Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SWITCH DEVICE FOR SWITCHING AN ANALOG ELECTRICAL INPUT SIGNAL
Document Type and Number:
WIPO Patent Application WO/2019/012140
Kind Code:
A1
Abstract:
A switch device for switching an analog electrical input signal is disclosed. The switch device comprises: a switching transistor being a flipped-well-silicon-on-insulator-NMOS transistor; and a bootstrapping arrangement comprising a voltage providing arrangement for providing a floating voltage during the on-state, wherein the floating voltage is provided at a positive terminal and at a negative terminal of the voltage providing arrangement; wherein the bootstrapping arrangement is configured in such way that during the on-state the positive terminal is electrically connected to the front gate contact of the switching transistor and to the back gate contact of the switching transistor, and the negative terminal is electrically connected to the source contact of the switching transistor; wherein the bootstrapping arrangement is configured in such way that during the off-state the positive terminal and the negative terminal are not electrically connected to the switching transistor.

Inventors:
BORA PRAGOTI PRAN (DE)
BORGGREVE DAVID (DE)
VANSELOW FRANK (DE)
Application Number:
PCT/EP2018/069156
Publication Date:
January 17, 2019
Filing Date:
July 13, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FRAUNHOFER GES FORSCHUNG (DE)
International Classes:
H03K17/06
Foreign References:
US20080315246A12008-12-25
Other References:
WEBER O ET AL: "14nm FDSOI technology for high speed and energy efficient applications", ENERGY EFFCIENCY CONVENTION (SAEEC), 2012 SOUTHERN AFRICAN, IEEE, 9 June 2014 (2014-06-09), pages 1 - 2, XP032640148, ISSN: 0743-1562, [retrieved on 20140908], DOI: 10.1109/VLSIT.2014.6894343
O. WEBER ET AL.: "14nm FDSOI technology for high speed and energy efficient applications", 2014 SYMPOSIUM ON VLSI TECHNOLOGY (VLSI-TECHNOLOGY): DIGEST OF TECHNICAL PAPERS, HONOLULU, HI, 2014, pages 1 - 2, XP032640148, DOI: doi:10.1109/VLSIT.2014.6894343
R. CARTER ET AL.: "22nm FDSOI technology for emerging mobile, Inter-net-of-Things, and RF applications", 2016 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM, 2016, pages 2.2.1 - 2.2.4
B. RAZAVI: "The Bootstrapped Switch [A Circuit for All Seasons", IEEE SOLID-STATE CIRCUITS MAGAZINE, vol. 7, no. 3, 2015, pages 12 - 15, XP011668745, DOI: doi:10.1109/MSSC.2015.2449714
U. MOON ET AL.: "Switched-capacitor circuit techniques in submicron low-voltage CMOS", VLSI AND CAD, 1999. ICVC'99. 6TH INTERNATIONAL CONFERENCE ON, 1999, pages 349 - 358, XP010370096, DOI: doi:10.1109/ICVC.1999.820929
J. STEENSGAARD: "Bootstrapped low-voltage analog switches", CIRCUITS AND SYSTEMS, 1999. ISCAS '99. PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON, vol. 2, 1999, pages 29 - 32, XP010341495, DOI: doi:10.1109/ISCAS.1999.780611
M. DESSOUKY; A. KAISER: "Input switch configuration suitable for rail-to-rail operation of switched op amp circuits", ELECTRONICS LETTERS, vol. 35, no. 1, 7 January 1999 (1999-01-07), pages 8 - 10
J. BRUNSILIUS ET AL.: "A 16b 80MS/s 100mW 77.6dB SNR CMOS pipeline ADC", 2011 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE, 2011, pages 186 - 188, XP032013694, DOI: doi:10.1109/ISSCC.2011.5746275
B. NIKOLIC ET AL.: "Circuit Design in Nanoscale FDSOI Technologies", MIEL 2014, 12 May 2014 (2014-05-12)
HUANG; GUANZHONG; PINGFEN LIN: "Circuits and Systems (APCCAS), 2010 IEEE Asia Pacific Conference on", 2010, IEEE, article "A fast bootstrapped switch for high-speed high-resolution A/D converter"
U.C. BERKELEY, EE247, LECTURE 19, ADC CONVERTERS, LECTURE NOTES, 2006
CHUN-CHENG LIU; SOON-JYH CHANG; GUAN-YING HUANG; YING-ZU LIN: "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 45, no. 4, April 2010 (2010-04-01), XP011305775, DOI: doi:10.1109/JSSC.2010.2042254
Attorney, Agent or Firm:
SCHENK, Markus et al. (DE)
Download PDF:
Claims:
Claims

Switch device for switching an analog electrical input signal (IS), the switch device (1 ) comprising: a switching transistor (17) being a flipped-well-siiicon-on-insulator-NMOS transistor (17) comprising a source contact (3) being electrically connected to a source region (13), a drain contact (4) being electrically connected to a drain region (14), a front gate contact (5) being electrically connected to a gate region (15) and a back gate contact (18) being electrically connected to a flipped well (19) an input contact (8) for receiving the analog electrical input signal (IS), wherein the input contact (8) is electrically connected to the source contact (3) of the switching transistor (17); an output contact (9) for outputting an analog electrical output signal (OS) corresponding to the analog electrical input signal (IS) during an on-state (ONS) of the switch device (1 ) and for not outputting the analog electrical output signal (OS) during an off-state (OFS) of the switch device (1 ), wherein the output contact (9) is electrically connected to the drain contact (4) of the switching transistor (17); and a bootstrapping arrangement (10) comprising a voltage providing arrangement (23) for providing a constant floating voltage (FW) during the on-state (ONS), wherein the floating voltage (FW) is provided at a positive terminal (24) and at a negative terminal (25) of the voltage providing arrangement (23); wherein the bootstrapping arrangement (10) is configured in such way that during the on-state (ONS) the positive terminal (24) is electrically connected to the front gate contact (5) of the switching transistor (17) and to the back gate contact (18) of the switching transistor (17), and the negative terminal (25) is electrically connected to the source contact (3) of the switching transistor (17); wherein the bootstrapping arrangement (10) is configured in such way that during the off-state (OFS) the positive terminal (24) and the negative terminal (25) are not electrically connected to the switching transistor (17).

2. Switch device according to claim 1 , wherein the switch device (1 ) comprises a ground contact (7) for providing a ground voltage (GRV); wherein the bootstrapping arrangement (10) is configured in such way that during the on-state (ONS) the front gate contact (5) of the switching transistor (17) and the back gate contact (18) of the switching transistor (17) are not electrically connected to the ground contact (7); wherein the bootstrapping arrangement (10) is configured in such way that during the off-state (OFS) the front gate contact (5) of the switching transistor (17) and the back gate contact (18) of the switching transistor ( 7) are electrically connected to the ground contact (17).

3. Switch device according to claim 2, wherein the switch device (1 ) comprises a positive supply voltage contact (26) for providing a positive supply voltage (PSV); wherein the voltage providing arrangement (23) comprises a capacitor

(26); wherein the positive terminal (24) is electrically connected to a positive contact (28) of the capacitor (27); wherein the negative terminal (25) is electrically connected to a negative contact (29) of the capacitor (27); wherein the bootstrapping arrangement (10) is configured in such way that during the on-state (ONS) the positive contact (28) of the capacitor (27) is not electrically connected to the positive supply voltage contact (26), and the negative contact (29) of the capacitor (27) is not electrically connected to the ground contact (7); wherein the bootstrapping arrangement (10) is configured in such way that during the off-state (OFS) the positive contact (28) of the capacitor (27) is electrically connected to the positive supply voltage contact (26), and the negative contact (29) of the capacitor (27) is electrically connected to the ground contact (7).

4. Switch device according to claim 3, wherein the bootstrapping arrangement (10) comprises a first switch (30) for electrically connecting the positive contact (28) of the capacitor (27) to the positive supply voltage contact (25); wherein the bootstrapping arrangement (10) comprises a second switch (31 ) for electrically connecting the negative contact (29) of the capacitor (27) to the ground contact (7); wherein the bootstrapping arrangement (10) comprises a third switch (32) for electrically connecting the positive contact (28) of the capacitor (27) to the front gate contact (5) of the switching transistor (17) and to the back gate contact (18) of the switching transistor (17); wherein the bootstrapping arrangement (10) comprises a forth switch (33) for electrically connecting the negative contact (29) of the capacitor (27) to the source contact (3) of the switching transistor (17); wherein the bootstrapping arrangement (10) comprises a fifth switch (34) for electrically connecting the ground contact (7) to the front gate contact (5) of the switching transistor (17) and to the back gate (18) contact of the switching transistor (17).

5. Switch device according to claim 4, wherein the switches (30, 31 , 32, 33, 34) are controlled by one or more binary control signals (φ1 φ2).

6. Switch device according to one of the preceding claims, wherein the

switching transistor (17) is a flipped-well fully depleted silicon-on-insulator NMOS transistor ( 7).

7. Switch device according to one of the preceding claims, wherein the

switching transistor (17) comprises a buried insulator (22), wherein the source region (13), the drain region (14) and the gate region (15) are arranged at a first side of the buried insulator (22), and wherein the flipped- well (1 ) is arranged at a second side of the buried insulator (22).

8. Switch device according to one of the preceding claims, wherein the

switching transistor (17) comprises a substrate region (16), wherein the buried insulator (22) is arranged at a first side of the flipped-well (16), and wherein the substrate region (16) is arranged at a second side of the flipped wall (16).

9. Switch device according to one of the preceding claims, wherein the back gate contact (18) is electrically connected to the front gate contact (5) by a permanent electrical connection (21 ).

10. Sampler for an analog/digital converter, wherein the sampler comprises a switching device (1 ) according to one of the preceding claims. 1 1 . Analog/digital converter, wherein the analog/digital converter comprises a sampler according to the preceding claim.

Description:
Switch device for switching an analog electrical input signal

Description The performance of many types of time-discrete circuits, such as switched- capacitor circuits, depends on the linearity of their analog switch transistor. A simple MOSFET device offers the functionality of such an analog switch transistor that can be controlled by a clock signal to either conduct or block signal-transfer between its source and drain terminals. However, the low break- down voltage of the thin gate-oxide and the low supply voltage due to the extensive scaling down in advanced CMOS processes, restrict the voltage swing on both the switched signal and the clock signal that drives the switch transistor. This limits the performance of the MOSFET device as an analog switch device. The design of reliable switch devices that can conduct as well as isolate while supporting sufficient signal swing has become a challenge.

In principle, an analog switch device has two operating regions; in the on- state it has a low resistance, allowing the analog signal to pass between two nodes, and in the off-state it has a high resistance to isolate the two nodes. Switches implemented in CMOS processes exhibit finite switch-resistance during the on-state. For conventional switches the value of the switch- resistance during the on-state is a non-linear function of the input voltage at its input contact. This non-ideality manifests itself as non-linear settling error resulting in distortion.

It is known to use bootstrapping techniques in analog switch devices for low supply-voltage applications in order to improve the performance of low- voltage analog switches [3, 4, 5, 6]. Although known conventional bootstrapping techniques improve the analog switch performance to a large extent by making the gate-to-source-voltage of the switching transistor constant during conduction, the non-linear input dependence of the switch-resistance of the switch device during the on-state still prevails due to body-effect [4].

It's an objective of the present invention to provide an improved switch device for switching an analog electrical input signal. The invention provides a switch device for switching an analog electrical input signal, wherein the switching device comprises: a switching transistor being a flipped-well-silicon-on-insulator-NMOS transis- tor comprising a source contact being electrically connected to a source region, a drain contact being electrically connected to a drain region, a front gate contact being electrically connected to a gate region and a back gate contact being electrically connected to a flipped well; an input contact for receiving the analog electrical input signal, wherein the input contact is electrically connected to the source contact of the switching transistor; an output contact for outputting an analog electrical output signal correspond- ing to the analog electrical input signal during an on-state of the switch device and for not outputting the analog electrical output signal during an off- state of the switch device, wherein the output contact is electrically connected to the drain contact of the switching transistor; and a bootstrapping arrangement comprising a voltage providing arrangement for providing a constant floating voltage during the on-state, wherein the floating voltage is provided at a positive terminal and at a negative terminal of the voltage providing arrangement; wherein the bootstrapping arrangement is configured in such way that during the on-state the positive terminal is electrically connected to the front gate contact of the switching transistor and to the back gate contact of the switching transistor, and the negative terminal is electrically connected to the source contact of the switching transistor; wherein the bootstrapping arrangement is configured in such way that during the off-state the positive terminal and the negative terminal are not electrically connected to the switching transistor. The threshold voltage, of a field-effect transistor, in particular of a NMOS transistor, is the minimum gate-to-source voltage differential that is needed to create a conducting path between the source contact and the drain contact. The threshold voltage (V t h) of the switching transistor in silicon-on-insulator technology has strong dependence on the back gate biasing voltage due to presence of the insulator, which is often a buried oxide (BOX) layer. Therefore, the back gate contact of such switching transistor can be effectively controlled to enhance their behavior as sampling switches.

A flipped-well NMOS transistor is one where the active-NMOS device is placed in an n-well instead of a conventional p-substrate or p-well. Hence, the well is ./flipped". The choice of a flipped-well NMOS in silicon-on-insulator technology has the following advantages: The threshold voltage can be strongly controlled through the back gate contact in silicon-on-insulator transistors. In bulk-NMOS transistor, since the NMOS device is placed in a p- well, this would also require a deep n-well to isolate it from the p-type substrate. This leads to more parasitic components at the well-substrate junctions and also additional cost factor due to the requirement of an extra mask. Due to a thick insulator layer, a voltage in the range of some volts, for example up to 2 V at the 22 nm FDSOI CMOS technology [2], can be applied to the back gate of the transistor. A positive voltage of the back gate with respect to the source leads to lowering of threshold voltage. This is also known as forward-body-biasing.

Bootstrapping in general refers to applying a constant voltage between two contacts of a device. A voltage between two contacts is a floating voltage, if none of the contacts is connected to a non-floating contact such as a supply voltage contact or ground contact.

According to the invention the floating voltage produced by the bootstrapping arrangement is applied during the on-state not only to the front gate contact of the switching transistor but also to the back gate contact of the switching transistor. In other words, the front gate contact and the back gate contact are shorted at least during the on-state. With this innovative arrangement, both, the front gate contact and the back gate contact are bootstrapped to the source contact during the on-state, wherein a voltage is applied which is equal to the sum of the floating voltage and a voltage of the input signal.

This leads to an improvement of the performance of the switching transistor because: The potential difference between the back gate contact and the source contact is the floating voltage which is constant. Since there is no var- iation of the threshold voltage with the voltage of the input signal, the switch- resistance during the on-state is also input-independent. A positive voltage between the back gate contact and the source gate contact leads to forward- body-biasing of the switching transistor. Due to this the threshold voltage of the switching transistor is reduced during the on-state which results in a re- duction of the switch-resistance during the on-state. Hence, a target switch- resistance for the on-state of the switching transistor can be achieved with a smaller aspect ratio (width/length). This results in the reduction of area dependent issues like clock-feedthrough [11 ] and charge-injection [1 1]. According to a preferred embodiment of the invention the switch device comprises a ground contact for providing a ground voltage; wherein the bootstrapping arrangement is configured in such way that during the on-state the front gate contact of the switching transistor and the back gate contact of the switching transistor are not electrically connected to the ground contact; wherein the bootstrapping arrangement is configured in such way that during the off-state the front gate contact of the switching transistor and the back gate contact of the switching transistor are electrically connected to the ground contact. By these features the switch-resistance of the switching transistor may be stabilized at a maximum value during the off-state. According to a preferred embodiment of the invention the switch device comprises a positive supply voltage contact for providing a positive supply voltage; wherein the voltage providing arrangement comprises a capacitor; wherein the positive terminal is electrically connected to a positive contact of the capacitor; wherein the negative terminal is electrically connected to a negative contact of the capacitor; wherein the bootstrapping arrangement is configured in such way that during the on-state the positive contact of the capacitor is not electrically connected to the positive supply voltage contact, and the negative contact of the capacitor is not electrically connected to the ground contact; wherein the bootstrapping arrangement is configured in such way that during the off-state the positive contact of the capacitor is electrically connected to the positive supply voltage contact, and the negative contact of the capacitor is electrically connected to the ground contact.

These features provide a simple and cost-effective implementation of the inventive switch device.

According to a preferred embodiment of the invention the bootstrapping arrangement comprises a first switch for electrically connecting the positive contact of the capacitor to the positive supply voltage contact; wherein the bootstrapping arrangement comprises a second switch for electrically connecting the negative contact of the capacitor to the ground contact; wherein the bootstrapping arrangement comprises a third switch for electrically connecting the positive contact of the capacitor to the front gate contact of the switching transistor and to the back gate contact of the switching transistor; wherein the bootstrapping arrangement comprises a fourth switch for electrically connecting the negative contact of the capacitor to the source contact of the switching transistor; wherein the bootstrapping arrangement comprises a fifth switch for electrically connecting the ground contact to the front gate contact of the switching transistor and to the back gate contact of the switching transistor.

These features provide a simple and cost-effective implementation of the in- ventive switch device.

According to a preferred embodiment of the invention the switches are controlled by one or more binary control signals. A binary control signal is a control signal which provides that each time one signal level out of two signal levels. In particular, the one or more binary control signals may comprise one or more clock signals produced by a clock in order to switch repeatedly from the on-state to the off-state and back to the on-state.

According to a preferred embodiment of the invention the switching transistor is a flipped-well fully depleted silicon-on-insulator NMOS transistor. There are two types of silicon-on- insulator transistors: partially depleted silicon-on- insulator transistors and fully depleted silicon-on- insulator transistors. For a partially depleted silicon-on- insulator transistor the sandwiched film between the gate region and the insulator is large, so the depletion region can't cover the whole film. In contrast to that, the film is very thin in fully depleted si!icon- On - insulator transistors so that the depletion region covers the whole film. The switching transistor may be manufactured in a 22 nm FDSOI CMOS process.

According to a preferred embodiment of the invention the switching transistor comprises a buried insulator, wherein the source region, the drain region and the gate region are arranged at a first side of the buried insulator, and wherein the flipped-well is arranged at a second side of the buried insulator.

According to a preferred embodiment of the invention the switching transistor comprises a substrate region, wherein the buried insulator is arranged at a first side of the flipped-well, and wherein the substrate region is arranged at a second side of the flipped well.

According to a preferred embodiment of the invention the back gate contact is electrically connected to the front gate contact by a permanent electrical connection. An electrical connection may be considered as being permanent if the connection doesn't comprise any electrical switches or other electrically components which could disconnect and reconnect the electrical connection. In a further aspect the invention provides a sampler for an analog/digital converter, wherein the sampler comprises a switching device according to one of the preceding claims.

In another aspect the invention provides an analog/digital converter, wherein the analog/digital converter comprises a sampler according to the preceding claim.

Preferred embodiments of the invention are subsequently discussed with respect to the accompanying drawings, in which:

Figure 1 illustrates a first embodiment of a switch device for switching an analog electrical input signal according to prior art in a schematic view; illustrates a second embodiment of a switch device for switching an analog electrical input signal according to prior art in a schematic view; illustrates an embodiment of a switching transistor being a conventional bulk-NMOS transistor as used in the switch devices shown in Figures 1 and 2 in a schematic view; illustrates an embodiment of a switch device for switching an analog electrical input signal according to the invention as a block diagram; illustrates an embodiment of a switching transistor being a flipped-wel!-silicon-on-insulator-NMOS transistor as used in the switch devices according to the invention in a schematic view; illustrates an embodiment of a switch device for switching an analog electrical input signal according to the invention as a functional diagram; illustrates an embodiment of a switch device for switching an analog electrical input signal according to the invention as a circuit diagram; and illustrates simulation results of the total-harmonic-distortion of the switch device according to the invention and of the switch device according to prior art.

Equal or equivalent elements or elements with equal or equivalent function- ality are denoted in the following description by equal or equivalent reference numerals.

In the following description, a plurality of details is set forth to provide a more thorough explanation of embodiments of the present disclosure. However, it will be apparent to those skilled in the art that embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form rather than in detail in order to avoid obscuring embodiments of the present disclosure. In addition, features of the different embodiments described hereinafter may be combined with each other, unless specifically noted otherwise.

Figure 1 illustrates a first embodiment of a switch device 1 for switching an analog electrical input signal IS according to prior art in a schematic view. The switch device 1 comprises a switching transistor 2 being a conventional bulk-NMOS transistor, which comprises a source contact 3, a drain contact 4, a front gate contact 5 and a bulk contact 6 being electrically connected to a ground contact 7. Furthermore, the switch device 1 comprises an input contact 8 for receiving the analog electrical input signal IS, wherein the input contact 8 is electrically connected to the source contact 3 of the switching transistor 2. Moreover, the switch device 1 comprises an output contact 9, which outputs an analog electrical output signal OS corresponding to the analog electrical input signal IS during an on-state ONS of the switch device 1 and which does not output the analog electrical output signal OS during an off-state OFS of the switch device 1 , wherein the output contact 9 is electrically connected to the drain contact 4 of the switching transistor 2.

The bootstrapping arrangement 10 may provide a gate voltage GAV to the gate of the switching transistor 2 in such way, that the gate voltage is equal to a ground voltage GRV during the off-state OFS and that the gate voltage GAV is equal to the sum of a positive supply voltage PSV and the input sig- nai IS during the on-state ONS.

The bootstrapping arrangement 10 may be controlled by a first binary control signal φ1 , which is during the on-state ONS at a high level and during the off- state OFS at a low level, and a second binary control signal φ2, which is dur- ing the on-state ONS at a low level and during the off-state OFS at a high level. The low level may be for both signals φ1 and φ2 equal to the ground voltage GRV and the high level may be for both signals φ1 and φ2 equal to the positive supply voltage PSV. In the embodiment of Figure 1 the bulk contact 6, which is electrically connected to a p-well formed by a substrate of the switching transistor 2, is per- manently connected to the ground contact 7. A disadvantage of such an embodiment is that bootstrapping in this case can only partially make the switch- resistance of the switching transistor 2 independent from the voltage of the input signal IS during the on-state ONS (see also [5]). The switch-resistance during the on-state ONS still has a non-linear dependence on the voltage of the input signal IS because the dependence of the threshold voltage on the voltage over input signal IS. This variation of the threshold voltage that depends upon the voltage variation between the source contact and the bulk contact is also called-"Body Effect".

Figure 2 illustrates a second embodiment of a switch device for switching an analog electrical input signal according to prior art in a schematic view. The second embodiment is based on the first embodiment. However, the second embodiment differs from the first embodiment in that the bulk contact 6 is not permanently connected to the ground contact 7 as it is in the first embodiment. In the second embodiment the bulk contact 6 is connected to the source contact 3 of the switching transistor 2 during the on-state ONS via a switch 1 1 . The switch 1 1 is controlled by the first binary control signal φ1 in such way that the switch 1 1 is closed when the first binary control signal φ1 is at the high level. Otherwise, during the off-state OFS, the bulk contact 6 is connected to the ground contact 7 via a further switch 12. The further switch 2 is controlled by the second binary control signal φ2 in such way that the switch 12 is closed when the second binary control signal φ2 is at the high level.

In the embodiment of Figure 2 the bulk contact 6 is electrically connected to a p-well, which is electrically insulated from the p-substrate of the switching transistor 2 by a deep n-well. The bulk contact is shorted to the ground contact 6 during the off-state, when the switching transistor 2 is not conducting. During the on-state, it is shorted to the source contact 3. In this way the "Body-Effect" is avoided and an input-independent switch-resistance is obtained during the on-state. However, the deep n-well, which is required to isolate the p-well from the p-type substrate, leads to more parasitic components and also to additional costs due to the requirement of an extra mask. Figure 3 illustrates an embodiment of a switching transistor 2 being a conventional bulk-NMOS transistor 2 as used in the switch device 1 shown in Figure 1 in a schematic view. The source contact 3 is electrically connected to a source region 13, the drain contact 4 is electrically connected to a drain region 14, the front gate contact 5 is electrically connected to a gate region 15 and the bulk contact 6 is electrically connected to a bulk region 16. The bulk-NMOS transistor 2 would need an additional deep n-well in order to isolate an upper portion of the bulk region 16 serving as a p-well from a lower portion of the bulk region 16 serving as ground, in case that the switching transistor 2 should be used in the switch device 1 of Figure 2.

Figure 4 illustrates an embodiment of a switch device 1 for switching an analog electrical input signal according to the invention as a block diagram. The switch device 1 comprises: a switching transistor 17 being a flipped-weil-siiicon-on-insulator-NMOS transistor 17 comprising a source contact 3 being electrically connected to a source region 13, a drain contact 4 being electrically connected to a drain region 14, a front gate contact 5 being electrically connected to a gate region 15 and a back gate contact 18 being electrically connected to a flipped well 19 an input contact 8 for receiving the analog electrical input signal IS, wherein the input contact 8 is electrically connected to the source contact 3 of the switching transistor 17; an output contact 9 for outputting an analog electrical output signal OS corresponding to the analog electrical input signal IS during an on-state ONS of the switch device 1 and for not outputting the analog electrical output signal OS during an off-state OFS of the switch device 1 , wherein the output contact 9 is electrically connected to the drain contact 4 of the switching transistor 17; and a bootstrapping arrangement 10 comprising a voltage providing arrangement 23 for providing a constant floating voltage FV during the on-state ONS, wherein the floating voltage FV is provided at a positive terminal 24 and at a negative terminal 25 of the voltage providing arrangement 23; wherein the bootstrapping arrangement 10 is configured in such way that during the on-state ONS the positive terminal 24 is electrically connected to the front gate contact 5 of the switching transistor 17 and to the back gate contact 18 of the switching transistor 17, and the negative terminal 25 is electrically connected to the source contact 3 of the switching transistor 17; wherein the bootstrapping arrangement 10 is configured in such way that during the off-state OFS the positive terminal 24 and the negative terminal 25 are not electrically connected to the switching transistor 17.

The parasitic diode 20, formed at the junction between the n-well and the p- substrate of the NMOS is also shown in the illustration.

The bootstrapping arrangement 10 may provide a gate voltage GAV to the gate contact 5 of the switching transistor 17 in such way, that the gate voltage GAV is equal to a ground voltage GRV during the off-state OFS and that the gate voltage GAV is equal to the sum of a positive supply voltage PSV and the input signal IS during the on-state ONS.

The bootstrapping arrangement 10 may be controlled by a first binary control signal φ , which is during the on-state ONS at a high level and during the off- state OFS at a low level, and a second binary control signal φ2, which is during the on-state ONS at a low level and during the off-state OFS at a high level. The low level may be for both signals φ1 and φ2 equal to the ground voltage GRV and the high-level may be for both signals φ1 and φ2 equal to the positive supply voltage PSV. By controlling the back gate of the NMOS switching transistor 17, the conventional switch-bootstrapping technique [3] may be improved by obtaining a high linearity performance of the switch transistor 17 over a wide signal swing.

According to the invention the floating voltage FV produced by the bootstrapping arrangement 10 is applied during the on-state ONS not only to the front gate contact 5 of the switching transistor 17 but also to the back gate contact 18 of the switching transistor 17. In other words, the front gate contact 5 and the back gate contact 18 are shorted at least during the on-state ONS. With this innovative arrangement, both, the front gate contact 5 and the back gate contact 18 are bootstrapped to the source contact 3 during the on-state ONS, wherein a voltage is applied which is equal to the sum of the floating FV voltage and a voltage of the input signal IS.

This leads to an improvement of the performance of the switching transistor 17 because: The potential difference between the back gate contact 18 and the source contact 3 is the floating voltage FV which is constant. Since there is no variation of the threshold voltage with the voltage of the input signal IS, the switch-resistance during the on-state ONS is also input-independent. A positive voltage between the back gate contact 18 and the source gate contact 3 leads to forward-body-biasing of the switching transistor 17. Due to this the threshold voltage of the switching transistor 17 is reduced during the on- state ONS which results in a reduction of the switch-resistance during the on- state ONS. Hence, a target switch-resistance for the on-state of the switching transistor 17 can be achieved with a smaller aspect ratio (width/length). This results in the reduction of transistor-area dependent issues like clock- feedth rough [1 1] and charge-injection [1 1 ]. According to a preferred embodiment of the invention the switch device 1 comprises a ground contact 7 for providing a ground voltage GRV; wherein the bootstrapping arrangement 10 is configured in such way that during the on-state ONS the front gate contact 5 of the switching transistor 17 and the back gate contact 18 of the switching transistor 17 are not electrically connected to the ground contact 7; wherein the bootstrapping arrangement 10 is configured in such way that during the off-state OFS the front gate contact 5 of the switching transistor 17 and the back gate contact 18 of the switching transistor 17 are electrically connected to the ground contact 17. According to a preferred embodiment of the invention the back gate contact 8 is electrically connected to the front gate contact 5 by a permanent electrical connection 21 .

In a further aspect the invention provides a sampler for an analog/digital con- verter, wherein the sampler comprises a switching device 1 according to the invention.

In a further aspect the invention provides an analog/digital converter, wherein the analog/digital converter comprises a sampler according to the invention.

Figure 5 illustrates an embodiment of a switching transistor being a flipped- well-silicon-on-insulator-NMOS transistor as used in the switch devices according to the invention in a schematic view. According to a preferred embodiment of the invention the switching transistor 17 is a flipped-well fully depleted silicon-on-insulator NMOS transistor 17. Fully-depleted silicon-on-insulator technology has emerged as a cost- effective advanced process option that provides several benefits over its bulk counterparts [1 , 2],

The fully-depleted silicon-on-insulator technology features devices fabricated in a planar process with a less than 7 nm thin silicon film on a buried oxide layer 22 [2]. Figure 5 shows the cross section of devices in fully-depleted silicon-on-insulator technology. By the virtue of the buried oxide layer 22, these devices exhibit reduced leakage currents and provide robustness against latch-up. The buried oxide layer 22 isolates the well contact 18 of the device. This contact is called the back gate contact 18, whereas the conventional gate contact above the thin gate-oxide is referred to as the front-gate contact 5. An extended range of voltages can be applied at the back gate contact 18 to control the threshold voltage of the transistor 7 in such a way so as to strike a balance between optimum performance and power-efficiency as per the requirements of the applications.

Although the presented design is verified for a fully-depleted silicon-on- insulator, the same idea can be also used in other flavours of silicon-on- insulator based transistors, such as partially-doped silicon-on-insulator transistors.

According to a preferred embodiment of the invention the switching transistor 17 comprises a buried insulator 22, wherein the source region 13, the drain region 14 and the gate region 15 are arranged at a first side of the buried insulator 22, and wherein the flipped-well 1 is arranged at a second side of the buried insulator 22.

According to a preferred embodiment of the invention the switching transistor 17 comprises a substrate region 16, wherein the buried insulator 22 is arranged at a first side of the flipped-well 16, and wherein the substrate region 16 is arranged at a second side of the flipped wall 16.

A NMOS transistor in flipped-well in 22 nm FDSOI technology may be used as the switching transistor 17. A flipped-well NMOS transistor is one where the active-NMOS device is placed in an n-well instead of a conventional p- well. Hence, the well is ..flipped". The choice of a flipped-well NMOS in FDSOI has the following advantages: The threshold voltage can be strongly controlled through the back gate contact 18 in flipped-well silicon-on-insulator transistors. Since bulk-NMOS transistors are placed in a p-well, this would also require a deep n-well to isolate the back gate contact from the p-type substrate. This would lead to more parasitic components at the well-substrate junctions and also to additional costs due to the requirement of an extra mask. Due to a insulator, e. g. a buried oxide layer, a voltage of up to 2 V can be applied to the back gate of the transistor 17 [2]. A positive voltage of the back gate contact 18 with respect to the source contact 3 leads to lowering of threshold voltage. This is also known as forward-body-biasing.

Figure 6 illustrates an embodiment of a switch device for switching an analog electrical input signal according to the invention as a functional diagram.

According to a preferred embodiment of the invention the switch device 1 comprises a positive supply voltage contact 26 for providing a positive supply voltage PSV; wherein the voltage providing arrangement 23 comprises a capacitor 26; wherein the positive terminal 24 is electrically connected to a positive contact 28 of the capacitor 27; wherein the negative terminal 25 is electrically connected to a negative contact 29 of the capacitor 27; wherein the bootstrapping arrangement 10 is configured in such way that during the on-state ONS the positive contact 28 of the capacitor 27 is not electrically connected to the positive supply voltage contact 26, and the negative contact 29 of the capacitor 27 is not electrically connected to the ground contact 7; wherein the bootstrapping arrangement 10 is configured in such way that during the off-state OFS the positive contact 28 of the capacitor 27 is electrically connected to the positive supply voltage contact 26, and the negative contact 29 of the capacitor 27 is electrically connected to the ground contact 7. According to a preferred embodiment of the invention the bootstrapping arrangement 10 comprises a first switch 30 for electrically connecting the positive contact 28 of the capacitor 27 to the positive supply voltage contact 25; wherein the bootstrapping arrangement 10 comprises a second switch 31 for electrically connecting the negative contact 29 of the capacitor 27 to the ground contact 7; wherein the bootstrapping arrangement 10 comprises a third switch 32 for electrically connecting the positive contact 28 of the capacitor 27 to the front gate contact 5 of the switching transistor 17 and to the back gate contact 18 of the switching transistor 17; wherein the bootstrapping arrangement 10 comprises a fourth switch 33 for electrically connecting the negative contact 29 of the capacitor 27 to the source contact 3 of the switching transistor 17; wherein the bootstrapping arrangement 10 comprises a fifth switch 34 for electrically connecting the ground contact 7 to the front gate contact 5 of the switching transistor 17 and to the back gate 18 contact of the switching transistor 17.

As mentioned before it is proposed to implement the NMOS switch transistor

17 in such way that has a flipped well 19 that its back gate contact 18 and the front gate contact 5 are shorted together, hence, the switch device could be named "back-gate-and-front-gate bootstrapped switch". The parasitic diode 20, formed at the junction between the n-well and the p-substrate of the NMOS is also shown in the illustration. During the non-conducting off-stage OFS the first switch 30 and the second switch 31 are closed and the capaci- tor 27 is charged to the positive supply voltage. During the conducting onstage ONS, the capacitor 27 is connected between the gate contacts 5 and

18 and the source contact of switching transistor 17 by the third switch 32 and the forth switch 33. This results in bootstrapping of both the front gate contact 5 and the back gate contact 18 to the source contact 3. This topology improves the switch linearity over the conventional bootstrapped switch, where only the front gate contact 5 is bootstrapped to the source contact 3, because of two reasons: i) forward-body-biasing reduces the voltage threshold, thereby, reducing the switch-resistance of switching transistor 17 during the on-state, and ii) since the back gate contact 18 also tracks the input signal IS, threshold voltage variations dependent on the input signal IS are removed resulting in an input-independent switch-resistance during the on-state. Additionally, the reduction of threshold voltage due to forward-body-biasing during the on- state allows the switching transistor 17 to have a low switch-resistance during the on-state with a relatively small aspect ratio (width/length).

According to a preferred embodiment of the invention the switches 30, 31 , 32, 33, 34 are controlled by one or more binary control signals φ1 , φ2.

Figure 7 illustrates an embodiment of a switch device 1 for switching an analog electrical input signal IS according to the invention as a circuit diagram. The bootstrapping arrangement 10 is similar to bootstrapping arrangements described in [6] and [12]. However, the performance of the proposed switch device 1 is improved by combining such bootstrapping arrangement 10 with switching transistor 17 as described herein. The circuit diagram of Figure 7 and the functional diagram of Figure 6 represent the same switch device 1. However, it has to be noted that the circuit diagram of Figure 7 is just an ex- ample for an implementation of the switch device according to the block diagram of Figure 6.

To implement the switching scheme of the proposed bootstrapped switch device 1 , the topology similar to the one presented in [6] may be chosen be- cause it does not require additional clock boosting. Figure 7 illustrates the implementation of the switch topologies. A major challenge in the circuit implementation of the switch-bootstrapping topology is maintaining reliable operation of all the switches 30, 31 , 32, 33, 34 due to the generation of internal voltage levels beyond the positive supply voltage PSV. By the virtue of the buried insulator 22, the back gate contacts 8 of silicon-on-insulator transistors 17 may support voltage levels up to 2 V. Since the internal voltage levels are below this limit, the back gate contact 8 of transistor 17 may be shorted to the ground contact 7 without leading to dielectric breakdown.

The first switch 30 is realized as a PMOS transistor 35. Furthermore, the second switch 31 is realized as an NMOS transistor 36. The third switch 32 corresponds to a PMOS transistor 37. The fourth switch 33 is represented by an NMOS transistor 38 and the 5th switch 34 by NMOS transistor 40. NMOS transistor 39 ensures reliable operation of NMOS transistor 40 by protecting it from voltage levels beyond the positive supply voltage PSV.

Each of transistors 35, 36, 37, 38, 39, 40, 41 , 42 may be a FDSOI transistor 35, 36, 37, 38, 39, 40, 41 , 42 so that the back-gate contact of each of the transistors 35, 36, 37, 38, 39, 40, 41 , 42 may be shorted to ground contact without causing dielectric breakdown.

In order to turn on and off PMOS transistor 37 sufficiently during the on-state ONS and the off-state OFS respectively, the gate of PMOS transistor 37 is controlled by the help of PMOS transistor 41 , NMOS transistor 42 and NMOS transistor 43. So, PMOS transistor 37 in Figure 7 corresponds to the first switch 32 in Figure 6. Although PMOS transistor 41 , NMOS transistor 42 and NMOS transistor 43 do not correspond to any of the switches 30, 31 , 32, 33 and 34 of Figure 6, they are required for the reliable operation of the PMOS transistor 37. The gate of 38 is also controlled by the same signal as gate of the switching transistor switch 17.

As seen in Figure 6, the terminal of switch 34, which is not shorted to the ground contact 7 during the on-state ONS, experiences a voltage of the sum of the positive supply voltage PSV and the voltage of the input signal IS during the on-state ONS as the floating voltage FV of the capacitor has the same value as the positive supply voltage PSV. This can cause reliability problems if switch 34 is implemented with only one NMOS transistor 40. This is because, during the during the on-state ONS, for positive values of the voltage of the input signal IS, a potential difference greater than the nominal positive supply voltage PSV is experienced across the gate-oxide and the channel of NMOS transistor 40. To solve this problem, NMOS transistor 39 is added with its gate shorted to the positive voltage supply contact 26 as seen in Figure 7. This allows the sum of the positive supply voltage PSV and the voltage of the input signal IS during the on-state ONS to drop partially across NMOS transistor 39. Hence, the gate-oxide and the channel of NMOS transistor 40 are not electrically overstressed.

Figure 8 illustrates simulation results of the total-harmonic-distortion of the switch device 1 according to the invention and of the switch device 1 according to prior art. A first curve CU1 shows the total-harmonic-distortion of the switch device 1 according to the invention depending on the peak-to-peak amplitude of the input signal IS. A second curve CU2 shows the total- harmonic-distortion of the switch device 1 according to prior art depending on the peak-to-peak amplitude of the input signal IS.

A basic differential sample-and-hold circuit comprising the switch device 1 and a load capacitor is used to verify the performance. The width of the respective switching transistor 2 or 17, is determined for the minimum channel length to achieve during the on-state ONS approximately a resistance of 300 Ω for a 5 pF load capacitor clocked with a Nyquist-sampling frequency of 20 MHz. The nominal positive supply voltage PSV is 0.8 V and input common- mode voltage is 400 mV. Figure 8 shows the total-harmonic-distortion (THD) of the sampled signal OS calculated for the input signal IS having a frequency of 9.5 MHz, which is close to the Nyquist-bandwidth, across a wide range of amplitudes. It can be observed from the plot that as compared to the conventional switch device 1 , a significant improvement in linearity during conduction is achieved by the switch device 1 according to the invention.

The above described is merely illustrative, and it is understood that modifications and variations of the arrangements and the details described herein will be apparent to others skilled in the art. It is the intent, therefore, to be limited only by the scope of the impending claims and not by the specific details presented by way of description and explanation above.

The research leading to these results has received funding from the European Union. Reference signs:

I switch device

2 switching transistor being a conventional bulk-NMOS transistor

3 source contact

4 drain contact

5 front gate contact

6 bulk contact

7 ground contact

8 input contact

9 output contact

10 bootstrapping arrangement

I I switch

12 switch

13 source region

14 drain region

15 gate region

16 bulk region

17 switching transistor being a flipped-well-silicon-on-insulator-NMOS transistor

18 back gate contact

19 flipped well

20 parasitic diode

21 permanent electrical connection

22 buried insulator

23 voltage providing arrangement

24 positive terminal

25 negative terminal

26 positive voltage supply contact

27 capacitor

28 positive contact

29 negative contact

30 first switch

31 second switch

32 third switch 33 fourth switch

34 fifth switch

35 PMOS transistor

36 NMOS transistor

37 PMOS transistor

38 NMOS transistor

39 NMOS transistor

40 NMOS transistor

41 PMOS transistor

42 NMOS transistor

43 NMOS transistor

IS input signal

OS output signal

ONS on-state

OFS off-state

GAV gate voltage

GRV ground voltage

PSV positive supply voltage

Φ1 first binary control signal

Φ2 second binary control sig

FV floating voltage

References:

[1] O. Weber et al., "14nm FDSOI technology for high speed and energy efficient applications," 2014 Symposium on VLSI Technology (VLSI- Technology): Digest of Technical Papers, Honolulu, HI, 2014, pp. 1-2. [2] R. Carter et al., "22nm FDSOI technology for emerging mobile, Inter- net-of-Things, and RF applications," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 2.2.1-2.2.4.

[3] B. Razavi, "The Bootstrapped Switch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 3, pp. 12-15, Summer

2015. U. Moon et al., "Switched-capacitor circuit techniques in submicron low-voltage CMOS," VLSI and CAD, 1999. ICVC '99. 6th International Conference on, Seoul, 1999, pp. 349-358.

J. Steensgaard, "Bootstrapped low-voltage analog switches," Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Symposium on, Orlando, FL, 1999, pp. 29-32 vol.2.

M. Dessouky and A. Kaiser, "Input switch configuration suitable for rail-to-rail operation of switched op amp circuits," in Electronics Letters, vol. 35, no. 1 , pp. 8-10, 7 Jan 1999.

J. Brunsilius et al., "A 16b 80MS/s 100mW 77.6dB SNR CMOS pipeline ADC," 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011 , pp. 186-188.

B. Nikolic et al., Circuit Design in Nanoscale FDSOI Technologies, MIEL 2014, Belgrade, Serbia, 12-14 may, 2014.

UTBB-FDSOI Design & Migration Methodology, STMicroelectronics

[10] Huang, Guanzhong, and Pingfen Lin. "A fast bootstrapped switch for high-speed high-resolution A/D converter." Circuits and Systems (APCCAS), 2010 IEEE Asia Pacific Conference on. IEEE, 2010.

U.C. Berkeley, EE247, Lecture 19, ADC Converters, Lecture Notes, 2006. [12] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure", in IEEE Journal of Solid-State Circuits, Volume: 45, Issue: 4, April 2010.