Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYNTHESIS OF NON-CYCLIC AMIDE AND THIOAMIDE BASED IONIC LIQUIDS
Document Type and Number:
WIPO Patent Application WO/2017/011232
Kind Code:
A1
Abstract:
Non-cyclic amide or thioamide based ionic liquids and methods of making them are disclosed.

Inventors:
BRODERICK ERIN M (US)
BUCHBINDER AVRAM M (US)
BHATTACHARYYA ALAKANANDA (US)
Application Number:
PCT/US2016/041031
Publication Date:
January 19, 2017
Filing Date:
July 06, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UOP LLC (US)
International Classes:
C07C233/89; C07C231/08; C07C327/38
Domestic Patent References:
WO2010074835A22010-07-01
Foreign References:
US20100224063A12010-09-09
US20130012699A12013-01-10
US20110229401A12011-09-22
Other References:
KUMLER W.D.: "Structure of Salts of N,N-Dimethylacetamide and N,N- Di(n)butylacetamide", J. AM. CHEM. SOC., vol. 83, no. 24, 1961, pages 4983 - 4985, XP055346662
BONNER O.D. ET AL.: "The Raman spectra of the hydrochloride salts of N- methylacetamide.", SPECTROCHIMICA ACTA, vol. 22, 1966, pages 1125 - 1129, XP055346668
SPINNER E.: "The vibration spectra and structures of the hydrochlorides of urea, thiourea and acetamide. The basic properties of amides and thioamides", SPECTROCHIMICA ACTA, 1959, pages 95 - 109, XP028083704
COOK DENYS.: "Protonated carbonyl groups. IV. N,N-Dimethylacetamide salts", CANADIAN JOURNAL OF CHEMISTRY, vol. 42, 1964, pages 2721 - 2727, XP055346673
D. BARTONA ET AL.: "Obschaya organicheskaya khimiya, pod red.", TOM 4, KARBONOVYE KISLOTY B IKH PROIZVODNYE. SOEDINENIYA FOSFORA. MOSKVA ''KHIMIYA, 1983, pages 728
Attorney, Agent or Firm:
GOODING, Arthur E. (US)
Download PDF:
Claims:
What is claimed:

1. A non-cyclic amide or thioamide based ionic liquid compri cation and an anion, the ionic liquid having a formula:

wherein Ri, R2, and R3 are independently selected from hydrogen, halide, a C1 - C12 alkyl group, a Ci - C12 alkenyl group, a C4 - Ci2cycloalkyl group, a C4 - Ci2cycloalkenyl group, an aryl group, a substituted Ci - C12 alkyl group, a substituted Ci - C12 alkenyl group, a substituted C4 - Ci2cycloalkyl group, a substituted C4 - Ci2cycloalkenyl group, a substituted aryl group, a C2 - C12 ether group, or a silyl group; or wherein Ri is selected from hydrogen, halide, a Ci - C12 alkyl group, a Ci - C12 alkenyl group, a C4 - Ci2cycloalkyl group, a C4 - Ci2cycloalkenyl group, an aryl group, a substituted Ci - C12 alkyl group, a substituted Ci - C12 alkenyl group, a substituted C4 - Ci2cycloalkyl group, a substituted C4 - Ci2cycloalkenyl group, a substituted aryl group, a C2 - C12 ether group, or a silyl group, and R2 and R3 form a C4 - Ci2cycloalkyl group, a C4 - Ci2cycloalkenyl group, a substituted C4 - Ci2cycloalkyl group, or a substituted C4 - Ci2cycloalkenyl group; and X" is an anion.

2. The ionic liquid of claim 1 wherein the anion is a carboxylate, a nitrate,a phosphate, a phosphinate, a phosphonate, an imide, a cyanate, a borate, a sulfate, a sulfonate, an acetate, a halide, a halometallate, and combinations thereof.

3. The ionic liquid of any of claims 1-2 wherein the cation comprises N,N-dimethylacetamidium, acetamidium, carbonyl diamidium, thioamidium,N- methylthioacetamidium, N,N-dimethylthioacetamidium,N-methylacetamidium, N,N- dimethylformamidium, benzamidium, N-methylbenzamidium, N,N-dimethylbenzamidium, or di chl oroacetami dium .

4. The ionic liquid of any of claims 1-2 wherein the substituted Ci - C12 alkyl group, the substituted Ci - Ci2 alkenyl group, the substituted C4 - Ci2cycloalkyl group, the substituted C4 - Ci2cycloalkenyl group, or the substituted aryl group is substituted with a halide, a C2 - C12 ether group, a silyl group, a hydroxyl group, a thiol group, a cyano group, a sulfonyl group, an amine group, a nitrile group, a thiocyanate group, or combinations thereof.

5. A method of making a non-cyclic amide or thioamide based ionic liquid comprising:

reacting a non-cyclic amide or thioamide having a general formula:

or

with a Bransted acid HX to form an amidium or thioamidium reaction product wherein Ri, R2, and R3 are independently selected from hydrogen, halide, a Ci - C12 alkyl group, a Ci - C12 alkenyl group, a C4 - Ci2cycloalkyl group, a C4 - Ci2cycloalkenyl group, an aryl group, a substituted Ci - Ci2 alkyl group, a substituted Ci - Ci2 alkenyl group, a substituted C4 - Ci2cycloalkyl group, a substituted C4 - Ci2cycloalkenyl group, a substituted aryl group, a C2 - C12 ether group, or a silyl group; or wherein Ri is selected from hydrogen, halide, a Ci - C12 alkyl group, a Ci - C12 alkenyl group, a C4 - Ci2cycloalkyl group, a C4 - Ci2cycloalkenyl group, an aryl group, a substituted Ci - C12 alkyl group, a substituted Ci - Ci2 alkenyl group, a substituted C4 - Ci2cycloalkyl group, a substituted C4 - C^cycloalkenyl group, a substituted aryl group, a C1 - C12 ether group, or a silyl group, and R2 and R3 form a C4 - Ci2cycloalkyl group, a C4 - C^cycloalkenyl group, a substituted C4 - C^cycloalkyl group, or a substituted C4 - C^cycloalkenyl group.

6. The method of claim 5 wherein the Bransted acid HX is at least one of hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, tetrafluoroboric acid, sulfonic acid, triflic acid, toluenesulfonic acid dihaloacetic acid, and trihaloacetic acid.

7. The method of any of claims 5-6 wherein the non-cyclic amide or thioamide is reacted with the Bransted acid HX in the presence of a solvent.

8. The method of any of claims 5-6 wherein the Bransted acid HX is at least one of the hydrochloric acid, the hydrobromic acid, and the hydroiodic acid, and further comprising reacting the amidium or thioamidium reaction product with a metal halide to form an amidium or thioamidium halometallate reaction product.

9. The method of claim 8 wherein the amidium or thioamidium reaction product is reacted with the metal halide in the presence of a solvent selected from dichloromethane, chloroform toluene, or benzene. 10. The method of any of claims 5-6 wherein the non-cyclic amide or thioamide comprises N,N-dimethylacetamide, acetamide, urea, thioacetamide, N- methylthioacetamide, N,N-dimethylthioacetamide, N-methyl acetamide, N,N- dimethylformamide, benzamide, N-methylbenzamide, N,N-dimethylbenzamide, or di chl oroacetami de .

Description:
SYNTHESIS OF NON-CYCLIC AMIDE AND THIOAMIDE

BASED IONIC LIQUIDS

STATEMENT OF PRIORITY

This application claims priority to U.S. Provisional Application No. 62/190952 which was filed July 10, 2015, the contents of which are hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

Ionic liquids are of interest to industry because of their wide range of applications, including use as solvents and catalysts. Ionic liquids are salts comprised of cations and anions which typically melt below 100°C.

Ionic liquids are described in US Patent Nos. 4,764,440, 5,104,840, and 5,824,832, for example. The properties vary extensively for different ionic liquids, and the use of ionic liquids depends on the properties of a given ionic liquid. Depending on the organic cation of the ionic liquid and the anion, the ionic liquid can have very different properties.

However, the cost of ionic liquids has limited the widespread adoption of ionic liquids.

There is a need for lower cost ionic liquids and for methods of making them.

SUMMARY OF THE INVENTION

One aspect of the invention is a non-cyclic amide or thioamide based ionic liquid. In one embodiment, the non-cyclic amide or thioamide based ionic liquid comprises a cation and an anion and has the formula:

wherein Ri, R 2 , and R 3 are independently selected from hydrogen, halide, a Ci - Ci 2 alkyl group, a Ci - Ci 2 alkenyl group, a C 4 - Ci 2 cycloalkyl group, a C 4 - Ci 2 cycloalkenyl group, an aryl group, a substituted Ci - Ci 2 alkyl group, a substituted Ci - Ci 2 alkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, a substituted C 4 - Ci 2 cycloalkenyl group, a substituted aryl group, a C 2 - Ci 2 ether group, or a silyl group; or wherein Ri is selected from hydrogen, halide, a Ci - Ci 2 alkyl group, a Ci - Ci 2 alkenyl group, a C 4 - Ci 2 cycloalkyl group, a C 4 - Ci 2 cycloalkenyl group, an aryl group, a substituted Ci - Ci 2 alkyl group, a substituted Ci - Ci 2 alkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, a substituted C 4 - Ci 2 cycloalkenyl group, a substituted aryl group, a C 2 - Ci 2 ether group, or a silyl group, and R 2 and R 3 form a C 4 - Ci 2 cycloalkyl group, a 4i - Ci 2 cycloalkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, or a substituted C 4 - Ci 2 cycloalkenyl group; and X " is an anion. Another aspect of the invention is a method of making a non-cyclic amide or thioamide based ionic liquid. In one embodiment, the method includes reacting a non-cyclic amide or thioamide having a general formula:

or

with a Bransted acid HX to form an amidium or thioamidium halide reaction product. The amidium or thioamidium halide reaction product can optionally be reacted with a metal halide to form an amidium or thioamidium halometallate reaction product. Ri, R 2 , and R 3 are independently selected from hydrogen, halide, a C 1 - Ci 2 alkyl group, a C 1 - Ci 2 alkenyl group, a C 4 - Ci 2 cycloalkyl group, a C 4 - Ci 2 cycloalkenyl group, an aryl group, a substituted Ci - Ci 2 alkyl group, a substituted Ci - Ci 2 alkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, a substituted C 4 - Ci 2 cycloalkenyl group, a substituted aryl group, a C 2 - Ci 2 ether group, or a silyl group; or wherein Ri is selected from hydrogen, halide, a C 1 - Ci 2 alkyl group, a C 1 - Ci 2 alkenyl group, a cycloalkyl C 4 - Ci 2 group, a C 4 - Ci 2 cycloalkenyl group, an aryl group,a substituted Ci - Ci 2 alkyl group, a substituted Ci - Ci 2 alkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, a substituted C 4 - Ci 2 cycloalkenyl group, a substituted aryl group, a C 2 - Ci 2 ether group, or a silyl group, and R 2 and R 3 form a C 4 - Ci 2 cycloalkyl group, a C 4 - Ci 2 cycloalkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, or a substituted C 4 - Ci 2 cycloalkenyl group.

DETAILED DESCRIPTION OF THE INVENTION The present invention provides non-cyclic amide or thioamide based ionic liquids. The non-cyclic amide or thioamide based ionic liquids can be produced by reacting a non-cyclic amide or thioamide with a strong acid. In some embodiments, the reaction product of the non-cyclic amide or thioamide and the strong acid is reacted with a metal halide. By non-cyclic amide or thioamide based ionic liquids, we mean ionic liquids in which the amide or thioamide bond in the cation is not contained in a cyclic structure. However, the cation can contain cyclic structures in other parts of the cation. The non-cyclic amide or thioamide based ionic liquid comprises a cation and an anion and has the general formula:

wherein Ri, R 2 , and R 3 are independently selected from hydrogen, halide, a C 1 - C 12 alkyl group, a Ci - Ci 2 alkenyl group, a C 4 - Ci 2 cycloalkyl group, a C 4 - Ci 2 cycloalkenyl group, an aryl group, a substituted Ci - Ci 2 alkyl group, a substituted Ci - Ci 2 alkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, a substituted C 4 - Ci 2 cycloalkenyl group, a substituted aryl group, a C 2 - Ci 2 ether group, or a silyl group; or wherein Ri is selected from hydrogen, halide, a Ci - Ci 2 alkyl group, a Ci - Ci 2 alkenyl group, a C 4 - Ci 2 cycloalkyl group, a C 4 - Ci 2 cycloalkenyl group, an aryl group, a substituted Ci - Ci 2 alkyl group, a substituted Ci - Ci 2 alkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, a substituted C 4 - Ci 2 cycloalkenyl group, a substituted aryl group, a C 2 - Ci 2 ether group, or a silyl group, and R 2 and R 3 form a C 4 - Ci 2 cycloalkyl group, a C 4 - Ci 2 cycloalkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, or a substituted C 4 - Ci 2 cycloalkenyl group; and X " is an anion.

By substituted, we mean that the alkyl group, alkenyl group, etc. includes a group including, but not limited to, a halide, such as chloride, bromide, iodide, or fluoride, a C 2 - Ci 2 ether group, a silyl group, a hydroxyl group, a thiol group, a cyano group, a sulfonyl group, an amine group, a nitrile group, a thiocyanate group, or combinations thereof.

Another way to represent

We intend both representations to be covered by the first structure. Another way to represent

s

R 3

We intend both representations to be covered by the first structure.

Suitable anions include, but are not limited to carboxylates, nitrates, phosphates, phosphinates, phosphonates, imides, cyanates, borates, sulfates (including bisulfates), sulfonates (including fluoroalkanesulfonates), acetates, halides, halometallates, and combinations thereof. Examples of X " groups include, but are not limited to, tetrafluorob orate, triflate, trifluoroacetate, chloroacetate, nitrate, hydrogen sulfate, hydrogen phosphate, dicyanoimide, methyl sulfonate, and combinations thereof.

In some embodiments, X " is a halide, such as chloride, bromide, iodide, or fluoride. In some embodiments, when X " is a halide, the mol ratio of cation to anion is 1 : 1.

In other embodiments, X " is a halometallate. In some embodiments, the metal in the halometallate comprises Sn, Al, Zn, Mn, Fe, Ga, Cu, Ni, Co, In, or combinations thereof. In some embodiments, the halide in the halometallate comprises bromide, chloride, iodide, fluoride, or combinations thereof. One or more of the halides (but not all) can be substituted with an -OH group, for example, AI 3 CI 9 OH. Suitable halometallates include, but are not limited to, A1C1 4 " , A1 2 C1 7 " , AI3CI10 " , AlCl 3 Br " , Al 2 Cl 6 Br " , Al 3 Cl 9 Br " , AlBr 4 " , Al 2 Br 7 " , Al 3 Bno " , GaCl 4 " , Ga 2 Cl 7 " , Ga 3 Cli 0 " , GaCl 3 Br " , Ga 2 Cl 6 Br Ga 3 Cl 9 B , CuCl 2 " , Cu 2 Cl 3 " , Cu 3 Cl 4 " , ZnCl 3 " , FeCl 3 " , FeCl 4 " , Fe 3 Cl 7 " , InCl 4 " , InCl 5 2" , InCl 6 3" , or combinations thereof. In some embodiments, when X is the halometallate, the mol fraction of metal in the halometallate is in the range of 0.25 to 1.

Suitable cations include, but are not limited to, N,N-dimethylacetamidium, acetamidium, carbonyl diamidium, thioamidium, N-methylthioacetamidium, N,N- dimethylthioacetamidium, N-methylacetamidium, N,N-dimethylformamidium, benzamidium, N-methylbenzamidium, N,N-dimethylbenzamidium, or dichloroacetamidium.

Suitable non-cyclic amide or thioamide based ionic liquids include, but are not limited to, N,N-dimethylacetamidium chloride, N,N-dimethylacetamidium bromide, N,N- dimethylacetamidium A1C1 4 , N,N-dimethylacetamidium A1 2 C1 7 , acetamidium chloride, acetamidium bromide, acetamidium AICI 4 , acetamidium A1 2 C1 7 , urea chloride, urea bromide, urea AICI 4 , urea AI 2 CI 7, thioacetamidium chloride, thioacetamidium bromide, thioacetamidium A1C1 4 , thioacetamidium A1 2 C1 7 , N-methylthioacetamidium chloride, N- methylthioacetamidium bromide, N-methylthioacetamidium AICI 4 , N-methylthioacetamidium AI 2 CI 7 , N,N-dimethylthioacetamidium chloride, N,N-dimethylthioacetamidium bromide, N,N- dimethylthioacetamidium AICI 4 , N,N-dimethylthioacetamidium A1 2 C1 7 , N- methylacetamidium chloride, N-methylacetamidium bromide, N-methylacetamide A1C1 4 , N- methylacetamidium A1 2 C1 7 , N,N-dimethylformamidium chloride, N,N-dimethylformamidium bromide, N,N-dimethylformamidium AICI 4 , or N,N-dimethylformamidium A1 2 C1 7 .

The non-cyclic amide or thioamide based ionic liquids can be made by reacting a non-cyclic amide or thioamide having a general formula:

with a Bransted acid HX to form an amidium or thioamidium reaction product; wherein Ri, R 2 , and R 3 are independently selected from hydrogen, halide, a Ci

- Ci 2 alkyl group, a Ci - C^alkenyl group, a C 4 - C^cycloalkyl group, a C 4 - Ci 2 cycloalkenyl group, an aryl group, a substituted Ci - C^alkyl group, a substituted Ci - Ci 2 alkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, a substituted C 4 - Ci 2 cycloalkenyl group, a substituted aryl group, a C 2 - Ci 2 ether group, or a silyl group; or wherein Ri is selected from hydrogen, halide, a Ci - Ci 2 alkyl group, a Ci - Ci 2 alkenyl group, a C 4 - Ci 2 cycloalkyl group, a C 4 - Ci 2 cycloalkenyl group, an aryl group, a substituted C 1 - Ci 2 alkyl group, a substituted Ci - Ci 2 alkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, a substituted C 4 - Ci 2 cycloalkenyl group, a substituted aryl group, a C 2 - Ci 2 ether group, or a silyl group, and R 2 and R 3 form a C 4 - Ci 2 cycloalkyl group, a C 4 - Ci 2 cycloalkenyl group, a substituted C 4 - Ci 2 cycloalkyl group, or a substituted C 4 - Ci 2 cycloalkenyl group.

In some embodiments, the non-cyclic amide or thioamide comprises N,N- dimethylacetamide, acetamide, urea, thioacetamide, N-methylthioacetamide, N,N- dimethylthioacetamide, N-methylacetamide, N,N-dimethylformamide, benzamide, N- methylbenzamide, N,N-dimethylbenzamide, or dichloroacetamide.

In some embodiments, the Bransted acid HX is at least one of hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, tetrafluoroboric acid, sulfonic acid, triflic acid, toluenesulfonic acid dihaloacetic acid, and trihaloacetic acid.

The mol ratio of the non-cyclic amide or thioamide to the Bransted acid HX is typically 1 : 1.

The non-cyclic amide or thioamide is reacted with the Bransted acid HX with or without a solvent. Suitable solvents include, but are not limited to, water, alcohols, such as methanol or ethanol, dichloromethane, chloroform, or toluene.

The reaction can be performed at room temperature and atmospheric pressure. Higher or lower temperatures and/or pressures could be used, if desired.

The reaction time to form the non-cyclic amidium or thioamidium reaction product is generally in the range of 1 min to 1 hr.

In some embodiments, the anion is a halide, and the non-cyclic amidium or thioamidium reaction product is a non-cyclic amidium or thioamidium halide reaction product. In some embodiments, the non-cyclic amidium or thioamidium halide reaction product is reacted with a metal halide to form an amidium or thioamidium halometallate reaction product. In some embodiments, the mol ratio of the cation to the metal in the halometallate or of the amidium halide reaction product to the metal halide is typically in a range of 1 :0.8 to 1 :2.2, or 1 : 1 to 1 :2.2, or in 1 : 1.2 to 1 :2.2, or 1 : 1.4 to 1 :2.2, or 1 : 1.16 to 1 :2.2. The ratio may be affected by the specific cation used and the synthesis temperature.

In some embodiments, the metal of the metal halide comprises Sn, Al, Zn, Mn,

Fe, Ga, Cu, Ni, Co, In, or combinations thereof. Suitable metal halides include, but are not limited to, A1C1 3 , AlCl 2 Br, AlBr 3 , GaCl 3 , GaCl 2 Br, CuCl 3 , FeCl 3 , or InCl 3 . In some embodiments, one or more (but not all) of the halide can be substituted with an -OH group.

The amidium or thioamidium halide reaction product can be reacted with the metal halide in the presence of a solvent. Suitable solvents include, but are not limited to, dichloromethane, chloroform, toluene, or benzene. Protic solvents are not desirable for this reaction because they could react with the metal halide.

The ratio of the metal to the halide in the halometallate is less than the ratio of metal atoms to halide atoms in the neutral metal halide. That is, the metal: halide ratio is less than 1 : X, where X is the valence of the metal. For example, the ratio of metal to halide in A1 2 C1 7 " is 2:7, whereas the ratio of A1C1 3 is 1 :3.

The halide in the Bransted acid HX can be the same as the halide in the metal halide, or it can be different.

The reaction of the amidium or thioamidium halide reaction product and the metal halide can be performed at room temperature and atmospheric pressure. Higher or lower temperatures and/or pressures could be used, if desired.

The reaction time to form the non-cyclic amidium or thioamidium halometallate is generally in the range of 1 min to 24 hr. The reaction time is affected by whether a solvent is used in the reaction with solvents increasing the rate of reaction.

The reaction of the amidium or thioamidium halide reaction product and the metal halide typically takes place under an inert atmosphere, such as nitrogen, argon, and the like.

The reactions (non-cyclic amide or thioamide with the Bransted acid HX and/or amidium or thioamidium halide reaction product with the metal halide) may be practiced in laboratory scale experiments through full scale commercial operations. The process may be operated in batch, continuous, or semi-continuous mode.

Examples

Synthesis of N.N-Dimethylacetamidium Chloride An HC1 in ethanol solution (1.25M, 35 mL, 43.8 mmol) was added to N, N- dimethylacetamide (3.55 g, 40.2 mmol) at room temperature. After stirring for 1 h, the volatiles were removed at 50°C under reduced pressure to yield a white solid. Yield: 4.87 g, 98%.1H NMR (500 MHz, CDC1 3 ): 2.51 (s, 3H), 3.14 (s, 6H), 15.58 (s, 1H). 13 C NMR (125 MHz, CDCI3): 18.19, 38.67, 174.83. Synthesis of N.N-Dimethylacetamidium Chloroaluminate

Under a nitrogen atmosphere, aluminum trichloride was slowly added to N,N- dimethylacetamidium chloride. Upon addition of the aluminum chloride with stirring, the mixture began to liquefy. The mixture was stirred 1.67 h with stirring until the material was completely liquefied. Yield: 11.2 g, 90.3%.1H NMR (500 MHz, CDC1 3 ): 2.55 (s, 3H), 3.34 (d, 6H). 13 C NMR (125 MHz, CDC1 3 ): 21.27, 39.39, 40.77, 173.02.

Alkylation Experiment

In a nitrogen atmosphere, N,N-dimethylacetamidium chloroaluminate was loaded into a 300 ml autoclave containing a baffle. Prior to loading, the autoclave and baffle had been dried for several hours above 100°C. The number of acid sites in the ionic liquid was adjusted to optimize the performance by addition of 2-chlorobutane. (The number of acid sites could be adjusted by changing the catalyst loading or by changing the amount of acid or acid precursor added.) The autoclave was charged with 80 g isobutane and pressurized with 3.4 MPa (g) (500psig) of nitrogen. The contents were stirred at 1600 rpm, and 8 g 2-butene was added over time (118.72 mL/h) at room temperature. After 8 min, the reaction mixture was allowed to settle and the liquid product was sampled directly from the autoclave. The sample was passed through a silica column then analyzed by gas chromatography. The results are shown Table 1. The groupings below include all isomers having the same carbon number. The % butenes conversion was calculated using 100 - (the weight of butenes in the product divided by the weight of butenes added). RONC is the Research Octane Number Calculated. TMP/DMH is the weight ratio of trimethylpentanes to dimethylhexanes in the product. The %Selectivity is (wt% of that paraffin) / (sum of wt% of the C 5 and larger products formed). The yield is (the mass of C 5 and larger products formed) / (the mass of the C 4 olefin added).

Table 1

SPECIFIC EMB ODEVIENT S

While the following is described in conjunction with specific embodiments, it will be understood that this description is intended to illustrate and not limit the scope of the preceding description and the appended claims.

A first embodiment of the invention is a non-cyclic amide or thioamide based ionic liquid comprising a cation and an anion, the ionic liquid having a formula

or

wherein Ri, R 2 , and R 3 are independently selected from hydrogen, halide, a C 1 - C 12 alkyl group, a Ci - C 12 alkenyl group, a C 4 - C 12 cycloalkyl group, a C 4 - C 12 cycloalkenyl group, an aryl group, a substituted Ci - C 12 alkyl group, a substituted Ci - C 12 alkenyl group, a substituted C 4 - C 12 cycloalkyl group, a substituted C 4 - C 12 cycloalkenyl group, a substituted aryl group, a C 2 - C 12 ether group, or a silyl group; or wherein Ri is selected from hydrogen, halide, a Ci - C 12 alkyl group, a Ci - C 12 alkenyl group, a C 4 - C 12 cycloalkyl group, a C 4 - C 12 cycloalkenyl group, an aryl group, a substituted Ci - C 12 alkyl group, a substituted Ci - C 12 alkenyl group, a substituted C 4 - C 12 cycloalkyl group, a substituted C 4 - C 12 cycloalkenyl group, a substituted aryl group, a C 2 - C 12 ether group, or a silyl group, and R 2 and R 3 form a C 4 - C 12 cycloalkyl group, a C 4 - C 12 cycloalkenyl group, a substituted C 4 - C 12 cycloalkyl group, or a substituted C 4 - C 12 cycloalkenyl group; and X " is an anion. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the anion is a carboxylate, a nitrate, a phosphate, a phosphinate, a phosphonate, an imide, a cyanate, a borate, a sulfate, a sulfonate, an acetate, a halide, a halometallate, and combinations thereof. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the anion is the halide and wherein the halide is bromide, chloride, iodide, fluoride, or combinations thereof. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the anion is the halometallate, wherein the metal in the halometallate comprises Sn, Al, Zn, Mn, Fe, Ga, Cu, Ni, Co, In, or combinations thereof, and wherein the halide in the halometallate comprises bromide, chloride, iodide, fluoride, or combinations thereof, and wherein the halometallate optionally includes an -OH group. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the anion is the halometallate, and wherein the halometallate comprises A1C1 4 " , A1 2 C1 7 " , A1 3 C1 10 " , AlCl 3 Br " , Al 2 Cl 6 Br " , Al 3 Cl 9 Br " , AlBr 4 " , Al 2 Br 7 " , Al 3 Bri 0 " , GaCl 4 " , Ga 2 Cl 7 " , Ga 3 Cli 0 " , GaCl 3 Br " , Ga 2 Cl 6 Br " , Ga 3 Cl 9 Br " , CuCl 2 " , Cu 2 Cl 3 " , Cu 3 Cl 4 " , ZnCl 3 " , FeCl 3 " , FeCl 4 " , Fe 3 Cl 7 " , InCl 4 " , InCl 5 2" , InCl 6 3" , or combinations thereof. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the cation comprises N,N-dimethylacetamidium, acetamidium, carbonyl diamidium, thioamidium, N- methylthioacetamidium, N,N-dimethylthioacetamidium, N-methylacetamidium, N,N- dimethylformamidium, benzamidium, N-methylbenzamidium, N,N-dimethylbenzamidium, or dichloroacetamidium. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the ionic liquid is N,N-dimethylacetamidium chloride, N,N-dimethylacetamidium bromide, N,N- dimethylacetamidium A1C1 , N,N-dimethylacetamidium A1 2 C1 7 , acetamidium chloride, acetamidium bromide, acetamidium A1C1 4 , acetamidium A1 2 C1 7 , urea chloride, urea bromide, urea A1C1 4 , urea A1 2 C1 7; thioacetamidium chloride, thioacetamidium bromide, thioacetamidium A1C1 4 , thioacetamidium A1 2 C1 7 , N-methylthioacetamidium chloride, N- methylthioacetamidium bromide, N-methylthioacetamidium A1C1 , N-methylthioacetamidium A1 2 C1 7 , N,N-dimethylthioacetamidium chloride, N,N-dimethylthioacetamidium bromide, N,N-dimethylthioacetamidium A1C1 4 , N,N-dimethylthioacetamidium A1 2 C1 7 , N- methylacetamidium chloride, N-methylacetamidium bromide, N-methylacetamide A1C1 4 , N- methylacetamidium A1 2 C1 7 , N,N-dimethylformamidium chloride, N,N-dimethylformamidium bromide, N,N-dimethylformamidium A1C1 4 , or N,N-dimethylformamidium Al 2 Cl 7 .An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the anion is a halometallate and wherein a mol ratio cation to the metal in the halometallate is in a range of 10.8 to 12.2. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the anion is the halometallate and wherein a ratio of metal to halide in the halometallate is less than a ratio of the metal to the halide in a neutral metal halide. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the first embodiment in this paragraph wherein the substituted Ci - C 12 alkyl group, the substituted Ci - C 12 alkenyl group, the substituted C 4 -

C 12 cycloalkyl group, the substituted C 4 - C 12 cycloalkenyl group, or the substituted aryl group is substituted with a halide, a C 2 - C 12 ether group, a silyl group, a hydroxyl group, a thiol group, a cyano group, a sulfonyl group, an amine group, a nitrile group, a thiocyanate group, or combinations thereof.

A second embodiment of the invention is a method of making a non-cyclic amide or thioamide based ionic liquid comprising reacting a non-cyclic amide or thioamide having a general formula

with a Bransted acid HX to form an amidium or thioamidium reaction product wherein Ri, R 2 , and R 3 are independently selected from hydrogen, halide, a C 1 - C 12 alkyl group, a Ci - C 12 alkenyl group, a C 4 - C 12 cycloalkyl group, a C 4 - C 12 cycloalkenyl group, an aryl group, a substituted Ci - C 12 alkyl group, a substituted Ci - C 12 alkenyl group, a substituted C 4 - C 12 cycloalkyl group, a substituted C 4 - C 12 cycloalkenyl group, a substituted aryl group, a C 2 - C 12 ether group, or a silyl group; or wherein Ri is selected from hydrogen, halide, a C 1 - C 12 alkyl group, a C 1 - C 12 alkenyl group, a C 4 - C 12 cycloalkyl group, a C 4 - C 12 cycloalkenyl group, an aryl group, a substituted Ci - C 12 alkyl group, a substituted Ci - C 12 alkenyl group, a substituted C 4 - C 12 cycloalkyl group, a substituted C 4 - C 12 cycloalkenyl group, a substituted aryl group, a Ci - C 12 ether group, or a silyl group, and R 2 and R 3 form a C 4 - C 12 cycloalkyl group, a C 4 - C 12 cycloalkenyl group, a substituted C 4 - Ci2 cycloalkyl group, or a substituted C 4 - C 12 cycloalkenyl group. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph wherein the Bransted acid HX is at least one of hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, tetrafluoroboric acid, sulfonic acid, triflic acid, toluenesulfonic acid dihaloacetic acid, and trihaloacetic acid. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph wherein the Bransted acid HX is at least one of the hydrochloric acid, the hydrobromic acid, and the hydroiodic acid, and further comprising reacting the amidium or thioamidium reaction product with a metal halide to form an amidium or thioamidium halometallate reaction product. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph wherein a metal of the metal halide comprises Sn, Al, Zn, Mn, Fe, Ga, Cu, Ni, Co, In, or combinations thereof. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph a mol ratio of the amidium or thioamidium reaction product to the metal halide is in a range of 10.8 to 12.2. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph wherein the amidium or thioamidium reaction product is reacted with the metal halide in the presence of a solvent selected from dichloromethane, chloroform toluene, or benzene. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph wherein the halide in the Bransted acid HX is the same as the halide in the metal halide. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph wherein the non-cyclic amide or thioamide comprises N,N- dimethylacetamide, acetamide, urea, thioacetamide, N-methylthioacetamide, N,N- dimethylthioacetamide, N-methylacetamide, N,N-dimethylformamide, benzamide, N- methylbenzamide, N,N-dimethylbenzamide, or dichloroacetamide. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph wherein a mol ratio of the non-cyclic amide or thioamide to the Bransted acid HX is 11. An embodiment of the invention is one, any or all of prior embodiments in this paragraph up through the second embodiment in this paragraph wherein the non-cyclic amide or thioamide is reacted with the Bransted acid HX in the presence of a solvent.

Without further elaboration, it is believed that using the preceding description that one skilled in the art can utilize the present invention to its fullest extent and easily ascertain the essential characteristics of this invention, without departing from the spirit and scope thereof, to make various changes and modifications of the invention and to adapt it to various usages and conditions. The preceding preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limiting the remainder of the disclosure in any way whatsoever, and that it is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims.

In the foregoing, all temperatures are set forth in degrees Celsius and, all parts and percentages are by weight, unless otherwise indicated.