Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYNCHRONOUS MACHINE
Document Type and Number:
WIPO Patent Application WO/2014/147181
Kind Code:
A2
Abstract:
The invention relates to a synchronous machine, comprising a stator (1) and a rotor (2) arranged in such a way that the rotor can be moved in relation to the stator. The stator (1) comprises at least one concentrated winding (A, B, C), which is arranged in grooves of the stator (1). The rotor (2) has a first winding system, which is designed as an exciter winding (6), at least one second winding system, which is designed as a field winding (3), and a rectifier (4), which is connected between said two concentrated winding systems. The first and second winding systems each comprise a concentrated winding.

Inventors:
DAJAKU GURAKUQ (DE)
Application Number:
PCT/EP2014/055613
Publication Date:
September 25, 2014
Filing Date:
March 20, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FEAAM GMBH (DE)
International Classes:
H02K19/12
Other References:
None
Attorney, Agent or Firm:
EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHAFT MBH (DE)
Download PDF:
Claims:
Synchronmaschine mit einem Stator (1) und einem relativ dazu beweglich angeordneten Rotor (2),

der Stator (1) umfassend mindestens eine konzentrierte Wicklung, die in Nuten des Stators (1) angeordnet ist, der Rotor (2) umfassend

- ein erstes Wicklungssystem, das als

Erregerwicklung (3) eingerichtet ist,

- mindestens ein zweites Wicklungssystem, das als

Feldwicklung (6) eingerichtet ist, und

- einen Gleichrichter (4), der zwischen das erste und das zweite konzentrierte Wicklungssystem geschaltet ist,

- wobei das erste und das zweite Wicklungssystem jeweils eine konzentrierte Wicklung umfassen.

Synchronmaschine nach Anspruch 1,

bei der die mindestens eine konzentrierte Wicklung des Stators und/oder das erste Wicklungssystem des Rotors als mehrphasige, insbesondere dreiphasige, konzentrierte Wicklung ausgebildet ist.

Synchronmaschine nach Anspruch 1 oder 2,

bei der eine höhere Harmonische der elektromotorischen

Kraft des Stators (1) als Arbeitswelle genutzt wird.

Synchronmaschine nach einem der Ansprüche 1 bis 3, bei der eine von der Arbeitswelle verschiedene höhere Harmonische der elektromotorischen Kraft des Stators (1) als Erregerwelle zur Speisung der Erregerwicklung (3) genutzt wird.

Synchronmaschine nach Anspruch 3 und 4, bei der die mindestens eine konzentrierte Wicklung des Stators (1) jeweils sowohl die Arbeitswelle, als auch die Erregerwelle erzeugt.

Synchronmaschine nach einem der Ansprüche 1 bis 5, bei der die Feldwicklung (6) mehrere Spulen umfasst, die um je einen Zahn des Rotors (2) gewickelt und die miteinander in Serie verschaltet sind.

Synchronmaschine nach einem der Ansprüche 1 bis 6, bei der die Erregerwicklung (3) und die Feldwicklung (6) jeweils um die gleichen Zähne des Rotors (2) gewickelt sind .

Synchronmaschine nach einem der Ansprüche 1 bis 7, bei der die Feldwicklung (6) und die Erregerwicklung (3) unterschiedliche Spulenbreiten aufweisen.

Synchronmaschine nach einem der Ansprüche 1 bis 8, bei der der Rotor (2) als Schenkelpolrotor ausgebildet ist .

Synchronmaschine nach einem der Ansprüche 1 bis 9, bei der zusätzlich Permanentmagnete (S, N) in den

Rotor (2) eingebracht sind.

Synchronmaschine nach Anspruch 5,

bei der 12 Nuten im Stator (1) und 10 Pole im Rotor (2) vorgesehen sind, und bei der als Arbeitswelle die 5. Harmonische und als Erregerwelle die 7. Harmonische genutzt wird, oder umgekehrt.

Synchronmaschine nach einem der Ansprüche 1 bis 11, bei der der Stator (1) gleichrichterfrei ist.

13. Synchronmaschine nach einem der Ansprüche 1 bis 12, die bürstenlos ausgebildet ist.

Description:
Beschreibung

Synchronmaschine Die vorliegende Erfindung betrifft eine Synchronmaschine mit einem Stator und einem Rotor.

Synchronmaschinen umfassen normalerweise einen ortsfesten Stator und einen relativ dazu beweglichen Rotor. Der Stator einer Synchronmaschine ist üblicherweise zur Aufnahme einer elektrischen Wicklung vorgesehen, die mehrphasig sein kann. Beispielsweise sind bei einer dreiphasigen

Wechselstrommaschine die den drei elektrischen Phasen

zugeordneten Wicklungen zueinander um jeweils 120° elektrisch phasenverschoben.

Im Rotor kommen häufig Permanentmagnete zum Einsatz.

Alternativ sind Elektromagneten möglich, wobei hier ein

Gleichstrom Verwendung findet, der um Rotorzähne gewickelte Spulen durchfließt. Der Gleichstrom kann beispielsweise über Bürsten in den Rotor übertragen werden oder über

Erregerwicklungen und einen rotierenden Gleichrichter.

Synchronmaschine bedeutet, dass sich der Rotor und das rotierende Feld des Stators mit der gleichen Drehzahl drehen.

Elektromagnetisches Drehmoment auf der Welle des Rotors wird durch die Wechselwirkung der Magnetfelder des Stators und des Rotors erzeugt.

Seit einiger Zeit sind Synchronmaschinen mit

Permanentmagneten, sogenannte PM-Maschinen, auf dem

Vormarsch, weil sie eine hohe Energiedichte, kompakte Bauweise, hohen Wirkungsgrad und ein weites Drehzahlband miteinander verbinden. In den letzten Jahren sind jedoch die Preise für Permanentmagnetmaterial stark angestiegen. Zudem gibt es bestimmte Anwendungsfälle, wie beispielsweise der Kurzschlussfall, die den Einsatz von PM-Maschinen in einigen Anwendungen begrenzen.

Daher sind die stromerregten synchronen Wechselstrommaschinen eine interessante Alternative für die Zukunft.

Hierbei wird ein Gleichstrom verwendet, um das stationäre Magnetfeld des Rotors zu erzeugen. Wie oben bereits

angedeutet, wird der für die Felderzeugung benötigte

Gleichstrom zunächst vom Stator in den Rotor übertragen.

Hierfür dienen im Stator üblicherweise zusätzliche

Wicklungen. Die zusätzliche Energie wird über den Luftspalt in Erregerwicklungen des Rotors übertragen und dort mit Hilfe des Gleichrichters gleichgerichtet und der oder den

Feldwicklungen zugeführt, die mit dem so gewonnenen

Gleichstrom das stationäre Magnetfeld des Rotors erzeugen. Dieses Prinzip wird oft als Selbsterregung bezeichnet.

Derartige selbsterregte Maschinen kommen beispielsweise in Windgeneratoren zum Einsatz.

Die Hilfswicklung im Stator, die das Magnetfeld zur

Übertragung der Energie in den Rotor bereitstellt, wird meist als Erregerfeldwicklung bezeichnet und häufig mit Gleichstrom betrieben .

Hierfür ist normalerweise im Stator ebenfalls ein

Gleichrichter erforderlich. Darüber hinaus ist die

zusätzliche Wicklung im Stator nötig, die auch als Statorhilfswicklung bezeichnet wird. Dies führt zu größerem Statorvolumen. Die Hilfswicklung muss ausreichend zu den anderen Wicklungen isoliert sein. Ein weiterer Nachteil des beschriebenen Maschinentyps ist, dass im Stator häufig verteilte, einander überlappende

Wicklungen mit q > 1 verwendet werden, wobei q die Anzahl der Spulen pro Phase und pro Pol ist. Für die Erregerwicklung im Rotor ist häufig eine große Anzahl von Windungen pro Wicklung erforderlich. Eine höhere Trägheit des Motors führt zudem zu verschlechterten dynamischen Eigenschaften der elektrischen Maschine. Bei manchen bekannten Maschinen werden zusätzliche Nuten im Rotor benötigt, um die Feldwicklung und die

Erregerwicklungen des Rotors in den gleichen Rotorkern einbringen zu können. Hierdurch ergibt sich auch ein

komplexer Herstellungsprozess .

Bei der Analyse der Harmonischen im Luftspalt zeigt sich, dass die Hilfswicklung im Stator höhere Harmonische im

Luftspalt erzeugt, die ein stationäres Feld bilden. Die höheren Harmonischen, die von der mehrphasigen Hauptwicklung des Stators erzeugt werden, rotieren mit der Zeit, aber mit unterschiedlicher Geschwindigkeit. Es gibt also

unterschiedliche Harmonische, die mit unterschiedlicher

Rotationsgeschwindigkeit auftreten, was zu einer Fluktuation der induzierten Spannung in den Rotorerregerwicklungen führt. Dies führt zu einer negativen Beeinflussung der

Betriebscharakteristik der Synchronmaschine. Aufgabe der vorliegenden Erfindung ist es daher, eine

Synchronmaschine mit verbesserten Eigenschaften

bereitzustellen. Erfindungsgemäß wird die Aufgabe gelöst durch eine Synchronmaschine mit den Merkmalen des unabhängigen

Patentanspruchs. Ausgestaltungen und Weiterbildungen sind in den abhängigen Patentansprüchen angegeben.

In einer Ausführungsform umfasst eine Synchronmaschine einen Stator und einen relativ dazu beweglich angeordneten Rotor. Der Stator umfasst mindestens eine konzentrierte Wicklung, die in Nuten des Stators angeordnet ist. Eine Hilfswicklung ist im Stator nicht separat vorgesehen. Im Rotor ist ein erstes Wicklungssystem vorgesehen, das als Erregerwicklung eingerichtet ist und das Energie aus dem Feld im Luftspalt aufnehmen kann. Weiterhin ist mindestens ein zweites

Wicklungssystem vorgesehen, welches als Feldwicklung

eingerichtet ist, das heißt ein stationäres Magnetfeld zu erzeugen in der Lage ist. Darüber hinaus ist ein

Gleichrichter im Rotor vorgesehen, der zwischen das erste und das zweite konzentrierte Wicklungssystem geschaltet ist, um den Gleichstrom zur Erzeugung des Magnetfelds des Rotors bereitzustellen. Das erste und zweite Wicklungssystem des Rotors umfassen jeweils eine konzentrierte Wicklung.

Da der Stator keine Hilfswicklung aufweist, entfällt auch die Gleichrichterbrücke hierfür im Stator. Mit der mindestens einen konzentrierten Wicklung des Stators, die normalerweise mehrphasig ausgebildet ist, wird sowohl die Arbeitswelle für die Synchronmaschine erzeugt, als auch gezielt eine höhere Harmonische, welche zur Speisung des Rotors über dessen

Erregerwicklung dient.

Somit erlaubt das vorgeschlagene Prinzip einen vereinfachten Aufbau einer Synchronmaschine, welche ohne Permanentmagneten des Rotors auskommen kann. In einer Weiterbildung ist die mindestens eine konzentrierte Wicklung des Stators als mehrphasige, insbesondere

dreiphasige, konzentrierte Wicklung ausgebildet. Eine

konzentrierte Wicklung kann mit besonders geringem Aufwand hergestellt werden im Verhältnis zu einer verteilten

Wicklung, die über mehrere Zähne und phasenweise überlappend ausgeführt wird. Zudem erlaubt die mehrphasige Ausführung eine harmonische Feldverteilung und darüber hinaus ein einfaches Anschließen der Maschine an ein elektrisches

Mehrphasensystem.

Alternativ oder zusätzlich ist auch das erste Wicklungssystem des Rotors, das heißt die Erregerwicklung, mehrphasig als konzentrierte Wicklung ausgebildet.

Als Arbeitswelle wird bevorzugt nicht die Grundwelle der magnetomotorischen Kraft, sondern eine höhere Harmonische der magnetomotorischen Kraft, die von der Statorwicklung

hervorgerufen wird, genutzt. Beispielsweise bei einer

Maschine mit zwölf Nuten im Stator und zehn Polen im Rotor und zahnkonzentrierter Wicklung im Stator kann die fünfte Harmonische als Arbeitswelle genutzt werden.

Weiter bevorzugt wird eine von der Arbeitswelle verschiedene höhere Harmonische der elektromotorischen Kraft des Stators als Erregerwelle zur Speisung der Erregerwicklung genutzt. Im genannten Beispiel einer konzentrierten Wicklung mit zwölf Nuten und zehn Polen kann mit Vorteil die siebte Harmonische als Erregerwelle genutzt werden.

Man erkennt an diesem Beispiel deutlich, dass eine an sich unerwünschte höhere Harmonische einer Maschine mit

konzentrierter Wicklung im Stator mit Vorteil gezielt dazu verwendet werden kann, um die Erregerwicklung im Rotor mit elektrischer Energie zu versorgen.

Mit Vorteil erzeugt die mindestens eine konzentrierte

Wicklung des Stators jeweils sowohl die Arbeitswelle, als auch die Erregerwelle.

In einer Ausführungsform umfasst die Feldwicklung im Rotor mehrere Spulen, die um je einen Zahn des Rotors gewickelt und miteinander in Serie verschaltet sind. Die Serienschaltung der Feldwicklung ist dabei so gestaltet, dass entlang des Umfangs des Rotors abwechselnd magnetische Nordpole und magnetische Südpole bei Durchfließen der Serienschaltung mit Gleichstrom entstehen.

Die Erregerwicklung weist bevorzugt einen hohen

Wicklungsfaktor auf.

Erregerwicklung und Feldwicklung sind bevorzugt jeweils um die gleichen Zähne des Rotors gewickelt.

In einer Weiterbildung weisen die Feldwicklung und die

Erregerwicklung unterschiedliche Spulenbreiten auf und sind insofern an die unterschiedlichen Verhältnisse im Luftspalt bezüglich der jeweils genutzten Harmonischen angepasst.

Beispielsweise kann die Feldwicklung eine größere

Spulenbreite als die Erregerwicklung aufweisen, da die

Feldwicklung an die fünfte Harmonische und die

Erregerwicklung an die siebte Harmonische angepasst ist. Die unterschiedliche Spulenbreite kann beispielsweise in einem Schenkelpolrotor dadurch realisiert sein, dass die

Feldwicklung jeweils um den Zahnhals des Schenkels gewickelt ist, während sich die Erregerwicklung im Zahnkopf mit

geringerer Spulenbreite befindet.

Alternativ oder zusätzlich können Permanentmagnete im Rotor, zum Beispiel in den Schenkelpolen, eingebracht werden.

Da die vorgeschlagene Synchronmaschine eine Selbsterregung des Rotors über das Luftspaltfeld der Maschine aufweist, entfallen Schleifringe und Bürsten zur galvanischen

Gleichstromübertragung. Zudem sind keine Hilfswicklung und kein Gleichrichter im Stator nötig.

Bevorzugt sind die Rotorwicklungen, das heißt das erste und das zweite Wicklungssystem, ausschließlich als konzentrierte Zahnspulenwicklungen ausgeführt, das heißt, dass alle Spulen der Wicklungen um jeweils genau einen Zahn gewickelt sind.

Bevorzugt sind getrennte Zahnspulenwicklungen für die

Erregerwicklung und die Feldwicklung vorgesehen.

Die Gleichrichtung ist bevorzugt als Vollbrücken- Gleichrichter-Schaltung ausgeführt .

Bevorzugt sind immer zwei Spulen oder Vielfache davon, in denen im Rotor der Strom induziert wird, in Serie geschaltet, bevor sie an den Vollbrückengleichrichter geschaltet werden. Die Erregerwicklung umfasst demnach immer mindestens zwei Spulen in Serienschaltung. Die Erfindung wird nachfolgend an mehreren

Ausführungsbeispielen anhand von Zeichnungen näher erläutert.

Es zeigen: Figur 1 ein Ausführungsbeispiel eines Blockschaltbilds einer Synchronmaschine nach dem vorgeschlagenen Prinzip, Figur 2 die beispielhafte Realisierung eines Rotors nach dem vorgeschlagenen Prinzip anhand eines Blockschaltbilds ,

Figur 3 das Selbsterregungskonzept nach dem vorgeschlagenen

Prinzip am Beispiel einer Maschine mit zwölf Nuten und zehn Polen,

Figur 4 ein Ausführungsbeispiel der Feldwicklung des

Rotors ,

Figur 5 ein Ausführungsbeispiel der Erregerwicklung des

Rotors ,

Figur 6 ein Ausführungsbeispiel einer Weiterbildung der

Wicklungssysteme des Rotors,

Figur 7 eine andere Weiterbildung der Wicklungssysteme des

Rotors an einem Beispiel, Figur 8 ein Ausführungsbeispiel einer Synchronmaschine mit

Stator und Rotor in einer Querschnittsdarstellung,

Figur 9 ein weiteres Ausführungsbeispiel einer

Synchronmaschine mit Stator und Rotor

QuerSchnittsdarstellung, Figur 10 ein anderes Ausführungsbeispiel einer

Synchronmaschine mit Stator und Rotor in einer Querschnittsdarstellung und Figur 11 das Selbsterregungskonzept nach dem vorgeschlagenen

Prinzip am Beispiel einer Maschine mit 18 Nuten und zehn Polen.

Figur 1 zeigt ein Blockschaltbild einer Synchronmaschine nach dem vorgeschlagenen Prinzip anhand eines

Ausführungsbeispiels. Die Synchronmaschine umfasst einen Stator 1 und einen Rotor 2. Der Stator 1 umfasst eine elektrische Wicklung, die hier dreiphasig ausgeführt ist und in Nuten des Stators eingebracht. Die drei elektrischen Stränge der Wicklung, die zueinander um elektrisch 120° phasenverschoben sind, sind mit A für die erste Phase, B für die zweite Phase und C für die dritte Phase bezeichnet.

Relativ dazu ist der Rotor 2 angeordnet. Der Rotor umfasst ein erstes Wicklungssystem 3, welches als Erregerwicklung ausgebildet ist. Im vorliegenden Beispiel ist die

Erregerwicklung mit fünf Strängen El bis E5 ausgeführt, die je zwei in Serie geschaltete Spulen umfassen. Dabei wird im Beispiel von einem zehnpoligen Rotor ausgegangen, wobei die genaue Wicklungstopologie dieses Beispiels später anhand von Figur 5 noch näher verdeutlicht wird.

Über fünf Klemmen XI bis X5 ist diese Erregerwicklung 3 mit einem Gleichrichter 4 verbunden, der hier als Vollbrücken- Diodengleichrichter ausgeführt ist. Der Diodengleichrichter stellt einen Gleichstrom an den ausgangsseitigen Klemmen Ul, U2 bereit. Die Gleichspannung wird mit einer Kapazität 5 geglättet, die einen Kondensator C umfasst. Auf den Kondensator C kann auch verzichtet werden. Parallel dazu ist eine Feldwicklung 6 geschaltet, die vom Gleichstrom

durchflössen wird, das stationäre Rotormagnetfeld erzeugt und so Permanentmagnete im Rotor überflüssig machen kann.

Bemerkenswert ist, dass der Stator 1 keinen Gleichrichter und keine Hilfswicklung umfasst. Die Energie zur Erregung des Rotors 2 wird vielmehr durch die herkömmliche Erregerwicklung des Stators mit erzeugt. Dabei wird der Effekt genutzt, dass die Erregerwicklung des Stators sowohl die Arbeitswelle für die Synchronmaschine erzeugt, als auch mindestens eine

Oberwelle, das heißt Harmonische der magnetomotorischen

Kraft, welche zur Speisung der Erregerwicklung des Rotors dient .

Im Beispiel der Figur 1 hat der Stator zwölf Nuten, in die die dreiphasige Wicklung als zahnkonzentrierte Wicklung eingebracht ist. Eine beispielhafte Wirkungsweise wird später anhand von Figur 3 erläutert.

Zur Speisung der Statorwicklung ist eine

Stromversorgungseinheit 7 vorgesehen, welche ein dreiphasiges Versorgungssignal bereitstellt und von einer Steuereinheit 8 angesteuert wird. Die Maschine kann motorisch oder

generatorisch betrieben werden.

Figur 2 zeigt ein Ausführungsbeispiel des Gleichrichters 4 des Rotors, der hier als Dioden-Brückengleichrichter

ausgebildet ist. Die fünf Klemmen XI bis X5 der

Erregerwicklung, an die die fünf erwähnten Stränge der

Erregerwicklung angeschlossen sind, deren andere Enden wiederum in einem Sternpunkt zusammengefasst sind, sind jeweils an Mittenabgriffe zwischen zwei in Serie geschalteten Dioden angeschlossen. Diese Serienschaltungen von zwei gleichsinnig angeordneten Dioden sind zueinander parallel geschaltet und an den Klemmen Ul, U2 nach außen gelegt, um dort den Gleichstrom zur Speisung der Feldwicklung 6

bereitzustellen.

Der Vollbrücken-Gleichrichter dient wie erwähnt dazu, das in die Erregerwicklung eingespeiste Magnetfeld in einen

Gleichstrom zur Versorgung der Feldwicklung zu konvertieren. Die Feldwicklung wiederum erzeugt das stationäre Magnetfeld des Rotors. Figur 3 zeigt an einem Ausführungsbeispiel in abgewickelter

Darstellung die konzentrierte Statorwicklung sowie die beiden Wicklungssysteme des Rotors. Dazwischen sind beispielhafte charakteristische Harmonische des Magnetflusses im Luftspalt eingezeichnet .

Im Einzelnen weist der Stator 1 in diesem Beispiel zwölf Nuten auf, in welche eine dreiphasige elektrische

konzentrierte Wicklung eingebracht ist. Der Stator ist in Figur 3 in der oberen Bildhälfte gezeigt. Die drei

Wicklungsstränge, denen die elektrischen Phasen zugeordnet sind, sind mit den drei Buchstaben A, B, C bezeichnet.

Konzentrierte Wicklung bedeutet, dass um jeden Zahn, der zwischen zwei benachbarten Nuten gebildet ist, eine Spule gewickelt ist. Der Wicklungssinn ist dabei durch die Symbole + und - jeweils seitlich des Zahns symbolisiert.

In der unteren Bildhälfte der Figur 3 ist der Rotor 2, ebenfalls in abgewickelter Darstellung, gezeigt. Der Rotor ist als Schenkelpolrotor ausgebildet. Das bedeutet, dass die zwischen benachbarten Nuten gebildeten Zähne im Bereich der Zahnköpfe, also in radialer Richtung nach außen, breiter sind als im Zahnhalsbereich. Im unteren Bereich des Rotors, das heißt an der der Rotorachse zugewandten Seite, sind die

Spulen der konzentrierten Erregerwicklung untergebracht.

Darüber, das heißt in radialer Richtung, dem Stator

zugewandt, sind die Spulen der konzentrierten Feldwicklung angeordnet. Die Erregerwicklung ist mit Bezugszeichen 3, die Feldwicklung mit Bezugszeichen 6 gekennzeichnet.

Im vorliegenden Beispiel gemäß Figur 3 ist die fünfte

Harmonische der magnetomotorischen Kraft als Arbeitswelle genutzt. Daher ist der Rotor 2 als Schenkelpolrotor mit zehn Polen, das heißt mit zehn Zähnen, ausgeführt. Die

Feldwicklung des Rotors umfasst Spulen, die um die einzelnen Zähne des Rotors so gewickelt sind, um ein geeignetes

Magnetfeld eines zehnpoligen Rotors zu erzeugen. Dies wird nachfolgend anhand von Figur 4 noch näher betrachtet.

In der Bildmitte der Figur 3 sind die fünfte und die siebte Harmonische der magnetomotorischen Kraft im Luftspalt gezeigt, die von der Statorwicklung erzeugt wird. Die fünfte Harmonische, die als Arbeitswelle genutzt wird, rotiert mit der Rotorgeschwindigkeit im Gegenuhrzeigersinn. Die fünfte Harmonische ist mit Bezugszeichen 9 gekennzeichnet und als durchgezogene Linie dargestellt. Demgegenüber ist eine weitere charakteristische Harmonische bei der gezeigten

Maschine mit zwölf Nuten und zehn Polen und konzentrierter Wicklung vorhanden, nämlich die siebte Harmonische der magnetomotorischen Kraft im Luftspalt. Die siebte Harmonische rotiert mit 5/7 der Rotorgeschwindigkeit im Uhrzeigersinn. Man erkennt also, dass sich die fünfte und die siebte Harmonische mit unterschiedlicher Orientierung ausbreiten und eine unterschiedliche Geschwindigkeit haben. Die siebte

Harmonische ist in der Bildmitte der Figur 3 gestrichelt dargestellt und mit Bezugszeichen 10 gekennzeichnet.

Die Erregerwicklung des Rotors wird von der siebten

Harmonischen gespeist. Die siebte Harmonische der von der Statorwicklung hervorgerufenen magnetomotorischen Kraft dient daher dazu, die Feldwicklung des Rotors mit Energie zu versorgen.

Figur 3 zeigt weiterhin, dass die Statorwicklung und die Rotorwicklungen für die vorgeschlagene selbsterregte

Synchronmaschine einfache konzentrierte Wicklungen sind, die um je einen Zahn gewickelt sind.

Figur 4 zeigt ein Ausführungsbeispiel einer Rotorwicklung, die in Figur 3 als Feldwicklung 6 eingebracht ist. Der Rotor weist zehn Rotornuten auf, zwischen denen jeweils Zähne des Rotors ausgebildet sind, um die die Feldwicklung nach dem in Figur 4 gezeigten Wicklungsschema gewickelt ist. Die Klemmen Ul, U2 entsprechen denen von Figur 1 und 2. Um abwechselnd Nord- und Südpole zu erzeugen, sind die benachbarten Zähne des Rotors im entgegen gesetzten Wicklungssinn bewickelt. Alle Wicklungen sind in Serie geschaltet und an den Klemmen Ul, U2 herausgeführt, um dort vom Gleichrichter 4 mit dem Erregergleichstrom gespeist zu werden.

Unterhalb der Feldwicklung im Beispiel von Figur 3 ist eine Erregerwicklung in den Rotor eingelegt, welche ebenfalls als konzentrierte Wicklung ausgeführt ist und an einem Beispiel in Figur 5 gezeigt ist. Es sind wiederum zehn Nuten des Rotors vorhanden, zwischen denen insgesamt zehn Rotorzähne gebildet sind. Die in Figur 5 in der linken Bildhälfte gezeigten benachbarten fünf Zähne weisen jeweils eine

herausgeführte Anschlussklemme XI bis X5 auf, an die eine Wicklungsspule El bis E5 angeschlossen ist. Daran schließen sich fünf weitere Zähne mit Spulen El bis E5 an, die jeweils um fünf Zähne versetzt paarweise in Serie mit den

erstgenannten fünf Spulen El bis E5 geschaltet sind. Die daraus resultierenden freien Enden der rechten fünf Spulen sind an einem Sternpunkt zusammengefasst . Dadurch ergibt sich die Verschaltung der Erregerwicklung, wie sie in Figur 2 beispielhaft gezeigt ist.

In dem beschriebenen Ausführungsbeispiel sind die

Wicklungsfaktoren für die fünfte und die siebte Harmonische der Statorwicklung beziehungsweise deren magnetomotorischer

Kraft gleich, und betragen ungefähr 0,933. Daher ist auch die Flussdichte in dem Luftspalt aus diesen Harmonischen gleich. Hierdurch wiederum, sowie als Ergebnis der relativ hohen Anteile der siebten Harmonischen und wegen der hohen

Wicklungsfaktoren der Rotorwicklung bezüglich der siebten

Harmonischen, ist nur ein geringer Wicklungsfaktor nötig, um diese Harmonische aufzunehmen und um ausreichend Spannung zu erzeugen, um die Feldwicklung des Rotors mittels der

rotierenden Gleichrichterbrücke zu versorgen. Das

vorgeschlagene Erregungsprinzip im Rotor durch gezielte

Nutzung einer ohnehin vorhandenen Harmonischen einer

konzentrierten Statorwicklung führt daher mit Vorteil dazu, dass die dynamischen Eigenschaften der Maschine sowie die Rotorkonstruktion praktisch unbeeinflusst von dem

vorgeschlagenen Selbsterregungsprinzip sind.

Figur 6 zeigt ein Ausführungsbeispiel der beiden

Rotorwicklungen, bei dem die Spulenbreite der Feldwicklung 6 größer als jene der Erregerwicklung 3 ist. Die Spulenbreite der Erregerwicklung 3 ist gleich wie der Polabstand der siebten Harmonischen, wie anhand der Figur deutlich wird. Der Wicklungsfaktor der Erregerwicklung bezogen auf die siebte Harmonische kann somit bis 1 erhöht werden. In Figur 6 ist wiederum die fünfte Harmonische als durchgezogene Linie dargestellt und mit Bezugszeichen 9 referenziert , während die siebte Harmonische gestrichelt dargestellt und mit

Bezugszeichen 10 bezeichnet ist. Die Feldwicklung 6 ist wie bei Figur 3 im Bereich des Zahnhalses des Schenkelpolrotors ausgeführt, wobei die Spulen um je einen Zahn konzentriert gewickelt sind. Eine Besonderheit ist, dass die

Erregerwicklung im Kopfbereich angeordnet ist, genauer an der dem Stator zugewandten Seite des Schenkelpolrotors jeweils als eine konzentrierte Spule je Zahn.

In alternativen Ausführungen ist es natürlich möglich, die Spulenbreite der Erregerwicklung des Rotors derart zu

variieren, dass der Effekt, das heißt der Anteil höherer Harmonischer, wie beispielsweise der 17. und 19.

Harmonischen, auf die Erregerwicklung des Rotors bezüglich der induzierten Spannung reduziert ist.

Figur 7 zeigt eine andere Weiterbildung der Ausführung der Wicklung des Rotors ausgehend von Figur 3, bei der zusätzlich zu Erregerwicklung 3 und Feldwicklung 6 Permanentmagnete S, N mit abwechselnder Polarität in benachbarten Köpfen der Zähne des Rotors untergebracht sind, jeweils an der dem Stator zugewandten Fläche des Rotorzahns. Die Permanentmagnete sind mit N für Nordpol beziehungsweise S für Südpol bezeichnet. Die zusätzlichen Permanentmagnete haben den Effekt, dass die charakteristischen Eigenschaften der Maschine bei geringer Drehzahl verbessert sind. Figur 8 zeigt einen Querschnitt einer beispielhaften

Realisierung des anhand der vorangegangenen Figuren

beschriebenen Prinzips am Beispiel einer Synchronmaschine mit zwölf Nuten im Stator 1 und zehn Polen des Schenkelpolrotors 2. Wie erläutert, dient die fünfte Harmonische der

magnetomotorischen Kraft, die von der konzentrierten

Statorwicklung hervorgerufen wird, als Arbeitswelle für den vorliegenden Fall eines zehnpoligen Rotors. Die siebte

Harmonische der magnetomotorischen Kraft, die von der

konzentrierten Statorwicklung hervorgerufen wird, dient dazu, die magnetomotorische Kraft in die Erregerwicklung El bis E5 des Rotors zu induzieren, zur Selbsterregung der Feldwicklung F des Rotors. Die konzentrierte Statorwicklung sowie die konzentrierten Wicklungen des Rotors sind wie in den Figuren 3 bis 5 beschrieben eingebracht.

Demgegenüber zeigt Figur 9 ein anderes Ausführungsbeispiel der Synchronmaschine, bei der das vorgeschlagene Prinzip angewendet wird auf eine Ausführung des Stators mit zwölf Nuten und des Rotors mit 14 Polen. Diese Ausführung gemäß Figur 9 entspricht weitgehend derjenigen von Figur 8.

Insbesondere sind die Geometrie und die konzentrierte

dreiphasige Wicklung des Stators unverändert. Im Rotor, der wiederum als Schenkelpolrotor ausgeführt ist, sind entlang des Umfangs jedoch nicht zehn, sondern 14 Nuten und Zähne ausgeführt. Die Dimensionierung von Erregerwicklung El bis E5 und Feldwicklung F ist in Figur 9 an die geänderten

Verhältnisse angepasst. Dabei werden diese Wicklungen ausgehend von dem in Figur 4 und 5 beschriebenen Prinzip von zehn auf 14 beziehungsweise fünf auf sieben Zähne erweitert.

In Figur 10 ist ein weiteres Ausführungsbeispiel der

Synchronmaschine gezeigt, bei der das vorgeschlagene Prinzip angewendet wird auf eine Ausführung des Stators mit 18 Nuten und des Rotors mit 10 Polen. Diese Ausführung gemäß Figur 10 entspricht weitgehend derjenigen von Figur 8. Insbesondere sind die Geometrie und die Wicklungen des Rotors unverändert. Im Stator sind entlang des Umfangs jedoch nicht zehn, sondern 18 Nuten und Zähne ausgeführt. Die Dimensionierung der

Statorwicklung ist in Figur 10 an die geänderten Verhältnisse angepasst. Dabei wird diese Wicklung des Stators ausgehend von dem oben beschriebenen Prinzip auf einen Stator mit 18 Nuten angepasst.

Figur 11 zeigt an einem Ausführungsbeispiel in abgewickelter Darstellung die konzentrierte Statorwicklung sowie die beiden Wicklungssysteme des Rotors zu dem Beispiel von Figur 10. Dazwischen sind beispielhafte charakteristische Harmonische des Magnetflusses im Luftspalt eingezeichnet.

Im Einzelnen weist der Stator 1 in diesem Beispiel 18 Nuten auf, in welche eine dreiphasige elektrische konzentrierte Wicklung eingebracht ist. Der Stator ist in Figur 11 in der oberen Bildhälfte gezeigt. Die drei Wicklungsstränge, denen die elektrischen Phasen zugeordnet sind, sind mit den drei Buchstaben A, B, C bezeichnet. Konzentrierte Wicklung

bedeutet, dass um jeden Zahn, der zwischen zwei benachbarten Nuten gebildet ist, eine Spule gewickelt ist. Der

Wicklungssinn ist dabei durch die Symbole + und - jeweils seitlich des Zahns symbolisiert. In der unteren Bildhälfte der Figur 11 ist der Rotor 2, ebenfalls in abgewickelter Darstellung, gezeigt. Der Rotor ist als Schenkelpolrotor ausgebildet. Das bedeutet, dass die zwischen benachbarten Nuten gebildeten Zähne im Bereich der Zahnköpfe, also in radialer Richtung nach außen, breiter sind als im Zahnhalsbereich. Im unteren Bereich des Rotors, das heißt an der der Rotorachse zugewandten Seite, sind die

Spulen der konzentrierten Erregerwicklung untergebracht.

Darüber, das heißt in radialer Richtung, dem Stator

zugewandt, sind die Spulen der konzentrierten Feldwicklung angeordnet. Die Erregerwicklung ist mit Bezugszeichen 3, die Feldwicklung mit Bezugszeichen 6 gekennzeichnet.

Im vorliegenden Beispiel gemäß Figur 11 ist die fünfte

Harmonische der magnetomotorischen Kraft als Arbeitswelle genutzt. Daher ist der Rotor 2 als Schenkelpolrotor mit zehn Polen, das heißt mit zehn Zähnen, ausgeführt. Die

Feldwicklung des Rotors umfasst Spulen, die um die einzelnen Zähne des Rotors so gewickelt sind, um ein geeignetes

Magnetfeld eines zehnpoligen Rotors zu erzeugen.

In der Bildmitte der Figur 11 sind die fünfte und die 13. Harmonische der magnetomotorischen Kraft im Luftspalt gezeigt, die von der Statorwicklung erzeugt wird. Die fünfte Harmonische, die als Arbeitswelle genutzt wird, rotiert mit der Rotorgeschwindigkeit im Gegenuhrzeigersinn. Die fünfte Harmonische ist mit Bezugszeichen 9 gekennzeichnet und als durchgezogene Linie dargestellt. Demgegenüber ist eine weitere charakteristische Harmonische bei der gezeigten

Maschine mit 18 Nuten und zehn Polen und konzentrierter Wicklung vorhanden, nämlich die 13. Harmonische der

magnetomotorischen Kraft im Luftspalt. Die 13. Harmonische rotiert mit 5/13 der Rotorgeschwindigkeit im Uhrzeigersinn. Man erkennt also, dass sich die fünfte und die 13.

Harmonische mit unterschiedlicher Orientierung ausbreiten und eine unterschiedliche Geschwindigkeit haben. Die 13.

Harmonische ist in der Bildmitte der Figur 11 gestrichelt dargestellt und mit Bezugszeichen 11 gekennzeichnet.

Die Erregerwicklung des Rotors wird von der 13. Harmonischen gespeist. Die 13. Harmonische der von der Statorwicklung hervorgerufenen magnetomotorischen Kraft dient daher dazu, die Feldwicklung des Rotors mit Energie zu versorgen.

Figur 11 zeigt weiterhin, dass die Statorwicklung und die Rotorwicklungen für die vorgeschlagene selbsterregte

Synchronmaschine einfache konzentrierte Wicklungen sind, die um je einen Zahn gewickelt sind.

Die beiden nachfolgenden Tabellen zeigen beispielhaft mögliche weitere Kombinationen von Anzahl der Stator-Nuten Z und der Anzahl der Polpaare p des Rotors in konzentrierten Wicklungen für selbsterregte Synchronmaschinen nach dem vorgeschlagenen Prinzip. Es wird jeweils, wie oben

beschrieben, eine Harmonische als Arbeitswelle, und eine andere Harmonische zur Erregung der Rotorwicklung verwendet. Abhängig von der Kombination der Anzahl der Statornuten und der Anzahl der Rotorpole sind die verfügbaren Harmonischen für die Erregung der Rotorfeldwicklung angegeben.

Tabelle 1 zeigt die verfügbaren Harmonischen für eine

ZweiSchichtwicklung . 1 2 4 5 7 8 10 11 z

3 2, 4, 1, 4,

5 5

6 1, 4, 1, 2,

8 8

9 7, 11, 5, 13,

16 14

12 7, 17, 5, 17,

19 19

18 13, 23 11 7

24 1, 13

Tabelle 1

Nachfolgende Tabelle 2 zeigt die verfügbaren Harmonischen für eine Einschichtwicklung.

Tabelle 2

Selbstverständlich liegt es im fachüblichen Ermessen des

Fachmanns, das hier vorgeschlagene Prinzip auf andere

Ausführungen von Synchronmaschinen anzuwenden.

Bezugs zeichenliste

1 Stator

2 Rotor

3 Erregerwicklung

4 Gleichrichter

5 Kapazität

6 Feldwicklung

7 Stromversorgung

8 Steuereinheit

9 fünfte Harmonische

10 siebte Harmonische

11 13. Harmonische

G)R Drehgeschwindigkeit des Rotors

A, B, C elektrische Stränge

El bis E5 Erregerwicklung

F Feldwicklung

N Nordpol

S Südpol

Ul, U2 Klemmen für Feldwicklung

XI bis X5 Klemmen für Erregerwicklung