Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYNCHRONIZED DUAL THREAD CONNECTOR
Document Type and Number:
WIPO Patent Application WO/1995/018934
Kind Code:
A1
Abstract:
A screw-threaded connection incorporates dual synchronized threads (14, 16, 18, 20), that is, one connection element has a set of external male threads (14) that mates with a corresponding set of internal female threads (16) on the mating connection element, in customary fashion. The first connection element additionally includes a second set of internal female threads (18) synchronized with the first set such that the leads of both sets of threads are the same. This second set of internal female threads (18) mates with a corresponding set of external male threads (20) on the mating connection element. Of course, the two sets of threads on the mating connection element are synchronized such that their leads are the same, and, of course, the same as first sets of mating dual synchronized threads. This dual synchronized thread connection has application to any fluid connector and particularly to fluid connectors in wide-variant temperature deviation, high pressure, and/or mechanical environments.

Inventors:
SIMMONS JOHN M (US)
SIMMONS TOM M (US)
Application Number:
PCT/US1995/000145
Publication Date:
July 13, 1995
Filing Date:
January 06, 1995
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIMMONS JOHN M (US)
SIMMONS TOM M (US)
International Classes:
B65D41/04; F16L15/00; F16L15/04; F16L19/028; F16L19/065; F16L55/11; F16L55/115; (IPC1-7): F16L5/10; F16L15/00; B65D41/04
Foreign References:
US1474905A1923-11-20
US3470929A1969-10-07
US2019402A1935-10-29
US1372876A1921-03-29
US3308979A1967-03-14
US0417393A1889-12-17
US2977993A1961-04-04
Other References:
See also references of EP 0755492A4
Download PDF:
Claims:
What is claimed is:
1. A threaded assembly comprising: (a) A first member having a set of external male threads and a set of internal female threads synchronized with said external male threads; and (b) A second member having a set of internal female threads adapted to mate with said first member external male threads, and a set of external male threads adapted to mate with said first member internal female threads, said second member external male threads being synchronized with said second member internal female threads.
2. A threaded assembly as set forth in claim 1 , wherein said threaded assembly is a fluid connector.
3. A threaded assembly as set forth in claim 1 , wherein all of said threads are straight, nontapered threads.
4. A threaded assembly as set forth in claim 3, further comprising sealing means for fluidly sealing between said first and second members.
5. A threaded assembly as set forth in claim 4, wherein said sealing means comprises at least one Oring.
6. A threaded assembly as set forth in claim 1 , wherein all of said threads are tapered pipe threads.
7. A threaded assembly as set forth in claim 1 , wherein said first member male threads are straight, nontapered threads, and said first member female threads are tapered threads.
8. A threaded assembly as set forth in claim 1 , wherein said first member female threads are straight, nontapered threads, and said first member male threads are tapered threads.
9. A threaded assembly as set forth in claim 1 , wherein one or both sets of said first member threads comprises multiple threads.
10. A threaded assembly as set forth in claim 1 , wherein said male and female threads are oriented in a manner to maximize the amount of material between said male and female threads.
11. 1 1.
12. A threaded assembly as set forth in claim 2, further comprising a ferrule for fitting around a cylindrical fluid conduit and within said first and second connector members.
13. A threaded assembly as set forth in claim 1 1 , wherein said ferrule is integrally formed with one or the other of said connector members.
14. A threaded assembly as set forth in claim 2, wherein one of said fluid connector members further comprises an external annular bevelled surface that cooperates with a mating internal annular bevelled surface formed with the other of said fluid connector members for sealing against a flared end of a fluid conduit within the other of said fluid connector members.
15. A threaded assembly as set forth in claim 2, further comprising a sleeve for positioning within a bore in one of said fluid connector members, said sleeve having an external annular bevelled surface that cooperates with a mating internal annular bevelled surface formed with the other of said fluid connector members for sealing against a flared end of a fluid conduit within the other of said fluid connector members.
16. A threaded assembly as set forth in claim 14, further comprising sealing means for fluidly sealing between said one of said fluid connectors and said sleeve.
17. A threaded assembly as set forth in claim 1 , wherein one of said members defines an opening into the interior of a portion of a fluid device, and the other of said members defines a closure for said opening.
18. A threaded assembly as set forth in claim 16, wherein all of said threads are straight, nontapered threads.
19. A threaded assembly as set forth in claim 16, wherein all of said threads are tapered pipe threads.
20. A threaded assembly as set forth in claim 16, wherein said first member male threads are straight, nontapered threads, and said first member female threads are tapered threads.
21. A threaded assembly as set forth in claim 16, wherein said first member female threads are straight, nontapered threads, and said first member male threads are tapered threads.
22. A threaded assembly as set forth in claim 16, wherein one or both sets of said first member threads comprises multiple threads.
23. A threaded assembly as set forth in claim 18, further comprising 5 sealing means for fluidly sealing between said first and second members.
24. A threaded assembly as set forth in claim 16, wherein said male and female threads are oriented in a manner to maximize the amount of material between said male and female threads.
Description:
SYNCHRONIZED DUAL THREAD CONNECTOR BACKGROUND OF THE INVENTION RELATED APPLICATION This application is a continuation-in-part of co-pending U.S. application entitled Synchronized Dual Thread Connector, U.S. Serial No. 08/178,909, filed January 7, 1994.

1. Field of the Invention.

The present invention relates to connectors and other threaded mechanisms, and more particularly, relates to threaded connectors and threaded mechanisms that incorporate mating sets of dual synchronized threads for effecting the union between the threaded connections.

2. Description of the Prior Art.

It is well known in the prior art to have a tube, pipe or other cylindrical object that incorporates dual threads. That is, a portion of the external surface of the pipe includes male threads, and a portion of the internal surface of the pipe includes female threads. Such dual-threaded cylindrical devices are typically utilized wherein a cap or cover screws onto the end of the pipe or tube utilizing the external male threads, and the internal female threads are utilized for providing a screw-adjustment to an internal mechanism where the tube or pipe is connected. An example is a fluid pressure relief valve, wherein the relief pressure is adjustable by turning a threaded plug or the like within the internally threaded tube, the threaded plug engaging a spring and ball mechanism that defines the relief valving mechanism, the screw-adjustment mechanism within the tube being environmentally protected by a cap that screws over the end of the pipe or tube, utilizing the external male threads of the pipe or tube. Another example is the valve stem used on vehicle tires and wheels, wherein the internally threaded portion of the cylindrical valve stem is utilized to threadedly receive therein the valve core element which defines the closure mechanism for

the valve stem, and the external male threads on the end of the cylindrical valve stem receive thereon the plastic or metal cap which is an environmental seal for the valving mechanism within the valve stem.

In these prior art dual thread applications, the internal and external threads function independently of each other, the internal threads serving a function related to the operation of the device itself, and the external threads simply serving as a means to attach a protective environmental cover over the internal mechanism.

In many prior art fluid devices (pumps, valves, motors, etc.), the device includes a cap or cover plate that must effectively seal the inner workings of the device. Such a cap or cover plate generally covers and seals a portion of the device body that needs to be accessible for purposes of manufacture, assembly, adjustment, etc. Many times these caps or plates are made of a different material from that of the device body. In such instances, differences in rates and amounts of material expansion and contraction between the cap or plate and the fluid device body occur because of applications of the fluid device in extremely high or low temperature environments, in high pressure environments, and/or due to water absorption by plastic components. In addition, conventional connector caps or nuts are generally of thinner wall construction than the bodies or mating connectors, and therefore tend to expand as the cap or nut is tightened. In such instances (threaded caps or plates expanding different amounts and at different rates), thread separation occurs, thereby jeopardizing the fluid seal between the cap and plate or fluid device body.

OBJECTS OF THE INVENTION It is an object of the present invention to provide a threaded engagement between two mating pieces that eliminates the problem of thread separation caused by different rates of expansion of dissimilar mating materials.

It is a further object of the present invention to provide a threaded connection that doubles the thread strength over the thread length in the mating threaded connectors.

It is a further object of the present invention to provide mating threaded connectors that more effectively maintain their circularity in contact, thereby maximizing actual thread contact between the mating threaded connectors.

It is a still further object of the present invention to provide mating threaded connectors that provide full thread strength in areas where recommended thread depth is not otherwise obtainable. It is a still further object of the present invention to provide mating threaded connectors that are not susceptible to loosening under vibration as the mating connectors expand and contract due to varying thermal and/or pressure effects, or as a result of tightening.

SUMMARY OF THE INVENTION A threaded connector comprises two members, each incorporating concentric synchronized dual threads that are adapted to engage mating concentric synchronized dual threads of the mating connector member, such that each mating connector member includes both external male threads and internal female threads. BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a sectional view taken through a simple pipe sleeve connection embodying the dual synchronized thread connectors of the present invention.

Fig. 2 is a sectional view taken through an in-line union fluid connector that utilizes the synchronized dual threads of the present invention, in a ferrule-type connector.

Fig. 3 is a sectional view taken through a synchronized dual thread ferrule connector nut that screws into the body of a fluid device, the ferrule being formed with the nut.

Fig. 4 is a sectional view taken through an in-line synchronized dual thread connector for use with a flared fluid conduit.

Fig. 5 is a sectional view through a flare-type dual synchronized thread connector, wherein the connector nut engages a portion of the body of a fluid device.

Fig. 6 is a sectional view similar to Fig. 5, illustrating a different type of fluid conduit flared connection.

Fig. 7 is a sectional view through a dual synchronized thread protective cap that is adapted to cover an open access area of a fluid device.

Fig. 8 is a sectional view through an alternative embodiment of a dual synchronized thread cap, illustrating the reverse concept of the cap of Fig. 7.

Fig. 9 is a sectional view similar to Fig. 7, illustrating the placement of O-rings for improved fluid seal.

Fig. 10 is a sectional view similar to Fig. 8, illustrating the placement of O-rings for improved fluid seal. Fig. 1 1 is a sectional view through a portion of one connector incorporating the dual synchronized threads of the present invention, illustrating the location of the starting points for both sets of threads relative to each other, in order to maximize the amount of material between the sets of threads. DETAILED DESCRIPTION OF THE INVENTION Turning now to the drawings, and initially to Fig. 1 , the concept of the present invention is shown in its most simplistic form, that being a threaded connection between two pipes or other fluid conduits, one of them having an area of increased wall thickness in order to accommodate and accept the

threaded end of the other. Fig. 1 is a sectional view through the threaded connectors, and illustrates a first threaded connector 10 on the right and the mating threaded connector 1 2 on the left. As shown, the first connector 1 0 is formed with a set of external male threads 14 on the end thereof in a customary manner for a threaded pipe. In addition, the first connector 10 includes a set of female threads 1 6 on the internal surface of the connector, also in a customary fashion. In accordance with the present invention, these internal and external threads 14 and 1 6, respectively, are synchronized, such that rotating the first connector 1 0 in the right hand (clockwise) direction enables both the external and internal threads to travel along and engage mating threads on the mating threaded connector 1 2. In this regard, the mating connector 1 2 includes a set of internal female threads 1 8 that engage corresponding external male threads 14 of the first connector, and mating external male threads 20 that engage corresponding internal female threads 1 6 of the first connector. Of course, these corresponding internal and external threads 1 8 and 20, respectively, of the mating threaded connector 1 2 are also synchronized with each other so that they mate with and engage the synchronized external male threads 14 and internal female threads 1 6, respectively, of the first threaded connector 10 as the two threaded connectors are screw-threaded together. In the embodiment shown in Fig. 1 , all of the thread sets 14, 1 6, 1 8 and

20 are straight threads, as opposed to tapered pipe threads. Straight threads are not designed to serve as fluid seals between the two mating threaded pieces. Therefore, the embodiment of Fig. 1 includes an O-ring 22 in the bottom of the annular channel defined by the second connector synchronized internal female threads 1 8 and external male threads 20, for providing the fluid seal between the first and second threaded connectors 10, 1 2. Of course, the thread sets 14, 1 6, 1 8 and 20 can be tapered pipe threads, which are designed to effect a fluid seal therebetween, thereby obviating the necessity for the

O-ring fluid seal. Also, of course, the fluid seal can be effected by sealing means other than O-rings, i.e., by any fluid seal design or type that is typical for the particular industry in which a dual synchronized thread connector of the present invention is utilized. Fig. 2 is a sectional view taken through an in-line union ferrule-type fluid connector that utilizes the synchronized dual threads of the present invention. As shown, the connector of this embodiment comprises a union 24 and two nuts that are identical, and therefore will be designated by the same reference numeral 26. The union 24 includes identical and opposed frustoconical tapered surfaces 28 that engage respective tapered ferrules 30 positioned around identical ends of conduits or tubing 32 to be connected together in a fluid seal. Each nut 26 also includes a frustoconical tapered surface 34 for engaging the opposite tapered surface 36 of the ferrule 30. The workings of the union connector of Fig. 2 are customary and standard in the fluid industry. Each nut 26 includes, in addition to the customary internal female threads

38, a set of external male threads 40 that are, of course, synchronized with the internal female threads 38. These respective internal female threads 38 and external male threads 40 of the nut engage respective synchronized external male threads 42 and internal female threads 44 of the union 24. As is customary, these union connector threads 38, 40, 42, and 44 are straight threads, as opposed to tapered or pipe threads, and therefore do not effect a fluid seal. Rather, as is customary, the fluid seal of the connector of Fig. 2 is effected by the tapered ferrules 30 and their engagements with respective frustoconical tapered surfaces 28 of the union and 34 of the nut, and the ferrules' engagement with the fluid conduits 32.

In accordance with the concept of the present invention, the union 24 and nuts 26 incorporate synchronized dual thread connections in order to effect one or more of the objects of the present invention, as applied to ferrule-type

fluid connectors. Specifically, the dual synchronized threads of the Fig. 2 connector maintain the circularity of both mating pieces and of the ferrule and fluid conduit. Dual synchronized threads also eliminate the possibility of the connector threads' separating due to dissimilar rates of expansion of the union and nuts constructed of dissimilar materials, and due to expansion of the conventional connector nut that has no outer portion of the union body to prevent such expansion.

Fig. 3 is a sectional view taken through an alternative ferrule-type fluid connector that utilizes the synchronized dual threads of the present invention, the ferrule being formed as part of the nut. As shown, the connector of Fig. 3 includes a nut 46 that is adapted to threadedly engage the body of a fluid device 48, as in a pump, valve, motor, etc. The nut 46 has incorporated therewith a tapered ferrule 50 that is adapted to engage a mating frustoconical tapered surface 52 of the body of the fluid device in the customary manner to compress the ferrule down around a fluid conduit 54 as the nut is screwed into the body of the fluid device.

The nut 46 includes, in addition to the customary internal female threads 56, a set of synchronized external male threads 58 that engage respective synchronized external male threads 60 and internal female threads 62 formed with the body of the fluid device. The nut 46 of Fig. 3 functions in an identical manner to that of the nut 24 of the Fig. 2 connector to compress the tapered ferrule 50 down against the fluid conduit 54 in the customary manner as the nut is screwed into the fluid device 48. Again, the dual synchronized threads of the present invention incorporated into the connector of Fig. 3 effect the same objects in maintaining the fluid seal between the fluid device and conduit as in the previously described fluid connectors.

Fig. 4 is a sectional view taken through an in-line dual synchronized thread connector for use with a flared end fluid conduit. The connector of the

embodiment of Fig. 4 comprises a nut 64 which is formed with a set of internal female threads 66 in a customary manner for a flared end conduit connector nut. In addition, the nut 64 includes a set of external male threads 68 on the external surface thereof which are synchronized with the internal female threads 66, as has been previously described. The nut 64 is adapted to threadedly engage and be received into a mating connector 70. This mating connector 70 includes a set of external male threads 72 that engage corresponding internal female threads 66 of the nut, and a set of synchronized internal female threads 74 that engage corresponding external male threads 68 of the nut.

The mating connector 70 includes an inner tapered annular surface 76 that is adapted to engage and seal against a mating flared surface 78 of the fluid conduit 80. In this regard, the nut 64 also includes an inner tapered annular surface 82 that mates with the backside of the conduit flared surface 78 and urges the flared surface in fluid sealing relationship against the inner tapered annular surface 76 of the mating connector piece 70 in the convention manner to effect the fluid seal therebetween. The operation of the flared-type fluid connector of Fig. 4 is customary and standard in the fluid industry.

In accordance with the concept of the present invention, the flared fluid conduit nut 64 and mating connector 70 incorporate synchronized dual thread connections in order to effect one or more of the objects of the present invention, as applied to flared end conduit fluid connections. Specifically, the dual synchronized threads of the connector of Fig. 4 maintain the circularity of both mating pieces, the nut and mating connector, and specifically of the conduit flared surface 78 and the inner tapered annular surface 76 of the connector 70 to maintain a tight fluid seal therebetween, and also eliminate the possibility of the connector threads' separating due to dissimilar rates of

expansion of the nut and its mating connector constructed of dissimilar materials.

Fig. 5 is a sectional view through a flare-type dual synchronized thread connector, wherein the connector nut 84 is adapted to threadedly engage the body of a fluid device 86 as in a pump, valve, motor, etc. The nut 84 has incorporated therewith an inner tapered annular surface 88 that engages the backside of a flared end 90 of a fluid conduit 92 in the customary manner to urge the conduit flared end against a mating inner tapered annular surface 94 of the fluid device body 86 in order to effect a fluid seal therebetween. The nut 84 includes, in addition to the customary internal female threads 96, a set of synchronized external male threads 98 that engage respective synchronized external rru 3 threads 100 and internal female threads 102 formed with the body of the fluid device.

The nut 84 of Fig. 5 functions in an identical manner to that of the nut 64 of the Fig. 4 connector to urge the conduit flared end 90 against the fluid device body inner tapered annular surface 94 in the customary manner to effect the fluid seal therebetween as the nut is screwed into the fluid device 86. Again, the dual synchronized threads of the present invention incorporated into the connector of Fig. 5 effect the same objects in maintaining the fluid seal between the fluid device and conduit as in the previously described fluid connectors.

Fig. 6 is a sectional view similar to Fig. 5, illustrating a different type of fluid conduit flared end connector. The connector of Fig. 6 includes a nut 1 04 that is adapted to threadedly engage the body of a fluid device 106, as in a pump, valve, motor, etc. The nut 104 has incorporated therewith an inner tapered annular surface 108 that is adapted to urge against an annular transition area 1 10 of an enlarged end 1 1 2 of a fluid conduit 1 14.

The fluid connector of Fig. 6 includes a ferrule sleeve 1 16 that functions similarly to the inner tapered annular surface 76 of the connector of Fig. 4 and inner tapered annular surface 94 of the fluid device body of Fig. 5 to form a fluid seal between the ferrule sleeve and the conduit 1 14. In this embodiment, the inner annular tapered surface 108 of the nut urges the annular transition area 1 10 of the conduit against a mating second annular tapered surface 1 18 of the ferrule sleeve in order to effect a fluid seal therebetween. The fluid seal between the ferrule sleeve 1 16 and the body of the fluid device 106 is effected by an O-ring seal 120 positioned in an annular channel defined by the bottom of the fluid device body borehole 122 and a tapered annular surface 124 of the ferrule sleeve 1 16.

The nut 104 in the Fig. 6 embodiment includes, in addition to the customary internal female threads 126, a set of synchronized external male threads 128 that engage respective synchronized external male threads 130 and internal female threads 132 formed with the body of the fluid device 106. The nut 104 of Fig. 6 functions in an identical manner to that of the nut 84 of the Fig. 5 connector to compress the conduit annular transition area 1 10 down against the tapered annular surface 1 18 of the ferrule sleeve 1 16 to effect a fluid seal therebetween in the customary manner as the nut is screwed into the fluid device. In addition, tightening the nut 104 down against the fluid conduit and ferrule sleeve also effects the fluid seal provided by the O-ring 120. Again, the dual synchronized threads of the present invention incorporated into the connector of Fig. 6 effect the same objects in maintaining the fluid seal between the fluid device and conduit as in the previously described fluid connectors. Fig. 7 is a sectional view through a dual synchronized thread protective cap 134 that is adapted to cover an open access area of a fluid device 136. This protective cap 134 includes a set of internal female threads 138 adapted to engage mating external male threads 140 formed in the body of the fluid

device, as is customary in caps of this nature. In addition to the internal female threads 1 38, the protective cap includes a set of synchronized external male threads 142 adapted to engage and mate with corresponding synchronized internal female threads 144 formed with the fluid device. The protective cap 1 34 of Fig. 7 is adapted to cover an open access area of a fluid device, as in a pump, motor, valve, etc., and therefore must effect a fluid and environmental seal between the cap and body of the fluid device. Therefore, these mating synchronized threads 138 and 142 of the cap and 140 and 144 of the fluid device body are tapered pipe threads in order to effect the fluid seal therebetween as the cap is tightened down into the fluid device body.

It can be appreciated that, in certain instances, the tapered pipe threads of the protective cap 134 could tend to collapse the walls of the fluid device 136 around the access opening, as in when the device is constructed of plastic or other soft material, and/or the wall between the access opening and fluid device male threads 140 is relatively thin. In such instances, it is desirable to form the protective cap 1 34 with a shoulder 135 that is designed to fit into the access opening to oppose such wall collapse. This cap shoulder 1 35 may include a slight taper, for instance in an amount equal to the thread taper, in order to more effectively seal against the access opening wall, and prevent collapse or movement of the access opening wall.

In accordance with the concept of the present invention, the protective cap 1 34 and its threaded connection into the fluid device 1 36 incorporate synchronized dual threads in order to effect one or more of the objects of the present invention. Specifically, the dual synchronized threads of the Fig. 7 protective cap maintain the circularity of the cap and its threaded connection to the fluid device, and also eliminate the possibility of the cap threads' separating due to dissimilar rates or amounts of expansion of the cap relative to the fluid

device body, caused by different coefficients of thermal expansion of different cap and fluid device materials, or due to different amounts of material expansion or contraction in high-pressure environments, as in high fluid pressure applications or underwater applications. Fig. 8 is a sectional view through an alternative embodiment of a dual synchronized thread cap 146, illustrating the reverse concept of the cap and its threaded connection to the body of a fluid device 148. The protective cap 146 includes a set of internal female threads 50 adapted to engage mating external male threads 152 formed in a cylindrical extension of the body of the fluid device, in a customary manner. In addition to the internal female threads 150, the protective cap of Fig. 8 also includes a set of synchronized external male threads 154 adapted to engage and mate with corresponding synchronized internal female threads 1 56 formed on the internal surface of the fluid device cylindrical connector portion. As in the cap of Fig. 7, the protective cap 146 shown in Fig. 8 is adapted to cover an open access area of a fluid device and provide a fluid and environmental seal therefor. Therefore, the mating synchronized threads of the cap and fluid device are tapered pipe threads in order to effect this fluid seal as the cap is tightened down onto the fluid device. Fig. 9 is a sectional view of a protective cap 162 similar to that shown in Fig. 7, illustrating the placement of O-ring seals 158 and 160 between the undersurface of the cap 162 and the external surface of the body of the fluid device 164. The cap 162 includes synchronized internal female threads 166 and external male threads 68 that engage mating dual synchronized external male threads and internal female threads 172 in the fluid device in identical orientation to that shown in Fig. 7. The dual synchronized threads of the Fig. 9 embodiment are not tapered pipe threads, but rather are straight, non fluid-sealing threads, thus necessitating the O-rings 158 and 160 for fluid

sealing between the cap and fluid device. Nonetheless, the protective cap 162 may be formed with a shoulder 163 that is designed to fit into the access opening to oppose any potential collapse of the access opening wall, as in the cap and shoulder 134, 135 in the embodiment of Fig. 7. In addition, a third O-ring 174 may be positioned in the bottom of the annular channel defined by the fluid device body synchronized male and female threads, 170 and 172, for providing additional fluid sealing capability between the fluid device body and its protective environmental cap.

Fig. 10 is a sectional view similar to Fig. 8, illustrating the placement of an O-ring for effecting the fluid seal between the protective cap 178 and body of the fluid device 180. The embodiment of Fig. 10, like that of Fig. 9, utilizes sets of synchronized straight threads as opposed to fluid sealing pipe threads, in order that the internal female threads 182 of the fluid device may also be used to facilitate assembly or adjustment of the pump, motor, valve, etc. Therefore, the O-ring 176 is positioned on the outside of the fluid device cylindrical extension adjacent the external male threads.

Straight threads are utilized in the embodiment of Fig. 10 in instances wherein the internal female threads of the fluid device are also used for facilitating an internal function of the fluid device, as in a screw-threaded adjustment in a fluid relief valve, insertion of a fluid sealing plug into a fluid pump, motor, or valve, etc. In these instances, the fluid device internal female threads serve a dual purpose, and therefore cannot be tapered pipe threads. The O-ring 176 is used in these instances to effect the fluid and environmental seal between the cap 178 and fluid device 180, as opposed to tapered pipe thread which cannot be used in such an application. In addition, a second O-ring 184 may be positioned in the bottom of the annular channel defined by the protective cap synchronized threads for providing additional fluid sealing capability between the cap and fluid device body.

A variation of the environmental caps of Figs. 7, 8, 9, and 10 would comprise a mixed combination of both straight and tapered threads. Specifically, the innermost mating threads in each embodiment can be straight threads, and the concentric outer threads can be tapered threads. In such a configuration, O-rings or other seals may or may not be necessary, depending on the particular application, thread type, depth, and possibly various other factors. Of course, these straight and tapered threads in combination can be reversed, except in the protective cap of Fig. 10, inasmuch as the internal female threads 182 must be straight threads because of their dual function. Fig. 1 1 is a sectional view through a portion of one connector incorporating the dual synchronized threads of the present invention, illustrating the location of the starting points for both sets of threads relative to each other, in order to maximize the amount of material between the sets of threads. The connector has a set of external male threads 186 and synchronized female threads 188. The respective starting points of the threads are such that the crest 190 of the external male threads 186 and a corresponding root 192 of the internal female threads are always co-planar. Stated differently, the crest 190 and root 192 are always equidistant (X) from a plane 194 that is normal to the axis 196 of the threads. In this manner, the maximum amount of connector material is always between the male and female threads, thereby maximizing the structural integrity of the connector itself, and of both sets of synchronized threads.

From the foregoing, it will be seen that this invention is one well adapted to attain all of the ends and objectives herein set forth, together with other advantages which are obvious and which are inherent to the apparatus. It will be understood that certain features and subcombinations are of utility and may be employed with reference to other features and subcombinations. This is contemplated by and is within the scope of the claims. As many possible

embodiments may be made of the invention without departing from the scope of the claims. For example, the concept of this invention is intended to embrace left-hand threads and multiple thread applications, that is, connections wherein two or more threads are cut beside each other in order to effect the two objectives: (1 ) fine thread size for greater strength per linear increment, and (2) greater lead, i.e., greater linear travel per rotation in fine threads. One or both of the sets of mating dual synchronized threads may be of the multiple thread type, the obvious limitation being that the lead of the threads, as opposed to the pitch in these instances, be equal for both thread sets. It should also be apparent that in some applications, it may be desirable for one set of mating threads to engage before the other set engages, thereby facilitating attachment of the two connectors. In addition, the term "connector" is to be broadly construed to include any device wherein screw threads are utilized to connect or attach two members together, e.g., the section of a solid rocket booster housing. It is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.