Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SUN PANEL ROOFING
Document Type and Number:
WIPO Patent Application WO/2012/158119
Kind Code:
A1
Abstract:
Solar collector for a building with a roof with roof tiles, which solar collector is arranged to heat water using solar energy, which water is supplied to the solar collector and flows, via channels or pipes, through the solar collector, wherein the solar collector is arranged to supply heated water to the water work system of the building. The invention is characterized in that the solar collector comprises modules (1) with a width corresponding to the distance between roof laths (2,3) running from the roof ridge to the roof base, and with a height corresponding to the thickness of the said roof laths (2,3), in that the modules (1) are made from solid material, in that the modules are arranged with one or several channels (4,5,6) running within the modules in a direction which is parallel to the said laths (2,3), and in that the material of the modules (1) has a heat capacity which at least corresponds to a rubber material of the type which is used in conveyor belts, and in that the exterior of the solar collector comprises translucent tiles (7) with a size which corresponds to conventional roof tiles.

Inventors:
BERGKVIST LARS A (SE)
Application Number:
PCT/SE2012/050536
Publication Date:
November 22, 2012
Filing Date:
May 16, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LICOLL AB (SE)
BERGKVIST LARS A (SE)
International Classes:
E04D13/18; F24J2/04; F24S10/70; F24S23/30
Foreign References:
DE3010268A11981-09-24
US5509246A1996-04-23
GB2445158A2008-07-02
Other References:
See also references of EP 2712377A4
Attorney, Agent or Firm:
ÖRTENBLAD, Bertil et al. (P.O. Box 10198, S- Stockholm, SE)
Download PDF:
Claims:
Claims

1. Solar collector for a building with a roof with roof tiles, which solar collector is arranged to heat water using solar energy, which water is supplied to the solar collector and flows, via channels or pipes, through the solar collector, wherein the solar collector is arranged to supply heated water to the water work system of the building, c h a r a c te r i z e d i n that the solar collector comprises modules (1) with a width corresponding to the distance between roof laths (2,3) running from the roof ridge to the roof base, and with a height corresponding to the thickness of the said roof laths (2,3), in that the modules (1) are made from solid material, in that the modules are arranged with one or sever- al channels (4,5,6) running within the modules in a direction which is parallel to the said laths (2,3), and in that the material of the modules (1) has a heat capacity which at least corresponds to a rubber material of the type which is used in conveyor belts, and in that the exterior of the solar collector comprises translucent tiles (7) with a size which corresponds to conventional roof tiles.

2. Solar collector according to claim 1, ch a r a c t e r i z e d n that the said translucent tiles are arranged with a Fresnel lens on the underside of the tile.

3. Solar collector according to claim 1 or 2, ch a r a c te r i z e d i n that the said tiles (7) are made from glass .

4. Solar collector according to claim 1, 2 or 3, ch a r a c t e r i z e d i n that the channels (4,5,6) of the modules (1) are constituted by tube-shaped channels within the modules, and in that channels of adjacent modules are connected to each other using pipes (10,11,12) inserted a certain distance into the respective module (1).

5. Solar collector according to claim 1, 2 or 3, c h a - r a c t e r i z e d i n that the said channels (4,5,6) are constituted by pipes (13,14,25) with a length corresponding to the total length of the modules in the direction of the sloping of the roof. 6. Solar collector according to claim 4 or 5, c h a r a c t e r i z e d i n that the said pipes (13, 14, 15; 10, 11, 12) are made from corrosion resistant material, such as copper or aluminum. 7. Solar collector according to any one of the preceding claims, c h a r a c t e r i z e d i n that the pipes of the solar collector is arranged to be connected to the pipe work of a building, without being connected to an accumulator tank.

Description:
SUN PANEL ROOFING

The present invention relates to a solar collector. More precisely, the invention relates a solar collector for a building with a roof with roofing tiles. Primarily, the invention is arranged for single family houses and corresponding smaller buildings. Solar collectors are known with many different designs. Most solar collectors are designed for on-roof assembly, with a certain angle in relation to the horizontal plane, which does not correspond to the inclination of the roof in relation to the horizontal plane. A problem is that this results in that the solar collectors are aesthetically less appealing.

One common type of solar collector comprises relatively flat panels, wherein a pipe runs back and forth on a sheet, and wherein the pipe on one panel is connected in series or in parallel with a neighboring panel, so that a number of panels cooperate. The panels may be made from metal or plastic.

One problem is that such solar collectors have a heat capacity, for storing heat, which as such is very small. Therefore, the panels are cooled relatively quickly when water which has not been heated is supplied to the panels.

Normally, the pipes of the panels are connected to an accumulator tank or the like, for storing of the water which has been heated by the sun, so that a sufficiently large amount of heated water can be tapped without the water temperature decreasing noticeably. The present invention solves this problem.

Hence, the present invention relates to a solar collector for a building with a roof with roof tiles, which solar collector is arranged to heat water using solar energy, which water is supplied to the solar collector and flows, via channels or pipes, through the solar collector, wherein the solar collector is arranged to supply heated water to the water work system of the building, and is characterized in that the solar collector comprises modules with a width corresponding to the distance between roof laths running from the roof ridge to the roof base, and with a height corresponding to the thickness of the said roof laths, in that the modules are made from solid material, in that the modules are arranged with one or several channels running within the modules in a direction which is parallel to the said laths, and in that the material of the modules has a heat capacity which at least corresponds to a rubber material of the type which is used in conveyor belts, and in that the exterior of the solar collector comprises translucent tiles with a size which corresponds to conventional roof tiles.

Below, the invention is described in closer detail, partly in connection with an exemplary embodiment of the invention as illustrated on the appended drawings, wherein

- figure 1 shows a tile belonging to the invention

- figure 2 shows a module belonging to the invention

- figure 3 shows a cross-section of a solar collector accord- ing to the invention

- figure 4 shows modules between roof laths, running on a roof in the direction of the sloping of the roof. In figures 1 and 2, a part of a solar collector for a building with a roof with roofing tiles is shown. The solar collector is arranged to heat water using solar energy, which water is supplied to the solar collector and which, via chan- nels or pipes flow through the solar collector, where the solar collector is arranged to supply heated water to the water work system of the building.

According to the invention, the solar collector comprises modules 1 with a width corresponding to the distance between roof laths 2, 3, running from the ridge to the base of the roof and with a height corresponding to the thickness of said roof laths 2, 3. The modules 1 are made of solid material and are provided with one or several channels 4, 5, 6, running within the modules in a direction which is parallel to the said roof laths. The material of the modules is selected so that the material has a relatively high heat capacity, so that the material after heating can emit heat when the solar radiation influx is weak. Examples of materials are rubber materials of the type used in conveyor belts, such as ore conveyor belts. Of course, other suitable materials can also be used.

The exterior of the solar collector comprises translucent tiles 7 with a size corresponding to conventional roof tiles.

In figure 3, a module 1 is illustrated lying on a roof 8 between two roof laths 2, 3. On top of the laths 2, 3, there are, such as is conventional, a number of mutually parallel roof laths 9, running perpendicularly to the said laths 2, 3, and with the purpose of supporting roof tiles. According to a preferred embodiment, the said translucent tiles are provided with a Fresnel lens on the underside of the tile. This results in that light which is incident at an angle towards the tile is refracted by the lens in towards the modules.

According to a preferred embodiment, the said translucent tiles 7 are made of glass. These tiles have the same shape as conventional brick tiles. Conventional brick tiles have a small number of standardized shapes. In the figures, the tiles 7 are illustrated with a so called double pantile (Swedish "tvakupig") shape.

It is preferred that the channels 4, 5, 6 of the modules 1 are constituted by tube-shaped channels within the modules 1, and that channels of adjacent modules 1 are joined together by pipes 10, 11, 12, inserted some distance into the respective module 1, as illustrated in figure 4, in which the said pipes are shown using broken lines. The pipes 10, 11, 12 are sealed to the respective module.

Hence, modules 1 can be positioned from roof base to roof ridge, and can be connected to each other using said pipes. An alternative preferred embodiment is that the said channels in the modules 1 are constituted by pipes 13, 14, 15 with a length corresponding to the total length of the modules 1 in the direction of the roof sloping. Such pipes have an outer diameter corresponding to the diameter of the channels. Dur- ing assembly, such pipes are pushed through the used number of modules. Furthermore, it is preferred that the said pipes are constituted by a corrosion resistant material, such as copper or aluminum. The said channels 4, 5, 6 or pipes running inside the channels are connected at the roof ridge and roof base, so that a flow circuit is formed, which is connected to the water work system of the building in a suitable known manner. The flow circuit can be directly connected to a tap water system in the building. Alternatively, the flow circuit can comprise a heat exchanger, where the heat of the water is heat exchanged to a heat exchanger which is part of a flow circuit in the building . During assembly of a number of modules, the existing roofing tiles are removed from places in which modules are to be mounted, after which translucent tiles are positioned in locations where the regular tiles have been removed. This achieves a flat roof corresponding to the one present before the mounting of modules and translucent tiles. Furthermore, it is not necessary to reinstall or modify the roofing laths.

Since the modules 1 are made from a material with high heat capacity, these will accumulate thermal energy from solar incident radiation.

This way, the thermal energy in the modules is transferred to the water flowing in the modules, whereby heated water can be removed in the other end of the flow circuit or be led to the said heat exchanger. An adaptation to the number of modules takes place depending on the desired volume of sun-heated water . Thus, the present invention solves the initially mentioned problems .

Above, a number of embodiments have been described. However, the invention may be varied, for example as regards the number of channels in the modules, choice of pipe material, etc.

Therefore, the present invention is not to be considered limited to the above described embodiments, but may be varied within the scope of the enclosed claims.