+G61E+A85T+P239L+Q245C S99SD+N204S+Q245R S9R+A15T+L21LP+T22TV+M119I+N218D+ N62D+V139I+N183D+N185S+V203I+ Q2451 Q245R+L262S S9R+A15T+V68A+Q245R V68A+S106A+G118D+Q245R S9R+A15T+T22A+V139L+Q245E V51I+L111I+G118D+Q245R V139L+Q245R N62D+Q245R S9R+A15T+Q245F N62D+172V S9R+A15T+Q245S S9R+R19L+A98AD S9R+A15T+T260M S9G+P14R+R191+A98AD S9R+A15T+T22L+V139L+Q245V+A254S S9R+A15T S9R+A15T+L21LG+T22TV+V139L+N204D+ S99G+S128N+N183D+A232L+Q236T+ Q245N Q245R V139L+Q245F S9R+A15T+Q245L S9R+A15T+N62NG+Q245T S9R+A15T+T22G+V139L+Q245L S9R+A15T+N62ND+V139L+Q245E S9R+A15T+Q245V S9R+A15T+N62ND+V139L+N261D Q245F Y167I+R170L+Q245E Y167I+R170L+Q245R S9R+A15T+N218D Y167I+R170L+Q245M S9R+A13V+A15T+I35V+N62D+Q245F S9R+A15T+T224A Y1671+R170L S163N+A232L+Q236A+Q245G S99SE+Q245R S9R+A15T+A16P+G97GA+P131S+Q137D+ S9R+A15T+G61E+A85T+Q137H+Y209C+ N204S Q245G S9R+A15T+G61E+A85T+P239S+Q245C N218D+A232L+Q236F+Q245F G102S+M222S+Q245L+N252D S163N+A232L+Q236S+Q245E G97GA+H120E N62D+Q245A+N252G+S265G G97GG+P131H N62D+Q245G+N252T S9R+A15T+G97GA+H120D+P131H+Q137E S9R+A15T+N62D+Q245W+N252V S9R+A15T+G97GV+Q137H S9R+A15T+N62D+Q245R+N252M S9R+A15T+G97GV+H120N S9R+A15T+N62D+Q245W+N252S S9R+A15T+G97GG+P131S+Q137H S163N+T213A+Q245R S9R+A15T+G97GG+H120N+Q137D S106L+Q245R+N252E S9R+A15T+H120Q+P131C+Q137H Q245W+N252Y S9R+A15T+G97GV+H120D+Q137H Q245W+N252V S163C+Q236M+Q245T+S256G G20R+A48T+R170C+Q245W+N252Q S9R+A15T+G97GG+H120D+P131H+ N62D+N252T Q137H S9R+A15T+G97GV+H120E+Q137H N218D+Q245W+N252E S9R+A15T+G97GV+P131T+Q137H G20R+R170C+Q245R+N252V S9R+A15T+G97GV+H120Q+Y263F N62D+Q245W+N252H S9R+A15T+G97GV+S106A+P131H N62D+Q245W+N252A S9R+A15T+G97GG+L111I+P131T+Q137H G20R+N62D+V244I+Q245W+N252E S9R+A15T+G97GV+P131H+Q137H N204D+Q245S S9R+A15T+G20A+G97GV+H120D+P131H N62D+Q245W+N252E S9R+A15T+G97GA+H120D+P131S+Q137E N62D+Q245R+N252V A98L+S99C+Q245R S9G+A15T+G97GA+Q137H N62D+A98R+Q245R S9R+A15T+H120R+Q137D+N173S S9R+A15T+V68A+S99G+Q245R+N261D S9R+A15T+L96LG+H120N+P131H+Q137E S9R+A15T+G20*+L21F+N62D+Q245R S9R+A15T+L96LG+H120D+P131S+Q137F S9R+A15T+G20*+L21F+N62E+Q245R S9R+A15T+H120N+P131T+N218D V68I+A98AD S9R+A15T+G97GA+H120D+Q137D S9R+A15T+L96LG+H120D+P131H+R186L S9R+A15T+H120D+Q137D S9R+A15T+N77S+L96LG+H120D+P131Q S9R+A15T+G97GA+R186C S9R+A15T+G97GA+H120N+Q137E V4A+S9R+A15T+G97GV+H120D S9R+A15T+L96LG+H120D+G160D S9R+A15T+G97GA+Q137E+L262V S9R+A15T+G97GA+H120N+S212L S9R+A15T+P131H+S144P S9R+A15T+G97GA+Q137H+N218S S9R+A15T+G127E+P131R+Q137H M222S+Q245G+N252G S9R+A15T+V68A+S99G+Q245R+N261D V681+V203L N62D+P131F+A172V V51A+S163T N62D+P131F S106A+A138G S99SD+Q245R V1391+A151G S9R+A13T+S99A+S99SD+P131F A98R+G100C+Q245R S9R+A15T+N62S+H120N+P131T+N218D S9R+A15T+S99G+G100S+H120N+P131S+ S9R+A15T+S99C+H120N+P131S+Q137H+ Q137H M222S A15T+N185D+M222S+Q245R+N252V A98G+S99C+Q245R S9R+A15T+T22TL+G61E+L96LG+Q137D+ A98T+S99G+G100S+S240F+Q245R Q245R S9R+T22TL+G61E+G97GG+M119I+P131T S9R+A15T+H120N+P131T+N218D+N269T Y209H+M222S+Q245G+N252L M222S+Q245M+N252E S9R+A15T+G61E+H120S+Q137D+V139L+ S9R+A15T+L96LG+H120N+P131S+Q137H N218D +M222S S9R+A15T+N62D+H120N+P131T S9R+A15T+G61E+A98S+S99M+Q245R S9R+A15T+V68A+N218D+Q245R A98G+G100S+Q245R+N261D S9R+A15T+V68A+H120N+N218D+Q245R S9R+A15T+V68A+A98L+Q245R S9R+A15T+V68A+A174V+Q245R S9R+A15T+V68A+A98G+S99V+Q245R S9R+A15T+G46D+V68A+N218D+Q245R S9R+A15T+V68A+A98M+Q245R+N248D G97D+A98N+S128G+S130T+P131D+ S9R+A15T+G61E+V68A+A98S+S99G+ T134A Q245R S9R+A15T+V68A+A98M+S99G+Q245R+ S9R+A15T+A88V+A98R+S99G+G100C+ T274A H120N+P131S+Q137H S9R+A15T+V68A+A98L+S99G+Q245R A98V+S99C+Q245R S9R+A15T+A98G+S99C+H120N+P131S+ S9R+A15T+G20*+L21F+G61E+*61aP+ Q137H Q245R S9R+A15T+T38S+A98R+S99C+G100S+ S9R+A15T+V68A+A98G+S991+K237R+ H120N+P131S+Q137H Q245R S9R+A15T+A98C+G100S+H120N+P131S+ S9R+A15T+V68A+H120N+P131S+Q137H+ Q137H Q245R S9R+A15T+A98S+G100S+H120N+P131S+ S9R+A15T+V68A+H120D+P131S+Q137H+ Q137H Q245R S9R+A15T+G20*+L21F+N62D+Q245R A98S+S99G+G100S+Q245R S9R+A15T+G20*+L21F+N62D+Q245R+ S9R+A15T+A98S+S99G+G100S+H120N+ S259G P131S+Q137H A98S+G100S+Q245R A98T+S99G+G100S+Q245R S9R+A15T+G20*+L21F+*61aA+V68A+ S9R+A15T+G20*+L21F+P52T+N62D+ Q245R Q245R S9R+A15T+G20*+L21F+N62E+Q245R A98L+S99C+Q245R V68A+S105G+S106A V68A+S106A+T213A S9R+A15T+Y1671+R170L S9R+A15T+V68A V68A+S106A+N252M+Y263C V68A+S106A+Q245W V68A+S106A+Q245R+N252D V68A+S106A+Q245W+N252K V68A+S106A+A174V+Q245R+N252D S9R+A15T+V68A+Q245R+N252S S9R+A15T+V281+V68A+Q245R+ N252A S9R+A15T+V68A+A194T+Q245R+N252E S9R+A15T+G20*+L21F+*63aG+Q245R+ S9R+A15T+G20*+L21F+*62aS+N218D+ N272V Q245R S9R+A15T+G20*+L21F+*61aS+V68A+ S9R+A15T+V68A+H120N+P131S+Q137H+ G160D+Q245R Q245M

wherein (a) the variant of Table I exhibits protease activity, and (b) each position corresponds to a position of the amino acid sequence of subtilisin B PN', shown in Figure 1 and SEQ ID NO: 1.

In a fourth aspect the present invention relates to an isolated polynucleotide encoding a subtilase variant of the invention.

In a fifth aspect the present invention relates to an expression vector comprising the isolated polynucleotide of the invention.

In a sixth aspect the present invention relates to a microbial host cell transformed with the ex- pression vector of the invention.

In a seventh aspect the present invention relates to a method for producing a subtilase variant according to the invention, wherein a host according to the invention is cultured under condi- tions conducive to the expression and secretion of the variant, and the variant is recovered.

In an eighth aspect the present invention relates to a cleaning or detergent composition,

preferably a laundry or dish wash composition, comprising the variant of the invention.

In a ninth aspect the present invention relates to a subtilase variant comprising at least one of the alterations disclosed in Table II below : Table II, subtilase variants of the inventions having one or more of the alterations: G97GA+H120D+P131H+Q137E L111I+Q137E G97GV+Q137H G97GA+Q137H+N218S T22TQ+S101P L96LG+H120N+P131S+Q137H G97GV+H120D+Q137H L96LG+H120N+P131S+Q137H V4A+G97GV+H120D G97GA+H120N+Q137E L111V+Q137E+G211D L111I+H120N+Q137E L21 LW+G100S+V139L+Q245V L96LG+P131T+Q137H V68A+Q137D L96LG+H120N+P131S L96LG+H120Q+Q137EG97GA+H120Y+Q137H K94N+H120N+P131H G97GA+Q137D G97GV+H1200Q L96LG+P131H+Q137D G97GA+Q137E+L262V F50S+H120D+P131H D60DG G97GA+H120N+Q137D+N248D T22TL+N62D+Q245W L96LG+P131Q+Q137D T22TW+N204D+Q2451 T22G+V139L+Q245L T22TG+N62D+V139L+Q245V Q245F G97GG+P131S+Q137H Q245S G20*+L21 F+N62D+Q245N T260M T22TG+N62D+V139L+Q245G H120G+Q137E+N218D T22TL+N62D+1107V+V139L+Q245W G127E+P131R+Q137H G97GG+H120D+Q137E S130P H120R+Q137D+N173S Q245V V68A+Q245R N218D G97GA+H120N+S212L T22A+V139L+Q245E G97GA+H120N+S212L T22L+V139L+Q245V+A254S L96LG+H120D+P131H+R186L T224A G97GA+H120D+Q137D Q245L S9R+A15T+A16P+G97GA+P131S+Q137D+ N204S G61E+A85T+P239S+Q245V L21LP+T22TV+M119I+N218D+Q245I G61E+A85T+Q206L+Q245R L96LG+H120N+P131H+Q137E N62NG+Q245T L96LG+H120D+P131 S+Q137EG61GP+Q245L H120N+P131T+N218D G61E+A85T+Q137H+Y209C+Q245G L96LG+H120D+G160D G61E+A85T+P239S+Q245C T22TG+N62D+V139L+Q245S G102S+M175T+Q245R+N252D G61E+A85T+P239L+Q245C N62D+Q245W+N252V G61E+A85T+P239L+Q245C N62D+Q245R+N252M P131H+S144P N62D+Q245W+N252S G97GA+Q137E S24P+G61E+A85T+P239S+Q245A L96LG+Q137E+Y209H T22A+N62D G97aA+H120Q+P131H+Q137E G61E+A85T+N218D+P239S+Q245L L111I+Q137E S24P+G61E+A85T+P239S+Q245A G97GA+Q137E T22L+V139L+Q245V+A254S L96LG+Q137E+Y209H T224A L96LG+H120N+P131S Q245L G97GV+H120Q N62NG+Q245T L96LG+H120Q+Q137E N62ND+V139L+Q245E G97GV+P131S N62ND+V139L+N261D K94N+H120N+P131H G61E+A85T+Q137H+Y209C+Q245G N76S+L111V+P131H+Q137D G61E+A85T+P239S+Q245C F50S+H120D+P131H N62D+Q245W+N252V L96LG+S130* N62D+Q245R+N252M L96LG+P131Q+Q137D N62D+Q245W+N252S G97GA+H120D+Q137H+M222V V68A+S99G+Q245R+N261D G97GA+H120N+Q137D+N248D G20*+L21 F+N62D+Q245R L21LW+G100S+V139L+Q245V G20*+L21 F+N62E+Q245R G20*+L21 F+N62D+Q245N H120D+Q137D L21LC+V139L+R186H+Q245M N77S+L96LG+H120D+P131 Q T22TG+N62D+V139L+Q245G G97GA+H120N+Q137E T22TL+N62D+I107V+V139L+Q245W G97GA+Q137E+L262V T22TQ+S101P P131H+S144P T22TG+N62D+V139L+Q245V G127E+P131R+Q137H T22TL+N62D+Q245W G97GG+H 120D+P131 H+Q137H T22TW+N204D+Q2451 G97GV+H120E+Q137H T22TG+N62D+V139L+Q245S G97GV+P131T+Q137H L21LP+T22TY+V139L+G160D+Q245L G97GV+H120Q+Y263F S130P G97GV+S106A+P131H G61E+A85T+P239L+Q245C G97GG+L111I+P131T+Q137H L21LP+T22TV+M119I+N218D+Q245I G97GV+P131H+Q137H V68A+Q245R G20A+G97GV+H120D+P131 H T22A+V139L+Q245E G97GA+H120D+P131S+Q137E Q245F G97GA+Q137H Q245S H120R+Q137D+N173S T260M L96LG+H120N+P131H+Q137E S9R+A15T L96LG+H120D+P131S+Q137E L21LG+T22TV+V139L+N204D+Q245N H120N+P131T+N218D T22G+V139L+Q245L G97GA+H120D+Q137D Q245V G97GG+P131 S+Q137H N218D G97GG+H120N+Q137D A13V+135V+N62D+Q245F H120Q+P131C+Q137H G97GA+H120D+P131H+Q137E G97GV+H120D+Q137H G97GV+Q137H A16P+G97GA+P131 S+Q137D+N204S G97GV+H120N L96LG+H120D+G160D L96LG+H120D+P131H+R186L G97GA+H120N+S212L G97GA+R186C G97GA+Q137H+N218S V4A+G97GV+H120D V68A+H120N+P131S+Q137H+Q245M G20*+L21 F+*63aG+Q245R+N272V V281+V68A+Q245R+ N252A G20*+L21 F+*61 aA+V68A+Q245R V68A+Q245R+N252S V68A+A194T+Q245R+N252E G20*+L21 F+*61aS+V68A+G160D+Q245R G20*+L21 F+*62aS+N218D+Q245R

wherein (a) the variant of Table II exhibits protease activity, and (b) each position corresponds to a position of the amino acid sequence of subtilisin B PN', shown in Figure 1 and SEQ ID NO: 1.

In a tenth aspect the present invention relates to a subtilase variant comprising one of the alterations N252D and N252M.

In an eleventh aspect the present invention relates to a subtilase variant comprising one or more of the alterations M119L, I, V, A, S; M175L, I, V, A, S and M222L, I, V, A, S in combination with the subtilase variants listed in tables and)) above.

Concerning alignment and numbering, reference is made to Fig. 1 which shows an alignment between subtilisin BPN' (a) (BASBPN) and subtilisin 309 (b) (BLSAVI). This alignment is in this patent application used as a reference for numbering the residues.

DEFINITONS Prior to discussing this invention in further detail, the following terms and conventions will first

be defined.

For a detailed description of the nomenclature of amino acids and nucleic acids, we refer to WO 00/71691 beginning at page 5, hereby incorporated by reference.

NOMENCLATURE AND CONVENTIONS FOR DESIGNATION OF VARIANTS In describing the various subtilase enzyme variants produced or contemplated according to the invention, the following nomenclatures and conventions have been adapted for ease of reference: A frame of reference is first defined by aligning the isolated or parent enzyme with subtilisin BPN' (BASBPN).

The alignment can be obtained by the GAP routine of the GCG package version 9.1 to number the variants using the following parameters: gap creation penalty = 8 and gap extension penalty = 8 and all other parameters kept at their default values.

Another method is to use known recognized alignments between subtilases, such as the alignment indicated in WO 91/00345. In most cases the differences will not be of any importance.

Thereby a number of deletions and insertions will be defined in relation to BASBPN (SEQ ID NO. 1). In Fig. 1, subtilisin 309 (SEQ ID NO. 2) has 6 deletions in positions 36,58, 158,162, 163, and 164 in comparison to BASBPN. These deletions are in Fig. 1 indicated by asterixes () For a detailed description of the nomenclature of modifications introduced in a polypeptide by genetic manipulation we refer to WO 00/71691 page 7-12, hereby incorporated by reference.

Proteases Enzymes cleaving the amide linkages in protein substrates are classified as proteases, or (interchangeably) peptidases (see Walsh, 1979, Enzymatic Reaction Mechanisms. W. H.

Freeman and Company, San Francisco, Chapter 3).

Numbering of amino acid positions/residues If nothing else is mentioned the amino acid numbering used herein correspond to that of the subtilase BPN' (BASBPN) sequence. For further description of the BPN'sequence, see Fig. 1, SEQ ID NO : 1 or Siezen et al., Protein Engng. 4 (1991) 719-737.

Serine proteases A serine protease is an enzyme which catalyzes the hydrolysis of peptide bonds, and in which there is an essential serine residue at the active site (White, Handler and Smith, 1973 "Principles of Biochemistry,"Fifth Edition, McGraw-Hill Book Company, NY, pp. 271-272).

The bacterial serine proteases have molecular weights in the 20,000 to 45,000 Dalton range.

They are inhibited by diisopropylfluorophosphate. They hydrolyze simple terminal esters and are similar in activity to eukaryotic chymotrypsin, also a serine protease. A more narrow term, alkaline protease, covering a sub-group, reflects the high pH optimum of some of the serine proteases, from pH 9.0 to 11.0 (for review, see Priest (1977) Bacteriological Rev. 41 711-753).

Subtilases A sub-group of the serine proteases tentatively designated subtilases has been proposed by Siezen et al., Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501-523. They are defined by homology analysis of more than 170 amino acid sequences of serine proteases previously referred to as subtilisin-like proteases. A subtilisin was previously often defined as a serine protease produced by Gram-positive bacteria or fungi, and according to Siezen et al. now is a subgroup of the subtilases. A wide variety of subtilases have been identified, and the amino acid sequence of a number of subtilases has been determined. For a more detailed description of such subtilases and their amino acid sequences reference is made to Siezen et al. (1997).

One subgroup of the subtilases, I-S1 or"true"subtilisins, comprises the"classical"subtilisins, such as subtilisin 168 (BSS168), subtilisin BPN', subtilisin Carlsberg (ALCALASE@, NOVOZYMES A/S), and subtilisin DY (BSSDY).

A further subgroup of the subtilases, I-S2 or high alkaline subtilisins, is recognized by Siezen et al. (supra). Sub-group I-S2 proteases are described as highly alkaline subtilisins and comprises enzymes such as subtilisin PB92 (BAALKP) (MAXACAL@, Genencor International Inc.), subtilisin 309 (SAVINASE@, NOVOZYMES A/S), subtilisin 147 (BLS147) (ESPERASE@, NOVOZYMES A/S), and alkaline elastase YaB (BSEYAB).

"SAVINASE@" SAVINASEO is marketed by NOVOZYMES A/S. It is subtilisin 309 from 8. Lentus and differs from BAALKP only in one position (N87S). SAVINASEX has the amino acid sequence designated b) in Fig. 1 and in SEQ ID NO : 2.

Parent subtilase The term"parent subtilase"describes a subtilase defined according to Siezen et al. (1991 and

1997). For further details see description of"Subtilases"above. A parent subtilase may also be a subtilase isolated from a natural source, wherein subsequent modifications have been made while retaining the characteristic of a subtilase. Furthermore, a parent subtilase may be a subtilase which has been prepared by the DNA shuffling technique, such as described by J. E. Ness et al., Nature Biotechnology, 17,893-896 (1999).

Alternatively the term"parent subtilase"may be termed"wild type subtilase".

For reference a table of the acronyms for various subtilases mentioned herein is provided, for further acronyms, see Siezen et al., Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501-523.

Table III Organism enzyme acronym Bacteria: Gram-positive Bacillus subtilis 168 subtilisin 1168, apr BSS168 Bacillus amyloliquefaciens subtilisin BPN' (NOVO) BASBPN Bacillus subtilis DY subtilisin DY BSSDY Bacillus licheniformis subtilisin Carlsberg BLSCAR Bacillus lentus subtilisin 309 BLSAVI Bacillus lentus subtilisin 147 BLS147 Bacillus alcalophilus PB92 subtilisin PB92 BAPB92 Bacillus YaB alkaline elastase YaB BYSYAB Thermoactinomyces vulgaris thermitase TVTHER Modification (s) of a subtilase variant The term"modification (s)"used herein is defined to include chemical modification of a subtilase as well as genetic manipulation of the DNA encoding a subtilase. The modification (s) can be replacement (s) of the amino acid side chain (s), substitution (s), deletion (s) and/or insertions in or at the amino acid (s) of interest.

Subtilase variant In the context of this invention, the term subtilase variant or mutated subtilase means a subtilase that has been produced by an organism which is expressing a mutant gene derived from a parent microorganism which possessed an original or parent gene and which produced a corresponding parent enzyme, the parent gene having been mutated in order to produce the mutant gene from which said mutated subtilase protease is produced when expressed in a suitable host.

Homologous subtilase sequences The homology between two amino acid sequences is in this context described by the parameter"identity".

In order to determine the degree of identity between two subtilases the GAP routine of the GCG package version 9.1 can be applied (infra) using the same settings. The output from the routine is besides the amino acid alignment the calculation of the"Percent Identity"between the two sequences.

Based on this description it is. routine for a person skilled in the art to identify suitable homologous subtilases, which can be modified according to the invention.

Isolated polvnucleotide The term"isolated", when applied to a polynucleotide, denotes that the polynucleotide has been removed from its natural genetic milieu and is thus free of other extraneous or unwanted coding sequences, and is in a form suitable for use within genetically engineered protein production systems. Such isolated molecules are those that are separated from their natural environment and include cDNA and genomic clones. Isolated DNA molecules of the present invention are free of other genes with which they are ordinarily associated, but may include naturally occurring 5'and 3'untranslated regions such as promoters and terminators. The identification of associated regions will be evident to one of ordinary skill in the art (see for example, Dynan and Tijan, Nature 316: 774-78,1985). The term"an isolated polynucleotide" may alternatively be termed"a cloned polynucleotide".

Isolated protein When applied to a protein, the term"isolated"indicates that the protein has been removed from its native environment. In a preferred form, the isolated protein is substantially free of other proteins, particularly other homologous proteins (i. e."homologous impurities" (see below)).

An isolated protein is more than 10% pure, preferably more than 20% pure, more preferably more than 30% pure, as determined by SDS-PAGE. Further it is preferred to provide the protein in a highly purified form, i. e. , more than 40% pure, more than 60% pure, more than 80% pure, more preferably more than 95% pure, and most preferably more than 99% pure, as determined by SDS-PAGE.

The term"isolated protein"may alternatively be termed"purified protein".

Homologous impurities The term"homologous impurities"means any impurity (e. g. another polypeptide than the sub- tilase of the invention), which originate from the homologous cell where the subtilase of the

invention is originally obtained from.

Obtained from The term"obtained from"as used herein in connection with a specific microbial source, means that the polynucleotide and/or subtilase produced by the specific source, or by a cell in which a gene from the source has been inserted.

Substrate The term"substrate"used in connection with a substrate for a protease should be interpreted in its broadest form as comprising a compound containing at least one peptide (amide) bond susceptible to hydrolysis by a subtilisin protease.

Product The term"product"used in connection with a product derived from a protease enzymatic reaction should, in the context of the present invention, be interpreted to include the products of a hydrolysis reaction involving a subtilase protease. A product may be the substrate in a subsequent hydrolysis reaction.

Wash Performance In the present context the term"wash performance"is used as an enzyme's ability to remove proteinaceous or organic stains present on the object to be cleaned during e. g. wash or hard surface cleaning. See also the wash performance test in Example 3 herein.

BRIEF DESCRIPTION OF THE DRAWING Fig. 1 shows an alignment between subtilisin BPN' (a) and Savinasee (b) using the GAP routine mentioned above.

DETAILED DESCRIPTION OF THE INVENTION The present invention relates to novel subtilase variants exhibiting alterations relative to the parent subtilase in one or more properties including : Wash performance, thermal stability, storage stability or catalytic activity.

Variants which are contemplated as being part of the invention are such variants where, when compared to the wild-type subtilase, one or more amino acid residues has been substituted, deleted or inserted, said variants comprising at least a) an insertion, substitution or deletion of one of the amino acid residues K, H, R, E, D, Q, N, C, V, L, I, P, M, F, W, Y, G, A, S, T

in one or more of the positions 62,68, 97,98, 99,106, 131,170, 245,252 in combination with at least one of the following modifications *OAQSVPWG ; A1T, V; Q2L; S3T, A, L; V4L, A ; 18V, T; S9G, D, R, K, L, V; R10H, K; V11A ; Q12D; A13V; P14S, T, D, A, M, V, K, Q, L, H, R, I ; A15M, T; A16P; H17R; N18S, H; R19W, K, L, F, G, 1 ; G20*, R, A; L21F, LP, LW, LA, LG; T22S, A, K, TV, TG, TL, TW, TV, G, L, TY; G23S; S24P; K27R, V281 ; V301 ; 135T, V; T38S; P40L; N43D; R45H, K; G46D; A48T; S49N; F50S; V51A, I, D; P52V, A; P55S, A; S57P; G61E, D, S, R, GP; N62D, ND, NE, DE, NG, E, S; V68A, S, L, I ; T71A ; 172V ; L751 ; N76S, D; N77S; S78T; V81A; A85T; S87C; A88V, T; E89G; K94N; V95C, T; L96LA, LG; G97E, D, W, A, GG, GA, GV, N, GS; A98S, D, E, T, AS, AD, AV, AE, AH, Q, N, M, L, G, R, V, S; S99D, L, A, AD, SD, SM, SG, DA, P, G, N, C, M, V, 1 ; G100S, GE, C; S101SA, SK; G102D, S; S103D, E, Y, L, Q, H, T; V104T, S, R, I, N, M, L, D; S106D, E, T, M, G, A, L, F, 1 ; 1107T, V, M; A108V, T, S; L1111, V; A114V; N116S, D; G118D ; M119L, I, V, A, S; H120N, D, Q, K, E, Y, S; V121A; L124C; L1261 ; G127E; S128N, I, G, C; P129PSN, T, E, D, S, N, A; S130P, T, C, *; P131M, F, W, L, A, H, T, *, PA, S, Q, R, E, G, D, C; S132G, T; A133ASA; T134A; Q137H, E, D; A138G, V; V139L, I ; N140D, K; T143A; S144D, N, P; R145G; V1501 ; A151V, G; A152P; A158T, V, C, E, L, D, M; G160A, D; S163G, C, N, A; Y167K, A, I ; A168G; A169G; R170C, S, H, L; Y171C; A172V; N173D; A174V; M175L, I, V, A, S, T; N183D; N184D, S; N185S, D; R186L, C, H; S188G; S190A; Y192H ; G195F, E; V203S, A, L, Q, M, F, I ; N204T, D, S; Q206L; Y209C, H; G211D ; S212N, L; T213A; Y214C, H; A215D, T; N218D, S; M222L, I, V, A, S; A223G; T224A, S; A228T; A230V; A232S, L, T, P; V2341 ; Q236A, L, D, T, C, M, F, S; K237R; N238D; P239T, S; S240F; S242T; V2441, M, A; Q245R, K, E, D, T, F, N, V, W, G, I, S, C, L, A, M; N248P, D, S; K251E, R; N252G, H, D, V, M, S, T, E, Y, S, Q, K, A, L; A254S; T255A, S; S256N, R, G; L257G; G258K, S259A, N, G; T260A, R; N261D ; L262S, Q, V; Y263H, F; G264E; S265G, R, N; V268L, I ; N269T; N296K; E271A; T274S, L, A, R or b) one of the following combination variants A108T+L111V ; L1241+S125A ; P129S+S130AT ; L96LA+A151G+V203A ; S49N+V203L+N218D; S3T+A16P+R45C+G100S+A230V ; 18V+R19K+V1391 ; N76D+A174AL+A194P+A230V ; N185R; N62NE; H120Q+Q137E, G61GE, G61GS, G100L, A133D, V68A, N123D, L111F+Y263H, V11A+G61GE+V227A+S240F, A133E+S144K+N218D, S128A+P129S+S130SP, S9R+A15T+T22TQ+S101P, S9R+A15T+H120R+Q137D+N173S, G97E, Q245W, S9R+A15T+L96LG+Q137E+Y209H, S9R+A15T+L111V+Q137E+G211D, S9R+A15T+L1111+Q137E, S9R+A15T+L1111+H120N+Q137E, S9R+A15T+L96LG+H120Q+Q137E, S9R+A15T+T260M, S9R+A15T, Q2451, S9R+A15T+H120G+Q137E+N218D, S9R+A15T+S130P, Q245F, S9R+A15T+N218D,

G63E+N76D+A194P+A230V, S9R+A15T+T224A, G100S, S9R+A15T+D60DG, A138V+V139) +A194P+N218D+A230V, A108V+A169G+R170A+Y171 H, 18V+P14L+R19L+V301+135V+S57P+P129S+Q137D+S144D+S256N, A133D+T134S+Q137A, Q137D, A98AH, V51D, Q12E+P14L+A15T, G63E+N76D+A194P+A230V, Q12E+P14L+A15T, G97GS or c) one or more modifications in position 68, wherein said modification (s) comprise (s): deletion, insertion and/or substitution of an amino acid residue selected from the group con- sisting of K, H, R, E, D, Q, N, C, V, L, I, P, M, F, W, Y, G, A, S and T.

Further, variants of the present invention comprises at least one or more of the alterations in- dicated in Table I and 11, wherein (a) the variants of Table and)) has protease activity, and (b) each position corresponds to a position of the amino acid sequence of subtilisin BPN' (SEQ ID NO : 1).

A subtilase variant of the first aspect of the invention may be a parent or wild-type subtilase identified and isolated from nature. Such a parent wild-type subtilase may be specifically screened for by standard techniques known in the art.

One preferred way of doing this may be by specifically PCR amplify conserved DNA regions of interest from subtilases from numerous different microorganism, preferably different Bacillus strains.

Subtilases are a group of conserved enzymes, in the sense that their DNA and amino acid sequences are homologous. Accordingly it is possible to construct relatively specific primers flanking the polynucleotide sequences of interest.

Using such PCR primers to amplify DNA from a number of different microorganisms, preferably different Bacillus strains, followed by DNA sequencing of said amplified PCR fragments, it will be possible to identify strains which produce subtilase variants of the invention. Having identified the strain and a partial DNA sequence of such a subtilase of interest, it is routine work for a person skilled in the art to complete cloning, expression and purification of such a subtilase. However, it is envisaged that a subtilase variant of the invention is predominantly a variant of a parent subtilase.

A subtilase variant suitable for the uses described herein may be constructed by standard techniques known in the art such as by site-directed/random mutagenesis or by DNA shuffling of different subtilase sequences. See the"Material and Methods"section and Example 1 herein (vide infra) for further details.

As will be acknowledged by the skilled person, the variants described herein may comprise one or more further modifications, in particular one or more further substitutions or insertions.

Moreover, the variants described herein may encompass mutation at more than just one position. For example the variant according to the invention may contain mutations at one position, two positions, three positions or more than three positions, such as four to eight positions.

It is preferred that the parent subtilase belongs to the subgroups I-S1 or I-S2, especially subgroup I-S2, both for enzymes from nature or from the artificial creation of diversity, and for designing and producing variants from a parent subtilase.

In relation to variants from subgroup I-S1, it is preferred to select a parent subtilase from the group consisting of BSS168 (BSSAS, BSAPRJ, BSAPRN, BMSAMP), BASBPN, BSSDY, BLSCAR (BLKERA, BLSCA1, BLSCA2, BLSCA3), BSSPRC, and BSSPRD, or functional variants thereof having retained the characteristic of sub-group I-S1.

In relation to variants from subgroup I-S2 it is preferred to select a parent subtilase from the group consisting of BSAPRQ, BLS147 (BSAPRM, BAH101), BLSAVI (BSKSMK, BAALKP, BLSUBL), BYSYAB, BAPB92, TVTHER, and BSAPRS, or functional variants thereof having retained the characteristic of sub-group I-S2.

In particular, the parent subtilase is BLSAVI (Savinase@, NOVOZYMES A/S), and a preferred subtilase variant of the invention is accordingly a variant of Savinase@.

The present invention also encompasses any of the above mentioned s ubtilase variants in combination with any other modification to the amino acid sequence thereof. Especially com- binations with other modifications known in the art to provide improved properties to the en- zyme are envisaged. The art describes a number of subtilase variants with different improved properties and a number of those are mentioned in the"Background of the invention"section herein (vide supra). Those references are disclosed here as references to identify a subtilase variant, which advantageously can be combined with a subtilase variant described herein.

Such combinations comprise the positions: 222 (improves oxidation stability), 218 (improves thermal stability), substitutions in the Ca2+-binding sites stabilizing the enzyme, e. g. position 76, and many other apparent from the prior art.

In further embodiments a subtilase variant described herein may advantageously be combined with one or more modification (s) in any of the positions: 27,36, 56,76, 87,95, 96,97, 98,99, 100,101, 102,103, 104,120, 123,159, 167,170, 206, 218,222, 224,232, 235,236, 245,248, 252 and 274.

Specifically, the following BLSAVI, BLSUBL, BSKSMK, and BAALKP modifications are con- sidered appropriate for combination: K27R, *36D, S56P, N62D, V68A, N76D, S87N, G97N, S99SE, S101G, S103A, V104A, V1041, V104N, V104Y, S106A, H120D, H120N, N123S, G159D, Y167A, R170S, R170L, A194P, N204D, V2051, Q206E, L217D, N218S, N218D, M222S, M222A, T224S, A232V, K235L, Q236H, Q245R, N248D, N252K and T274A.

Furthermore variants comprising any of the modifications S101G+V104N, S87N+S101G+ V104N, K27R+V104Y+N123S+T274A, N76D+S103A+V1041, S99D+S101 R+S103A+V1041+ G160S, S3T+V41+S99D+S101 R+S103A+V1041+G160S+V199M+V2051+L217D, S3T+V41+ S99D+S101 R+S103A+V1041+G160S+A194P+V199M+V2051+L217D, S3T+V41+S99D+ S101 R+S103A+V1041+G160S+V2051 or N76D+V104A, or other combinations of the modifica- tions K27R, *36D, S56P, N62D, V68A, N76D, S87N, G97N, S99SE, S101G, S103A, V104A, V1041, V104N, V104Y, S106A, H120D, H120N, N123S, G159D, Y167A, R170S, R170L, A194P, N204D, V2051, Q206E, L217D, N218S, N218D, M222S, M222A, T224S, A232V, K235L, Q236H, Q245R, N248D, N252K and T274A in combination with any one or more of the modification (s) mentioned above exhibit improved properties.

A particular interesting variant is a variant, which, in addition to modifications according to the invention, contains the following substitutions: S101 G+S103A+V1041+G159D+A232V+Q236H+Q245R+N248D+N252K.

Moreover, subtilase variants of the main aspect (s) of the invention are preferably combined with one or more modification (s) in any of the positions 129,131 and 194, preferably as 129K, 131H and 194P modifications, and most preferably as P129K, P131H and A194P modifica- tions. Any of those modification (s) are expected to provide a higher expression level of the subtilase variant in the production thereof.

The wash performance of a selected variant of the invention may be tested in the wash performance test disclosed in Example 3 herein. The wash performance test may be

employed to assess the ability of a variant, when incorporated in a standard or commercial detergent composition, to remove proteinaceous stains from a standard textile as compared to a reference system, namely the parent subtilase or a similar subtilase exhibiting an even better wash performance (incorporated in the same detergent system and tested under identical conditions). The enzyme variants of the present application were tested using the Automatic Mechanical Stress Assay (AMSA). With the AMSA test the wash performance of a large quantity of small volume enzyme-detergent solutions can be examined rapidly. Using this test, the wash performance of a selected variant can be initially investigated, the rationale being that if a selected variant does not show a significant improvement in the test compared to the parent subtilase, it is normally not necessary to carry out further test experiments.

Therefore, variants which are particularly interesting for the purposes described herein, are such variants which, when tested in a commercial detergent composition such as a US type detergent, an Asian type, a European type or a Latin American type detergent as described in the wash performance test (Example 3), shows an improved wash performance as compared to the parent subtilase tested under identical conditions.

The improvement in the wash performance may be quantified by calculating the so-called intensity value (Int) defined in Example 3, herein.

In a very interesting embodiment of the invention, the variant of the invention, when tested in the wash performance test has a Performance Score (S) of at least 1, preferably a Performance Score of 2, where: S (2) = variant performs better than the reference at all three enzyme concentrations (5,10 and 30 nM), S (1) = variant performs better than the reference at one or two concentrations.

Evidently, it is preferred that the variant of the invention fulfils the above criteria on at least the stated lowest level, more preferably at the stated highest level.

PRODUCING A SUBTILASE VARIANT Many methods for cloning a subtilase and for introducing substitutions, deletions or insertions into genes (e. g. subtilase genes) are well known in the art.

In general standard procedures for cloning of genes and introducing mutations (random and/or site directed) into said genes may be used in order to obtain a subtilase variant of the inven- tion. For further description of suitable techniques reference is made to Example 1 herein (vide

infra) and (Sambrook et al. (1989) Molecular cloning : A laboratory manual, Cold Spring Harbor lab., Cold Spring Harbor, NY; Ausubel, F. M. et al. (eds. ) "Current protocols in Molecular Biol- ogy". John Wiley and Sons, 1995; Harwood, C. R. , and Cutting, S. M. (eds.)"Molecular Bio- logical Methods for Bacillus". John Wiley and Sons, 1990), and WO 96/34946.

Further, a subtilase variant may be constructed by standard techniques for artificial creation of diversity, such as by DNA shuffling of different subtilase genes (WO 95/22625 ; Stemmer WPC, Nature 370: 389-91 (1994) ). DNA shuffling of e. g. the gene encoding Savinase@ with one or more partial subtilase sequences identified in nature, will after subsequent screening for improved wash performance variants, provide subtilase variants suitable for the purposes described herein.

EXPRESSION VECTORS A recombinant expression vector comprising a DNA construct encoding the enzyme oft he invention may be any vector that may conveniently be subjected to recombinant DNA pro- cedures.

The choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i. e. a vector that exists as an extra- chromosomal entity, the replication of which is independent of chromosomal replication, e. g. a plasmid.

Alternatively, the vector may be one that on introduction into a host cell is integrated into the host cell genome in part or in its entirety and replicated together with the chromosome (s) into which it has been integrated.

The vector is preferably an expression vector in which the DNA sequence encoding the enzyme of the invention is operably linked to additional segments required for transcription of the DNA. In general, the expression vector is derived from plasmid or viral DNA, or may contain elements of both. The term,"operably linked"indicates that the segments are arranged so that they function in concert for their intended purposes, e. g. transcription initiates in a promoter and proceeds through the DNA sequence coding for the enzyme.

The promoter may be any DNA sequence that shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell.

Examples of suitable promoters for use in bacterial host cells include the promoter of the

Bacillus stearothermophilus maltogenic amylase gene, the Bacillus licheniformis alpha- amylase gene, the Bacillus amyloliquefaciens alpha-amylase gene, the Bacillus subtilis alkaline protease gene, or the Bacillus pumilus xylosidase gene, or the phage Lambda PR or PL promoters or the E. coli lac, trp or tac promoters.

The DNA sequence encoding the enzyme of the invention may also, if necessary, be operably connected to a suitable terminator.

The recombinant vector of the invention may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. The vector may also comprise a selectable marker, e. g. a gene the product of which complements a defect in the host cell, or a gene encoding resistance to e. g. antibiotics like kanamycin, chloramphenicol, erythromycin, tetracycline, spectinomycine, or the like, or resistance to heavy metals or herbicides.

To direct an enzyme of the present invention into the secretory pathway of the host cells, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) may be provided in the recombinant vector. The secretory signal sequence is joined to the DNA sequence encoding the enzyme in the correct reading frame. Secretory signal sequences are commonly positioned 5'to the DNA sequence encoding the enzyme.

The secretory signal sequence may be that normally associated with the enzyme or may be from a gene encoding another secreted protein.

The procedures used to ligate the DNA sequences coding for the present enzyme, the promoter and optionally the terminator and/or secretory signal sequence, respectively, or to assemble these sequences by suitable PCR amplification schemes, and to insert them into suitable vectors containing the information necessary for replication or integration, are well known to persons skilled in the art (cf. , for instance, Sambrook et al., op. cit.).

HOST CELL The DNA sequence encoding the present enzyme introduced into the host cell may be either homologous or heterologous to the host in question. If homologous to the host cell, i. e. pro- duced by the host cell in nature, it will typically be operably connected to another promoter sequence or, if applicable, another secretory signal sequence and/or terminator sequence than in its natural environment. The term"homologous"is intended to include a DNA sequence encoding an enzyme native to the host organism in question. The term "heterologous"is intended to include a DNA sequence not expressed by the host cell in nature. Thus, the DNA sequence m ay b e f rom a nother o rganism, o r i t m ay b e a s ynthetic sequence.

The host cell into which the DNA construct or the recombinant vector of the invention is introduced may be any cell that is capable of producing the present enzyme and includes bacteria, yeast, fungi and higher eukaryotic cells including plants.

Examples of bacterial host cells which, on cultivation, are capable of producing the enzyme of the invention are gram-positive bacteria such as strains of Bacillus, such as strains of B. subtilis, B. licheniformis, B. lentus, B. brevis, B. stearothermophRus, B. alkalophilus, B. amyloliquefaciens, B. coagulans, B. circulans, B. lautus, B. megaterium or B. thuringiensis, or strains of Streptomyces, such as S. lividans or S. murinus, or gram-negative bacteria such as Escherichia coli.

The transformation of the bacteria may be effected by protoplast transformation, electroporation, conjugation, or by using competent cells in a manner known per se (cf.

Sambrook et al., supra).

When expressing the enzyme in bacteria such as E. coli, the enzyme may be retained in the cytoplasm, typically as insoluble granules (known as inclusion bodies), or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, t he cells a re lysed and the granules are recovered and denatured after which the enzyme is refolded by diluting the denaturing agent. In the latter case, the enzyme may be recovered from the periplasmic space by disrupting the cells, e. g. by sonication or osmotic shock, to release the contents of the periplasmic space and recovering the enzyme.

When expressing the enzyme in gram-positive bacteria such as Bacillus or Streptomyces strains, the enzyme may be retained in the cytoplasm, or may be directed to the extracellular medium by a bacterial secretion sequence. In the latter case, the enzyme may be recovered from the medium as described below.

METHOD FOR PRODUCING A SUBTILASE VARIANT The present invention provides a method of producing an isolated enzyme according to the invention, wherein a suitable host cell, which has been transformed with a DNA sequence encoding the enzyme, is cultured under conditions permitting the production of the enzyme, and the resulting enzyme is recovered from the culture.

When an expression vector comprising a DNA sequence encoding the enzyme is trans-formed into a heterologous host cell it is possible to enable heterologous recombinant production of the enzyme of the invention. Thereby it is possible to make a highly purified subtilase

composition, characterized in being free from homologous impurities.

The medium used to culture the transformed host cells may be any conventional medium suitable for growing the host cells in question. The expressed subtilase may conveniently be secreted into the culture medium and may be recovered there-from by well-know procedures including separating the cells from the medium by centrifugation or filtration, precipitating proteinaceous components of the medium by means of a salt such as ammonium sulfate, followed by chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

CLEANING AND DETERGENT COMPOSITIONS The enzyme of the invention may be added to and thus become a component of a detergent composition. In general, cleaning and detergent compositions are well described in the art and reference is made to WO 96/34946; WO 97/07202; WO 95/30011 for further description of suitable cleaning and detergent compositions.

The detergent composition of the invention may for example be formulated as a hand or machine laundry detergent composition including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for hand or machine dishwashing operations.

In a specific aspect, the invention provides a detergent additive comprising the enzyme of the invention. The detergent additive as well as the detergent composition may comprise one or more other enzymes such as a protease, a lipase, a cutinase, an amylase, a carbohydrase, a cellulase, a pectinase, a mannanase, an arabinase, a galactanase, a xylanase, an oxidase, e. g. , a laccase, and/or a peroxidase.

In general the properties of the chosen enzyme (s) should be compatible with the selected detergent, (i. e. pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc. ), and the enzyme (s) should be present in effective amounts.

Proteases: Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of alkaline proteases are subtilisins, especially those derived from Bacillus, e. g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279). Examples of trypsin-like proteases are trypsin (e. g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 and WO 94/25583.

Examples of useful proteases are the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946, especially the variants with substitutions in one or more of the following positions: 27,36, 57,76, 87,97, 101,104, 120,123, 167,170, 194,206, 218,222, 224,235 and 274.

Preferred commercially available protease enzymes include Durazym@, Relase, Alcalase#, Savinasee, Primas, Duralasee, Esperaseo, Ovozymee and Kannase# (Novozymes A/S), <BR> <BR> <BR> <BR> MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, FN3TM and FN4 (Genencor International, Inc.).

Lipases : S uitable I ipases i nclude t hose o f b acterial o r f ungal o rigin. C hemically m odified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e. g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e. g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1,372, 034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e. g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131,253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).

Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541, EP 407 225, EP 260 105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.

Preferred commercially available lipase enzymes include Lipex@, Lipolasee and Lipolase Ultra@ (Novozymes A/S).

Amylases : Suitable amylases (a and/or ß) include those of bacterial or fungal origin.

Chemically modified or protein engineered mutants are included. Amylases include, for example, α-amylases obtained from Bacillus, e. g. a special strain of B. licheniformis, described in more detail in GB 1,296, 839.

Examples of useful amylases are the variants described in WO 94/02597, WO 94/18314, WO 96/23873, and WO 97/43424, especially the variants with substitutions in one or more of the following positions: 15,23, 105,106, 124,128, 133,154, 156,181, 188,190, 197,202, 208, 209,243, 264,304, 305,391, 408, and 444.

Commercially available amylases are Duramyl@, Termamyl@, Fungamyle and BANe (Novozymes A/S), Rapidase and Purastarm (from Genencor International Inc.).

Cellulases : Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases fromthe

genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e. g. the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum disclosed in US 4,435, 307, US 5,648, 263, US 5,691, 178, US 5,776, 757 and WO 89/09259.

Especially suitable cellulases are the alkaline or neutral cellulases having colour care benefits.

Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940. Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457, 046, US 5,686, 593, US 5,763, 254, WO 95/24471, WO 98/12307 and PCT/DK98/00299.

Commercially available cellulases include Celluzymee, and Carezymee (Novozymes A/S), ClazinaseTM, and Puradax HATM (Genencor International Inc.), and KAC-500 (B) TM (Kao Corporation).

Peroxidases/Oxidases : Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprins, e. g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include Guardzymee (Novozymes A/S).

The detergent enzyme (s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes. A detergent additive of the invention, i. e. a separate additive or a combined additive, can be formulated e. g. as a granulate, a liquid, a slurry, etc. Preferred detergent additive formulations are granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids, or slurries.

Non-dusting granulates may be produced, e. g. , as disclosed in US 4,106, 991 and 4,661, 452 and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly (ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1000 to 20000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols ; fatty acids; and mono-and di- and triglycerides of fatty acids. Examples of film-forming coating materials suitable for application by fluid bed techniques are given in GB 1483591. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. Protected enzymes may be prepared according to the method disclosed in EP 238,216.

The detergent composition of the invention may be in any convenient form, e. g. , a bar, a tablet, a powder, a granule, a paste or a liquid. A liquid detergent may be aqueous, typically containing up to 70 % water and 0-30 % organic solvent, or non-aqueous.

The detergent composition comprises one or more surfactants, which may be non-ionic including semi-polar and/or anionic and/or cationic and/or zwitterionic. The surfactants are typically present at a level of from 0. 1 % to 60% by weight.

When included therein the detergent will usually contain from about 1% to about 40% of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl-or alkenylsuccinic acid or soap.

When included therein the detergent will usually contain from about 0.2% to about 40% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanol- amide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine ("glucamides").

The detergent may contain 0-65 % of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylene- diaminetetraacetic acid, diethylenetriaminepentaacetic acid, alkyl-or alkenyl-succinic acid, soluble silicates or layered silicates (e. g. SKS-6 from Hoechst).

The detergent may comprise one or more polymers. Examples are carboxymethyl-cellulose, poly (vinylpyrrolidone), poly (ethylene glycol), poly (vinyl alcohol), poly (vinyl-pyridine-N-oxide), poly (vinylimidazole), polycarboxylates such as poly-acrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.

The detergent may contain a bleaching system which may comprise a H202 source such as perborate or percarbonate which may be combined with a p eracid-forming b leach a ctivator such as tetraacetylethylenediamine or nonanoyloxybenzenesulfonate. Alternatively, the bleaching system may comprise peroxyacids of e. g. the amide, imide, or sulfone type.

The detergent may also contain other conventional detergent ingredients such as e. g. fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil- suspending agents, anti-soil redeposition agents, dyes, bactericides, optical brighteners, hydrotropes, tarnish inhibitors, or perfumes.

Variations in local and regional conditions, such as water hardness and wash temperature calls for regional detergent compositions. Detergent Examples 1 and 2 provide ranges for the composition of a typical Latin American detergent and a typical European powder detergent respectively.

Detergent Example 1. Typical Latin American detergent composition.

Group Subname Content Surfactants 0-30% Sulphonates 0-30% Sulphates 0-5% Soaps 0-5% Non-ionics 0-5% Cationics 0-5% FAGA 0-5% Bleach 0-20% SPT/SPM 0-15% NOBS, TAED 0-5% Builders 0-60% Phosphates 0-30% Zeolite 0-5% Na20SiO2 0-10% Na2CO3 0-20% Fillers 0-40% Na2SO4 0-40% Others up to 100% Polymers Enzymes Foam regulators Water Hydrotropes Others

Detergent Example 2. Typical European powder detergent composition.

Group Subname Content Surfactants 0-30% Sulphonates 0-20% Sulphates 0-15% Soaps 0-10% Non-ionics 0-10% Cationics 0-10% Other 0-10% Bleach 0-30% SPT/SPM 0-30% NOBS+ TAED 0-10% Builders 0-60% Phosphates 0-40% Zeolite 0-40% Na20SiO2 0-20% Na2CO3 0-20% Fillers 0-40% Na2SO4 0-40% NaCl 0-40% Others up to 100% Polymers Enzymes Foam regulators Water Hydrotropes Others

The enzyme (s) of the detergent composition of the invention may be stabilized using conventional stabilizing agents, e. g. , a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e. g. , an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e. g. WO 92/19709 and WO 92/19708.

It is at present contemplated that in the detergent compositions any single enzyme, in particular the enzyme of the invention, may be added in an amount corresponding to 0.01-200 mg of enzyme protein per liter of wash liqour, preferably 0.05-50 mg of enzyme protein per liter of wash liqour, in particular 0.1-10 mg of enzyme protein per liter of wash liqour.

The enzyme of the invention may additionally be incorporated in the detergent formulations disclosed in WO 97/07202 which is hereby incorporated as reference.

MATERIALS AND METHODS TEXTILES: Standard textile pieces are obtained from EMPA St. Gallen, Lerchfeldstrasse 5, CH-9014 St.

Gallen, Switzerland. Especially type EMPA116 (cotton textile stained with blood, milk and ink) and EMPA117 (polyester/cotton textile stained with blood, milk and ink).

STRAINS AND PLASMIDS : Bacillus lentus strain 309 is deposited with the NCIB and accorded the accession number NCIB 10309, and described in US Patent No. 3,723, 250 incorporated by reference herein. The parent subtilase 309 or SavinaseS) can be obtained from Strain 309. The expression host organism is Bacillus subtilis.

The plasmid pSX222 is used as E. coli-B. subtilis shuttle vector and B. subtilis expression vector (as described in WO 96/34946).

GENERAL MOLECULAR BIOLOGY METHODS: Unless otherwise mentioned the DNA manipulations and transformations are performed using standard methods of molecular biology (Sambrook et al. (1989) Molecular cloning : A laboratory manual, Cold Spring Harbor lab., C old S pring H arbor, N Y ; A usubel, F. M. e t a 1.

(eds. ) "Current protocols in Molecular Biology". John Wiley and Sons, 1995; Harwood, C. R., and Cutting, S. M. (eds.)"Molecular Biological Methods for Bacillus". John Wiley and Sons,

1990).

ENZYMES FOR DNA MANIPULATIONS Unless otherwise mentioned all enzymes for DNA manipulations, such as e. g. restriction endonucleases, ligases etc. , are obtained from New England Biolabs, Inc. Enzymes for DNA manipulations are used according to the specifications of the suppliers.

FERMENTATION: Fermentations for the production of subtilase enzymes are performed at pH 7.3 and 37°C on a rotary shaking table at 225 rpm. i n 50 ml tubes containing 15 ml double TY media for 2-3 days.

For a description of TY media, see page 1.1. 3, Media Preparation and Bacteriological Tools in "Current protocols in Molecular Biology". John Wiley and Sons, 1995; Harwood, C. R. , and Cutting, S. M. (eds.).

PURIFICATION The s ubtilase variant s ecreted f rom the h ost cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulfate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

WASH PERFORMANCE TEST In order to asses the wash performance of selected subtilase variants in detergent compositions, washing experiments are performed. The enzyme variants of the present application is tested using the Automatic Mechanical Stress Assay (AMSA). With the AMSA test the wash performance of a large quantity of small volume enzyme-detergent solutions can be examined. The AMSA plate has a number of slots for test solutions and a lid firmly squeezing the textile swatch to be washed against all the slot openings. During the washing time, the plate, test solutions, textile and lid are vigorously shaken to bring the test solution in contact with the textile and apply mechanical stress. For further description see WO 02/42740 especially the paragraph"Special method embodiments"at page 23-24.

DETERGENTS Detergents for wash performance tests of the subtilase enzymes of the invention can be obtained by purchasing fully formulated commercial detergents at the market and

subsequently inactivate the enzymatic components by heat treatment (5 minutes at 85°C in aqueous solution). Moreover a commercial detergent base without enzymes can be purchased directly from the manufacturer. Further a suitable model detergent can be composed according to the provisions at page 19-24 herein and used for wash performance tests.

EXAMPLE 1 CONSTRUCTION AND EXPRESSION OF ENZYME VARIANTS : SITE-DIRECTED MUTAGENESIS : Subtilisin 309 (Savinasee) site-directed variants of the invention comprising specific insertions/deletions/substitutions are made by traditional cloning of DNA fragments (Sambrook et al., Molecular Cloning : A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989) produced by PCR with oligos containing the desired mutations.

The template plasmid DNA may be pSX222, or an analogue of this containing a variant of sub- tilisin 309. Mutations are introduced by oligo directed mutagenesis to the construction of variants.

The subtilisin 309 variants are transformed into E coli. DNA purified from an over night culture of t hese t ransformants i s t ransformed i nto B. s ubtilis b y restriction endonuclease digestion, purification of DNA fragments, ligation, transformation of B. subtilis. Transformation of B. subtilis is performed as described by Dubnau et al., 1971, J. Mol. Biol. 56, pp. 209-221.

SITE-DIRECTED MUTAGENESIS IN ORDER TO INTRODUCE MUTATIONS IN A SPECIFIC REGION : The overall strategy used to perform site-directed mutagenesis is: Mutagenic primers (oligonucleotides) are synthesized corresponding to the DNA sequence flanking the sites of mutation, separated by the DNA base pairs defining the insertions/ deletions/substitutions.

Subsequently, the resulting mutagenic primers are used in a PCR reaction with the modified plasmid pSX222. The resulting PCR fragment is purified and extended in a second PCR- reaction, the resulting PCR product is purified and extended in a third PCR-reaction before being digested by endonucleases and cloned into the E. coli-B. subtilis shuttle vector pSX222. The PCR reactions are performed under normal conditions. The plasmid DNA is transformed into E. coli by well-known techniques and one E. coli colony is sequenced to confirm the mutation designed.

Each of the variants listed in Table I at page 2 herein can be constructed as described above.

In order to purify subtilase variants of the invention, the pSX222 expression plasmid comprising a variant of the invention was transformed into a competent 8. subtilis strain and fermented as described above.

EXAMPLE 2 PURIFICATION AND ASSESMENT OF ENZYM CONCENTRATION After fermentation purification of subtilisin variants is accomplished using Hydrophobic Charge Induction Chromatography (HCIC) and subsequent vacuum filtration.

To capture the enzyme, the HCIC uses a cellulose matrix to which 4-Mercapto-Ethyl-Pyridine (4-MEP) is bound.

Beads of the cellulose matrix sized 80-100 um are mixed with a media containing yeast extract and the transformed B. subtilis capable of secreting the subtilisin variants and incubated at pH 9.5 in Unifiltere microplates.

As 4-MEP is hydrophobic at pH > 7 and the subtilisin variants are hydrophobic at pH 9.5 a hydrophobic association is made between the secreted enzyme and the 4-MEP on the beads.

After incubation the media and cell debris is removed by vacuum filtration while the beads and enzyme are kept on the filter.

To elute the enzyme from the beads the pH is now lowered by washing the filter with an elution buffer (pH 5). Hereby the enzymes part from the beads and can be retrieved from the buffer.

The concentration of the purified subtilisin enzyme variants is assessed by active site titration (AST).

The purified enzyme is incubated with the high affinity inhibitor CI-2A at different concentrations to inhibit a varying amount of the active sites. The protease and inhibitor binds to each other at a 1: 1 ratio and accordingly the enzyme concentration can be directly related to the concentration of inhibitor, at which all protease is inactive. To measure the residual protease activity, a substrate (0.6 mM Suc-Ala-Ala-Pro-Phe-pNA in Tris/HCI buffer) is added after the incubation with inhibitor and during the following 4 minutes the development of the degradation p roduct p NA (paranitrophenol) i s m easured p eriodically a t 4 05 nm on an Elisa Reader.

Each of the variants of the invention listed in Table I at page 2 herein was purified according to the above procedure and subsequently the enzyme concentration was determined.

Known concentrations of the variants of Table I were tested for wash performance in detergents as described below.

EXAMPLE 3 WASH PERFORMANCE OF SAVINASE VARIANTS In order to asses the wash performance of selected subtilase variants in a commercial detergent base composition, washing experiments was performed. The enzyme variants of the present application were tested using the Automatic Mechanical Stress Assay (AMSA). With the AMSA test the wash performance of a large quantity of small volume enzyme-detergent solutions can be examined. The AMSA plate has a number of slots for test solutions and a lid firmly squeezing the textile swatch to be washed against all the slot openings. During the washing time, the plate, test solutions, textile and lid are vigorously shaken to bring the test solution in contact with the textile and apply mechanical stress. For further description see WO 02/42740 especially the paragraph"Special method embodiments"at page 23-24.

Two assays were conducted under the experimental conditions specified below : Assay A Commercial detergent base Latin American type Detergent dosage 1. 5-2. 5 g/l Test solution volume 160 micro I pH 10-10. 5 adjusted with NaHCO3 Wash time 14 min. Temperature 20°C Water hardness 6-9°dH Enzyme concentration in test solution 5 nM, 10 nM and 30 nM Test material EMPA 117 The Latin American type detergent was composed according to the provisions in Detergent Example 1 at page 24 herein. Water hardness was adjusted to 6-9°dH by addition of Cas) 2 and MgCI2 (Ca2+ : Mg2+ = 4: 1) to the test system. After washing the textile pieces were flushed in tap water and air-dried.

Assay B Commercial detergent base European powder type 1 Detergent dosage 6 g/l Test solution volume 160 micro I pH as it is in detergent (app. 10-10.5) Wash time 20 min. Temperature 30°C Water hardness 6-9°dH Enzyme concentration in test solution 5 nM, 10 nM and 30 nM Test material EMPA 116

i ne turopean powder type detergent was composed according to the provisions in Detergent Example 2 at page 24 herein. Water hardness was adjusted to 15°dH by addition of CaCl2*2H20 ; MgCl2*6H20 ; NaHCO3 (Ca2+ : Mg2+ : HC03- = 4: 1: 10) to the test system. After washing the textile pieces were flushed in tap water and air-dried.

The performance of the enzyme variant is measured as the brightness of the colour of the textile samples washed with that specific enzyme variant. Brightness can also be expressed as the intensity of the light reflected from the textile sample when luminated with white light.

When t he textile i s s tained t he i ntensity of t he reflected I ight i s I ower, t han t hat of a clean textile. Therefore the intensity of the reflected light can be used to measure wash performance of an enzyme variant.

Colour measurements are made with a professional flatbed scanner (PFU DL2400pro), which is used to capture an image of the washed textile samples. The scans are made with a resolution of 200 dpi and with an output colour dept of 24 bits. In order to get accurate results, the scanner is frequently calibrated with a Kodak reflective IT8 target.

To extract a value for the light intensity from the scanned images, a special designed software application is used (Novozymes Color Vector Analyzer). The program retrieves the 24 bit pixel values from the image and converts them into values for red, green and blue (RGB). The intensity value (Int) is calculated by adding the RGB values together as vectors and then taking the length of the resulting vector: The wash performance (P) of the variants was calculated in accordance with the below formula: P = Int (v)-Int (r) where Int (v) is the light intensity value of textile surface washed with enzyme variant and Int (r) is the light intensity value of textile surface washed with the reference enzyme subtilisin 309 (BLSAVI).

The results presented in Table IV and V below are Performance Scores (S) summing up the performances (P) of the tested enzyme variants as: S (2) which indicates that the variant performs better than the reference at all three concentrations (5,10 and 30 nM) and S (1) which indicates that the variant performs better than the reference at one or two concentrations.

Table IV, Wash performance test results, Assay A. Mutations Score Mutations Score G97E+A98S 2 V281+A98AD+T224S 2 G97D+A98D 2 S99AD+M175V+P131F 1 V95C+G97W+A98E 2 S99AD+P131L 2 V95T+G97A+A98D 2 S9R+S99AD+P131 W 1 S103Y+V104M+S106D 1 V68A+N116S+V139L+Q245R 2 V104T+S106D 2 S3T+A16P+R45C+G100S+A230V 2 S3T+A16P+S99SD+S144D+ 18V+S9R+A15T+R19W+V301+ A158T+A230V+T260R 2 G61D+S99SD+S256N 2 S103D+V104T+S106T 1 V301+S99SD+S256R 2 S103D+V104L+S106M 2 G61S+S99SD+V2441 2 S103D+V104T+S106G 2 V68A+V139L+S163G+N185S 2 S103D+V104S+S106A 2 S99SD+Y263H 2 S103H+V104N+S106D 2 V104N+S106T 2 S103E+V1041+S106T 1 S99SG+S144D S103Q+V104T+S106E 2 V30I+S99SD 1 S103E+S106T 2 N18H+S99SD 2 S103E+V104R+S106A 2 S9R+T22S+S99SD+K251E 1 A108T+L111V 2 A48T+V68A+P131M 2 L1241+S125A 1 A15M+S99SM+V1391+V2441 2 L124C+P131* 2 P14T+A15M+S99SD 2 P129S+S130AT 2 I8V+S99SD+S144D+A228T 2 L96LA+A151G+V203A 1 I8V+R19K+V139I 2 S99SD+A108V+V139L 2 I35T+N62D 2 S99SD+S190A 2 N62D+S265G 2 S99SD+V203A 2 Q2L+N62D 2 S99SD+V139I 1 N62D+N76D 2 S99SD+A108V 2 R45H+G61E+V68A 2 S99SD+S106A+A151G 2 N62D+V121A 2 V68A+S106A 2 N62D+A215D 2 V68A+N185D+V203S 2 N62D+N238D 2 V68A+V139L 2 N62D+R145G 2 V68A+V139I 2 V4L+N62D+E89G 2 V68A+A158V 2 N62D+S188G+K251R 2 V68A+V203A 2 S49N+N62D 2 V68A+V203S 2 N62NE 2 V68A+V203L+S259A 2 V11A+N62DE 2 V68A+S106L 2 N62ND+N184S+S256G 2 V30I+V68A+V203S 2 N18S+N62D+I107T+A254S 2 V51A+V68A+S106T+A168G 1 S57P+N62ND 2 V51A+V68A+S106T+A168G 1 N62NE+V2341 2 V68A+N76S+V203M+P239T 2 Q137H+R170C+G195E 1 V68A+V203L 2 S99A+S101SA 2 V68A+L75I+V203Q 2 R10K+P14A+R19K+A98AS+S128N 2 V68A+T71A+V139L 2 T22A+R45K+A98AS+S128N 2 Y192H+V68A 2 A98AV+S99D+Y167K 2 V68A+S106A+A108T 2 S9G+P14K+Y167A+R170S 2 V68A+S106T+A108T 2 S9D+P14T+Y167A+R170S 2 V68S+A108S 2 S9R+P14M+A98AD 1 V68A+N76S+G211D 2 S9R+R19L+A98AD+E271A 2 V68A+S106T+A108T 1 S9R+P14S+R19F+A98AD 2 A151V+R170C 2 S99DA+P129PSN+P131A 2 P14D+A98AS+H120D+ S99AD+V244M+Q245K+N248D+ G195F+S212N+M222S 1 K251R+T255A+S256N 2 S49N+V203L+N218D 2 S9R+P14V+R19G+A98AD 2 V68A+S106M+N184D 2 S99AD+N248P+T255A+S256G 2 P55S+V68L+A158E+G160A 2 *OAQSVPWG+A98AD 2 V68A+A158C 2 T22A+S99AD 2 V68A+A158L+Y214C 2 K94N+A98T+S99L 2 A88V+S99AD+P131F 2 N76D+A174AL+A194P+A230V 1 P14T+A16P+I72V+S99SD+ P40L+N218D+A232S+Q236L+ V2441+T260A 2 Q245E+S259N 2 S99AD+P131F 2 A232L+Q236D+Q245E 1 R10H+N62D 2 A232T+Q236L+Q245D 2 V281+A98AD+T224S 2 R170H+Q236A+Q245R 2 S9K+T22K+S99AD 2 A232L+Q236T+Q245D 2 P14S+S99AD+P131W 2 G97GG+P131H+Q137E+V268L 2 V68A+I72V+P131F 2 A88V+G97GV+P131H 2 S9R+S99AD 1 G97GA+H120Q+S130P+G264E 2 S9K+S99AD 2 G97GG+V139L 2 V28I+A88V+G100S+P131M 2 G97GG+Q137D 1 S103L+V104S+S106G 2 G97GG+H120D+Q137H 2 V68A+T224A 2 N185R 2 V68A+P131F 2 P131H+Q137E 1 A48T+V68A+P131M 1 V1041+H120N+P131H+Q137E 2 V68A+I72V+P131F 2 H120Q+Q137E G100GE+P131F 2 S9R+A15T+G97GV+H120D 1 S99AD+P131F+T260A 1 G100S+H120Q+Q137H 2 R19G+A98AS 2 V68A+H120K+Q137E 2 G61 R+N62D 1 G97GA+H120E 2 V68A+S106M+N184D 2 H120D+S128I+Q137D 2 P55S+V68L+A158E+G160A 2 G97GG+P131H 2 V68A+A158C 2 G97GG+H120N+L126I 2 R19W+G61S+S99SD+N204T+ S9R+A15T+G97GA+H120D+P131H+ 2 Y263H+S265R 2 Q137E A232T+Q236C 2 S9R+A15T+G97GV+P131T+Q137H 1 N62D+A232T+Q236C 2 S9R+A15T+G20*+L21F+N62D+Q245N 2 A232P+Q236L+Q245E 2 S9L+A15T+T22TV+V139L+Q245F 2 A232S+Q236L+Q245T+K251 E 2 S132G+Q245F 1 S163C+Q236M+Q245T+S256G 2 S9R+A15T+T22TG+N62D+V139L+Q245V 1 N218D+A232L+Q236F+Q245F 2 S9L+A15T+T22TV+V139L+Q245F+L262S 2 S163N+A232L+Q236S+Q245E 2 S9R+A15T+T22TL+N62D+Q245W 2 A232S+Q236S+Q245E 2 V68A+A158L+Y214C 2 V68A+V203L 2 N62D+V150I 2 V68S+A158D 2 S3T+P140Q+A15M+R19K+N62D+S144D 2 18V+A15T+R19K+A85T+S99SD+ P14Q+R19W+V51 I+G61 E+S99SD+ 2 A114V+V244I+S256N+Y263H 2 V139I+T260R L111F+Y263H 2 S3T+P14L+H17R+S99SD+V139I+S14D 2 P52V+S78T+S99SD 2 S3A+V30I+S99SD+S106G+N248S 2 A15M+S990SD+V268I 2 18V+A15T+S99SD 2 S99G+S128N+N183D+A232L+ S3T+S9R+P14H+A15M+R19L+S99SD+ 2 Q236T+Q245R 1 V1391 S99R+S101SA 1 S9R+A15T+G97GG+H120D+Q137E 2 L96LA+A98T+P131AA 2 S9R+A15T+G20A+G97GV+H120D+P131H 2 A98E+S99P 2 S163N+A232L+Q236A+Q245G 2 V281+S99AD+P131F 2 N173D+A232L+Q236A+Q245N 2 S9R+A15T+G97GV+Q137H 1 P55S+V68A+S106M+A108T+P129T 2 V81A+P131T+A133S+Q137E 1 K27R+V68L+G118D+A158E 1 N43D+V68A+S106F+N238D 2 A98E+S99A+S101SK 2 V68A+V203F 2 V68A+N140D+T143A+S144N 2 V68A+S106E 2 N62D+N140K+T143A+S144D 2 V68A+S106I 2 S9F+P14T+R19L+A98AD 2 V68A+A158M+R170C 1 S9V+P14R+R19F+A98AD 2 V68A+P129T+N218D 2 S99A+S99SD+G258K+L262Q 2 V68S+P129E 2 S87C+S99SA+S99D+P131A 2 V68S+P129D 2 S99A+S99SD+G258K+L262Q 2 V68L+P129E+N261D 2 V281+S99A+*99aD+P131F 1 G97GV+H120D 2 A85T+G102D+S106T+K237R 2 P131A+A133ASA 2 V68A+T71A 2 L111F+Y263H 2 G61GS 2 V11A+G61GE+V227A+S240F 2 G100L 2 A133E+S144K+N218D 2 A133D 2 S128A+P129S+S130SP 2 V68A 2 G61GE 2 N123D 2 Table V, Wash performance test results, Assay B. Mutations Score S9R+A15T+T22TW+N204D+Q245I 2 S9R+A15T+G97GG+P131S+Q137H 2 S9R+A15T+T22TG+N62D+V139L+Q245G 2 S9R+A15T+T22TL+N62D+I107V+V139L+Q245W 2 S9G+A15T+G97GA+Q137H 1 S9R+A15T+V68A+Q245R 2 S9R+A15T+G97GA+H120N+S212L 2 S9R+A15T+L96LG+H120D+P131H+R186L 2 S9R+A15T+G97GA+H120D+Q137D 2 S9R+A15T+A16P+G97GA+P131S+Q137D+N204S 2 S9R+A15T+L21LP+T22TV+M119I+N218D+Q245I 2 S9R+A15T+G97GV+H120D+Q137H 1 S9R+A15T+L96LG+H120N+P131H+Q137E 2 S9R+A15T+L96LG+H120D+P131S+Q137E 2 S9R+A15T+H120N+P131T+N218D 2 V4A+S9R+A15T+G97GV+H120D 1 S9R+A15T+L96LG+H120D+G160D 2 S9R+A15T+T22TG+N62D+V139L+Q245S 2 S9R+A15T+G61E+A85T+P239L+Q245C 2 S9R+A15T+P131H+S144P 2 S9R+A15T+G97GA+Q137E 2 S9R+A15T+G97GA+H120Q+P131 H+Q137E 2 S9R+A15T+L21LW+G100S+V139L+Q245V 1 S9R+A15T+G97GA+Q137H+N218S 2 S9R+A15T+L96LG+H120N+P131S+Q137H 2 S9R+A15T+G97GA+H120N+Q137E 2 S9R+A15T+L96LG+P131T+Q137H 2 S9R+A15T+L96LG+HJ120N+P131S 2 S9R+A15T+V68A+Q137D 1 S9R+A15T+G97GA+H120Y+Q137H 2 S9R+A15T+G97GA+Q137D 2 S9R+A15T+K94N+H120N+P131H 1 S9R+A15T+L96LG+P131 H+Q137D 2 S9R+A15T+F50S+H120D+P131H 2 S9R+A15T+G97GA+H120N+Q137D+N248D 2 S9R+A15T+L96LG+P131 Q+Q137D 2 S9R+A15T+T22G+V139L+Q245L 2 V139L+Q245R 2 S9R+A15T+Q245F 2 S9R+A15T+Q245S 2 S9R+A15T+G97GV+H120Q 1 S9R+A15T+G97GA+Q137E+L262V 1 S9R+A15T+G127E+P131R+Q137H 2 S9R+A13V+A15T+135V+N62D+Q245F 2 S9R+A15T+Q245V 2 V139L+Q245F 2 S9R+A15T+T22A+V139L+Q245E 2 S9R+A15T+T22L+V139L+Q245V+A254S 2 S9R+R19L+A98AD 2 P14R+A98AD 2 S9R+A15T+Q245L 2 S9R+A15T+G61E+A85T+P239S+Q245V 2 S9R+A15T+G61E+A85T+Q206L+Q245R 2 P239T+Q245R 2 S9R+A15T+N62NG+Q245T 2 S9R+A15T+G61GP+Q245L 2 S9R+A15T+G61E+A85T+Q137H+Y209C+Q245G 2 S9R+A15T+G61E+A85T+P239S+Q245C 2 V681+A98AD 2 V68A+N269K 1 N62D+Q245A+N252G+S265G 2 N218D+Q245G+N252H 2 S9R+A15T+G102S+M175T+Q245R+N252D 2 S9R+A15T+N62D+Q245W+N252V 2 S9R+A15T+N62D+Q245R+N252M 2 S9R+A15T+N62D+Q245W+N252S 2 S99SD+N204S+Q245R 1 N62D+Q245R 2 N62D+A151G 1 V68A+S106T 2 S99A+S99SD+V203L 2 A98AD+A215T 2 N62D+Q245G+N252T 2 A152P+Q245R+N252T 2 S163N+T213A+Q245R 2 S106L+Q245R+N252E 2 Q245W+N252Y 2 Q245W+N252V 2 R45H+Y171C+Q245W+N252S 2 G20R+A48T+R170C+Q245W+N252Q 2 N62D+N252T 2 N218D+Q245W+N252E 2 G20R+R170C+Q245R+N252V 2 S9R+P141+R19K+A98AD+T274S 2 A98AE+V2031 2 V51A+V68A+S163G+V203A 2 N62D+Q245W+N252H 2 N62D+Q245W+N252A 2 G20R+N62D+V2441+Q245W+N252E 2 N204D+Q245S 2 N62D+Q245W+N252E 2 N62D+Q245R+N252V 2 S9R+A15T+S24P+G61E+A85T+P239S+Q245A 2 G102S+M222S+Q245L+N252D 2 A15M+V301+N62D+S99N+L111 I+V244A+S265N 2 V68A+S106A+G118D+Q245R+T255S+L257G+T274L 2 S3T+Q12D+R19W+V30) +S106G+) 107M 2 V68A+A88T+V139L 2 V51 I+L111 I+G118D+Q245R 2 V68A+V203L 1 A1T+V68A+N116D+G118D 1 V68A+G118D+Q245R 2 N62D+V139I+B183D+N185S+V203I+Q245R+L262S 2 N62D+I72V 1 N62D+V81A+Q245R 1 T22A+V68A+S106T+G118D V68A+L1111+V2031 G61E+V68A+A169G 1 V68A+L111V V68A+G118D+V203A+K251R 1 V68A+G118D A1V+V51A+V68A+V2031 2 V68A+V139L+A223G 1 N62D+Y214H+K237R 1 V68A+S106A+G118D+Q245R 2 S9R+A15T+T22A+N62D 2 A98Q+S99D 1 S9R+P141+R19K+A98AD 2 S9R+A15M+A16P+T22S+S99AD S99AD+T255R+S256N 2 S9R+A15T+T22TQ+S101P 1 S9R+A15T+H120R+Q137D+N173S 2 G97E 1 Q245W 2 S9R+A15T+L96LG+Q137E+Y209H 2 S9R+A15T+L111V+Q137E+G211D 1 S9R+A15T+L111I+Q137E 2 S9R+A15T+L111I+H120N+Q137E 2 S9R+A15T+L96LG+J120Q+Q137E 1 S9R+A15T+T260M 2 S9R+A15T 2 Q2451 2 S9R+A15T+H120G+Q137E+N218D 2 S9R+A15T+S130P 2 Q245F 2 S9R+A15T+N218D 2 G63E+N76D+A194P+A230V 2 S9R+A15T+T224A 2 G100S 2 S9R+A15T+D60DG A138V+V1391+A194P+N218D+A230V 2 A108V+A169G+R170A+Y171H 1 18V+P14L+R19L+V301+135V+S57P+P129S+Q137D+S144D+S256N 2 A133D+T134S+Q137A Q137D 2 A98AH 1 V51D 2 Q12E+P14L+A15T 2 G63E+N76D+A194P+A230V 2 Q12E+P14L+A15T 2 G97GS 1 M222S+Q245G+N252G 1 V681+V203L 2 V51A+S163T 2 S106A+A138G 2 V1391+A151G 2 S9R+A15T+S99C+H120N+P131S+Q137H+M222S 2 S9R+A15T+S99G+G100S+H120N+P131S+Q137H 2 A15T+N185D+M222S+Q245R+N252V 2 S9R+A15T+T22TL+G61E+L96LG+Q137D+Q245R 2 S9R+T22TL+G61E+G97GG+M1191+P131T 2 Y209H+M222S+Q245G+N252L 2 M222S+Q245M+N252E 2 S9R+A15T+N62D+H120N+P131T 2 S9R+A15T+V68A+N218D+Q245R 2 S9R+A15T+V68A+H120N+N218D+Q245R 1 S9R+A15T+V68A+A174V+Q245R 2 S9R+A15T+G46D+V68A+N218D+Q245R 2 G97D+A98N+S128G+S130T+P131D+T134A 2 S9R+A15T+V68A+A98M+Q245R+N248D 2 S9R+A15T+V68A+A98L+S99G+Q245R 2 S9R+A15T+A98G+S99C+H120N+P131S+Q137H 2 S9R+A15T+T38S+A98R+S99C+G100S+H120N+P131S+Q137H 2 A98V+S99C+Q245R 1 S9R+A15T+A98S+G100S+H120N+P131S+Q137H 1 S9R+A15T+G20*+L21F+N62D+Q245R 2 S9R+A15T+G20*+L21F+N62D+Q245R+S259G 2 A98S+G100S+Q245R 2 A98L+S99C+Q245R 2 S9R+A15T+G20*+L21F+N62E+Q245R 2 S9R+A15T+G20*+L21F+P52T+N62D+Q245R 2 S9R+A15T+V68A+S99G+Q245R+N261D 2 N62D+P131F+A172V 2 N62D+P131F 2 S99SD+Q245R 2 S9R+A13T+S99A+S99SD+P131F 2 S9R+A15T+N62S+H120N+P131T+N218D 2 A98R+G100C+Q245R 2 A98G+S99C+Q245R 2 A98T+S99G+G100S+S240F+Q245R 2 S9R+A15T+H120N+P131T+N218D+N269T 2 S9R+A15T+G61E+H120S+Q137D+V139L+N218D 2 S9R+A15T+L96LG+H120N+P131S+Q137H+M222S 1 S9R+A15T+G61E+A98S+S99M+Q245R 2 A98G+G100S+Q245R+N261D 2 S9R+A15T+V68A+A98L+Q245R 1 S9R+A15T+V68A+A98G+S99V+Q245R 1 S9R+A15T+V68A+A98M+S99G+Q245R+T274A 2 S9R+A15T+G61E+V68A+A98S+S99G+Q245R 2 S9R+A15T+A88V+A98R+S99G+G100C+H120N+P131S+Q137H 1 S9R+A15T+A98C+G100S+H120N+P131S+Q137H 1 S9R+A15T+G20*+L21F+G61E+*61aP+Q245R 1 S9R+A15T+V68A+A98G+S991+K237R+Q245R S9R+A15T+V68A+H120N+P131S+Q137H+Q245R 2 A98S+S99G+G100S+Q245R 2 S9R+A15T+V68A+H120D+P131S+Q137H+Q245R 2 A98T+S99G+G100S+Q245R 2 S9R+A15T+A98S+S99G+G100S+H120N+P131S+Q137H 2 V68A+S106A+Q245R+N252D 2 V68A+S106A+Q245W 2 V68A+S106A+N252M+Y263C 1 V68A+S106A+Q245W+N252K 0 V68A+S106A+A174V+Q245R+N252D 1 S9R+A15T+V68A+Q245R+N252S 2 S9R+A15T+V68A 2 S9R+A15T+G20*+L21F+*61aS+ V68A+G160D+Q245R 2 S9R+A15T+Y167I+R170L 2 S9R+A15T+G20*+L21F+*63aG+Q245R+N272V 2 S9R+A15T+G20*+L21F+*61aA+V68A+Q245R 2 S9R+A15T+V68A+A194T+Q245R+ N252E 2 S9R+A15T+G20*+L21F+*62aS+N218D+Q245R 2 V68A+S106A+T213A 2 S9R+A15T+V281+V68A+Q245R+ N252A 2 V68A+S105G+S106A 2 S9R+A15T+V68A+H120N+P131S+Q137H+ Q245M 2 Assay C Commercial detergent base European powder type 2 Detergent dosage 4 g/l Test solution volume 160 micro I pH as it is in detergent (app. 10-10.5) Wash time 20 min. Temperature 30°C Water hardness 6-9°dH Enzyme concentration in test solution 5 nM, 10 nM and 30 nM Test material EMPA 116

The European powder type detergent was composed according to the provisions in Detergent Example 2 at page 24 herein. Water hardness was adjusted to 15°dH by addition of CaCl2*2H2O ; MgCl2*6H20 ; NaHCO3 (Ca2+ : Mg2+ : HCO3- = 4: 1: 10) to the test system. After washing the textile pieces were flushed in tap water and air-dried.

Table VI, Wash performance test results, Assay C. 'mutations Q12E+P14L+A15T 2 P14R+A98AD2 G100S 2 A169G+R170H 1 A98AD+A169G 1 A138V+V139I+A194P+N218D+A230V 2 S99A+S99SD+V203L 1 V68A+S106T1 A98AD+A215T 2 i _ A108V+A169G+R170A+Y171H 1 ES3L+N62D+S163A+S190A 2 S9R+P14I+R19K+A98AD+T274S 2 S9R+A15T+G61E+A85T+N218D+P239S+Q245L 2 S9R+A15T+S24P+G61E+A85T+P239S+Q245A2 S99SD+P131F 1 N62D+P131F+A172V 1 m N62D+P131F 1 V68A+A88T+V139L 2 V68A+G118D+V203A 2 P40L+V68A+A108T+A138V+V203I 2 I8T+A98AD+T274R 2 A98AE+V2031 2 V51A+V68A+S163G+V203A 2 A1V+V51A+V68A+V203I 2 V68A+G100S 1 V68A+V203L 1 i A1T+V68A+N116D+G118D 1 N62D+A169G+V2031+Q245R 1 G23S+S99SD+A194P+S242T+Q245R+T274R 1 tS99SD+N204S+Q245R 2 N62D+Q245R 2 V68A+S106A+G118D+Q245R 2 V51I+L111I+G118D+Q245R 2 N62D+V139I+N183D+N185S+V203I+Q245R+L262S 2 N62D+I72V 1 i S9R+R19L+A98AD2 S9G+P14R+R19I+A98AD 1 S9R+A15T+T22L+V139L+Q245V+A254S2 S9R+A15T+T224A 2 S9R+A15T+Q245L 2 S9R+A15T+N62NG+Q245T1 S9R+A15T+N62ND+V139L+Q245E 1 S9R+A15T+N62ND+V139L+N261D 2 Y167I+R170L+Q245E 1 Y167I+R170L+Q245R 2 |Y1671+R170L+Q245M 11 Y167I+R170L 1 S99SE+Q245R 2 S9R+A15T+G61E+A85T+Q137H+Y209C+Q245G 2 S9R+A15T+G61E+A85T+P239S+Q245C 1 G102S+M222S+Q245L+N252D 1 N62D+Q245A+N252G+S265G 1 N62D+Q245G+N252T 1 S9R+A15T+N62D+Q245W+N252V 2 S9R+A15T+N62D+Q245R+N22M 2 S9R+A15T+N62D+Q245W+N252S 1 S163N+T213A+Q245R 2 S106L+Q245R+N252E 2 JQ245W+N252Y2 , Q245W+N252Y 2 G20R+A48T+R170C+Q245W+N252Q 2 N62D+N252T 2 N218D+Q245W+N252E 2 i G20R+R170C+Q245R+N252V 2 N62D+Q245W+N252H 2 N62D+Q245W+N252A 2 G20R+N62D+V244I+Q245W+N252E 2 N240D+Q245S 1 N62D+Q245W+N252E2 262D+Q245R+N252V 2 A98L+S99C+Q245R 2 N62D+A98R+Q245R 2 S9R+A15T+V68A+S99G+Q245R+N261D 2 S9R+A15T+G20*+L21F+N62D+Q245R 2 S9R+A15T+G20*+L21F+N62E+Q245R 2 V68I+A98AD 2 Assay D Commercial detergent base European powder type 1 Detergent dosage 6 g/l Test solution volume 160 micro I pH as it is in detergent (app. 10-10.5) Wash time 20 min. Temperature 30°C Water hardness 6-9°dH Enzyme concentration in test solution 5 nM, 10 nM and 30 nM C-10 swatches from Center for Test material Testmaterials, Vlaardingen, NL

The European powder type detergent was composed according to the provisions in Detergent Example 2 at page 24 herein. Water hardness was adjusted to 15°dH by addition of CaCI2*2H20 ; MgCl2*6H2O ; NaHCO3 (Ca2+ : Mg2+ : HCO3- = 4: 1: 10) to the test system. After washing the textile pieces were flushed in tap water and air-dried.

Table VII, Wash performance test results, Assay D. Mutations Score _ G97GS S9V+P14R+R19F+A98AD 1 S9R+A15T+L111I+Q137E 1 S9R+A15T+G97GA+Q137E 2 S9R+A15T+L96LG+Q137E+Y209H 1 S9R+A15T+L96LG+H120N+P131S 2 S9R+A15T+G97GV+H120Q 2 S9R+A15T+L96LG+H120Q+Q137E 2 |S9R+A15T+G97GV+P131 S 2 S9R+A15T+K94N+H120N+P131H 1 _ S9R+A15T+N76S+L111V+P131H+Q137D 1 S9R+A15T+F50S+H120D+P131H 2 = S9R+A15T+L96LG+S130* 2 S9R+A15T+L96LG+P131Q+Q137D 2 _ S9R+A15T+G97GA+H120D+Q137H+M222V 1 S9R+A15T+G97GA+H120N+Q137D+N248D 2 S9R+A15T+L21LW+G100S+V139L+Q245V 1 S9R+A15T+G20*+L21 F+N62D+Q245N2 S9R+A15T+L21LC+V139L+R186H+Q245M S132G+Q245F S9R+A15T+T22TG+N62D+V139L+Q245G2 S9R+A15T+T22TL+N62D+I107V+V139L+Q245W 2 S9R+A15T+T22TQ+S101P 2 S9R+A15T+T22TG+N62D+V139L+Q245V 1 S9R+A15T+T22TL+N62D+Q245W 2 S9R+A15T+T22TW+N204D+Q245I 2 S9R+A15T+T22TG+N62D+V139L+Q245S 2 S9R+A15T+T21LP+T22TY+V139L+G160D+Q245L 1 , Q245W 2 S9R+A15T+S130P 2 S9R+A15T+G61E+A85T+P239L+Q245C 2 S9R+A15T+L21LP+T22TV+M119I+N218D+Q245I 2 S9R+A15T+V68A+Q245R 2 S9R+A15T+T22A+V139L+Q245E 2 V139L+Q245R 2 IS9R+A15T+Q245F 2 S9R+A15T+Q245S2 S9R+A15T+T260M 1 2 1S9R+A15T S9R+A15T+L21LG+T22TV+V139L+N204D+Q245N 1 : V139L+Q245F 2 S9R+A15T+T22G+V139L+Q245L 2 S9R+A15T+Q245V 1 Q245F2 S9R+Q245C 2 S9R+A15T+N218D 1 S9R+A13V+A15T+I35+N62D+Q245F 2 S99G+S128N+N183D+A232L+Q236T+Q245R 2 S163N+A232L+Q236A+Q245G 2 S163C+Q236M+Q245T+S256G 1 N218D+A232L+Q236F+Q245F N218D+A232L+Q236F+Q245F S163N+A232L+Q236S+Q245E 2 G97GA+H120E 1 G97GG+P131H 2 ; w E, S9R+A15T+G97GA+H120D+P131H+Q137E 1 JS9R+A15T+G97GV+Q137H2 S9R+A15T+G97GV+H120N 2 IS9R+A15T+G97GG+P131 S+Q137H 2 i. _... _ S9R+A15T+G97GG+H120N+Q137D 2 SR9+A15T+H120Q+P131C+Q137H 2 S9R+A15T+G97GV+H120D+Q137H 2 JS9R+A15T+A16P+G97GA+P131 S+Q137D+N204S 2 S9R+A15T+G97GG+H120D+P131H+Q137H 1 S9R+A15T+G97GV+H120E+Q137H 2 S9R+A15T+G97GV+P131T+Q137H 1 fS9R+A15T+G97GV+H 120Q+Y263F 2 S9R+A15T+G97GV+S106A+P131H 1 S9R+A15T+G97GG+L111I+P131T+Q137H 1 S9R+A15T+G97GV+P131H+137H 2 S9R+A15T+G20A+G97GV+H120D+P131H 1 S9R+A15T+G97GA+H120D+P131S+Q137E 1 S9R+A15T+G97GA+Q137H 1 S9R+A15T+H120R+Q137D+N173S 1 S9R+A15T+L96LG+H120N+P131H+Q137E 2 S9R+A15T+L96LG+H120D+P131S+Q137E 2 S9R+A15T+H120N+P131T+N218D 2 S9R+A15T+G97GA+H120D+Q137D 2 S9R+A15T+L96LG+H120D+P131H+R186L 2 S9R+A15T+G97GA+R186C 2 S9R+A15T+G97GA+R186C 2 V4A+S9R+A15T+G97GV+H120D 1 S9R+A15T+L96LG+H120D+G160D 2 S9R+15T+G97GA+H120N+S212L 2 S9R+A15T+G97GA+Q137H+N218S 2 S9R+A15T+H120D+Q137D 2 S9R+A15T+N77S+L96LG+H120D+P131Q 1 S9R+A15T+G97GA+H120N+Q137E 1 S9R+A15T+G97GA+Q137E+L262V 2 S9R+A15T+P131H+S144P 2 S9R+A15T+G127E+P131R+Q137H 2