Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SUITABLE HEPATOCYTES FOR IN VITRO GENOTOXICITY TESTS
Document Type and Number:
WIPO Patent Application WO/2012/045731
Kind Code:
A1
Abstract:
The invention relates to a method for carrying out genotoxicity tests of chemical, biological and physical active substances or agents with the aid of cell culture systems of proliferating physiologically active liver cells.

Inventors:
BRASPENNING ADRIANUS J C M (DE)
HEINZ STEFAN (DE)
NOERENBERG ASTRID (DE)
HEWITT NICOLA (DE)
KUEPPER JAN-HEINER (DE)
Application Number:
PCT/EP2011/067295
Publication Date:
April 12, 2012
Filing Date:
October 04, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MEDICYTE GMBH (DE)
BRASPENNING ADRIANUS J C M (DE)
HEINZ STEFAN (DE)
NOERENBERG ASTRID (DE)
HEWITT NICOLA (DE)
KUEPPER JAN-HEINER (DE)
International Classes:
G01N33/50
Domestic Patent References:
WO1994020607A11994-09-15
WO2009030217A22009-03-12
WO2000061617A22000-10-19
WO2004034013A22004-04-22
WO2009030217A22009-03-12
WO1997012912A11997-04-10
WO1999011809A11999-03-11
WO1998052614A21998-11-26
WO2009030217A22009-03-12
Foreign References:
JPH07115993A1995-05-09
EP0833934A11998-04-08
US20080138820A12008-06-12
US4959317A1990-09-25
US2094658A1937-10-05
US4701521A1987-10-20
EP1175436B12006-10-11
Other References:
WILKENING STEFAN ET AL: "Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties.", DRUG METABOLISM AND DISPOSITION, vol. 31, no. 8, August 2003 (2003-08-01), pages 1035 - 1042, XP002665992, ISSN: 0090-9556
WESTERINK ET AL: "Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells", TOXICOLOGY IN VITRO, ELSEVIER SCIENCE, GB, vol. 21, no. 8, 12 November 2007 (2007-11-12), pages 1581 - 1591, XP022340108, ISSN: 0887-2333, DOI: 10.1016/J.TIV.2007.05.014
WILKENING STEFAN ET AL: "Influence of culture time on the expression of drug-metabolizing enzymes in primary human hepatocytes and hepatoma cell line HepG2.", JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, vol. 17, no. 4, 2003, pages 207 - 213, XP002665993, ISSN: 1095-6670
HARLEY, C. B., B. VILLEPONTEAU: "Telomeres and telomerase in aging and cancer", CURR.OPIN.GENET.DEV., vol. 5, 1995, pages 249 - 255, XP000199530, DOI: doi:10.1016/0959-437X(95)80016-6
WIGLER, M. ET AL., CELL, vol. 11, 1977, pages 223 - 232
FELGNER, P. L. ET AL., PROC.NATL.ACAD.SCI.U.S.A, vol. 84, 1987, pages 7413 - 7417
WOLF, H. ET AL., BIOPHYS.J., vol. 66, 1994, pages 524 - 531
DIACUMAKOS, E. G., METHODS CELL BIOL., vol. 7, 1973, pages 287 - 311
LUNDSTROM, K., TECHNOL.CANCER RES.TREAT., vol. 3, 2004, pages 467 - 477
ROBBINS, P. D., S. C. GHIVIZZANI., PHARMACOL.THER., vol. 80, 1998, pages 35 - 47
MEYER-FICCA, M. L. ET AL., ANAL.BIOCHEM., vol. 334, 2004, pages 9 - 19
SUZUKI ET AL., J. BIOL. CHEM., vol. 277, 2002, pages 2437 - 2443
FUTAKI, INT. J. PHARMACEUT., vol. 245, 2002, pages 1 - 7
DEROSSI ET AL., TRENDS CELL BIOL., vol. 8, 1998, pages 84 - 87
GHERBASSI, D., SIMON, H. H., J. NEURAL TRANSM., 2006, pages 47 - 55
MORGAN, R., FEBS LETT., vol. 580, 2006, pages 2531 - 2533
HAN, K. ET AL., MOL. CELLS, vol. 10, 2000, pages 728 - 732
CHATELIN ET AL., MECH. DEV., vol. 55, 1996, pages 111 - 117
MAI ET AL., J. BIOL. CHEM., vol. 277, 2002, pages 30208 - 30218
PARK ET AL., MOL. CELLS, vol. 13, 2002, pages 202 - 208
MI ET AL., MOL. THER., vol. 2, 2000, pages 339 - 347
NOGUCHI, MATSUMOTO, ACTA MED. OKAYAMA, vol. 60, 2006, pages 1 - 11
NOGUCHI ET AL., DIABETES, vol. 52, 2003, pages 1732 - 1737
NOGUCHI ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 332, 2005, pages 68 - 74
YONEDA ET AL., EXP. CELL RES., vol. 201, 1992, pages 313 - 320
LUNDBERG, JOHANSSON, BIOCHEM. BIOPHYS. RES. COMM., vol. 291, 2002, pages 367 - 371
PORATH, I., R. A. WEINBERG, INT.J.BIOCHEM.CELL BIOL., vol. 37, 2005, pages 961 - 976
BROOKS,G. ET AL., CARDIOVASC. RES., vol. 39, 1998, pages 301 - 311
FLINK,I.L. ET AL., J. MOL. CELL CARDIOL., vol. 30, 1998, pages 563 - 578
WALSH,K., PERLMAN,H., CURR. OPIN. GENET. DEV., vol. 7, 1997, pages 597 - 602
GIONO, L. E., J. J. MANFREDI., J.CELL PHYSIOL, vol. 209, 2006, pages 13 - 20
FARID, N. R., CANCER TREAT.RES., vol. 122, 2004, pages 149 - 164
SHAPIRO, G. I. ET AL., CELL BIOCHEM.BIOPHYS., vol. 33, 2000, pages 189 - 197
GODEFROY, N. ET AL., APOPTOSIS, vol. 11, 2006, pages 659 - 661
SEVILLE, L. L. ET AL., CURR.CANCER DRUG TARGETS., vol. 5, 2005, pages 159 - 170
HERSKOWITZ, I., NATURE, vol. 329, 1987, pages 219 - 222
KÜPPER, J. H. ET AL., BIOCHIMIE, vol. 77, 1995, pages 450 - 455
ZON, G., ANN.N.Y.ACAD.SCI., vol. 616, 1990, pages 161 - 172
AAGAARD, L., J. J. ROSSI, ADV.DRUG DELIV.REV., vol. 59, 2007, pages 75 - 86
CHAKRABORTY, C., CURR.DRUG TARGETS., vol. 8, 2007, pages 469 - 482
ANGERER, L. M., R. C. ANGERER., METHODS CELL BIOL., vol. 74, 2004, pages 699 - 711
SIOUD, M., P. 0. IVERSEN., CURR.DRUG TARGETS, vol. 6, 2005, pages 647 - 653
LE, Y., B. SAUER., METHODS MOL.BIOL., vol. 136, 2000, pages 477 - 485
YAMAMURA, K., PROG.EXP.TUMOR RES., vol. 35, 1999, pages 13 - 24
LEATH, C. A., III ET AL., INT.J.ONCOL., vol. 24, 2004, pages 765 - 771
STOCKS, M. R., DRUG DISCOV.TODAY, vol. 9, 2004, pages 960 - 966
AMES,B.N., DURSTON,W.E., YAMASAKI,E., LEE,F.D.: "Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection", PROC. NATL. ACAD. SCI. U. S. A, vol. 70, 1973, pages 2281 - 2285, XP009004151, DOI: doi:10.1073/pnas.70.8.2281
AMES,B.N., LEE,F.D., DURSTON,W.E.: "An improved bacterial test system for the detection and classification of mutagens and carcinogens", PROC. NATL. ACAD. SCI. U. S. A, vol. 70, 1973, pages 782 - 786
ARIMOTO,R.: "Computational models for predicting interactions with cytochrome p450 enzyme", CURR. TOP. MED. CHEM., vol. 6, 2006, pages 1609 - 1618
BROSCHINSKI,L., MADLE,S., HENSEL,C.: "Genotoxicity tests for new chemicals in Germany: routine in vitro test systems", MUTAT. RES., vol. 418, 1998, pages 121 - 129
DE FLORA S., RUSSO,P., PALA,M., FASSINA,G., ZUNINO,A., BENNICELLI,C., ZANACCHI,P., CAMOIRANO,A., PARODI,S.: "Assay of phenacetin genotoxicity using in vitro and in vivo test systems", J. TOXICOL. ENVIRON. HEALTH, vol. 16, 1985, pages 355 - 377
ELAUT,G., HENKENS,T., PAPELEU,P., SNYKERS,S., VINKEN,M., VANHAECKE,T., ROGIERS,V.: "Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures", CURR. DRUG METAB, vol. 7, 2006, pages 629 - 660
FENECH,M., MORLEY,A.A.: "Measurement of micronuclei in lymphocytes", MUTAT. RES., vol. 147, 1985, pages 29 - 36, XP023615493, DOI: doi:10.1016/0165-1161(85)90015-9
GOMEZ-LECHON,M.J., DONATO,M.T., CASTELL,J.V., JOVER,R. ET AL.: "Human hepatocytes in primary culture: the choice to investigate drug metabolism in man", CURR. DRUG METAB, vol. 5, 2004, pages 443 - 462
MUTAT RES., vol. 584, no. 1-2, 4 July 2005 (2005-07-04), pages 1 - 256
MATHIJS,K., BRAUERS,K.J., JENNEN,D.G., LIZARRAGA,D., KLEINJANS,J.C., VAN DELFT,J.H.: "Gene expression profiling in primary mouse hepatocytes discriminates true from false-positive genotoxic compounds", MUTAGENESIS, 2010
MORITA,T., WATANABE,Y., TAKEDA,K., OKUMURA,K: "Effects of pH in the in vitro chromosomal aberration test", MUTAT. RES., vol. 225, 1989, pages 55 - 60, XP023470345, DOI: doi:10.1016/0165-7992(89)90033-X
ROSSI,D., AIELLO,V., MAZZONI,L., SENSI,A., CALZOLARI,E.: "In vitro short-term test evaluation of catecholestrogens genotoxicity", J. STEROID BIOCHEM. MOL. BIOL., vol. 105, 2007, pages 98 - 105, XP022190361, DOI: doi:10.1016/j.jsbmb.2006.11.022
SINGH,N.P., MCCOY,M.T., TICE,R.R., SCHNEIDER,E.L.: "A simple technique for quantitation of low levels of DNA damage in individual cells", EXP. CELL RES., vol. 175, 1988, pages 184 - 191, XP024852945, DOI: doi:10.1016/0014-4827(88)90265-0
Attorney, Agent or Firm:
SIMANDI, CLAUS (DE)
Download PDF:
Claims:
Patentansprüche

Verwendung von proliferierenden Hepatozyten zur

Durchführung von in-vitro Testverfahren zur Genotoxität.

Verwendung von proliferierenden Hepatozyten nach Anspruch 1, dadurch gekennzeichnet, dass Arnes-Test, Chromosomen Aberrationstest, Comet Assay, Mikronukleustest

durchgeführt werden.

Verwendung von proliferierenden Hepatozyten nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass diese

proliferierenden Hepatozyten mindestens vier Phase I Enzyme ausgewählt aus der Gruppe CYP -1A2, -2C9, -2C19, - 2D6, -2E1, - 3A4, - 1A2, -2A6, -2B6, -2C8, -1A1, -3A5, - 3A7 und -4A11 aufweisen.

Verwendung von proliferierenden Hepatozyten nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass diese proliferierenden Hepatozyten keine

Wachstumsfähigkeit in Soft Agar oder Tumorwachstum in vivo aufweisen.

Verwendung von proliferierenden Hepatozyten nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass diese proliferierenden Hepatozyten aus primären Zellen aus Mensch oder Säugetier a.) ein Proliferationsgen, insbesondere ein zelluläres und / oder virales

Proliferationsgen

und / oder b.) mindestens ein zellulärer Faktor

inaktiviert ist, der einen Zellteilungsarrest induziert, aufweisen,

und / oder

c.) transient immortalisiert sind.

Verwendung von proliferierenden Hepatozyten nach Anspruch 5, dadurch gekennzeichnet, dass diese zelluläre

Proliferationsgen aus der Gruppe myc, jun, ras, src, fyg, myb, E2F und Mdm2 und TERT ausgewählt ist oder das virale Proliferationsgen aus der Gruppe E6 und E7 von

Papillomviren wie z.B. HPV; das große und kleine TAg von Polyomaviren wie z.B. SV40, JK-Virus und BC-Virus; die Proteine E1A und E1B von Adenoviren, EBNA- Proteine von Epstein Barr Virus (EBV) ; sowie HTLV und Herpesvirus Saimiri ausgewählt ist.

Verwendung von proliferierenden Hepatozyten nach Anspruch 5, dadurch gekennzeichnet, dass die virale

Proliferationsgene, E6 und E7 von HPV oder BPV sind, insbesondere HPV16 und HPV18 und HPV 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73 und 82 und / oder HPV6 und HPV11 sowie HPV 40, 42, 43, 44, 54, 61, 70, 72, und 81. Verwendung von proliferierenden Hepatozyten nach Anspruch 5, dadurch gekennzeichnet, dass der zelluläre Faktor aus der Gruppe p53, pl6, pRB, pl07, pl30 oder deren

jeweiligen upstream oder downstream Faktoren oder daran bindende Proteine im Pathway ausgewählt ist und die

Inaktivierung solcher zellulärer Faktoren mittels

Expression dominant negativer Mutanten erfolgt oder durch Inhibition der Genexpression dieser Faktoren mithilfe von antisense Olignukleotiden, RNAi Molekülen, Morpholinos, Ribozymen erfolgt oder durch Gen-Knockout, durch die Wirkung spezifischer Antikörpern, chemischen Inhibitoren erfolgt .

Verwendung von proliferierenden Hepatozyten nach Anspruch 5, dadurch gekennzeichnet, dass die transiente

Immortalisierung mittels i.) einem Polypeptid aufweisend eine Zell-Immortalisationsaktivität , ii.) Polypeptid, dass telomerische DNA an chromosomalen Enden

synthetisiert, oder jeweils ein Fusionspeptid davon.

Verwendung von proliferierenden Hepatozyten nach Anspruch 5, dadurch gekennzeichnet, dass die transiente

Immortalisierung mittels i.) einem Polypeptid aufweisend eine Zell-Immortalisationsaktivität ausgewählt ist aus der Gruppe eines Expressionsprodukts nach Anspruch 6 oder 7 erfolgt .

11. Verwendung von proliferierenden Hepatozyten nach Anspruch 5, dadurch gekennzeichnet, dass die transiente

Immortalisierung mittels ii.) Polypeptid, dass

telomerische DNA an chromosomalen Enden synthetisiert ausgewählt ist aus der Gruppe Telomerase, Telomerase reverse Transkriptase (hTERT) , pl40, pl05, p 48 und p 43.

12. Verwendung von proliferierenden Hepatozyten nach Anspruch 5, dadurch gekennzeichnet, dass die transiente

Immortalisierung mittels einem Fusionspeptid erfolgt, woebei der erste Teil ein Transport-Polypeptid ist, insbesondere VP22, HIV TAT, (HIV) REV, Antennapedia

Polypeptid, Penetratin, Engrailed, Hoxa-5, ein Polymer aus L-Arginin oder D-Arginin Aminosäureresten, ein

Polymer aus L-Lysin or D- Lysin Aminosäureresten,

Transkriptionsfaktoren wie BETA2/neuro D, PDX-1, Nuclear Localization Signal, Histone derived peptides, ein

Polymer aus kationischen Makromolekülen, FGF-1 und FGF-2, Lactoferrin und der zweite Teil ein Polypeptid nach einem der Ansprüche 6 oder 7 ist.

13. Verfahren zum Herstellen eines Assays, umfassend die

folgenden Schritte:

a. ) Bereitstellen eines Trägermaterials,

b. ) Immobilisieren oder Fixieren von proliferierenden Hepatozyten auf diesem Trägermaterial und In Kontakt bringen dieser Zelle aus b.) mit einem Agens und Bestimmung des Genotoxität des Agens.

Verfahren zum Herstellen eines Assays nach Anspruch 9, dadurch gekennzeichnet, dass das Agens ausgewählt ist aus der Gruppe chemische und biologisch Wirkstoffe,

Medikamente, Kosmetika.

Description:
Titel: Geeignete Hepatozyten für in-vitro Genotoxitätstests

Beschreibung Die Erfindung betrifft ein Verfahren zur Durchführung von Genotoxi ( zi ) tätstests von chemischen, biologischen und

physikalischen Wirkstoffen bzw. Agenzien mit Hilfe von

Zellkultursystemen proliferierender physiologisch aktiver Leberzellen .

Das Verfahren ist besonders geeignet für genotoxische Testung bereits bekannter sowie neuer Medikamente und Wirkstoffe sowie Kombinationen davon bei Mensch und Tier. Darüber hinaus eignet es sich, Chemikalien oder biologische Wirkstoffe in

Lebensmitteln, Kosmetika, Textilien, Werkstoffen und sonstigen Materialien auf ihre genotoxische Wirkung bei Mensch und Tier zu testen.

In vielen Industriebranchen wie bspw. der Pharma-, Kosmetik- Lebensmittel- und Chemischen Industrie werden ständig neue Chemikalien und/oder biologische Wirkstoffe und Kombinationen davon entwickelt, deren mögliche gesundheitsgefährdende

Effekte zumeist unbekannt sind. Dabei können sich völlig unterschiedliche Wirkungen bei Mensch oder Tier ergeben.

Medikamente, Chemikalien oder biologische Wirkstoffe können beispielsweise, neben einer erwünschten Wirkung im Sinne einer Therapie, auch unerwünschte Nebenwirkungen wie LeberSchädigung, Schädigung des Herzmuskels, Neurotoxizität oder Teratogenität entfalten. Dabei kann es zum Verlust von vielen Zellen eines Organs bis hin zu einer degenerativen Organerkrankung wie z.B. einem Herzversagen oder einer

LeberSchädigung kommen. Die Ursache dieser Toxizität kann in einer Schädigung oder Beeinflussung prinzipiell aller

Kompartimente und Funktionen einer Zelle liegen, also bspw. in einer Schädigung der Zellmembranen, einer Beeinflussung von physiologischen Prozessen wie Zellatmung, intrazellulärer Transport, Signaltransduktion und Genexpression, um nur einige Beispiele zu nennen. Die Erfindung betrifft die direkte oder indirekte Wirkung von Agenzien auf die Erbsubstanz DNA in menschlichen oder tierischen Zellen und deren geeignete

Testung, mittels so genannter Genotoxitätstests .

Die Bereitstellung von geeigneten Zellen zur Testung ist eine medizinische und diagnostische Herausforderung, insbesondere in der Entwicklung von in-vitro Zellsystemen einschließlich zugehöriger Zellkulturen.

Daher besteht ein großes Bedürfnis Zellkulturen/Zellsysteme zu etablieren, die möglichst ähnlich zu humanen Zellen sind, so dass eine valide in-vitro Genotoxität-Testung erfolgen kann.

Im Stand der Technik haben sich Zelllinien etabliert, dies sind Zellen, die sich auf entsprechendem Nährboden unbegrenzt fortpflanzen können und immortal sind. Bekannt sind insbesondere Tumorzellen oder tumorähnliche Zellen sowie HeLa- Zellen - Cervix-Karzinom Zelllinie, COS-Zellen, HEK-293 Zellen - Niere, Chinese Hamster Ovary (CHO) Zellen, HEp-2 - humane epitheliale Larynxkarzinom-Zelllinie u.v.a. Die Herstellung von solchen Zelllinien ist beispielsweise in EP833934

(Crucell) beschrieben. Solche Zelllinien werden beispielsweise zur Medikamententestung eingesetzt. Nachteilig an solchen Zelllinien sind jedoch die genetischen Veränderungen (solche wie Punktmutationen, Austausche von Chromosomenstücken

(Rearrangements ) , Erhöhung der Kopienzahl von Genen

(Genamplifikation) und sogar Veränderungen der

Chromosomensätze (Aneuploidie ) ) sowie die Tumor-Eigenschaften infolge fehlender KontaktInhibition, wodurch die Zellen zu In- vitro Wachstum auf Soft Agar Unterlagen befähigt sind.

Tumorzellen haben zusätzlich eine durch Immortalsierung entstehende unbegrenzter Teilungsfähigkeit. Es ist bekannt, dass sich die Zellen solcher Zelllinien im Lauf der

Kultivierung durch spontane Mutationen allmählich verändern und sich zu einer malignen Zellpopulation entwickeln können und genetisch instabil sind. Nach Erkenntnis der Erfinder tritt hierbei eine kritische Schwelle von angesammelten

Mutationen schon nach etwa 60 Zellteilungen in der Kultur ein. Dies können Mutationen sein, die zur Aktivierung von Onkogenen oder Inaktivierung von Tumorsuppressorgenen führen. In einer Zellpopulation können sich daher solche Zellen durchsetzen, die aufgrund der angesammelten Mutationen eine erhöhte Zellteilungsaktivität haben. Dieser Selekt ionsprozess entspricht der Präkanzerose bei der Tumorentstehung;

zusätzlich haben die im Handel erhältlichen Zelllinien zumeist eine nicht bekannte Anzahl von Verdopplungen bereits hinter sich, falls sie nicht ohnehin von malignen Tumorzellen

abstammen .

Ferner sind im Stand der Technik folgende Genotoxität stest s beschrieben:

Beim sogenannten Arnes-Test (Arnes et al . , 1973a; Arnes et al . , 1973b) werden Bakterien, die durch Mutation z. B.

Punktmutation in einem Gen nicht mehr in der Lage sind, eine bestimmte Aminosäure zu synthetisieren (auxotrophe Mutanten) auf einen diese Aminosäure nicht enthaltenden Nährboden (Agar) aufgebracht. Da diese Bakterien zur Fortexistenz auf diese Aminosäure angewiesen sind, würden sie absterben bzw. könnten sich nicht auf diesem Mangelmedium vermehren. Nun setzt man die Bakterien dem potentiellen Mutagen aus, indem man

beispielsweise ein damit getränktes Filterpapier auf den

Nährboden auflegt. Bilden sich nach dem anschließenden

Bebrüten sogenannte Bakterien-Kolonien, so sind einzelne

Bakterien gewachsen und haben die Fähigkeit zur Synthese der entsprechenden Aminosäure zurückerlangt. Es handelt sich hierbei um sogenannte Revertanten, bei denen die zur Auxotrophie führende Punktmutation in einem Gen rückgängig gemacht wurde .

Beim Chromosomen Aberrationstest werden die zu testenden

Substanzen mit Zellen inkubiert. Nach einer definierten

Inkubationszeit werden auftretende chromosomale Aberrationen z.B. durch Karyotypanalysen untersucht. Dieses Verfahren erlaubt, eine Vielzahl von Chromosomenaberrationen sichtbar zu machen wie z.B. die Entstehung dizentrischer Chromosomen, Chromsomenbrüche und Schwesterchromosomenaustausche (Morita et al . , 1989) .

Broschinski und Kollegen berichten die Routine

Genotoxizitätstestung von 776 chemischen Substanzen, wobei eine Kombination aus Bakteriellem Mutationstest (Arnes Test) und Chromosomen Aberrationstest die beste Sensitivität zur Detektion klastogener Agenzien hatte (Broschinski et al . , 1998) .

Viele Agenzien entfalten erst eine genotoxische Wirkung in einem Tier oder beim Menschen, wenn diese durch Leberenzyme chemisch modifiziert werden. Differenzierte Hepatozyten, wie sie in einer intakten Leber vorliegen, verfügen in vivo über verschiedene Funktionen, welche für diese Biotransformation von Stoffen in der Nahrung, aber auch von Medikamenten oder Toxinen wichtig sind (Übersicht in (Elaut et al . , 2006) . Für die Biotransformation wichtig sind die Phase I Enzyme des Cytochrom P 450 Systems. Es gibt beim Menschen zahlreiche Isoenzyme wie CYP 1A1, CYP 1A2, CYP 2A6, CYP 2B6, CYP 2C8, CYP 2C9, CYP 2C19, CYP 2D6, CYP 2E1, CYP 3A4, CYP 3A5, CYP 3A7, CYP 4A11, die unterschiedliche Funktionen haben. Bei den

Isoenyzme sind z.T. Polymorphismen bekannt, welche für die individuelle Variabilität in der lebertoxischen Wirkung von Medikamenten verantwortlich sein können. Es handelt sich bei den CYP 450 Enyzmen um Oxidoreduktasen, die einen oxidativen Abbau bzw. Metabolisierung zahlreicher Substanzen wie u.a. auch Arzneistoffe bewirken.

Neben den Phase I Enzymen existieren die Phase II Enzyme, z.B. die N-Acetyltransfereasen [NATs], sowie UDP- Glucoronyltransferasen und Sulfotransferasen .

Für die Beurteilung der möglichen Lebertoxi z ität von

Wirkstoffkandidaten aber auch allgemein von Chemikalien ist die Funktionalität der CYP 450 Systeme, der Phase II Enzyme sowie weiterer Leberfunktionen von entscheidender Bedeutung. Um diesem Umstand Rechnung zu tragen, wird der Arnes Test meistens in Kombination mit einer Biotransformation der zu testenden Substanz durch Leberenzyme durchgeführt. Dabei wird meist der sogenannte S9-Mix eingesetzt, welcher eine Mischung aus mehreren Leberenzymen zur Simulation einer Leber

darstellt. Die Abkürzung "S9" kommt von Supernatant

(Überstand) und der Zentrifugation des Leberzellextraktes bei 9000g. So berichten De Flora et al . , dass die Substanz Phenacetin nur dann im Arnes Test positiv getestet wird, wenn eine Inkubation von Phenacetin mit der S9 Fraktion von Hamster Leber

durchgeführt wird (De Flora S. et al . , 1985) . Ausschließlich durch die in Leberzellen aktiven Enzyme wurde diese Substanz in eine im Arnes Test detektierbare mutagene Form überführt. Eine weitere Möglichkeit zur Detektion von DNA-schädigenden Wirkungen von Agenzien ist der sogenannte Comet Assay, auch Einzelzellgelelektrophorese genannt (Singh et al . , 1988) . Das Prinzip des Comet Assays beruht darauf, dass in Agarose eingebettete Zellen lysiert werden. Die DNA der Zellen wird dann einem elektrischen Feld ausgesetzt. Wurde die DNA durch eine Substanz oder physikalische Einwirkung geschädigt, kann sie aus dem Zellkern austreten und zur Anode wandern, während ungeschädigte chromosomale DNA dies nicht kann. Unter dem UV- Mikroskop erscheinen die beschädigten Zellen, welche vorher mit Fluoreszenzfarbstoffen wie Ethidiumbromid angefärbt wurden, nun mit einem Schweif aus DNA Bruchstücken, der ihnen das Aussehen eines Kometen gibt. Die Länge des Kometenschweifs ist ein Maß für die DNA Schädigung. Der Comet Assay misst die Entstehung von DNA Strangbrüchen, erlaubt aber keine direkte Aussage über die zugrunde liegenden DNA Schäden.

Ein in den letzten Jahren zunehmend genutzter

Genotoxizitätstest ist der sogenannte Mikronukleustest , mit dem sich zytogenetische Veränderungen wesentlich einfacher und schneller erfassen lassen als mit dem

Chromosomenaberrationstest. Mikronuklei enthalten Bestandteile des Zellkernes, die wegen unterschiedlicher molekularer

Ursachen (Chromsomenschädigung durch klastogene Einwirkungen, Schädigung der Chromosomensegregation durch aneugene

Einwirkungen) nicht auf die Tochterzeilkerne verteilt werden sondern als Chromatinpartikel im Zytoplasma erscheinen. Die Anzahl bzw. Häufigkeit von Mikronuklei ist ein Maß für

genetische Instabilität von Zellen. Zur Neuentstehung von Mikronuklei ist im Allgemeinen eine Zellteilung notwendig. In Zellen, die durch Cytochalasin B eine Hemmung der Mitose haben, können neu durch Testbehandlungen entstandene

Mikronuklei in binukleären Zellen quantifziert werden, während „alte" Mikronuklei, die den Background der Messung darstellen, in mononukleären Zellen bestimmt werden (Fenech and Morley, 1985) .

Seit der Einführung dieser Technik werden Mikronuklei als biologische Indikatoren für Genotoxizität zunehmend

untersucht. Dies liegt vor allem daran, dass die

Mikronukleusauswertung im Gegensatz zur Auswertung der

dizentrischen oder sonst wie aberranten Chromosomen relativ einfach und schnell ist. Darüber hinaus ist die

Automatisierung der Zählung von Mikronuklei leichter

durchführbar, als dies bei Chromosomenaberrationen oder beim Kometassay der Fall ist. Der Mikronukleustest wird häufig in in der Lungenfibroblastenlinie V79 des Chinesischen Hamsters oder in humanen Lymphozyten aus peripherem Blut durchgeführt. Bei vielen Untersuchungen werden üblicherweise verschiedene Tests kombiniert, um eine möglichst zuverlässige Aussage zu erhalten: so führen z.B. Rossi und Kollegen die Untersuchung einer möglichen Genotoxizität von Estrogenen sowohl mit dem Arnes Test, dem Chromosomenaberrationstest als auch dem

Mikronukleustest durch (Rossi et al . , 2007) .

Die WO2004/034013 beschreibt einen alternativen In-vitro

Genotoxizitätsassay auf der Basis einer speziellen CHO- Zelllinie, welche das humane Chromosom 11 enthält. Diese hybride Zelllinie exprimiert das humane CD59 Protein, welches auf der Zelloberfläche präsentiert wird. Durch Mutationen kann es zum Verlust der Präsentation auf der Oberfläche kommen, was über geeignete immunologische Nachweisverfahren detektiert werden kann.

Das Problem dieser Tests ist, dass sie bis heute nicht

zuverlässig genug sind; darüber hinaus sind sie zeitaufwändig und teuer. In der Pharmaindustrie entstehen hohe Kosten für Genotoxizitätsassays . Nicht präzise vorhergesagte

Genotoxizität machen nach Schätzungen des Cambridge Healthtech Advances Life Sciences Bericht vom Dezember 2004 ca. 30 % der sogenannten Drug Failure Kosten aus.

Die US Patentanmeldung US2008/0138820 AI beschreibt einen Multiparameter Genotoxizitätsassay auf der Basis des Mikronukleustests . Dabei wird ein Konstrukt in eine Target zelllinie eingebracht, welches ein Fusionsprotein aus einem Centromerprotein mit GFP konstitutiv exprimiert. Durch diese Fusion werden Mikronuklei detektierbar gemacht, welche aneugen entstanden sind. Auf einem zweiten

Expressionskonstrukt befindet sich die kodierende Sequenz der Nitroreduktase , deren Enzymaktivität durch eine

Fluoreszenzumwandlung des synthetischen Substrats CytoCy5S (GE Healthcare) detektierbar gemacht werden kann. Wenn die

Nitroreduktase operativ mit einem Promotor verknüpft ist, welcher durch DNA Schädigung aktiviert wird (z.B. der GADD45a Promotor), dann können genotoxische Wirkungen detektierbar gemacht werden, die klastogen sind. Durch Hinzuziehen weiterer zelluläre Parameter wie Proliferationsindex und Zyotoxizität kann ein für das jeweilige Zellsystem geeigneter Algorithmus für eine Mulitparameteranalyse potentiell genotoxischer

Substanzen angewendet werden.

Es besteht jedoch ein großer Bedarf, geeignete Zellen für in- vitro Genotoxitätstests zu verwenden, die humanen Zellen sehr nahe kommen und eine vorteilhafte in-vitro Stabilität und metabolische Funktionalität aufweisen.

Insbesondere bei Genotoxitätstests besteht im Stand der

Technik das Problem, dass bei Zelllinien der Metabolismus von humanen Hepatozyten nicht hinreichend berücksichtigt wird und daher die getesteten Agenzien „false-positive" oder gar falsche Ergebnisse in einer in-vitro Testung liefern.

Daher besteht die Aufgabe der vorliegenden Erfindung in der Bereitstellung geeigneter Hepatozyten zur Durchführung von in- vitro Genotoxitätstests .

Die Aufgabe wird durch den Anspruch 1 vollständig gelöst.

Proliferierende Hepatozyten weisen überraschender Weise folgende Vorteile auf:

Die physiologisch relevanten Eigenschaften der

erfindungsgemäßen proliferierenden Hepatozyten sind dadurch spezifiziert, dass sie mindestens vier von mindestens sechs verschiedenen Phase I Enzymfunktionen auch während der

proliferativen Phase verfügen, vorzugsweise ausgewählt aus der Gruppe CYP -1A2, -2C9, -2C19, -2D6, -2E1 und - 3A4, die für ca. 90 % sämtlicher oxidativen Metabolisierungen von

Medikamenten verantwortlich sind (Arimoto, 2006), daher insbesondere auch mehr als 6 verschiedene Phase I Enzyme enthalten, insbesondere zehn verschiedene Phase I Enzyme enthalten, vorzugsweise CYP -1A1, -1A2, -2A6, -2B6, -2C8, - 2C9, -2C19, -2D6, -2E1, -3A4, insbesondere dreizehn

verschiedene Phase I Enzyme enthalten, insbesondere CYP -1A1, -1A2, -2A6, -2B6, -2C8, -2C9, -2C19, -2D6, -2E1, -3A4, -3A5, -3A7, -4A11. Weiterhin wird vorteilhaft das Problem der „false positive" und falschen Ergebnisse im Stand der Technik vollständig gelöst, da diese proliferierende Hepatozyten:

a. während der Proliferation aktive Phase I und II

Aktivitäten aufweisen,

b. in der Enzymausstattung signifikante Aktivitäten

aufweisen, die in vivo Bedingungen entsprechen,

c. Phase I Aktivitäten aufweist, die über mehrere Tage

aufrecht erhalten bleibt,

d. eine Enzymaktivität besitzt, welche mittels Reagenzien induzierbar ist,

e. eine externe Metabolisierung mittels Mikrosomen folglich entfällt ,

f. „false positive" Ergebnisse durch reaktive Agenzien, die nicht zellgängig sind, erheblich reduziert sind,

g. nach Aufnahme des Agens in die Zelle das Agens selbst als auch der entstehenden Metaboliten auf die DNA wirken können, und daher falsch negative Ergebnisse durch nicht adäquate Metabolisierung der Testsubstanz entfallen oder deutlich reduziert sind.

Die Anreicherung solcher geeigneter Hepatozyten wird z.B. in der WO2009030217 der Anmelderin beschrieben, die vorzugsweise aus primären Zellen erhalten werden können. Weiterhin können proliferierende Hepatozyten ebenfalls aus anderen Vorläuferzellen erhalten werden, wie Stammzellen, adulten Zellen und anderen differenzierbaren Zellen.

Unter dem Begriff „primäre Zellen" werden im Rahmen der

Erfindung direkt aus Körperflüssigkeiten oder aus

Körpergeweben gewonnene Explantate mit normalen, d.h. nicht entarteten Zellen, von vielzelligen Organismen, wie z.B. dem Menschen, Säugetieren bzw. geeigneten Donoren verstanden.

Primäre Zellkulturen sind in Kultur genommene primäre Zellen bis zur ersten Passage. Primäre Zellen haben die natürlichen Differenzierungseigenschaften und sind mortal.

Um Zellen in-vitro aufrecht zu erhalten, muss ein Verfahren verwendet werden, welches die bei jeder Zellteilung

auftretende Verkürzung der chromosomalen Telomere kompensiert. Eine Möglichkeit dazu ist die Verwendung der Telomerase

(Harley, C. B. and B. Villeponteau . 1995. Telomeres and telomerase in aging and Cancer. Curr . Opin . Genet . Dev . 5:249- 255.) . Zellen, welche den Telomerverlust beispielsweise durch Telomerase kompensieren können, haben eine unbegrenzte

Teilungsfähigkeit bzw. Immortalität . Dabei treten jedoch im Lauf der Zellteilungen nachteilig unvermeidlicherweise

Mutationen auf, die früher oder später zur Krebsentstehung führen müssen. Zur in-vitro Aufrechterhaltung von humanen primären oder differenzierbaren Zellen können folgende Schritte durchgeführt werden :

Primäre oder differenzierbare Zellen werden

a . ) isoliert ,

bl . ) mit mindestens einem Proliferationsgen oder dessen

Genprodukt in die Zelle funktionell eingebracht wird

und / oder

b2. ) mit mindestens einem zellulären Faktor inaktiviert, der einen Zellteilungsarrest induziert, und / oder

b3. ) transient immortalisiert

c.) kultiviert und / oder passagiert.

Bevorzugt werden jedoch humane primäre Leberzellen als

Ausgangsmaterial verwendet, die z.B. mittels Biopsie erhalten werden können.

Vorzugsweise können mehr als zehn zusätzliche Passagen im Vergleich zu primären Zellen, mehr als 20 - 60 zusätzliche Passagen, durchgeführt werden.

Erfindungsgemäß werden wie vorstehend proliferierende

Hepatozyten erhalten, die hochgradig für die Durchführung von Genotoxitätstests geeignet sind. Besonders vorteilhaft können Zellen erhalten werden, die keine Eigenschaften von Tumorzellen annehmen, insbesondere von malignen Tumorzellen, wie z.B. Wachstum in Soft Agar oder Tumorwachstum in vivo (das Anwachsen von Tumoren in Xenograft- Tiermodellen) .

Die Kultivierung solcher Zellen erfolgt auf für den Fachmann bekannten Kulturmedien.

Im Rahmen dieser Erfindung ist ein Proliferationsgen ein solches, dass die Zellteilung verbessert und eine begrenzt erweiterte Zellteilungskapazität in der primären Zelle

ermöglicht, wobei die Wahrscheinlichkeit von

Zelltransformation oder Veränderungen der

Differenzierungseigenschaften sehr stark reduziert wird im Vergleich zu den Zelllinien, die Stand der Technik sind.

Erfindungsgemäß ist das Proliferationsgen vorzugsweise

ausgewählt aus der Gruppe der viralen Proliferationsgene : E6 und E7 von Papillomviren wie z.B. HPV (humanes Papillomvirus) und BPV (bovines Papillomvirus); das große und kleine TAg von Polyomaviren wie z.B. SV40, JK-Virus und BC-Virus; die

Proteine E1A und E1B von Adenoviren, EBNA- Proteine von

Epstein Barr Virus (EBV) ; sowie das Proliferationsgen von HTLV und Herpesvirus Saimiri und jeweils deren kodierenden Proteine bzw. deren Chimären oder ausgewählt aus der Gruppe der

zellulären Proliferationsgene, insbesondere folgenden Klassen von Genen: myc, jun, ras, src, fyg, myb, E2F und Mdm2 und TERT ( katalytische Untereinheit der Telomerase), vorzugsweise der humanen Telomerase hTERT) . Erfindungsgemäß bevorzugt sind jedoch virale

Proliferationsgene, besonders bevorzugt sind E6 und E7 von HPV oder BPV. Dabei können Proliferationsgene von HPV-Typen verwendet werden, die in Zusammenhang mit malignen

Erkrankungen stehen. Die bekanntesten Beispiele für „High Risk" Papillomviren sind HPV16 und HPV18. Weitere Beispiele der High Risk Gruppe sind HPV 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73 und 82. Es können aber auch die

Proliferationsgene E6 und E7 von so genannten „low risk" HPVs verwendet werden. Bekannte Beispiele sind die HPV-Typen 6 und 11, weitere HPV Typen der Low-Risk Gruppe sind HPV 40, 42, 43, 44, 54, 61, 70, 72, und 81. Weiterhin können die

entsprechenden Chimären oder chimäre Genprodukte beliebig kombiniert und eingesetzt werden. Die Bedeutung der E6 Proteine im Zusammenhang mit

Proliferationssteigerung sind vor allem in der Inaktivierung des p53 Weges sowie der Induktion der Telomerase zu sehen. Die Bedeutung der E7 Proteine im Zusammenhang mit

Proliferationssteigerung sind vor allem in der Inaktivierung des pRB-Weges zu sehen. Im Zusammenhang der Erfindung können auch die Proliferationsgene verschiedener Serotypen einer Virusspezies oder verschiedener Virusspezies kombiniert werden oder sogar chimäre Proliferationsgene von verschiedenen

Serotypen einer Virusspezies oder verschiedener Virusspezies hergestellt und eingesetzt werden. Z.B. kann eine E6 Domäne in einem Chimären Gen z.B. von HPV 16 abstammen und eine andere von HPV 6. Selbstverständlich können die Proliferationsgene auch trunktiert sein oder einen oder mehrere Basenaustausche haben, ohne den Rahmen der Erfindung zu verlassen. Die oben erwähnten Proliferationsgene stellen bevorzugte

Ausführungsformen dar und sollen die Erfindung nicht

einschränken. Das Proliferationsgen kann ebenfalls Gegenstand einer synthetischen oder künstlich hergestellten Gensequenz sein .

Diese Faktoren werden in die Zielzellen, deren

Zellteilungskapazität erweitert werden soll, „funktionell eingebracht" und hierbei können nicht abschließend folgende GentransferSysteme verwendet werden: Transfer von

Expressionskonstrukte der vorstehend genannten Genfunktionen in Zellen mit der klassischen Calzium-Phosphatmethode (Wigler, M. et al., 1977. Cell 11:223-232), mit Lipofektion (Felgner, P. L. et al, 1987. Proc . Nat1. Acad . Sei . U . S . A 84:7413-7417), mit Elektroporation (Wolf, H. et al . , 1994. Biophys.J. 66:524- 531), mit Mikroinjektion (Diacumakos, E. G. 1973. Methods Cell Biol. 7:287-311), über Konjugate, welche über zelluläre

Rezeptoren aufgenommen werden oder Rezeptor-unabhängig. Die vorstehend genannten Genfunktionen können auch über virale Vektoren in Zielzellen übertragen werden. Beispiele sind retrovirale Vektoren, AAV-Vektoren, Adenovirus-Vektoren und HSV-Vektoren, um nur einige Beispiele von Vektoren zu nennen (Übersicht über virale Vektoren in: Lundstrom, K. 2004.

Technol . Cancer Res.Treat. 3:467-477; Robbins, P. D. and S. C. Ghivizzani. 1998. Pharmacol . Ther . 80:35-47). Der Begriff „funktionell eingebracht" umfasst insbesondere die

Transfektion der Zielzellen mittels mindestens einem

Proliferationsgen .

Die Expression der vorstehend genannten viralen oder

zellulären Proliferationsgene kann durch starke oder schwache konstitutive Promotoren kontrolliert werden, von

Gewebespezifischen Promotoren, von induzierbaren Promotoren (Meyer-Ficca, M. L. et al . 2004. Anal . Biochem . 334:9-19) oder die Expressionskassetten können von spezifischen Sequenzen für molekulare Exzisionssysteme flankiert sein. Beispiele sind das Cre/Lox System (US Patent 4,959,317), dessen Anwendung zur molekularen Entfernung der Expressionskonstrukte aus dem Genom der Zielzellen führt. In einer weiteren Ausführungsform können die Genprodukte der Proliferationsgene ebenfalls direkt in die Zielzelle als solches oder mittels eines Fusionsproteins funktionell

eingebracht werden. Vorzugsweise handelt es sich um Messenger- Proteine (Transport-Proteine), wie VP22, HIV TAT (Suzuki et al., 277 J. Biol. Chem. 2437-2443 2002 and Futaki 245 Int. J. Pharmaceut . 1-7 (2002), (HIV) REV, Antennapedia Polypeptid (W097/12912 and WO99/11809) oder Penetratin (Derossi et al . , 8 Trends Cell Biol., 84-87 (1998), Engrailed (Gherbassi, D. & Simon, H. H. J. Neural Transm. Suppl 47-55 (2006), Morgan, R. 580 FEBS Lett . , 2531-2533 (2006), Han, K. et al . 10 Mol.

Cells 728-732 (2000)) oder Hoxa-5 (Chatelin et al . 55 Mech. Dev. 111-117 (1996)), ein Polymer aus L-Arginin oder D-Arginin Aminosäureresten (Can. Patent No . 2,094,658; U.S. Pat . No . 4,701,521; W098/52614), ein Polymer aus L-Lysin or D- Lysin Aminosäureresten (Mai et al . , 277 J. Biol. Chem. 30208-30218 (2002), Park et al . 13 Mol. Cells 202-208 (2002), Mi et al . 2 Mol. Ther. 339-347 (2000)), Transkriptionsfaktoren wie

BETA2 /neuro D, PDX-1 (Noguchi and Matsumoto 60 Acta Med.

Okayama 1-11, (2006), Noguchi et al . 52 Diabetes 1732-1737 (2003), Noguchi et al . 332 Biochem. Biophys. Res. Commun. 68- 74 (2005)), Nuclear Localization Signal , (Yoneda et al . 201 Exp. Cell Res. 313-320 (1992), Histone derived peptides

(Lundberg and Johansson 291 Biochem. Biophys. Res. Comm. 367- 371 (2002)), ein Polymer aus kationischen Makromolekülen, FGF- 1 und FGF-2, Lactoferrin u.a., wie einschlägig in der Literatur beschrieben.

Daher betrifft die Erfindung ebenfalls solche proliferierende Heptozytzen, die transient immortalisiert werden, vorzugsweise mittels i.) einem Polypeptid aufweisend eine Zell- Immortalisationsaktivität ,

ii.) Polypeptid, dass telomerische DNA an chromosomalen Enden synthetisiert, oder jeweils ein Fusionspeptid davon, wobei das Fusionspeptid in einem ersten Teil aus einem Transport-Protein besteht, siehe oben.

Ein solches Polypeptid aufweisend eine Zell- Immortalisationsaktivität kann z.B. aus den vorstehend

genannten viralen oder zellulären Proliferationsgenen erhalten werden. Weiterhin wird zur Herstellung solcher Polypeptide auf EP 1175436 Bl verwiesen.

Ein solches Polypeptid, dass telomerische DNA an chromosomalen Enden synthetisiert, ist vorzugsweise ausgewählt aus der

Gruppe Telomerase, Telomerase reverse Transkriptase (hTERT) , pl40, pl05, p 48 und p 43. Weiterhin wird zur Herstellung solcher Polypeptide auf EP 1175436 Bl verwiesen.

Im Rahmen dieser Erfindung wird unter „mit mindestens einem zellulären Faktor, der einen Zellteilungsarrest induziert, inaktiviert wird", verstanden, dass z.B. Zellteilungsarrest im Zuge des Seneszenzprogramms aktiviert wird (Übersicht in: Ben Porath, I. and R. A. Weinberg. 2005. Int . J . Biochem . Cell Biol. 37:961-976.) oder um denjenigen Zellteilungsarrest, der im Rahmen des Differenzierungsprogramms bei Zellen aktiviert wird. Beispielsweise ist bei Herzmuskelzellen bekannt, dass sie schon kurz nach der Geburt ihre Teilungsfähigkeit

einstellen, was u.a. durch Expression von Zellzyklus- Inhibitoren wie pl6, p21, p27 reguliert wird (Brooks, G., et al. 1998. Cardiovasc. Res. 39, 301-311; Flink, I.L. et al . , 1998. J. Mol. Cell Cardiol. 30, 563-578; Walsh,K. and

Perlman,H. 1997. Curr . Opin. Genet . Dev. 7, 597-602). Ähnliche Vorgänge treffen sicherlich auf die Mehrzahl aller primären Zelltypen zu. Eine Ausschaltung von Zellzyklusinhibitoren in differenzierten Zellen könnte somit bewirken, dass die Zellen wieder in die Proliferation gehen. Das trifft im Kontext der Erfindung auch auf weitere hier nicht erwähnte Zellzyklusinhibitorische Proteine zu.

Im Rahmen der Erfindung kann allgemein das für die Kontrolle des Zellzyklus wichtige Protein p53 sowie sämtliche an p53 direkt bindende Proteine, vorgeschaltete (nachfolgend

upstream) und/ oder nachgeschaltete (nachfolgend) downstream

Faktoren dieses p53 Pathways ausgeschaltet werden, um das Ziel der erweiterten Zellteilungskapazität zu erreichen (Übersicht über den p53 Pathway in: Giono, L. E. and J. J. Manfredi.

2006. J.Cell Physiol 209:13-20; Farid, N. R. 2004. Cancer Treat.Res. 122:149-164). Im Rahmen der Erfindung kann allgemein das für die Kontrolle des Zellzyklus wichtige Protein pl6/INK4a sowie sämtliche an pl6/INK4a direkt bindende Proteine, vorgeschaltete

(nachfolgend upstream) und/ oder nachgeschaltete (nachfolgend) downstream Faktoren dieses pl6 Pathways ausgeschaltet werden, um das Ziel der erweiterten Zellteilungskapazität zu erreichen

(Übersicht über den pl6/INK4a Pathway in: Shapiro, G. I. et al., 2000. Cell Biochem . Biophys . 33:189-197)

Im Rahmen der Erfindung kann allgemein das für die Kontrolle des Zellzyklus wichtige Protein pRb bzw. die anderen

Mitglieder der pRb-Familie (z.B. pl07, pl30) sowie sämtliche an Mitglieder der pRb-Familie direkt bindende Proteine, vorgeschaltete (nachfolgend upstream) und/ oder

nachgeschaltete (nachfolgend) downstream Faktoren dieses pRb Pathways ausgeschaltet werden, um das Ziel der erweiterten Zellteilungskapazität zu erreichen (Übersicht über den pRb Pathway in: Godefroy, N. et al . 2006. Apoptosis. 11:659-661; Seville, L. L. et al . 2005. Curr. Cancer Drug Targets. 5:159- 170) .

Die Inaktivierung zellulärer Faktoren wie z.B. p53, pRB, pl6 etc. kann z.B. durch Expression dominant negativer Mutanten der entsprechenden Faktoren erfolgen (Herskowitz, I. 1987. Nature 329:219-222; Küpper, J. H., et al . 1995. Biochimie 77:450-455), durch Inhibition der Genexpression dieser

Faktoren mithilfe von antisense Olignukleotiden (Zon, G. 1990. Ann.N. Y.Acad. Sei . 616:161-172), RNAi Molekülen (Aagaard, L. and J. J. Rossi. 2007. Adv.Drug Deliv.Rev. 59:75-86;

Chakraborty, C. 2007. Curr.Drug Targets. 8:469-482),

Morpholinos (Angerer, L. M. and R. C. Angerer. 2004. Methods Cell Biol. 74:699-711) , Ribozymen (Sioud, M. and P. 0.

Iversen. 2005. Curr.Drug Targets. 6:647-653) oder durch Gen- Knockout (Le, Y. and B. Sauer. 2000. Methods Mol. Biol.

136:477-485; Yamamura, K. 1999. Prog . Exp . Tumor Res. 35:13-24). Diese Verfahren sind dem Fachmann bekannt und in der Literatur vielfach beschrieben. Die Inaktivierung kann auch durch die Wirkung spezifischer Antikörper erfolgen (z.B. Single chain Antikörper, intra bodies etc.; Übersicht in: Leath, C. A., III, et al. 2004. Int.J.Oncol. 24:765-771; Stocks, M. R. 2004. Drug Discov. Today 9:960-966) . Die Inaktivierung kann auch durch Verwendung von chemischen Inhibitoren der zellulären

Faktoren erfolgen, beispielsweise durch Verwendung von Kinase Inhibitoren .

Ein Beispiel für einen Kinase-Inhibitor ist die Substanz

Imatinib (Glivec ® ) . Dadurch wird eine Reduktion der

Zellproliferation erreicht. Imatinib ist ein spezifischer Hemmstoff, der die Aktivität der Tyrosinkinase ABL in

erkrankten Zellen blockiert und damit eine krankhaft

gesteigerte Vermehrung mutierten BlutStammzellen unterdrückt. Die Erfindung betrifft daher in einer bevorzugten Ausführungsform ebenfalls ein Verfahren zum Herstellen eines Assays, umfassend die folgenden Schritte:

a. ) Bereitstellen eines Trägermaterials,

b. ) Immobilisieren oder Fixieren von proliferierenden

Hepatozyten auf diesem Trägermaterial und

In Kontakt bringen dieser Zelle aus b.) mit einem Agens und Bestimmung des Genotoxität des Agens.

Im Rahmen dieser Erfindung bedeutet Agens ein beliebiger

Stoff, wie z.B. zugelassene oder in Entwicklung befindliche

Medikamente und Medikamentenkandidaten sowie deren Vorläufer; allgemein Chemikalien; biologische Wirkstoffe, d.h. von Zellen erzeugte Moleküle wie z.B. Proteine, die natürlicherweise genauso oder in Abwandlung in Organismen oder Viren vorkommen oder dort gebildet werden können; auch unter physikalischen Einwirkungen wie elektromagnetische Strahlung, Wärme, Kälte, Schall etc. Eine Wirkung eines solchen Agens ist nicht

abschließend die Erzeugung von DNA-Schäden wie Nukleotid- Oxidationen, Deaminierungen, Basenverluste, Strangbrüche, Addukte, DNA-DNA-Crosslinks . Agenzien, die DNA Brüche

bewirken, werden als klastogen bezeichnet. Eine indirekte genotoxische Wirkung eines Agens ist bspw. die Schädigung des Spindelfaserapparats, der für die Trennung von Chromosomen bzw. Schwesterchromatiden notwendig ist und wobei es infolge der Schädigung bspw. zu Chromosomenbrüchen oder unregelmäßige Chromosomenverteilungen auf die Tochterzellen bei der

Zellteilung kommen kann. Agenzien, welche die

Chromsomenverteilung beeinflussen, werden als aneugen

bezeichnet .

Durch diese genotoxischen Wirkungen von einem oder mehreren Agenzien kommt es zu einer Veränderung des Erbgutes einer Zelle, was verbunden sein kann, aber nicht muss, mit einer unmittelbaren Toxizität, die zum Absterben der Zelle führt. Andererseits kann sich eine Veränderung des Erbgutes in einer veränderten Genaktivität auswirken, die zu einem veränderten Metabolismus der Zelle führt.

Der Nachweis eines positiven Ereignisses zur Bestimmung der Genotoxität kann mit einem Nachweisreagenz im weitesten Sinne erfolgen, z.B. mittels einem fluoresenzmarkiertem Antikörper oder dergleichen. Zu nennen sind hier insbesondere dazu geeignete bioanalytische Verfahren, wie zum Beispiel

Immunhistochemie, Antikörperarrays , Luminex / Luminol, ELISA, Immunfluoreszenz , Radioimmunoassays .

Der Begriff "fester Träger" umfasst Ausführungen wie einen Filter, eine Membran, ein magnetisches Kügelchen, ein

Silizium-Wafer , Glas, Kunststoff, Metall, ein Chip, ein massenspektrometrisches Target oder eine Matrix aus z.B.

Proteinen oder anderweitige Matrices wie z.B. PEG etc. In einer weiteren bevorzugten Ausführungsform der

erfindungsgemäßen Anordnung (synonym: Array) entspricht diese einem Gitter, dass die Größenordnung einer Mikrotiterplatte (96 Wells, 384 Wells oder mehr), eines Silizium-Wafers, eines Chips, eines massenspektrometrischen Targets oder einer Matrix besitzt .

Das Trägermaterial (Matrix) kann in der Form von sphärischen, unaggregierten Partikeln, sog. Beads, Fasern oder einer

Membran vorliegen, wobei eine Porosität der Matrix die

Oberfläche erhöht. Die Porosität kann beispielsweise in üblicher Weise durch Zugabe von Porenbildnern, wie

Cyclohexanol oder 1-Dodecanol zu der Reaktionsmischung der Suspensionspolymerisation erreicht werden.

Beispiele :

Beispiel 1: Induktion der CYP3A4-Aktivität von

proliferierenden Hepatozyten

Zunächst werden proliferierbare Hepatozyten hergestellt, indem primäre humane Hepatozyten mit dem in der WO 2009030217A2 beschriebenen Verfahren behandelt werden.

Um die metabolische Kapazität der in dieser Erfindung

beschriebenen proliferierenden Hepatozyten zu untersuchen, wurde die Induktion der CYP3A4 Aktivität bei verschiedenen Verdopplungszahlen (PD 23, 32 und 36) gemessen. Dazu wurden die Zellen in einer Dichte von 2,3 x 10 4 Zellen / cm auf Kollagen beschichteten Zellkulturgefäßen eingesät und 4 Tage kultiviert. Anschließend wurden die Zellen für drei Tage täglich mit Rifampicin (20μΜ) behandelt bevor die CYP3A4

Aktivität mittels Lumineszens-basierten P450-Glo Assay

(Promega) gemessen wurde. Die x-fache Induktion (Mittelwert ± Standardabweichung, n=3) wurde berechnet als CYP3A4-Aktivität (in RLU / s / well) der Rifampicin behandelten Zellen

dividiert durch CYP3A4-Aktivität der Kontrollzellen.

Die CYP3A4-Aktivität der proliferierenden Hepatozyten konnte bei allen drei getesteten Verdopplungszeiten induziert werden (Figur 1) . Die Induktion war für alle untersuchten

Verdopplungs Zeiten ähnlich und erfüllt die FDA-Kriterien für die CYP3A4 Induktion in humanen Hepatozyten (d.h. größer als 4-fach) .

Beispiel 2: Korrekte Identifikation von Positiv- und

Negativsubstanzen für Genotoxizitätstests .

Um die Eignung der in dem Patent beschriebenen vermehrbaren Hepatozyten in Bezug auf Genotoxizitätstests zu überprüfen, wurden die Zellen mit Substanzen behandelt, die als Positivbzw. Negativsubstanzen für Genotoxizität gelten. Die

Genotoxi z ität wurde über den Anteil an induzierten Mikrokernen gegenüber der Kontrolle durch einen FACS-Assay quantifiziert. Im Einzelnen wurden die Positivsubstanzen Mitomycin C (MMC) und Cyclophosphamid (CPA) und die Negativsubstanz Curcurmin getestet. CPA muss zunächst metabolisiert werden um

genotoxisch zu wirken und wird im bislang verwendeten

Mikronukleustest mit V79 Zellen ausschließlich erkannt wenn die Substanz zuvor mit einem CYP-Enzym-Extrakt (S9-Mix) umgesetzt wurde. Curcurmin wird in den Standard- Genotoxizitätstests, die auf Nagerzelllinien basieren, als falsch positiv klassifiziert.

Die in dieser Erfindung beschriebenen proliferierenden

Hepatozyten wurden in einer Dichte von 3000 Zellen / cm 2 auf Kollagen beschichteten Zellkulturgefäßen ausplattiert und mit den o.g. Substanzen in verschiedenen Konzentrationen

behandelt. Im Rahmen der regulatorischen Testung nach OECD wurde bis zu einer Zytotoxizität von 50% geprüft, die für jede Substanz zuvor über eine MTT-Viabilitätsbestimmung ermittelt wurde. Da die Teilungsgeschwindigkeit der Leberzellen mit 48h niedriger als bei der Zelllinie V79 liegt, wurden längere Inkubations- und Erholungs Zeiträume für die Behandlungen

(jeweils angegeben) gewählt.

Für MMC und CPA ergab sich eine Dosis-Wirkungsbeziehung der Mikrokernbildung, so dass diese Substanzen als eindeutig positiv erkannt wurden (Figuren 2 und 3) . Die korrekt

identifizierte Genotoxizität von CPA bestätigt die

metabolische Kompetenz der Zellen. Curcurmin dagegen induzierte keine vermehrte Mikrokernbildung und wurde daher korrekt als Negativsubstanz eingeordnet (Figur 4) . Literaturliste

Agarwal, M. L . , Taylor, W.R., Chernov, M . V . , Chernova, 0. B . and Stark, G.R. (1998)

Arnes, B.N., Durston, W . E . , Yamasaki,E., and Lee, F.D. (1973a).

Carcinogens are mutagens: a simple test System combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sei. U. S. A 70, 2281-2285.

Arnes, B.N., Lee, F.D., and Durston, W.E. (1973b) . An improved bacterial test System for the detection and Classification of mutagens and carcinogens. Proc. Natl. Acad. Sei. U. S. A 70, 782-786.

Arimoto,R. (2006) . Computational models for predicting

interactions with cytochrome p450 enzyme. Curr . Top. Med.

Chem. 6, 1609-1618.

Broschinski , L . , Madie, S., and Hensel,C. (1998). Genotoxicity tests for new chemicals in Germany: routine in vitro test Systems. Mutat. Res. 418, 121-129.

De Flora S., Russo,P., Pala,M., Fassina, G., Zunino, A. ,

Bennicelli , C . , Zanacchi,P., Camoirano , A . , and Parodi,S.

(1985) . Assay of phenacetin genotoxicity using in vitro and in vivo test Systems. J. Toxicol. Environ. Health 16, 355-377. Elaut,G., Henkens, T . , Papeleu, P., Snykers,S., Vinken,M., Vanhaecke, T. , and Rogiers,V. (2006) . Molecular mechanisms underlying the dedifferentiation process of isolated

hepatocytes and their cultures. Curr . Drug Metab 7, 629-660. Fenech,M. and Morley,A.A. (1985) . Measurement of micronuclei in lymphocytes. Mutat. Res. 147, 29-36.

Gomez-Lechon, M . J . , Donato,M.T., Castell , J . V . , and Jover,R.

(2004) . Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr. Drug Metab 5, 443- 462.

Hewitt et al (2007) . Primary hepatocytes: current

understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies.

Drug Metab., 39, 159-234

Kirkland D, Aardema M, Henderson L, Müller L.

Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non- carcinogens I. Sensitivity, specificity and relative

predictivity . Mutat Res. 2005 Jul 4 ; 584 ( 1-2 ) : 1-256.

Mathijs,K., Brauers , K . J . , Jennen,D.G., Lizarraga, D . ,

Kleinj ans , J . C . , and van Delft,J.H. (2010) . Gene expression profiling in primary mouse hepatocytes discriminates true from false-positive genotoxic Compounds. Mutagenesis. Morita,T., Watanabe,Y., Takeda,K., and Okumura,K. (1989).

Effects of pH in the in vitro chromosomal aberration test. Mutat. Res. 225, 55-60.

Rossi,D., Aiello,V., Mazzoni, L . , Sensi,A., and Calzolari,E. (2007) . In vitro short-term test evaluation of

catecholestrogens genotoxicity. J. Steroid Biochem. Mol. Biol. 105, 98-105.

Singh,N.P., McCoy,M.T., Tice , R . R . , and Schneider , E . L . (1988).

A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184-191.