Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM FOR EVAPORATING LIQUEFIED NATURAL GAS (LNG)
Document Type and Number:
WIPO Patent Application WO/2014/183915
Kind Code:
A1
Abstract:
The invention relates to a system (1) for evaporating liquefied natural gas (LNG) in a vehicle having an engine that is operated with natural gas, wherein the system (1) comprises an evaporator (2) for LNG, and wherein the system (1) comprises a heat engine (3) for the recovery of heat energy from the exhaust gas of the vehicle, wherein the heat engine (3) has a condenser (4) for the condensation of a refrigerant, wherein said condenser (4) is operatively connected, for exchange of heat, to the evaporator (2) for LNG.

Inventors:
HUBER MARTIN (DE)
WEISSENMAYER SIMON (DE)
Application Number:
PCT/EP2014/056399
Publication Date:
November 20, 2014
Filing Date:
March 31, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
International Classes:
F02G5/02; F02M21/06; F17C7/04; F17C9/04
Domestic Patent References:
WO2013047574A12013-04-04
Foreign References:
DE102010027068A12012-01-19
DE102005025615A12006-12-07
DE2750894A11979-03-15
EP2527635A22012-11-28
DE19602441A11996-08-01
US5390646A1995-02-21
EP2495422A22012-09-05
Other References:
See also references of EP 2997247A1
Download PDF:
Claims:
Ansprüche . System (1 ) zur Verdampfung von verflüssigtem Erdgas (LNG) in einem Fahrzeug mit einem mit Erdgas betriebenen Motor, wobei

das System (1 ) einen Verdampfer (2) für LNG umfasst, und wobei

das System (1 ) eine Wärmekraftmaschine (3) zur Rückgewinnung von Wärmeenergie aus dem Abgas des Fahrzeugs umfasst, wobei

die Wärmekraftmaschine (3) einen Kondensator (4) zur Kondensation eines Kältemittels aufweist, wobei dieser Kondensator (4) mit dem Verdampfer (2) für LNG zum Wärmetausch in Wirkverbindung steht.

2. System nach Anspruch 1 , dadurch gekennzeichnet, dass der Kondensator (4) der Wärmekraftmaschine (3) mit einem Kühlmittelkreislauf (5) des Fahrzeugs zum Wärmetausch in Wirkverbindung steht. 3. System nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Wirkverbindung zwischen Kondensator (4) der Wärmekraftmaschine (3) und dem Verdampfer (2) für LNG einerseits und zwischen dem Kondensator (4) und dem Kühlmittelkreislauf (5) des Fahrzeugs andererseits zweistufig derart ausgestaltet ist, dass das Kältemittel der Wärmekraftmaschine (3) in einer ersten Stufe mit dem Kühlmittelkreislauf (5) des Fahrzeugs und in einer zweiten Stufe mit dem Verdampfer (2) für LNG zum Wärmetausch in Wirkverbindung steht.

4. System nach Anspruch 3, dadurch gekennzeichnet, dass die Wärmekraftmaschine (3) eine Bypassleitung (6) aufweist, die das Kältemittel der Wärme- kraftmaschine (3) an der ersten Stufe vorbei leitet.

5. System nach Anspruch 4, dadurch gekennzeichnet, dass das System (1 ) eine

Steuereinheit (15) aufweist, die derart eingerichtet ist, dass das Kältemittel der Wärmekraftmaschine (3) durch die Bypassleitung (6) geleitet wird, solange die Temperatur im Kühlmittelkreislauf (5) eine vorgegebene Temperatur unterschreitet.

6. System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass vor dem Verdampfer (2) ein weiterer Wärmetauscher für die Klimatisierung des Fahrzeugs angebracht ist.

7. System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmekraftmaschine (3) eine Expansionsmaschine (7) zur Erzeugung von mechanischer und/oder elektrischer Energie aufweist.

8. System nach Anspruch 7, dadurch gekennzeichnet, dass die Expansionsmaschine (7) eine Kolbenmaschine oder eine Turbine ist.

9. System nach einem der vorangehenden Ansprüche, soweit auf Anspruch 2 zurückbezogen, dadurch gekennzeichnet, dass der Kühlmittelkreislauf (5) des Fahrzeugs ein Motorkühlkreislauf ist.

10. System nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrzeug ein Lastkraftwagen ist.

Description:
Beschreibung Titel

System zur Verdampfung von verflüssigtem Erdgas (LNG)

Die vorliegende Erfindung betrifft ein System zur Verdampfung von verflüssigtem Erdgas (LNG) in einem Fahrzeug mit einem mit Erdgas betriebenen Motor.

Stand der Technik

Eine Abgas-Wärmekraftmaschine kann der Rückgewinnung eines Teils der Wärmeenergie des Abgases eines Fahrzeugs und damit der Effizienzsteigerung des Motors dienen, insbesondere von LKWs. Mit dieser Abgas- Wärmekraftmaschine können etwa 5 % Kraftstoff eingespart werden.

Fahrzeuge, die mit Erdgas als Kraftstoff von einem Verbrennungsmotor betrieben werden, sind seit langem bekannt und werden als Erdgasfahrzeug, Erdgasauto oder englisch "Natural Gas Vehicle" (NGV) oder "CNG Vehicle" (CNG = "Compressed Natural Gas") bezeichnet. In den Zylindern des Verbrennungsmo- tors wird ein aufbereitetes Erdgas-Luft-Gemisch verbrannt. Für eine ausreichende Energiedichte wird das Erdgas (CNG) auf etwa 200 bar verdichtet und gespeichert. Als Verbrennungsmotor dient ein konventioneller Benzinmotor (Ottomotor). Es existieren im Nutzfahrzeugbereich umgerüstete Dieselmotoren, die Erdgas als Kraftstoff verwenden können, beispielsweise der DING-Motor ("Direct Injection Natural Gas"). Verflüssigtes Erdgas (LNG = "Liquid Natural Gas") wird verstärkt insbesondere in den USA und in Asien als Kraftstoff für LKWs eingesetzt. Das Erdgas liegt in verflüssigter Form vor und wird bei der Entnahme aus dem Fahrzeugtank verdampft. Der Verdampfer wird mit Kühlmittelflüssigkeit aus dem Kühlkreislauf des Motors erwärmt. Erdgas, dessen Hauptbestandteil Methan ist, lässt sich sehr sauber verbrennen. Im Vergleich zu Benzinfahrzeugen entstehen weniger Kohlendioxid, weniger Kohlenmonoxid und weniger Kohlenwasserstoffe. Im Vergleich zu Dieselfahrzeugen entstehen insgesamt weniger Kohlenmonoxid, weniger Kohlenwasserstoffe, weniger Stickoxide und nahezu keine Rußpartikel. Erdgas zum Antrieb von Kraftfahrzeugen kann auch sehr einfach aus Biogas durch Aufbereitung gewonnen werden. Bioerdgas und fossiles Erdgas können dann gemischt vorliegen. Bioerdgas kann beispielsweise aus verdorbenen Nahrungsmitteln oder anderen biologischen Abfällen gewonnen werden. Die regenerative Energiegewinnung mit Erdgas steht damit nicht unmittelbar in Konkurrenz zur Nahrungsmittelproduktion (Problematik anderer Biotreibstoffe). Erdgas ist einer der wenigen regenerativen Energieträger, die langfristig (über mehrere Monate) gespeichert werden können, und wird somit zukünftig eine immer größere Rolle für den Fahrzeugantrieb spielen.

Zur Verflüssigung des Erdgases zur Speicherung als LNG werden etwa 10 bis 25 % des Energieinhaltes des Gases benötigt. Diese Energie geht bei der Erwärmung (Verdampfung von LNG) durch Kühlmittelflüssigkeit aus dem Kühlkreislauf des Motors verloren.

Die bei der Erwärmung von LNG verlorene Energie soll mindestens zum Teil zurückgewonnen werden, um die Energiebilanz eines Erdgasfahrzeuges zu verbessern.

Offenbarung der Erfindung

Die Erfindung schlägt ein System zum Verdampfen von verflüssigtem Erdgas (im Folgenden "LNG"), in einem Fahrzeug mit einem mit Erdgas betriebenen Motor gemäß Anspruch 1 vor. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung.

Vorteile der Erfindung Das erfindungsgemäße System umfasst einen Verdampfer für LNG sowie eine Wärmekraftmaschine, insbesondere Abgas-Wärmekraftmaschine zur Rückgewinnung von Wärmeenergie von Abgas des Fahrzeugs. Erfindungsgemäß ist der Verdampfer für LNG nunmehr an die Wärmekraftmaschine gekoppelt, wobei die Wärmekraftmaschine einen Kondensator zur Kondensation eines Kältemittels aufweist und dieser Kondensator mit dem Verdampfer für LNG zum Wärmetausch in Wirkverbindung steht.

Zur Herstellung dieses Wärmetauschs sind dem Fachmann verschiedene Mittel bekannt. Beispielsweise kann die Leitung des Kältemittels um oder auch durch den Verdampfer für LNG geführt werden oder die Leitung für LNG um oder durch den Kondensator geführt werden oder beide Leitungen wärmetauschend aneinander entlang geführt werden. Schließlich kann der Wärmetausch über ein weiteres Medium erfolgen.

Die Wärmekraftmaschine kann im Idealfall als Carnot-Prozess beschrieben werden, bei dem das Abgas eine erste Wärmemenge dem Kältemittel der Wärmekraftmaschine zuführt, wobei dieser Wärmetausch über einen Verdampfer erfolgt, der das Kältemittel verdampft. Bei hoher Temperatur und hohem Druck wird der Dampf zum Betrieb einer Expansionsmaschine genutzt. Hier entsteht elektrische und/oder mechanische Energie. Auf diese Weise kann ein Teil der Wärmeenergie des Abgases zurückgewonnen werden. Das Kältemittel wird anschließend einem Kondensator zugeführt, in dem es kondensiert wird, woraufhin es mittels einer Pumpe wieder dem Verdampfer zugeführt wird.

Der Wirkungsgrad des idealen Carnot-Prozesses beträgt η = 1 - Tu/To, wobei T 0 die obere Temperatur, also die Temperatur des Kältemittels im

Verdampfer, und Tu die untere Temperatur, also die Temperatur des Kältemittels im Kondensator darstellt. Aus der Formel ist ersichtlich, dass der Wirkungsgrad erhöht werden kann, wenn die untere Temperatur Tu abgesenkt wird. Dies erreicht die Erfindung. Aufgrund der Wärmekopplung des Kondensators mit dem Verdampfer für LNG kann eine Absenkung der unteren Temperatur Tu erreicht werden. Somit kann die Wärmekraftmaschine effektiver betrieben werden. Ausserdem kann erfindungsgemäß ein Teil der zum Verflüssigen des Erdgases aufgewandten Energie zurückgewonnen werden. Der Gesamtwirkungsgrad des erfindungsgemäßen Systems ist somit höher als der der Abgas-

Wärmekraftmaschine alleine.

Das erfindungsgemäße System eignet sich insbesondere für erdgasbetriebene Kraftfahrzeuge, insbesondere für Lastkraftwägen (LKWs). Vorzugsweise wird nämlich die Verdampfungskälte dazu genutzt, das LNG im flüssigen Zustand zu halten. Dies gelingt insbesondere beim Betrieb von Fahrzeugen ohne lang dauernde Unterbrechungen, wie es beispielsweise bei LKWs der Fall ist.

Als Expansionsmaschine der Wärmekraftmaschine hat sich in der Praxis eine Kolbenmaschine oder eine Turbine als zweckmäßig erwiesen.

In einer besonders vorteilhaften Ausgestaltung steht der Kondensator der Wärmekraftmaschine mit einem Kühlmittelkreislauf des Fahrzeugs, insbesondere mit einem oder dem Motorkühlkreislauf des Fahrzeugs zum Wärmetausch in Wirkverbindung. Bezüglich der Mittel zur Herstellung dieses Wärmetauschs gilt das oben gesagte in analoger Weise.

Bei dieser Ausgestaltung kann eine erste und eine zweite Stufe des Wärmetauschs realisiert werden, wobei grundsätzlich im Betrieb des Systems und somit des Fahrzeugs wahlweise eine der beiden Stufen zur Anwendung kommen kann oder aber eine der beiden Stufen der jeweils anderen Stufe vorgeschaltet sein kann.

Vorteilhafterweise ist die Wirkverbindung zwischen Kondensator der Wärmekraftmaschine und Verdampfer für LNG einerseits sowie zwischen dem

Kondensator und dem genannten (Motor-)Kühlmittelkreislauf andererseits derart ausgestaltet, dass das Kältemittel der Wärmekraftmaschine in einer ersten Stufe mit dem (Motor-)Kühlkreislauf und in einer zweiten Stufe mit dem Verdampfer für LNG zum Wärmetausch in Wirkverbindung steht. Insbesondere ist die erste Stufe der zweiten Stufe vorgeschaltet, wobei beide Stufen durchlaufen werden. Auf diese Weise wird das Kältemittel zweistufig abgekühlt, um die Kälteenergie von LNG zielgerichteter zu nutzen. In der ersten Stufe wird das Kältemittel zum Beispiel mit dem Kühlwasser des (Motor-)Kühlkreislaufs so weit wie möglich abgekühlt und teilweise kondensiert. Im zweiten Schritt wird dann das Kältemittel im LNG-Verdampfer vollständig kondensiert.

In dieser vorteilhaften Ausführungsform des zweistufigen Wärmetauschs ist es zweckmäßig, wenn die Wärmekraftmaschine eine Bypassleitung aufweist, die das Kältemittel der Wärmekraftmaschine an der ersten Stufe vorbei leitet. Insbesondere beim Warmlauf des Fahrzeugmotors ist das Kühlwasser im (Motor- )Kühlkreislauf noch kalt (Umgebungstemperatur), Gleiches gilt für das Kältemittel in der Wärmekraftmaschine, dessen Temperatur aufgrund der Abgaswärme jedoch schneller steigt als die des (Motor-)Kühlkreislaufs. Damit folglich ausreichend Wärme zum Verdampfen des LNG zur Verfügung steht, ist es sinnvoll, einen Teil oder den gesamten Kältemittelstrom der Wärmekraftmaschine an der genannten ersten Stufe vorbei zu leiten und direkt zur zweiten Stufe zu führen. Hierzu kann vorzugsweise eine Steuereinheit vorgesehen sein, die die entsprechenden Ventile derart ansteuert, dass das Kältemittel der Wärmekraftmaschine durch die Bypassleitung geleitet wird, solange die Temperatur im (Motor-)Kühlkreislauf eine vorgegebene Temperatur (beispielsweise Betriebstemperatur) unterschreitet.

Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.

Die Erfindung ist anhand eines Ausführungsbeispieles in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung ausführlich beschrieben. Als einzige Zeichnung zeigt

Figur 1 eine Ausführungsform eines erfindungsgemäßen Systems zur Verdampfung von verflüssigtem Erdgas (LNG).

In Figur 1 ist die Wärmekraftmaschine mit 3 bezeichnet. Das Kältemittel der Wärmekraftmaschine 3 durchläuft im Idealfall einen Carnot-Prozess, mit dem in der Beschreibung angegebenen Wirkungsgrad. Hierzu wird das Kältemittel verdampft, der Dampf betreibt eine Expansionsmaschine 7, und anschließend wird das Kältemittel kondensiert, um dann zum Verdampfer zurückgepumpt zu werden. Im Einzelnen sind hierzu ein Verdampfer 9 der Abgasrückführung und ein Verdampfer 10 der Abgasanlage vorgesehen, über die Abwärme dem Kältemittel zugeführt wird (angedeutet durch die beiden Pfeile), das verdampft wird und beispielsweise mit 300°C und 50 bar der Expansionsmaschine 7 zugeführt wird. Die Expansionsmaschine 7, insbesondere eine Kolbenmaschine oder eine Turbine, erzeugt mechanische und/oder elektrische Energie. Mittels einer Bypassleitung 8 mit Ventil kann ein Teil des Dampfes an der Expansionsmaschine 7 vorbei geführt werden. Das ist insbesondere dann von Vorteil, wenn die Expansionsmaschine während des Warmlaufs vor

Wasserschlag (vorzeitiges Kondensieren des Kältemittels in der Expansionsmaschine) geschützt und/oder mehr Wärmeenergie zum Verdampfen des LNGs zur Verfügung gestellt werden soll. Das Kältemittel wird anschließend in dem Kondensator 4 der Wärmekraftmaschine kondensiert. Mittels einer Kondensatpumpe 14 kann das Kältemittel in einen Behälter 13 gepumpt werden.

Über eine Fluidpumpe 12 gelangt es wiederum in die Verdampfer 9 und 10, wobei die Anteile des Kältemittels für diese Verdampfer über ein Verteilerventil 1 1 (Mengenreglerventil) eingestellt werden können. In der dargestellten besonders vorteilhaften Ausführungsform des Systems 1 ist ein zweistufiger Wärmetausch vorgesehen. Hierzu kann der Kondensator 4 in einem ersten Teil mit dem Kühlmittelkreislauf 5 des Motors in Wärmetausch treten. Ein zweiter Teil des Kondensators 4, der in Förderrichtung des Kältemittels insbesondere dem ersten Teil des Kondensators 4 nachgeordnet ist, kann mit dem Verdampfer 2 für LNG in Wärmetausch treten (angedeutet durch den Pfeil).

Der Verdampfer 2 für LNG verdampft verflüssigtes Erdgas aus einem LNG-Tank und erzeugt auf diese Weise verdichtetes Erdgas (CNG). Vor dem Verdampfer 2 kann ein weiterer Wärmetauscher (nicht dargestellt) für die Klimatisierung des Fahrzeugs vorgeschaltet sein.

Im Betrieb des Fahrzeugs werden insbesondere die genannten beiden Stufen nacheinander durchlaufen. Auf diese Weise wird das Kältemittel der

Wärmekraftmaschine 3 über das Kühlmittel (Kühlwasser) des Motorkühlkreislaufs 5 so weit wie möglich in der ersten Stufe abgekühlt. In der zweiten Stufe wird dann das Kältemittel durch Wärmetausch mit dem LNG-Verdampfer 2 kondensiert. Auf diese Weise kann vorhandene Kälteenergie optimal genutzt werden. Insbesondere kann dieser zweistufige Wärmetausch bei Kältemitteln sinnvoll sein, die bei Durchlaufen allein der zweiten Stufe nicht ausreichend abgekühlt werden, um zu kondensieren.

Figur 1 zeigt weiterhin eine Bypassleitung 6 mit Ventil, die das Kältemittel an der ersten Stufe vorbei direkt der zweiten Stufe zuleitet. Eine Steuereinheit 15 steuert hierzu das Ventil der Bypassleitung 6 (und ggf. weitere Ventile, die hier nicht dargestellt sind) an. Die Bypassleitung 6 wird von der Steuereinheit 15 insbesondere dann geöffnet, wenn sich das Fahrzeug im Warmlauf befindet. In diesem Fall ist es nämlich zweckmäßig, wenn das Kältemittel der Wärmekraftmaschine 3 gleich für den Wärmetausch mit dem LNG-Verdampfer 2 zur Verfügung steht, um das LNG zu verdampfen, ohne vorher noch Wärme an den Kühlmittelkreislauf 5 abgeben zu müssen.

Die Steuereinheit 15 kann beispielsweise die Temperatur des Kühlmittels im Motorkühlkreislauf 5 messen und die Bypassleitung 6 erst dann schließen, wenn die Temperatur im Kühlmittelkreislauf eine vorgegebene Temperatur überschreitet, die zum zuverlässigen und vollständigen Verdampfen des LNGs ausreichend ist. Die Temperatur des Kältemittels hängt hierbei von den Masseströmen des Kältemittels und des zu verdampfenden LNGs, sowie deren Wärmekapazitäten ab. Die Verdampfungswärme des LNGs, die Wärmekapazität des Wärmetauschers und der Wärmestrom in und aus der Umgebung haben ebenso Einfluss auf die Temperatur. Die geeignete Temperatur lässt sich einfach durch einen Versuch am Prototypen bestimmen.

Das erfindungsgemäße System verbessert den Wirkungsgrad der Wärmekraftmaschine 3, kann einen Teil der zum Verflüssigen des Erdgases aufgewandten Energie zurückgewinnen und gleichzeitig Abgaswärme über die Expansionsmaschine 7 zum Teil zurückgewinnen.