Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM AND METHOD FOR A COMPRESSOR
Document Type and Number:
WIPO Patent Application WO/2013/159087
Kind Code:
A2
Abstract:
Systems (100 and 200) and methods (1600-1900) of the invention relate to diagnosing a compressor. A method may include operating a compressor (110) to compress air from a first stage compressor into an intermediate stage reservoir (266), to deliver air from the intermediate stage reservoir to a second stage compressor, and to further compress the air in the second stage compressor into a primary reservoir (180), monitoring an intermediate stage pressure of the intermediate stage reservoir, and identifying a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. A vehicle system (100) is also provided including an engine, a compressor operatively connected to the engine, and a controller (130) that is operable to identify a condition of the compressor.

Inventors:
BURKELL NEIL WILLIAM (US)
KARUNARATNE MILAN (US)
PETERSEN DAVID EDWARD (US)
PEOPLES RICHARD C (US)
STRODE JASON M (US)
WORDEN BRET DWAYNE (US)
Application Number:
PCT/US2013/037567
Publication Date:
October 24, 2013
Filing Date:
April 22, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GEN ELECTRIC (US)
International Classes:
F04B49/00
Domestic Patent References:
WO2007084140A12007-07-26
Foreign References:
EP1947341A12008-07-23
US20020051710A12002-05-02
US20110056708A12011-03-10
US6651034B12003-11-18
Attorney, Agent or Firm:
KRAMER, John, A. et al. (Global Patent Operation2 Corporate Drive, Suite 64, Shelton CT, US)
Download PDF:
Claims:
What is claimed is:

1. A method for a compressor system, comprising:

operating the compressor system to compress air from a first stage compressor into an intermediate stage reservoir, to deliver air from the intermediate stage reservoir to a second stage compressor, and to further compress the air in the second stage compressor into a primary reservoir;

monitoring an intermediate stage pressure of the intermediate stage reservoir; and

identifying a condition of the compressor system through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor system is operated,

2. The method of claim 1 , further comprising filling the primary reservoir with compressed air to a determined pressure value, wherein the primary reservoir is configured to store compressed air to be provided to at least one pneumatic device.

3. The method of claim i , wherein identifying the condition of the compressor system further comprises correlating the monitored intermediate stage pressure and an indication of a position of a piston in a cylinder of the compressor system.

4. The method of claim 3, further comprising identifying a condition of the cylinder based on the correlation of the intermediate stage pressure and the indication of the position of the piston in the cylinder of the compressor system.

5. The method of claim 1 , wherein the change in the monitored intermediate stage pressure is recognized by:

calculating an average of the intermediate stage pressure over the time period; and

comparing the average intermediate stage pressure over the time period to a nominal intermediate stage average pressure.

6. The method of claim 5, further comprising identifying the nominal intermediate stage average pressure from at least one of ambient air temperature or ambient air pressure.

7. The method of claim 5, further comprising identifying the nominal intermediate stage average pressure from at least one of compressor speed, primary reservoir pressure, or oil temperature.

8. The method of claim 1 , wherein identifying the condition of the compressor system comprises identifying a faulty exhaust valve of a low pressure cylinder.

9. The method of claim I , wherein identifying the condition of the compressor system comprises identifying a piston blow-by condition of at least one cylinder of the compressor.

10. The method of claim 1 , wherein identifying the condition of the compressor system comprises identifying an intake valve failure of a high pressure cylinder,

1 1. The method of claim 1 , further comprising generating a signal in response to identifying the condition of the compressor system.

12. The method of claim 1 1 , further comprising notifying personnel with the signal, the signal comprising one or more of an audio alarm, a visual alarm, a text message, an email, an instant message, or a phone call.

13. The method of claim 1 , further comprising reducing a duty cycle of the compressor system in response to identifying the condition of the compressor system.

14. A system comprising:

a compressor system comprising: a first stage compressor configured to compress air into an intermediate stage reservoir at a first pressure, and a second stage compressor configured to receive air from the intermediate stage compressor at the first pressure and further compress the air into a primary reservoir of the compressor system at a second pressure, wherein the second pressure is greater than the first pressure; and

a controller configured to:

receive a signal corresponding to a monitored intermediate stage pressure of the intermediate stage reservoir of the compressor system; and

identify a condition of the compressor system through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor system is operated.

15. The system of claim 14, wherein the compressor system is a two-stage compressor system, and wherein the intermediate stage reservoir is disposed between at least one low pressure cylinder and at least one high pressure cylinder.

16. The system of claim 14, wherein the controller is further configured to recognize the change in the monitored intermediate stage pressure based on the monitored intermediate stage pressure as correlated to an indication of a position of a piston in a cylinder of the compressor system.

17. The system of claim 14, wherein the controller is further configured to:

identify a condition of a cylinder of the compressor system based on a correlation of the intermediate stage pressure to an indication of a position of a piston in the cylinder of the compressor system.

18. The system of claim 14, wherein the controller is further configured to recognize the change in the monitored intermediate stage pressure by:

calculating an average of the intermediate stage pressure over the time period: and

comparing the average intermediate stage pressure over the time period to a nominal intermediate stage average pressure.

19. The system of claim 14, wherein the controller is further configured to communicate with one or more intermediate stage pressure sensors and receive the signal corresponding to the monitored intermediate stage pressure from the one or more intermediate stage pressure sensors.

20. The system of claim 14, wherein the condition of the compressor system is a blow-by condition of at least one cylinder of the compressor system.

21. The system of claim 14, wherein the condition of the compressor system is a cylinder valve failure.

22. The system of claim 14, wherein the intermediate stage reservoir comprises an intercooler.

Description:
SYSTEM AND METHOD FOR A COMPRESSOR

BACKGROUND TECHNICAL FIELD

[0001] Embodiments of the subject matter disclosed herein relate to compressor diagnostics.

DISCUSSION OF ART

[0002] Compressors compress gas, such as air. Compressors may be driven by electric motors, and may be air cooled. Some compressors include three cylinders with two stages. For example, a compressor can have two low pressure cylinders which deliver an intermediate pressure air supply to a single high pressure cylinder for farther compression for final delivery to an air reservoir. Compressor and compressor components are subject to various failure modes, which increase difficulties in maintaining a healthy compressor.

[0003] It may be desirable to have a system and method that differs from those systems and methods that are currently available.

BRIEF DESCRIPTION

[0004] In an embodiment, a method for a compressor (e.g., a method for controlling and/or operating a compressor) is provided that includes the steps of operating a compressor to compress air from a first stage compressor into an intermediate stage reservoir, to deliver air from the intermediate stage reservoir to a second stage compressor, and to further compress the air in the second stage compressor into a primary reservoir. The method further comprises monitoring an intermediate stage pressure of the intermediate stage reservoir, and identifying a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. (In embodiments, the method is automatically or otherwise carried out by a controller.) [0005] In an embodiment, a controller is provided that is operable in association with a compressor that includes a first stage compressor configured to compress air into an intermediate stage reservoir at a first pressure, and a second stage compressor configured to receive air from the intermediate stage compressor at the first pressure and further compress the air into a primary reservoir of the compressor at a second pressure; the second pressure is greater than the first pressure. In the embodiment, the controller can be configured to receive a signal corresponding to a monitored intermediate stage pressure of the intermediate stage reservoir of the compressor, and identify a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated.

[0006] In an embodiment, a system comprises a compressor system having a first stage compressor configured to compress air into an intermediate stage reservoir at a first pressure, and a second stage compressor configured to receive air from the intermediate stage compressor at the first pressure and further compress the air into a primary reservoir of the compressor system at a second pressure; the second pressure is greater than the first pressure. The system further comprises a controller that is configured to receive a signal corresponding to a monitored intermediate stage pressure of the intermediate stage reservoir of the compressor system, and identify a condition of the compressor system through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor system is operated.

[0007] In an embodiment, a compressor system is provided that includes means for operating a compressor to compress air from a first stage compressor into an intemiediate stage reservoir, to deliver air from the intermediate stage reservoir to a second stage compressor, and to further compress the air in the second stage compressor into a primary reservoir and means for monitoring an intermediate stage pressure of the intermediate stage reservoir. In the embodiment, the compressor system can include means for identifying a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. [0008] in an embodiment, a method (e.g., method for operating and/or controlling a compressor) comprises monitoring a pressure of compressed air within a reservoir of a compressor, and actuating a piston within a cylinder of the compressor. The method further comprises detecting a leak condition of an exhaust valve of the cylinder through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the piston is actuated. (In other embodiments, the method further comprises automatically or otherwise controlling the compressor based on, and/or responsive to, the leak condition that is detected. In still other embodiments, alternatively or additionally, the method is carried out automatically or otherwise by a controller.)

[0009] Another embodiment relates to a controller that is operable in association with a compressor (e.g., the controller may receive data from and/or about the compressor, diagnose a condition based on the data, and control the compressor based on the condition that is diagnosed). The controller is configured to receive a signal corresponding to a monitored pressure of compressed air within a reservoir of a compressor. The compressor s further configured to detect a leak condition of an exhaust valve of a cylinder of the compressor tlirough recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which a piston is actuated within the cylinder.

[0010] In another embodiment, a system comprises a compressor operatively connected to an engine, wherein the compressor includes a reservoir configured to store compressed air. The system further comprises a controller that is operable to determine a condition of the compressor. The controller is configured to receive a signal corresponding to a monitored pressure of compressed air within the reservoir, and detect a leak condition of an exhaust valve of a cylinder of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which a piston is actuated within the cylinder.

[001 1] In another embodiment, a compressor system comprises means for monitoring a pressure of compressed air within a reservoir, and means for actuating a piston within a cylinder. The compressor system further comprises means for detecting a leak condition of an exhaust valve of the cylinder through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the piston is actuated.

[0012] In an embodiment, a method (e.g., a method for controlling and/or operating a compressor) is provided that includes the steps of monitoring a crankcase pressure of a compressor; analyzing the monitored crankcase pressure; and identifying a condition of the compressor based on the analysis of the monitored crankcase pressure. (The method may be carried out automatically or otherwise by a controller.) [0013] Another embodiment relates to a controller that is operable in association with a compressor {e.g., the controller may receive data from and/or about the compressor and control the compressor or other systems based on the data). The controller is configured to receive a signal corresponding to a monitored pressure within a crankcase of the compressor, and to analyze the monitored crankcase pressure. The controller can further be configured to identify a condition of the compressor based on the analysis of the monitored crankcase pressure.

[0014] In an embodiment, a system comprises a compressor operatively connected to an engine, wherein the compressor includes a crankcase having a crankcase pressure sensor. The system further comprises a controller that is configured to receive a signal corresponding to a monitored pressure within the crankcase of the compressor from the crankcase pressure sensor. The controller is further configured to analyze the monitored crankcase pressure and to identify a condition of the compressor based on the analysis of the monitored crankcase pressure.

[0015] In an embodiment, a compressor system is provided that includes means for monitoring a crankcase pressure of a compressor and means for analyzing the monitored crankcase pressure. The compressor system further includes means for identifying a condition of the compressor based on the analysis of the monitored crankcase pressure,

[0016] In an embodiment, a method is provided that identifies a leak condition for a compressor. (For example, the method may include controlling the compressor based on the leak condition that is identified.) The method includes monitoring a pressure of compressed air within a reservoir of a compressor, and actuating an unloader valve of the compressor. The method further includes detecting a leak condition of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the unloader valve is actuated.

[0017] Another embodiment relates to a controller operable in association with a compressor. The controller is configured to receive a signal corresponding to a monitored pressure of compressed air within a reservoir of a compressor. The controller is further configured to detect a leak condition of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which an unloader valve of the compressor is actuated. The controller may be further configured to control the compressor based on, and/or responsive to, the leak condition that is detected.

[0018] Another embodiment relates to a system. The system comprises a compressor operatively connected to an engine, wherein the compressor includes a reservoir configured to store compressed air and an unloader valve configured to release pressure from a portion of the compressor. The system further comprises a controller that is operable in association with the compressor. The controller is configured to receive a signal corresponding to a monitored pressure of compressed air within the reservoir of the compressor, and to detect a leak condition of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the unloader valve is actuated.

[0019] In another embodiment, a compressor system can be provided that facilitates identifying a leak condition for a compressor based on a cycling of an unloader valve. The compressor system can include means for monitoring a pressure of compressed air within a reservoir of a compressor and means for actuating an unloader valve of the compressor. The compressor system can further include means for detecting a leak condition of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the unloader valve is actuated.

BRIEF DESCRIPTION OF THE DRAWINGS [0020] Reference is made to the accompanying drawings in which particular embodiments and further benefits of the invention are illustrated as described in more detail in the description below, in which:

[0021] FIG. 1 is an illustration of an embodiment of a vehicle system with a compressor;

[0022] FIG. 2 is an illustration of an embodiment of system that includes a compressor;

[0023] FIG, 3 is a graph that controls a motor based upon a detection component for a compressor;

[0024] FIG. 4 is a graph that illustrates a measured pressure over time with indication of a compression stroke or a suction stroke for a compressor;

[0025] FIG, 5 is an illustration of an embodiment of a system that includes a compressor;

[0026] FIG. 6 is an illustration of an embodiment of a system that includes a compressor;

[0027] FIG. 7 is a graph depicting a measured crankcase pressure for a compressor;

[0028] FSG. 8 is a graph depicting a measured crankcase pressure for a compressor;

[0029] FIG. 9 is an illustration of an embodiment of a system that includes a compressor;

[0030] FIG. 10 is a graph depicting a measured crankcase pressure for a compressor;

[0031] FIG. 1 1 is an illustration of an embodiment of a system that includes a compressor with an unioader valve in an open position;

[0032] FIG. 12 is a graph illustrating a monitored pressure for a reservoir of a compressor without a leak condition;

[0033] FIG. 13 is a graph illustrating a monitored pressure for a reservoir of a compressor with a leak condition;

[0034] FIG. 14 is a graph illustrating a monitored pressure for a compressor;

[0035] FIG. 15 is a graph illustrating a monitored pressure for a compressor; [0036] FIG, 16 is a flow chart of an embodiment of a method for monitoring a pressure of an intermediate stage of a compressor to identify a condition thereof;

[0037] FIG. 17 is a flow chart of an embodiment of a method for identifying a leak condition for a compressor based upon a cycling piston;

[0038] FIG. 18 is a flow chart of an embodiment of a method for identifying a condition of a compressor based upon a measured crankcase pressure; and

[0039] FIG. 1 is a flow chart of an embodiment of a method for identifying a leak condition for a compressor based upon a cycling unloader valve.

DETAILED DESCRIPTION

[0040] Embodiments of the subject matter disclosed herein relate to systems and methods that facilitate identifying a condition of a compressor and, in particular, identifying a condition of the compressor by monitoring a pressure of an intermediate stage. A controller can be configured to actuate a piston for a compressor while monitoring an intermediate stage pressure with the compressor. Moreover, a pressure sensor (e.g., also referred to as a detection component) can be configured to monitor pressure for the intermediate stage, for purposes of detecting a change (e.g., a fluctuation, increase, decrease, among others) in the pressure. Based upon a detected change in the monitored pressure of the intermediate stage, the controller can be configured to identify a condition of the compressor associated with the detected change in pressure. In an embodiment, the controller can be further configured to communicate an alert related to the detected change in the intermediate stage pressure and associate the change with a position of the piston. The alert can be a signal (e.g., diagnostic code, audio, text, visual, haptic, among others) that indicates a change in the monitored pressure of the intermediate stage of the compressor. This alert can be utilized to provide maintenance on the compressor or a portion thereof. In an embodiment, the controller can be configured to schedule a maintenance operation based upon the detected change in pressure of the intermediate stage and/or the communicated alert in order to perform preventative maintenance.

[0041] Embodiments of the subject matter disclosed herein relate to systems and methods that facilitate identifying a leak condition within a compressor and, in particular, identifying a leak condition by monitoring a pressure while actuating a piston, A controller can be configured to actuate a piston for a compressor while maintaing pressure within a resevoir. Moreover, a pressure sensor (e.g., also referred to more generally as a detection component) can be configured to monitor pressure in the resevoir, for purpose of detecting a change (e.g., a fluctuation, increase, decrease, among others) in the monitored pressure. Based upon a detected change in the monitored pressure, the controller can be configured to detect a leak condition associated with the detected change in pressure. In an embodiment, the controller can be further configured to communicate an alert related to the detected change in the pressure of the reservoir during the piston actuation. The alert can be a signal (e.g., diagnostic code, audio, text, visual, haptic, among others) that indicates a change in the monitored pressure of the reservoir of the compressor. This alert can be utilized to provide maintenance on the compressor or a portion thereof, in an embodiment, the controller can be configured to schedule a maintenance operation based upon the detected change in pressure and/or the communicated alert in order to perform preventative maintenance. Further, the controller may be configured to automatically control the compressor based on a leak condition that is detected, e.g., a duty cycle of the compressor may be automatically reduced.

[0042] Embodiments of the subject matter disclosed herein relate to systems and methods that facilitate identifying a leak condition or other condition within a compressor and, in particular, identifying a leak condition by monitoring a crankcase pressure. A controller can be configured to identify a compressor condition based upon the monitored crankcase pressure. Moreover, a crankcase pressure sensor (e.g., also referred to more generally as a detection component) can be configured to monitor crankcase pressure for the compressor, for purposes of detecting a change (e.g., a fluctuation, increase, decrease, among others) in the pressure. Based upon a detected change in the monitored crankcase pressure, the controller can be configured to determine a condition of the compressor. In an embodiment, the controller can be further configured to communicate an alert related to the detected change in the crankcase pressure. The alert can be a signal (e.g., diagnostic code, audio, text, visual, haptic, among others) that indicates a change in the monitored pressure of the crankcase of the compressor. This alert can be utilized to provide maintenance on the compressor or a portion thereof In an embodiment, the controller can be configured to schedule a maintenance operation based upon the detected change in crankcase pressure and/or the communicated alert in order to perform preventative maintenance. Still further, the controller can be configured to automatically or otherwise control the compressor based on and/or responsive to monitored air pressure.

[0043] Embodiments of the subject matter disclosed herein relate to systems and methods that facilitate identifying a leak condition within a compressor and, in particular, identifying a leak condition by monitoring a pressure while actuating an unloader valve. A controller can be configured to actuate an unloader valve for a compressor that maintains pressure within a resevoir. Moreover, a pressure sensor (e.g., also referred to more generally as a detection component) can be configured to monitor pressure for the resevoir to detect a change (e.g., a fluctuation, increase, decrease, among others). Based upon a detected change in the monitored pressure, the controller can be configured to detect a leak condition associated with the detected change in pressure. In an embodiment, the controller can be further configured to communicate an alert related to the detected change in the pressure for the reservoir during the unloader actuation. The alert can be a signal (e.g., diagnostic code, audio, text, visual, haptic, among others) that indicates a change in the monitored pressure of the reservoir of the compressor. This alert can be utilized to provide maintenance on the compressor or a portion thereof. In an embodiment, the controller can be configured to schedule a maintenance operation based upon the detected change in pressure and/or the communicated alert in order to perform preventative maintenance.

[0044] With reference to the drawings, like reference numerals designate identical or corresponding parts throughout the several views. However, the inclusion of like elements in different views does not mean a given embodiment necessarily includes such elements or that all embodiments of the invention include such elements.

[0045] The term "component" as used herein can be defined as a portion of hardware, a portion of software, or a combination thereof. A portion of hardware can include at least a processor and a portion of memory, wherein the memory includes an instruction to execute. The term "vehicle" as used herein can be defined as any asset that is a mobile machine that transports at least one of a person, people, or a cargo, or that is configured to be portable from one location to another. For instance, a vehicle can be, but is not limited to being, a locomotive or other rail vehicle, an intermodal container, a marine vessel, a mining equipment, a stationary portable power generation equipment, an industrial equipment, a construction equipment, and the like. The term "loaded" as used herein can be defined as a compressor system mode where air is being compressed into the reservoir. The term "loaded start" as used herein can be defined as a compressor system mode in a loaded condition during a starting phase of the compressor. The term "unloaded" as used herein can be defined as a compressor system mode where air is not being compressed into the reservoir.

[0046] A compressor compresses gas, such as air. In some embodiments, the compressed gas is supplied to operate pneumatic or other equipment powered by compressed gas. A compressor may be used for mobile applications, such as vehicles. By way of example, vehicles utilizing compressors include locomotives, on-highway vehicles, off-highway vehicles, mining equipment, and marine vessels. In other embodiments, a compressor may be used for stationary applications, such as in manufacturing or industrial applications requiring compressed air for pneumatic equipment among other uses. The compressor depicted in the below figures is one which utilizes spring return inlet and discharge valves for each cylinder, wherein the movement of these valves is caused by the differential pressure across each cylinder as opposed to a mechanical coupling to the compressor crank shaft. The subject invention can be applicable to machines with either type of valve (e.g., spring return valves, mechanical coupled valves, among others) and the spring return valve is depicted solely for example and not to be limiting on the subject innovation.

[0047] The components of a compressor may degrade over time resulting in performance reductions and/or eventual failure of a compressor. In vehicle applications, for example, a compressor failure may produce a road failure resulting in substantial costs to the vehicle owner or operator, in this context, a road failure includes a vehicle, such as a locomotive, becoming inoperative when deployed in service as a result of the failure or degradation of a compressor system that prevents operation or requires shutting down the vehicle until repairs can be made. Prior to a total failure, the detection of degraded components or other deterioration of the compressor may be used to identify incipient faults or other conditions indicative of deterioration, in response to detecting such conditions, remedial action may be taken to mitigate the risk of compressor failure and associated costs. [0048] The systems and methods presently disclosed can also be used to diagnose and/or prognose problems in a compressor prior to total compressor failure. If deterioration or degradation of the compressor is detected in the system, action can be taken to reduce progression of the problem and/or further identify the developing problem. In this manner, customers realize a cost savings by prognosing compressor problems in initial stages to reduce the damage to compressor components and avoid compressor failure and unplanned shutdowns. Moreover, secondary damage to other compressor components (e.g., pistons, valves, liners, and the like) or damage to equipment that relies upon the availability of the compressed gas from the compressor may be avoided if compressor problems are detected and addressed at an early stage.

[0049] FIG. 1 illustrates a block diagram of an embodiment of a vehicle system 100. The vehicle system 100 is depicted as a rail vehicle 106 (e.g., locomotive) configured to run on a rail 102 via a plurality of wheels 108. The rail vehicle includes a compressor system with a compressor 1 10. in an embodiment, the compressor is a reciprocating compressor that delivers air at high pressure. In another embodiment, the compressor is a reciprocating compressor with a bi-directional drive system that drives a piston in a forward direction and the reverse direction. In an embodiment, the compressor receives air from an ambient air intake 114. The air is then compressed to a pressure greater than the ambient pressure and the compressed air is stored in reservoir 180, which is monitored by a reservoir pressure sensor 185. In one embodiment, the compressor is a two-stage compressor (such as illustrated in FIG. 2) in which ambient air is compressed in a first stage to a first pressure level and delivered to a second stage, which further compresses the air to a second pressure level that is higher than the first pressure level. The compressed air at the second pressure level is stored in a reservoir. The compressed air may then be provided to one or more pneumatic devices as needed, in other embodiments, the compressor 1 10 may be a single stage or multi-stage compressor.

[0050] The compressor includes a crankcase 160. The crankcase is an enclosure for a crankshaft (not shown in FIG, 1) connected to cylinders (not shown in FIG. 1) of the compressor. A motor 104 (e.g., an electric motor) is employed to rotate the crankshaft to drive the pistons within the cylinders. In another embodiment, the crankshaft may be coupled to a drive shaft of an engine or other power source

Π configured to rotate the crankshaft of the compressor. In each embodiment, the crankshaft may be lubricated with compressor oil that is pumped by an oi! pump (not shown) and sprayed onto the crankshaft. The crankshaft is mechanically coupled to a plurality of pistons via respective connecting rods. The pistons are drawn and pushed within their respective cylinders as the crankshaft is rotated to compress a gas in one or more stages.

[0051 ] The rail vehicle further includes a controller 130 for controlling various components related to the vehicle system. In an embodiment, the controller is a computerized control system with a processor 132 and a memory 134. The memory may be computer readable storage media, and may include volatile and/or nonvolatile memory storage. In an embodiment, the controller includes multiple control units and the control system may be distributed among each of the control units. In yet another embodiment, a plurality of controllers may cooperate as a single controller interfacing with multiple compressors distributed across a plurality of vehicles. Among other features, the controller may include instructions for enabling on-board monitoring and control of vehicle operation. Stationary applications may also include a controller for managing the operation of one or more compressors and related equipment or machinery.

[0052] In an embodiment, the controller receives signals from one or more sensors 150 to monitor operating parameters and operating conditions, and correspondingly adjust actuators 152 to control operation of the rail vehicle and the compressor. In various embodiments, the controller receives signals from one or more sensors corresponding to compressor speed, compressor load, boost pressure, exhaust pressure, ambient pressure, exhaust temperature, or other parameters relating to the operation of the compressor or surrounding system. In another embodiment, the controller receives a signal from a crankcase pressure sensor 170 that corresponds to the pressure within the crankcase. In yet another embodiment, the controller receives a signal from a crankshaft position sensor 172 that indicates a position of the crankshaft. The position of the crankshaft may be identified by the angular displacement of the crankshaft relative to a known location such that the controller is able to determine the position of each piston within its respective cylinder based upon the position of the crankshaft. In some embodiments, the controller controls the vehicle system by sending commands to various components. On a locomotive, for example, such components may include traction motors, alternators, cylinder valves, and throttle controls among others. The controller may be connected to the sensors and actuators through wires that may be bundled together into one or more wiring harnesses to reduce space in vehicle system devoted to wiring and to protect the signal wires from abrasion and vibration. In other embodiments, the controller communicates over a wired or wireless network that may allow for the addition of components without dedicated wiring.

[0053] The controller may include onboard electronic diagnostics for recording operational characteristics of the compressor. Operational characteristics may include measurements from sensors associated with the compressor or other components of the system. Such operational characteristics may be stored in a database in memory. In one embodiment, current operational characteristics may be compared to past operational characteristics to determine trends of compressor performance.

[0054] The controller may include onboard electronic diagnostics for identifying and recording potential degradation and failures of components of vehicle system. For example, when a potentially degraded component is identified, a diagnostic code may be stored in memory. In one embodiment, a unique diagnostic code may correspond to each type of degradation that may be identified by the controller. For example, a first diagnostic code may indicate a malfunctioning exhaust valve of a cylinder, a second diagnostic code may indicate a malfunctioning intake valve of a cylinder, a third diagnostic code may indicate deterioration of a piston or cylinder resulting in a blow-by condition. Additional diagnostic codes may be defined to indicate other deteriorations or failure modes. In yet other embodiments, diagnostic codes may be generated dynamically to provide information about a detected problem that does not correspond to a predetermined diagnostic code. In some embodiments, the controller modifies the output of charged air from the compressor, such as by reducing the duty cycle of the compressor, based on parameters such as the condition or availability of other compressor systems (such as on adjacent locomotive engines), environmental conditions, and overall pneumatic supply demand.

[0055] The controller may be further linked to display 140, such as a diagnostic interface display, providing a user interface to the operating crew and/or a maintenance crew, The controller may control the compressor, in response to operator input via user input controls 142, by sending a command to correspondingly adjust various compressor actuators. Non-limiting examples of user input controls may include a throttle control, a braking control, a keyboard, and a power switch. Further, operational characteristics of the compressor, such as diagnostic codes corresponding to degraded components, may be reported via display to the operator and/or the maintenance crew.

[0056] The vehicle system may include a communications system 144 linked to the controller, in one embodiment, communications system may include a radio and an antenna for transmitting and receiving voice and data messages. For example, data communications may be between vehicle system and a control center of a railroad, another locomotive, a satellite, and/or a wayside device, such as a railroad switch. For example, the controller may estimate geographic coordinates of a vehicle system using signals from a GPS receiver. As another example, the controller may transmit operational characteristics of the compressor to the control center via a message transmitted from communications system, in one embodiment, a message may be transmitted to the command center by communications system when a degraded component of the compressor is detected and the vehicle system may be scheduled for maintenance.

[0057] As discussed above, the term "loaded" refers to a compressor mode where air is being compressed into the reservoir. The compressor depicted is one which utilizes spring return inlet and discharge valves for each cylinder in which the movement of these valves is caused by the differential pressure across them as opposed to a mechanical coupling to the compressor crank shaft. The subject disclosure may be applicable to machines with either type of valve, but the spring return type will be illustrated here for the sake of brevity.

[0058] The controller can be configured to adjust at least one of the following: an operation of the compressor; a scheduled maintenance for the compressor; a maintenance for the compressor; a service for the compressor; a diagnostic code of the compressor; an alert for the compressor; among others, in an embodiment, the controller can be configured to adjust the compressor based upon a detection of a change in pressure for the intermediate stage of the compressor for a duration of time. in a more particular embodiment, the controller can be configured to adjust the compressor based upon a monitored change in pressure of the intermediate stage in combination with a position of a piston of the compressor,

[0059] The controller can be configured to adjust at least one of the following: an operation of the compressor; a scheduled maintenance for the compressor; a maintenance for the compressor; a sendee for the compressor; a diagnostic code of the compressor; an alert for the compressor; among others. In an embodiment, the controller can be configured to adjust the compressor based upon a detection of a change in pressure for the reservoir during an actuation of the piston. In a more particular embodiment, the controller can be configured to adjust the compressor based upon a monitored change in pressure in combination with a position of a piston of the compressor.

[0060] The controller can be configured to adjust at least one of the following: an operation of the compressor; a scheduled maintenance for the compressor; a maintenance for the compressor; a sendee for the compressor; a diagnostic code of the compressor; an alert for the compressor; among others. In an embodiment, the controller can be configured to adjust the compressor based upon a detection of a change in pressure for the crankcase. In a more particular embodiment, the controller can be configured to adjust the compressor based upon a monitored change in pressure in combination with a position of a piston of the compressor.

[0061 ] The controller can be configured to adjust at least one of the following: an operation of the compressor; a scheduled maintenance for the compressor; a maintenance for the compressor; a service for the compressor; a diagnostic code of the compressor; an alert for the compressor; among others. In an embodiment, the controller can be configured to adjust the compressor based upon a detection of a change in pressure for the reservoir. In a more particular embodiment, the controller can be configured to adjust the compressor based upon a monitored change in pressure in combination with a position of an unloader valve of the compressor,

[0062] The compressor 1 10 can include a detection component 128 that can be configured to detect at least one of a pattern, a signature, a level, among others related to a pressure measured within the intermediate stage, wherein such detection is indicative of a condition for the compressor (discussed in more detail below). The

I S detection component and/or the pressure sensor (e.g., pressure sensor 266) can be employed with the compressor to collect data that is indicative of a condition such as a blow-by condition, intake valve deterioration, exhaust valve deterioration, among others, in an embodiment, the controller can be configured to adjust the compressor based upon the detection component and/or the pressure sensor.

[0063] The compressor 1 10 can include a detection component 128 that can be configured to detect at least one of a pattern, a signature, a level, among others related to a pressure measured, wherein such detection is indicative of a leak condition for the compressor. In particular, the leak condition can relate to a leak (e.g., exhaust valve leak, among others) from the reservoir of the compressor (discussed in more detail below). The detection component and/or the pressure sensor (e.g., pressure sensor 185) can be employed with the compressor to collect data that is indicative of a leak condition. In an embodiment, the controller can be configured to adjust the compressor based upon the detection component and/or the pressure sensor.

[0064] The compressor 1 10 can include a detection component 128 that can be configured to detect at least one of a pattern, a signature, a level, among others related to a crankcase pressure measured, wherein such detection is indicative of a leak condition for the compressor. In particular, the leak condition can relate to crankcase breather valve or blow-by condition (discussed in more detail below). The detection component and/or the pressure sensor (e.g., pressure sensor 170) can be employed with the compressor to collect pressure data that is indicative of a leak condition. In an embodiment, the controller can be configured to adjust the compressor based upon the detection component and/or the pressure sensor.

[0065] The compressor 1 10 can include a detection component 128 that can be configured to detect at least one of a pattern, a signature, a level, among others related to a pressure measured, wherein such detection is indicative of a leak condition for the compressor. In particular, the leak condition can relate to a leak from the reservoir of the compressor (discussed in more detail below). The detection component and/or the pressure sensor (e.g., pressure sensor 185) can be employed with the compressor to collect data that is indicative of a leak condition. In an embodiment, the controller can be configured to adjust the compressor based upon the detection component and/or the pressure sensor. [0066] The detection component can be a stand-alone component (as depicted), incorporated into the controller component, or a combination thereof. The controller component can be a stand-alone component (as depicted), incorporated into the detection component, or a combination thereof. In another embodiment, the detection component and/or the pressure sensor can be a stand-alone component (as depicted), incorporated into the controller component, or a combination thereof

[0067] FIG. 2 illustrates a detailed view of the compressor set forth in FIG. 1 above. The compressor includes three cylinders 210, 220, 230. Each cylinder contains a piston 218, 228, 238 that is coupled to a crankshaft 250 via connecting rods 240, 242, 244. The crankshaft is driven by the motor to cyclically pull the respective pistons to a Bottom-Dead-Center (BDC) and push the pistons to a Top-Dead-Center (TDC) to output charged air, which is delivered to the reservoir via air lines 280, 282, 284, 286. In this embodiment, the compressor is divided into two stages: a low pressure stage and a high pressure stage to produce charged air in a stepwise approach. The low pressure stage compresses air to a first pressure level which is further compressed by the high pressure stage to a second pressure level. In this example, the low pressure stage includes cylinders 220, 230 and the high pressure stage includes cylinder 210.

[0068] In operation, air from the ambient air intake is first drawn into the low pressure cylinders via intake valves 222, 232, which open and close within intake ports 223, 233. The ambient air is drawn in as the low pressure cylinders are pulled towards BDC and the intake valves 222, 232 separate from intake ports 223, 233 to allow air to enter each cylinder 220, 230, Once the pistons reach BDC, the intake valves 222, 232 close the intake ports 223, 233 to contain air within each cylinder. Subsequently, pistons 228, 238 are pushed toward TDC, thereby compressing the ambient air initially drawn into the cylinders. Once the cylinders have compressed the ambient air to a first pressure level, exhaust valves 224, 234 within exhaust ports 225, 235 are opened to release the low pressure air into low pressure lines 280, 282.

[0069] The air compressed to a first pressure level is routed to an intermediate stage reservoir 260. The intermediate stage reservoir 260 received air from one stage of a multistage compressor and provides the compressed air to a subsequent stage of a multistage compressor. In an embodiment, the intermediate stage reservoir 260 is a tank or other volume connected between successive stages by air lines, in other embodiments, the air lines, such as low pressure Sines 280, 282 provide sufficient volume to function as an intermediate stage reservoir without the need for a tank or other structure.

[0070] in an embodiment, the compressor system also includes an intercooler 264 that removes the heat of compression through a substantially constant pressure cooling process. O e or more intercoolers may be provided along with one or more intercooler controllers 262. in some embodiments, the intercooler 264 is integrated with the intermediate stage reservoir 260. A decrease in the temperature of the compressed air increases the air density allowing a greater mass to be drawn into the high pressure stage increasing the efficiency of the compressor. The operation of the intercooler is controlled by the intercooler controller 262 to manage the cooling operation. In an embodiment, the intercooler controller 262 employs a thermostatic control through mechanical means such as via thermal expansion of metal In a multistage compressor system having more than two stages, an intercooler may he provided at each intermediate stage.

[0071] The air at a first pressure level (e.g., low pressure air) is exhausted from the intercooler into low pressure air line 284 and subsequently drawn into the high pressure cylinder 210. More particularly, as piston 218 is pulled toward BDC, the intake valve 212 opens, thereby allowing the low pressure air to be drawn into the cylinder 210 via intake port 213. Once the piston 218 reaches BDC, the intake valve 212 closes to seal the low pressure air within the cylinder 210. The piston is then pushed upward thereby compressing the low pressure air into high pressure air. High pressure air is air at a second pressure level greater than the first pressure level, however the amount of compression will vary based upon the requirements of the application. As compression increases, the exhaust valve 214 is opened to allow the high pressure air to exhaust into high pressure line 286 via exhaust port 215. An aftercooler 270 cools the high pressure air to facilitate a greater density to be delivered to the reservoir via high pressure air line 288,

[0072] The above process is repeated cyclically as the crankshaft 250 rotates to provide high pressure air to the reservoir 180, which is monitored by the reservoir pressure sensor 185. Once the reservoir reaches a particular pressure level (e.g., 140 psi), the compressor operation is discontinued.

[0073] In some embodiments, the compressor includes one or more valves configured to vent compressed air from intermediate stages of the compressor system. The unloader valves and/or relief valves may be operated after compressor operations are discontinued, or may be operated during compressor operations to relieve pressure in the compressor system, in an embodiment, an unloader valve 268 is provided in the intermediate stage reservoir 260 and configured to vent the low pressure compressed air from the intermediate stage reservoir, low pressure air lines 280, 282 and intercoo!er 264. Venting compressed air reduces stress on system components during periods when the compressor is not in use and may extend the life of the system. In another embodiment, the unloader valve 268 operates as a relief valve to limit the buildup of pressure in the intermediate stage reservoir 260. In yet another embodiment, intake valves 222, 232 operate as unloader valves for the cylinders 220, 230 allowing compressed air in the cylinders to vent back to the ambient air intake 1 14. In another embodiment, the system 200 can include relief valves such as breather valve 174, a relieve valve on the intercooler 264 (shown in FIG. 4), a relieve valve for air line 286, a rapid unloader valve on the intercooler 264 (shown in FIG. 4) [0074] A compressor, such as the compressor illustrated in FIG. 2, operates to charge the reservoir 180 with compressed air or other gas. Once the compressor charges the reservoir to a determined pressure value the compressor operation is discontinued. In some embodiments, when compressor operations are discontinued, one or more unloader valves are opened to vent intermediate stages of the compressor to the atmosphere. The intake valves of the cylinders as well as unloader valves of the intermediate stage reservoirs may all operate as unloader valves to vent the cylinders of the compressor to the atmosphere. Once the unloader valves are actuated and the cylinders and intermediate stages of the compressor have been vented to the atmosphere the pressure within the reservoir is expected to remain constant as previously discussed.

[0075] The compressor 1 10 can include additional features and/or components that are not illustrated in FIGS. 1 and 2. For instance, the system may include a Control Mag Valve (CMV), a Thennostaiically Controlled Iniercooler System (TCIS) bypass, a rapid unloader valve, an unloader valve for cylinder 230, an unloader valve for cylinder 220, a relief valve(s), among others.

[0076] The crankshaft can include a first end opposite a second end in which the first end is coupled to one or more connecting rods for each respective cylinder. The crankshaft, cylinders, and pistons are illustrated in BDC position based upon the location of the first end. BDC position is a location of the first end at approximately negative ninety degrees (-90 degrees) or 270 degrees. It is to be appreciated that the first end is illustrated in FIG. 2 at approximately thirty degrees (30 degrees). A TDC position is a location of the first end at approximately ninety degrees (90 degrees) or - 270 degrees.

[0077] As discussed above, the controller can he configured to employ an adjustment to the compressor based upon at feast one of a detected change of pressure in the intermediate stage or a detected change of pressure in the intermediate stage associated with a position of a piston, in embodiment, the pressure sensor 266 can monitor a pressure for the intermediate stage with or without identification of a position of a piston. Upon detection of a change in the pressure, the controller can implement an adjustment to the compressor and/or communicate an alert based on the detected change.

[0078] As discussed above, the controller can be configured to employ an adjustment to the compressor based upon at least one of a detected change of pressure in the reservoir or a detected change of pressure in the reservoir during an actuation of piston. In embodiment, the pressure sensor can monitor a pressure for the reservoir with or without a cycling of a piston. Upon detection of a change in the pressure, the controller can implement an adjustment to the compressor and/or communicate an alert based on the detected change.

[0079] As discussed above, the controller can be configured to employ an adjustment to the compressor based upon at least one of a detected change of pressure in the crankcase or a detected change of pressure in the crankcase correlated with a position of a piston, in embodiment, the pressure sensor can monitor a pressure for the crankcase with or without a cycling of a piston. Upon detection of a change in the pressure of the crankcase, the controller can implement an adjustment to the compressor and/or communicate an alert based on the detected change. [0080] As discussed above, the controller can be configured to employ an adjustment to the compressor based upon at least one of a detected change of pressure in the reservoir or a detected change of pressure in the reservoir during an actuation of an unloader valve. In embodiment, the pressure sensor can monitor a pressure for the reservoir with or without a cycling of an unloader valve. Upon detection of a change in the pressure, the controller can implement an adjustment to the compressor and/or communicate an alert based on the detected change.

[0081 ] in yet another embodiment, a method for a compressor includes operating a compressor to compress air from a first stage compressor into an intermediate stage reservoir, to deliver air from the intermediate stage reservoir to a second stage compressor, and to further compress the air in the second stage compressor into a primary reservoir, monitoring an intermediate stage pressure of the intermediate stage reservoir, and determining a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. In a two-stage compressor, such as illustrated in FIG, 2, the intermediate stage reservoir 260 is disposed between at least one low pressure cylinder and at least one high pressure cylinder. In some embodiments, the intermediate stage reservoir 260 includes an intercooler 264. The pressure within the intermediate stage reservoir is measured by pressure sensor 266. In operation, a first stage compressor, such as the cylinders 220, 230, compresses air into the intemiediate stage reservoir 260 at a first pressure. A second stage compressor, such as the cylinder 210, is configured to receive air from the intemiediate stage reservoir at the first pressure and further compress the air into a primary reservoir 180 at a second pressure. During normal operations, the second pressure is greater than the first pressure, and both are greater than the ambient air pressure. In a multi-stage compressor, an intermediate stage reservoir is employed between each successive compression stage at successively increasing pressure leveis.

[0082] The pressure in the intermediate stage reservoir 260 is determined by the addition of air from the first stage of the compressor and the removal of air into the second stage of the compressor. Referring now to graph 300 in FIG. 3, an expected pressure 380 of the intermediate stage reservoir 260 of the compressor 1 10 is illustrated. As shown, the expected pressure increases as the first stage compressor discharges compressed air into the intermediate stage reservoir and the expected pressure decreases when air is drawn from the intermediate stage reservoir into the second stage compressor. Using the compressor 1 10 of FIG. 2 for illustration, as piston 238 completes a compression stroke in cylinder 230, th intermediate stage reservoir pressure experiences a first increase 382 from the initial pressure level 388. As piston 228 completes its compression stroke in cylinder 220, the intermediate stage reservoir pressure experiences a second increase 384. Finally, during the suction stroke of piston 218 in cylinder 210, the intermediate stage reservoir pressure experiences a decrease 386 as air is drawn out of the intermediate stage reservoir and into cylinder 210. if the increases 382, 384 in pressure match the decrease 386, the intermediate stage reservoir pressure will return to the initial pressure level 388 and the process repeats with each revolution of the compressor.

[0083] Various faults in the compressor system affect the measured intermediate stage pressure, in an embodiment, a method of diagnosing a compressor includes determining a condition of a compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. During operation, the compressor 1 10 is operated to fill the primary reservoir 180 with compressed air to a determined pressure value, in many embodiments, the intermediate stage pressure varies in proportion to the reservoir pressure. For example, depending upon the relative compression provided by each stage, the pressure in the intermediate stage reservoir 260 may be approximately 15%, 25% or 50% of the pressure in the primary reservoir 180. Thus as the pressure in the primary reservoir increases, the pressure in the intermediate stage reservoir is expected to increase in proportion. The expected relationship between the average intermediate stage reservoir pressure and the primary reservoir pressure may also be affected by environmental and operating conditions.

[0084] In one embodiment, an average of the intermediate stage pressure is calculated and compared to a nominal intemiediaie stage average pressure, and a fault identified when the average intermediate stage reservoir pressure deviates from the expected value of the nominal intermediate stage average pressure. The nominal intermediate stage average pressure may be determined from environmental conditions, such as ambient, air pressure and ambient air temperature. The nominal intermediate stage average pressure may also be determined from operating conditions, such as primary reservoir pressure or compressor speed, in one embodiment, the nominal intermediate stage pressure is a percentage of primary reservoir pressure as previously discussed.

[0085] in some embodiments, the nature and magnitude of a compressor fault is determined from the deviation between the average of the intermediate stage pressure and the nominal intermediate stage average pressure. For example, if the average intermediate stage pressure is determined to be above the expected value, the high pressure cylinder 210 may be taking a reduced mass per stroke from the intermediate stage reservoir. When a reduced mass is taken, the decrease 386 is reduced such that the average pressure is increased. Such a condition may be caused by a variety of failure modes. For example, a blow-by condition during the suction stroke of the piston 218 may allow air from the crankcase 160 into the cylinder 210 reducing the mass of air drawn from the intermediate stage reservoir. In another example, failure of the intake valve 212 may inhibit the intake of air into the cylinder 210. In contrast, if the intermediate stage pressure is determined to be below the expected value, the low pressure cylinders 220, 230 may be delivering a reduced mass per stroke to the intermediate stage reservoir. When a reduced mass is delivered the increases 382, 384 are reduced such that the average pressure is reduced. As with high pressure faults, such a condition may be caused by a variety of failure modes. For example, a blow-by condition during the compression stroke of one or more of the pistons 228, 238 may reduce the mass of air delivered to the intermediate stage reservoir as air leaks passed the pistons and into the crankcase 160 as previously discussed. In another example, failure of the exhaust valves 224, 234 may inhibit the discharge of compressed air into the intermediate stage reservoir.

[0086] in another embodiment, the monitored intermediate stage pressure is correlated with an indication of a position of a piston in a cylinder of the compressor to further diagnose a fault. The crankshaft position sensor may be used to determine the position of each piston. By correlating the position of each piston with the monitored intermediate stage pressure the impact of each piston can be determined to localize faults. For example, a blow-by condition on either cylinder 220 or cylinder 230 would result in a reduced mass being delivered to the intermediate stage reservoir and a Sower than expected average intermediate stage pressure. When the intermediate stage reservoir pressure is correlated with the position of the respective pistons, the piston responsible for the reduced mass may be identified. Using a combination of the average intermediate stage pressure and the correlation between intermediate stage pressure and piston position, the condition of one or more cylinders may be identified to provide detailed information for maintenance and repair operations. Further, a frequency analysis of the intermediate stage pressure may be used to identify frequency components based upon the rate at which the compressor is operated. Deviations from the normal frequency components associated with the periodic impact of each cylinder on the intermediate stage may be identified and correlated with failure modes. The time domain and frequency domain analysis of the intermediate stage pressure may thus provide insight into compressor failures prior to a total failure, in yet another embodiment, the analysis of the intermediate stage reservoir pressure may be combined with the analysis of the monitored crankshaft pressure to further identify leak conditions of individual cylinders. Such methods reduce troubleshooting time and repair costs by providing guidance to maintenance personnel on which components require attention.

[0087] In yet another embodiment, a controller is provided to determine (e.g., identify) a condition of a compressor. The controller is configured to receive a signal corresponding to a monitored intermediate stage pressure of the intermediate stage reservoir of the compressor. The controller is farther configured to determine a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. In an embodiment, the controller communicates with one or more intermediate stage pressure sensors 266 and receives the signal corresponding to the monitored intermediate stage pressure from the one or more intermediate stage pressure sensors. The controller may include a processor that analyzes the intermediate stage pressure data as described above. In one embodiment, the controller calculates an average of the intermediate stage pressure over a time period and compares the average intermediate stage pressure over the time period to the nominal intermediate stage average pressure. In another embodiment, the controller correlates the monitored intermediate stage pressure and an indication of a position of a piston in a cylinder of the compressor to further determine the location and nature of an identified fault in one or more of a plurality of cylinders. In yet another embodiment, the controller performs a frequency analysis on the monitored intermediate stage pressure and determines a condition of the compressor based upon the frequency components identified.

[0088] Referring now to FIGS. 4-6, an aspect of a method for a compressor is illustrated. A compressor, such as the compressor illustrated in FIGS. 1 and 2, operates to charge a reservoir 180 with compressed air or other gas. Once the compressor charges the reservoir to a determined pressure value the compressor operation is discontinued, in some embodiments, when compressor operations are discontinued, one or more unloader valves are opened to vent intermediate stages of the compressor to the atmosphere. The intake valves of the cylinders as well as unloader valves of the intermediate stage reservoirs may all operate as unloader valves to vent the cylinders of the compressor to the atmosphere. Once the unloader valves are actuated and the cylinders and intermediate stages of the compressor have been vented to the atmosphere the pressure within the reservoir is expected to remain constant as previously discussed.

[0089] In an embodiment, a method of diagnosing a compressor includes monitoring a pressure of compressed air within a reservoir, actuating a piston within a cylinder of the compressor, and detecting a leak condition of an exhaust valve of the cylinder through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the piston is actuated. A leak condition of the exhaust valve 214 of the cylinder 210 may be detected by correlating the monitored pressure of the compressed air within the reservoir 180 with an indication of a position of the piston 218 within the cylinder 210. Turning to FIG. 4, graph 400 illustrates compression strokes and measured pressure over time. During normal or loaded operation of the compressor, on each compression stroke (†) of the high pressure cylinder 210, the measured pressure 342 in the reservoir 180 increases as an additional mass of compressed air is forced through the exhaust port 215 and into the reservoir 180. During each suction stroke (|), the exhaust port 215 is closed and the measured pressure 340 within the reservoir 180 is expected to remain constant. As such, the measured reservoir pressure is expected to increase in a generally step-wise fashion once per revolution of the piston 218. Thus, during loaded operation of the compressor a change in the monitored pressure, or lack of change, correlated with each compression stroke may indicate faulty operation of the compressor.

[0090] In another embodiment, the piston is actuated by cycling the piston within the cylinder with the compressor in an unloaded condition. The unloaded condition is maintained by opening one or more of the unloader valves to vent the cylinders and intermediate stage reservoir, if present, to the atmosphere. In an unloaded condition, the crankshaft 250 of the compressor rotates causing the pistons 218, 228, 238 to move within their respective cylinders, however, air flows into and out of the cylinders through the open unloader valves.

[0091] As shown in FIG. 5, a system 500 is depicted. During the suction stroke of the piston 238, an air flow 324 enters cylinder 230 through intake port 233. Similarly, during the compression stroke of piston 228, an air flow 326 exits cylinder 220 through intake port 223. In this embodiment, the intake valves 222, 232 function as unloader valves for their respective cylinders. Regarding cylinder 210, the piston 218 is illustrated during a suction stroke resulting in the air flow 328 being drawn into the cylinder 210 through the unloader valve 268, the intermediate stage reservoir 260, and intake port 213.

[0092] During unloaded operations, the exhaust port 215 and exhaust valve 214 of the cylinder 210 are expected to remain closed to maintain a closed volume and constant pressure within the reservoir, provided air is not currently being supplied from the reservoir 180 to pneumatic devices. If the exhaust port 215 and/or exhaust valve 214 are degraded, such as by corrosion or wear, the exhaust valve may not maintain an air tight seal during unloaded operations and compressed air may leak from the reservoir back through the exhaust port 215 into the cylinder 210. Depending upon the pressure within the reservoir and the nature of the degradation of the exhaust value or exhaust port, a leak may be intermittent or difficult to identify.

[0093] In an embodiment, a leak condition of the exhaust valve 214 is detected by correlating the monitored pressure of the compressed air within the reservoir with an indication of a position of the piston within the cylinder. During the suction stroke, a reduced pressure is created in the cylinder 210. The reduced pressure is transitory in nature as the inflow of air through the intake port will restore the pressure within the cylinder to atmospheric pressure, During the period of reduced pressure, however, an exhaust valve 214 with a sufficient leak condition will allow air flow 322 from the reservoir into the cylinder. The air flow 322 results in a decrease in the reservoir pressure as air is drawn out of the reservoir. Such air flow 322 may occur even if the exhaust valve 214 does not demonstrate a leak under static conditions.

[0094] Referring to FIG. 6, a system 600 that illustrates a compressor during a compression stroke is provided. During the compression stroke of the piston 218 an increased pressure is created in the cylinder 210. n a similar manner as described above, the increased pressure is transitory in nature as the air flow 338 out through the intake port 213 and through the unloader valve 268 restores the pressure within the cylinder to atmospheric pressure. During the period of increased pressure, however, an exhaust valve 214 with a sufficient leak condition will allow air flow 332 from the cylinder 210 through the exhaust port 215 and into the reservoir 180 resulting in an increase in reservoir pressure. Such air flow 332 may also occur even if the exhaust valve 214 does not demonstrate a leak condition under static conditions, or when cycling the unloader valve as described above. Depending upon the configuration of the compressor system, during the compression stroke of the piston 218, the pistons 228, 238 may be in various stages of their respective rotations. As shown in FIG. 6, the piston 228 had reached top dead center resulting in an air flow 334 out of cylinder 220 through intake port 223. The piston 238 may be traversing a compression stroke as shown resulting in an air flow 336 out of cylinder 230 through intake port 233. In this manner, the intake valves 222, 232 continue to function as unloader valves for their respective cylinders.

[0095] in some embodiments, the increase and decrease in reservoir pressure corresponding to compression and suction strokes of piston 218 are detectable even when the air flows 322 (as seen in FIG. 5) and 332 (as seen in FIG. 6) are not individually identifiable. In an embodiment, the piston 218 is cycled at a known rate and a once-per-revolution signature identified in a frequency analysis of the monitored pressure data, corresponding to an exhaust valve leak during either the suction or compression stroke. In other embodiments, a twice-per-revo!ution signature may be identified if the exhaust valve leaks during both the suction and compression strokes of the piston. The rate at which the piston is cycled may be varied such that the frequency components corresponding to the leak may be adjusted to facilitate detection of the leak condition. In one example, the piston 218 is cycled at a first rate during a first portion of the time period and cycled at a second rate during a second portion of the lime period. By comparing the measured reservoir pressure data, in either the time domain or the frequency domain, for each of the two time periods, noise or other variation in the measured reservoir pressure may be accounted for such that the variation corresponding to the piston movement is isolated. In other embodiments, the measured reservoir pressure may be affected by vibrations or noise from the compressor environment or other distortions caused by surrounding equipment, in such environments, cycling the piston at two or more different rates may enable identification of leaks that would otherwise have been masked. In addition, the piston 218 may be cycled at rates less than the sample rate of the monitored pressure in order to provide sufficient detection of pressure changes correlated with the movement of the piston. In this manner, both time domain and frequency domain analysis of the measured reservoir pressure may be used to identify a leak condition of an exhaust valve.

[0096] In some embodiments, the leakage through exhaust valve 214 may be dependent upon reservoir pressure. When the reservoir pressure is high, air flow 332 from the cylinder 210 into reservoir 180 may be inhibited, however, air flow 322 from the reservoir 180 into the cylinder 210 may still result. When reservoir pressure is low, air flow 322 from the reservoir 180 into cylinder 210 may not result, but air flow 332 from the cylinder 210 into the reservoir 180 may be detected. As a result, in some embodiments, a method of diagnosing a compressor includes filling the reservoir with compressed air to a determined pressure value prior to cycling the piston as discussed above. Just as the rate at which the piston is cycled may be varied to assist in detecting leak conditions, the diagnostic method may be performed at more than one reservoir pressure level to detect leaks under varying condition.

[0097] In yet another embodiment, a controller is provided to determine the condition of a compressor. The controller is configured to receive a signal corresponding to a monitored pressure of compressed air within a reservoir of the compressor, and detect a leak condition of an exhaust valve of a cylinder of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which a piston actuated within the cylinder. In an embodiment, the controller is integral with a vehicle system, such as controller 130. In yet another embodiment, the controller is provided with a test kit used for maintenance and repair or diagnostic operations. In this manner, the control!er may be further configured to actuate the piston within the cylinder of the compressor during at least a portion of the time period.

[0098] In various embodiments, the controller may interface with controller 130, compressor actuators 152, or motor 104 to actuate the piston. In addition, the controller is configured to communicate with one or more reservoir pressure sensors 185 and receive the signal corresponding to the monitored pressure. The controller may also correlate the signal corresponding to the monitored pressure of the compressed air within the reservoir with an indication of a position of the piston in the cylinder of the compressor. The position of the piston may be indicated by the rotational position of the crankshaft or the motor, or by a sensor configured to identify the position of a piston within a cylinder of the compressor. In one embodiment, the crankshaft position sensor 172 is used to determine the position of a piston in the cylinder.

[0099] In order to evaluate the health of the compressor under various operating conditions, the controller may be configured to actuate the piston within the cylinder of a reciprocating compressor in a loaded or unloaded condition. The controller is further configure to recognize a reduction in the monitored pressure corresponding to a suction stroke of the piston in the cylinder and to recognize an increase in the monitored pressure corresponding to a compression stroke of the piston in the cylinder as previously discussed. The controller may also be configured to perform frequency domain analysis on the monitored pressure data during the time period in which the piston is actuated. In some embodiments, the controller includes a digital signal processor capable of analyzing the frequency components of the monitored pressure data. In this manner, the controller implements a diagnostic method and is configured to generate diagnostic information for the compressor.

[00100] Referring now to FIGS. 7-10, an embodiment of a method and/or employment of a system for a compressor is illustrated. In an embodiment, a method for a compressor includes monitoring a crankcase pressure of a compressor, analyzing the monitored crankcase pressure, and identifying a condition of the compressor based on the analysis of the monitored crankcase pressure. When a reciprocating compressor is operating, such as the compressor 1 10 shown in FIG. 2, the crankshaft 250 rotates causing the pistons 218, 228, 238 to move within their respective cylinders. As the pistons move through each revolution, the effective volume of the crankcase 160 changes.

[00101] For ease of illustration, a crankcase pressure 350 of a single stage compressor having only one cylinder, such as cylinder 210, is illustrated in graph 700 of FIG. 7. As the piston rises on a compression stroke the effective volume of the crankcase increases (e.g., due to the volume of the piston leaving the crankcase) resulting in a drop in crankcase pressure as measured by a crankcase pressure sensor, such as crankcase pressure sensor 170. The crankcase pressure 350 falls until the piston reaches top dead center at which point the crankcase pressure reaches a minimum as shown by a trough 352. As the piston moves through a suction stroke the effective volume of the crankcase is reduced resulting in an increase in crankcase pressure. The crankcase pressure 350 rises until the piston reaches bottom dead center at which point the crankcase pressure reaches a peak 354. As illustrated in FIG. 7, crankcase pressure rises and falls corresponding to the position of the piston within the cylinder with a period 362 corresponding to one revolution of the piston. In a multistage compressor, such as a compressor having two or more cylinders, the movement of each piston affects the crankcase pressure in a similar manner, in the compressor illustrated in FIG. 2, each of the three pistons 218, 228, 238 would produce similar periodic pressure variations that would be offset from each other depending upon the configuration of the crankshaft. The corresponding crankcase pressure would therefore reflect multiple peaks and troughs correlated to the positions of one, two or more pistons of the compressor. In multi-stage compressor, the crankcase pressure may be correlated with an indication of the position of one or more of the pistons to identify the effect that each piston has on the crankcase pressure. Using the correlation, a condition of one of the plurality of cylinders of the compressor may be determined. [00102] As shown in graph 700 of FIG. 7, in a healthy compressor system the crankcase pressure 350 is typically maintained below atmospheric pressure, which is indicated as "0". In various embodiments, the compressor includes a crankcase breather valve, such as breather valve 174 in FIG. 2, which regulates crankcase pressure by permitting air to exit the crankcase when crankcase pressure rises and limiting air entering the crankcase when crankcase pressure falls. In this manner, excessive pressure within the crankcase is avoided so as to improve the efficiency of the compressor system. As a result, the average crankcase pressure during operation of the compressor system is maintained in the desired range.

[00103] In one embodiment, analyzing the monitored crankcase pressure includes calculating an average of the crankcase pressure over a time period and comparing the average crankcase pressure to a nominal crankcase average pressure. The condition of the compressor may then be determined (e.g., identified) based on the difference between the calculated crankcase average pressure and the nominal crankcase average pressure. In an embodiment, the nominal crankcase average pressure is the expected average pressure based upon the design of the compressor and crankcase. The nominal crankcase average pressure may be determined from empirical tests to establish a baseline when the compressor is new or otherwise known to be operating correctly. The baseline may be stored in memor and compared to the actual crankcase average pressure periodically to monitor compressor operations. In yet another embodiment, the nominal crankcase average pressure is calculated based upon environmental or operating conditions. For example, in some designs the crankcase pressure may vary based on ambient air temperature or ambient air pressure. The nominal crankcase average pressure may thus be adjusted to account for such environmental conditions, in other embodiments, one or more of the compressor operating speed, the reservoir pressure or the compressor oil temperature are correlated to the nominal or expected crankcase average compressor. In yet other embodiments, the nominal crankcase pressure is a predetermined limit which if exceeded requires compressor operation to be discontinued. The nominal crankcase average pressure may therefore be determined from at least one or more of these or other environmental or operating parameters of the compressor. [00104] In a healthy compressor system, the crankcase average pressure and correlation of the crankcase pressure to the position of the piston may remain substantially constant as illustrated in graph 700 of FIG. 7. The failure or degradation of the breather valve however may interfere with the proper regulation of crankcase pressure. If the breaker valve becomes clogged, air is not released as crankcase pressure rises resulting in a shift in the measured crankcase pressure, such as illustrated in graph 800 of FIG. 8. As shown, the periodic peaks 360 and troughs 358 correlated with piston movement are still detectable in a measured crankcase pressure 356 (also referred to as crankcase pressure 356). The crankcase average pressure however rises as the breather valve is unable to vent the excess pressure within the crankcase. In this manner, a crankcase breather valve failure is identified by the increased average pressure, and appropriate maintenance or repair operations may be scheduled. Over time, the increased crankcase average pressure may result in damage to the seals and other components of the compressor system, and if unchecked could render the compressor system inoperative. Increased crankcase pressure may also reduce the efficiency of the compressor system by pushing against each piston as the piston is pulled through its suction stroke increasing the load on the motor 104 or other power source driving the crankshaft 250.

[00105] In other embodiments, a method for a compressor that includes monitoring the crankcase pressure is used to identify other compressor failure modes. In one embodiment, a condition of one of a plurality of cylinders is identified based on the correlation of the monitored crankcase pressure and the indication of the position of the piston in the cylinder of a reciprocating compressor. During operation, air is compressed within the cylinder as the piston travels through a compression stroke to fill the reservoir 180 with compressed air. In order to maintain efficient operation, the volume of the cylinder in which compression occurs is substantially sealed, such as with a lining or seal may be used to limit leakage of air as the piston travels within the cylinder.

[00106] Referring now to system 900 of FIG. 9, the high pressure cylinder 210 of FIG. 2 is illustrated during a compression stroke. During at least a portion of the compression stroke of the piston 218, the intake valve 212 is closed sealing the intake port 213, and the exhaust valve 214 is closed sealing the exhaust port 215. With the intake and exhaust ports sealed, the internal volume of the cylinder 210 is expected to he substantially sealed such thai the air within the cylinder can be compressed, As a result of wear between the piston 218 and a cylinder inner wall 290 or other degradation in the lining or seals used to maintain the closed volume, air may leak between the piston 218 and the cylinder inner wall 290 into the crankcase 160 as illustrated by arrows 370. Wear of the piston or cylinder wall may result from a variety of problems, such as misalignment of the piston or operating without sufficient lubricating oil or at excessive oil temperatures. In addition, seals or cylinder linings may degrade as a result of excess crankcase pressure, such as may be caused by the failure of a breather valve as previously discussed. Regardless of the underlying cause, a piston blow-by condition develops when air escapes from the cylinder 210 passed the piston 218 and into the crankcase 160 (as illustrated by- arrows 370).

[00107] The flow of air into the crankcase resulting from a piston blow-by condition affects the crankcase pressure measured by the crankcase pressure sensor 170. By way of illustration, graph 1000 of FIG. 10 illustrates a healthy crankcase pressure 372 analogous to that illustrated in graph 700 of FIG. 7. When a cylinder has been degraded, the crankcase pressure may develop a blow-by indication 374. In one embodiment, the blow-by indication 374 is an increase in measured crankcase pressure during the compression stroke of a piston. Using crankshaft position sensor 172, the position of each piston may be determined such that the compression stroke of each position is identified. By con-elating the identified blow -by condition 374 with the compression stroke of a given piston, a blow-by condition of a given cylinder is identified. The identification of a specific cylinder in which the blow-by condition is occurring facilitates repairs and improves the efficiency of maintenance operations.

[00108] in addition to identifying the existence of a blow-by condition, the severity of the blow-by condition may be assessed. As illustrated in graph 1000 of FIG, 10, a blow-by condition may present as an increase in crankcase pressure during a compression stroke. In other embodiments where the blow-by condition is less severe, the blow-by indication may be a reduction in the decrease of crankcase pressure during a compression stroke. Stated another way, a reduction in the difference between the peaks 376 and troughs 378 of the measured crankcase pressure may indicate a blow-by condition even if the crankcase pressure does not rise during the compression stroke.

[00109] The illustrations of monitored crankcase pressure in graphs 700, 800, and 1000 in FIGS. 7-8, and 10 respectively, demonstrate the effects of a single cylinder. In compressor systems having two or more cylinders, each cylinder produces a similar effect on crankcase pressure such that the resulting crankcase pressure reflects the combination of those effects. In another embodiment, the monitored crankcase pressure is analyzed by identifying the frequency content of the monitored crankcase pressure at one or more known frequencies. The known frequencies are determined based on the rate at which the compressor is operated. As noted above, the monitored crankcase pressure is expected to rise and fall as the piston cycles within the cylinder. The monitored crankcase pressure thus includes a periodic variation that corresponds to a once-per-revolution signature associated with the movement of the piston. As shown in graph 1000 of FIG. 10, a piston blow-by condition may produce an additional peak 374 (also referred to as a blow-by condition). The blow-by condition is therefore identifiable in a frequency analysis based upon the rate at which the compressor is operated. In one embodiment, the blow-by condition may result in a detectable change in the once-per-revolution signature. In other embodiments, the blow-by condition may result in a detectable twice-per-revolution signature. A range of frequency components related to the compressor operating speed may also be generated as the crankcase pressure is affected by one or more pistons, one or more blow-by conditions, breather valve failures, or other effects during operation of the compressor. In this manner, a frequency analysis of the monitored crankcase pressure is used to determine (e.g., identify) the condition of the compressor. The frequency analysis may be used in addition or as an alternative to time domain analysis of the monitored crankcase pressure. To further assist in identifying faults, crankcase pressure is monitored under different operating conditions, such as at different reservoir pressure levels, and when the pistons are cycled under loaded and unloaded conditions. In this manner, the methods for a compressor presently disclosed provide advanced detection of faults and facilitate troubleshooting and repair by identifying the nature of the failure and the likely components at fault. [001 10] In yet another embodiment, a controller is provided to determine a condition of a compressor. The controller is configured to receive a signal corresponding to a monitored pressure within a crankcase of a compressor. In an embodiment, the controller is configured to communicate with one or more crankcase pressure sensors 170 and receive the signal corresponding to the monitored pressure from the one or more crankcase pressure sensors. The controller is also configured to analyze the monitored crankcase pressure and determine a condition of the compressor based on the analysis of the monitored crankcase pressure. In one embodiment, the controller performs a frequency analysis and identifies frequency components in the monitored crankcase pressure based upon the rate at which the compressor is operated.

[001 1 1] In another embodiment, the controller correlates the monitored crankcase pressure with an indication of a position of a piston in a cylinder of the compressor. The controller may communicate with the crankshaft position sensor 172 to determine the position of the piston in the cylinder. In an embodiment, the controller is integral with a vehicle system, such as controller 130. In yet another embodiment, the controller is provided with a test kit used for maintenance and repair or diagnostic operations. In this manner, the controller may be further configured to actuate the compressor in either a loaded or unloaded condition while monitoring crankcase pressure. In embodiments, the controller is able to identify a blow-by condition of at least one cylinder of the compressor and identity a crankcase breather valve failure by analyzing the measured crankcase pressure as described above. The controller may include a processor and may be configured to calculate an average of the crankcase pressure over a time period, and compare the average crankcase pressure over the time period to a nominal crankcase average pressure. In some embodiments, the time period is determined by the operator, however in other embodiments, the time period is determined by the controller based on operating conditions of the compressor. In some applications, the measured crankcase pressure will also be influenced by vibrations and noise from related system components. By averaging the measured crankcase pressure over a time period, such influences may be reduced providing a more accurate assessment of crankcase pressure. [001 12] Referring now to FIGS. 1 1-15, an aspect of a system and method for a compressor is disclosed that may assist in diagnosing a compressor. In operation, the compressor, such as the compressor illustrated in FIG. 1 , 2, 11, among others, compresses air which is stored in reservoir 180 as previously described. The pressure level of the compressed air within reservoir 180 is monitored by reservoir pressure sensor 185. When the pressure level within the reservoir has reached a determined pressure value, operation of the compressor is discontinued. At this time, the measured pressure in the reservoir is expected to remain constant until the compressor is restarted or until the compressed air is supplied to pneumatic devices or other equipment connected to the reservoir.

[001 13] The crankshaft 250 can include a first end opposite a second end in which the first end is coupled to one or more connecting rods for each respective cylinder. The crankshaft, cylinders, and pistons are illustrated in BDC position in FIG. 1 1 based upon the location of the first end. BDC position is a location of the first end at approximately negative ninety degrees (-90 degrees) or 270 degrees. A TDC position is a location of the first end at approximately ninety degrees (90 degrees) or -270 degrees.

[001 14] In an embodiment, a method of diagnosing leaks in a compressor includes monitoring the pressure of the compressed air within the reservoir 180 of a compressor, and actuating an unloader valve, such as unloader valve 268. A leak condition of the compressor is detected through recognition of a change in the monitored pressure of the compressed air within the reservoir, as measured by the reservoir pressure sensor 185, during a time period in which the unloader valve is actuated, in one embodiment, the unloader valve 268 is actuated by cycling the unloader valve between an open position and a closed position during at least a portion of the time period in which the unloader valve is actuated. In the open position, the unloader valve vents the intermediate stage reservoir relieving pressure within the cylinder 210. In the closed position, the unloader valve 268 maintains a closed volume in the intermediate stage reservoir and the cylinder 210. In another embodiment, such as a single stage compressor, the intake valve of the cylinder is the unloader valve for the cylinder. In some embodiments, the reservoir pressure sensor 185 measures or reports the measured pressure within the reservoir at a determined sample rate based on the sensor design. In such systems, the unloader valve may be cycled at a rate less than the sample rate of the monitored pressure in order to provide sufficient detection of pressure changes correlated with the movement of the unloader valve. In yet other embodiments, the unloader valve is maintained in the open position for a first duration and is maintained in the closed position for a second duration different from the first duration. The first duration and second duration may be selected to produce a desired response in the monitored pressure to facilitate detection of a leak condition, in still other embodiments, the unloader valve may be cycled between an open position and a closed position at a single known rate, in other embodiments, the unloader valve is cycled at a first rate during at least a first portion of the time period and at a second rate during at least a second portion of the time period while the reservoir pressure is monitored. A position of the unloader valve may be monitored directly or may be inferred from the commands used to direct the opening and closing of the unloader valve when performing the method. In this manner, the effect of opening and closing the unloader valve may be tailored to produce a desired result on the measured pressure with the reservoir to facilitate detection of leaks. In order to isolate the relationship between actuation of the unloader valve and the measured reservoir pressure, in some embodiments, movement of the piston 218 in the cylinder 210 is inhibited during the time period in which the unloader valve is actuated. In another embodiment, piston movement is monitored via the crankshaft position sensor 172 and movement of the piston when the unloader valve is in a closed position may be used to identify a leak in an exhaust valve 214 of the cylinder 210,

[001 15] Referring to FIGS. 12-15, graphs 1200, 1300, 1400, and 1500 illustrate monitored reservoir pressure plotted during a time period in which an unloader valve is actuated to illustrated selected conditions of a compressor (e.g., compressor 1 10 of FIG. 1). in an embodiment, the reservoir pressure can be monitored by the pressure sensor 185, the changes, data (e.g., pressure readings, pressure signatures, measurements of pressure, among others) can be evaluated by the detection component 128 (illustrated in FIGS. 1, 2, among others), and the controller 130 can adjust the compressor 1 10 based upon the evaluation and/or monitored pressure.

3? [001 16] As shown in FIG. 12, a graph 1200 is illustrated that depicts pressure over time for a compressor. The measured pressure 1202 remains constant demonstrating that the reservoir (e.g., reservoir 180) is maintaining the compressed air at a constant pressure even when the unloader valve (e.g., unloader valve 268) is actuated. The graph in FIG. 12 represents a healthy compressor with no leakage from a valve of the compressor disposed between the reservoir and a cylinder of the compressor (e.g., exhaust valve 214, exhaust port 215, intake port 213, intake valve 212, among others).

[001 17] Graph 1300 in FIG. 13 illustrates a measured pressure 502 that is decreasing without correlation to the movement (e.g., actuation) of the unloader valve 268. The steady decline in the measured pressure 502 may indicate a leak in the reservoir or in air lines leading to pneumatic devices that is unaffected by the movement of the unloader valve 268. In contrast to FIGS. 12 and 13, the measured pressure illustrated in FIGS. 14 and 15 is correlated to the actuation of the unloader valve. As shown in graph 1400, when the unloader valve is in the closed position, measured pressure 604, 606, and 608 remains constant indicating no leaks from the reservoir 185. When the unloader valve is in the open position however, a decrease in the measured pressure 605 and 607 indicates thai compressed air is escaping from the reservoir 185 as shown by air flow 295 (as seen in FIG. 1 1 ). In this manner, a leak condition of the compressor is detected by correlating changes in the monitored pressure of the compressed air in the reservoir with an indication of the position of the unloader valve in either the open position or the closed position,

[001 18] As one example, in the embodiment of FIG. 1 1 , a correlation between actuation of the unloader valve and measured reservoir pressure demonstrates a leak- condition of exhaust valve 214, disposed between the reservoir 180 and the cylinder 210 of the reciprocating compressor. In yet another embodiment, the correlation between measured reservoir pressure and actuation of the unloader valve may indicate leaks in both the reservoir and a valve between the reservoir a cylinder. In FIG. 15, graph 1500 illustrates changes in pressure of the reservoir during actuation of the unloader valve. When the unloader valve is in the closed position, the measured pressure 710, 712, and 714 decreases, indicating a leak in the reservoir 185 analogous to graph 1300 in FIG. 13. However, when the unloader valve is in the open position. the measured pressure 71 1 and 713 decreases at a different rate, indicating an additional leak, such as in a valve between the reservoir and the cylinder 210.

[001 19] FIGS. 12-15 illustrate the measured pressure in a time domain, however frequency domain analysis may also be used. A frequency domain analysis of the monitored pressure in FIGS. 14 and 15, includes a frequency component corresponding to the rate at which the unloader valve is actuated. The frequency component may be identified based upon the known rate or rates at which the unloader valve is actuated. By operating the unloader valve at different rates, different frequency components may be created and identified to facilitate determining the nature of the leak condition and identifying the components in need of maintenance.

[00120] As illustrated in FIGS, 12-15, the correlation between measured reservoir pressure and actuation of the unloader valve enables the diagnosis of leaks within a compressor system. In addition, the correlation enables discrimination between different potential failure modes improving the information available to guide maintenance and repair operations. In one embodiment, the method of diagnosing a compressor using the unloader valve is employed each time the compressor ceases operation after the reservoir reaches a determined pressure value. In other embodiments, the method of diagnosing a compressor is employed periodically, such as once per hour or once per day depending upon the application in which the compressor is utilized.

[00121] In yet another embodiment, a controller (e.g., controller 130) is provided to determine the condition of a compressor. The controller is configured to receive a signal corresponding to a monitored pressure of compressed air within a reservoir of the compressor, and detect a leak condition of the compressor througli recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which an unloader valve of the compressor is actuated, in an embodiment, the controller is integral with a vehicle system, such as controller 130. In yet another embodiment the controller is provided with a test kit used for maintenance and repair or diagnostic operations. The controller may be further configured to actuate the unloader valve of the compressor, and may interface with controller 130 or directly with compressor actuators 152. In addition, the controller is configured to communicate with one or more reservoir pressure sensors 185 and receive the signal corresponding to the monitored pressure. Additionally, the controller is configured to communicate with the detection component (illustrated in FIGS. 1 and 2). In an embodiment, the controller is configured to correlate changes in the signal corresponding to the monitored pressure of the compressed air within the reservoir with a position of the unloader valve. The controller may analyze the monitored pressure in the time domain, the frequency domain, or both as described above. In this manner, controller implements the prognostic method and is configured to generate diagnostic information about the compressor prior to a compressor failure.

[00122] The analysis of the intermediate stage pressure may detect faults such as intake or exhaust valve failures, blow-by conditions and other failures of each of the cylinders in the compressor. When a fault is detected, steps may be taken to reduce further damage or wear on the compressor system. In one embodiment, a signal is generated in response to determining a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. The generated signal may indicate a severity level of the condition based upon the impact of the condition on the intermediate stage pressure. In another embodiment, if the identified condition is severe, the duty cycle of the compressor is reduced in order to reduce further degradation of the compressor until repairs can be made. Upon detecting a leak or potential fault in the compressor system, a variety of steps may be taken to reduce further degradation of the components and facilitate repair. In an embodiment, a signal is generated in response to recognizing a change in the monitored pressure of the compressed air within the reservoir during a time period in which the piston is actuated. The generated signal may be indicative of a severity level of the leak condition of the exhaust valve, where the severity level corresponds to the change in the monitored pressure when the piston is actuated. In an embodiment, in response to the signal, the duty cycle of the compressor is reduced in order to reduce further degradation of the compressor until repairs can be made. When a fault is detected, such as a blow-by condition or a breather valve failure, a variety of steps may be taken to reduce further degradation of the compressor system. In one embodiment, a signal is generated in response to determining a condition of the compressor based on the analysis of the monitored crankcase pressure. The generated signal may indicate a severity level of the condition, such as the severity of a blow-by condition as indicated by the rise in crankcase pressure during a compression stroke of a piston, in an embodiment, in response to the signal, the duty cycle of the compressor is reduced in order to reduce further degradation of the compressor until repairs can be made. Upon detecting a leak or potential fault in the compressor system, a variety of steps may be taken to reduce further degradation of the components and facilitate repair. In an embodiment, a signal is generated in response to recognizing a change in the monitored pressure during a time period in which the unloader valve is actuated. The generated signal is indicative of a severity level of the leak condition, where the severity level corresponds to the change in the monitored pressure when the unloader valve is actuated. In an embodiment, in response to the signal, the duty cycle of the compressor is reduced in order to reduce further degradation of the compressor until repairs can be made.

[00123] The duty cycle may be reduced by a fixed amount, such as by 25%, 50% or more, or may be reduced in proportion to the severity of the identified failure, if the leak condition is severe, power to the compressor may be disconnected such that the compressor ceases operating until appropriate repairs have been effected. In another embodiment, personnel are notified by an audio alarm, a visual alarm, a text message, an email, an instant message, a phone call, or other method appropriate for the operating environment. In a system having multiple compressors, in response to a detected leak on one compressor the operation of the other compressors may be adjusted to compensate for the reduced performance of one compressor allowing the system to remain functional until repairs can be scheduled.

[00124] In various other embodiments, the aspects of the systems and methods previously described may also be employed individually or in combination to diagnose the condition of a compressor. In one embodiment, a method for diagnosing a compressor includes operating a compressor in an unloaded condition by cycling the pistons within their respective cylinders, monitoring at least the reservoir pressure and the crankcase pressure, and determining a condition of the compressor based on an analysis of both the monitored reservoir pressure and crankcase pressure. In another embodiment, a method for diagnosing a compressor includes operating a multi-stage compressor to charge a reservoir with compressed air, monitoring at least a crankcase pressure and an intermediate stage pressure, and determining a condition of the compressor based on an analysis of both the monitored crankcase pressure and the monitored intermediate stage pressure. In yet another embodiment, a method for diagnosing a compressor includes monitoring signals from at least two of a primary reservoir pressure sensor, an intermediate reservoir pressure sensor, a crankcase pressure sensor, and a crankshaft position sensor, and correlating the monitored signals to identify a failure condition of the compressor. In yet another embodiment, a method of diagnosing a compressor includes actuating an unloader valve, monitoring at least a reservoir pressure sensor and a crankshaft position sensor, and identifying a leak condition of a valve disposed between a cylinder and a reservoir of a compressor. By way of example and not limitation, the subject disclosure can be utilized alone or in combination with a system and/or method disclosed in U.S. Provisional Application Serial No. 61/636,192, filed April 20, 2012, and entitled "SYSTEM AND METHOD FOR A COMPRESSOR" in which the entirety of the aforementioned application is incorporated herein by reference.

[00125] The methods and systems disclosed herein may be applied to a reciprocating compressor having one or more compressor stages, such as the compressor illustrated in FIG, 2. In other embodiments, the methods and systems may be applied to other types of compressors. For example, the compressor may be a diaphragm or membrane compressor in which the compression is produced by movement of a flexible membrane. The compressor may also be a hermetically sealed or semi-hermetically sealed compressor. In addition, the compressor types may include centrifugal compressors, diagonal or mixed flow compressors, axial flow compressors, rotary screw compressors, rotary vane compressors, and scroll compressors, among others.

[00126] The methods presently disclosed may also include generating a signal corresponding to the failure condition and alerting an operator or other personnel so that remedial action may be taken. Each of these systems and methods described above may also be implemented on a vehicle system such as the rail vehicle 106 described above. In still yet other embodiments, a test kit is provided that includes a controller having a memory and a processor configured to perform the methods described above.

[00127] In each of the embodiments presently disclosed, component fault data may be recorded. In one embodiment, component fault data may be stored in a database including historical compressor data. For example, the database may be stored in memory 134 of controller 130. As another example, the database may be stored at a site remote from rail vehicle 106. For example, historical compressor data may be encapsulated in a message and transmitted with communications system 144. In this manner, a command center may monitor the health of the compressor in real-time. For example, the command center may perform steps to diagnose the condition of the compressor using the compressor data transmitted with communications system 144. For example, the command center may receive compressor data including cylinder pressure data from rail vehicle 106, reservoir pressure, intermediate stage pressure, crankcase pressure, displacement of one or more pistons, and/or movement of the crankshaft to diagnose potential degradation of the compressor. Further, the command center may schedule maintenance and deploy healthy locomotives and maintenance crews in a manner to optimize capital investment. Historical compressor data may be further used to evaluate the health of the compressor before and after compressor service, compressor modifications, and compressor component change- outs.

[00128] If a leak or other fault condition exists, further diagnostics and response may be performed. For example, a potential faulty valve condition can be reported to notify appropriate personnel. In an embodiment, reporting is initiated with a signal output to indicate that a fault condition exists. The report is presented via display 140 or a message transmitted with communications system 144, as examples. Once notified, the operator may adjust operation of rail vehicle 106 to reduce the potential of further degradation of the compressor.

[00129] In one embodiment, a message indicating a potential fault is transmitted with communications system 144 to a command center. Further, the severity of the potential fault may be reported. For example, diagnosing a fault based on the above described methods may allow a fault to be detected earlier than when the fault is diagnosed with previously available means. In some applications, the compressor is permitted to continue operating when a potential fault is diagnosed in the early stages of degradation. In other applications, the compressor is stopped or maintenance may be promptly scheduled, such as when the potential fault is diagnosed as severe. In this manner the cost of secondary damage to the compressor can be avoided by early and accurate detection.

[00130] The severity of the potential fault may be determined based upon an analysis of one or more parameters from one or more diagnostic methods. For example, it may be more desirable to switch off the compressor than to have a degraded cylinder fail in a manner that may cause additional damage to the compressor. In one embodiment, a threshold value or one or more monitored parameters may be determined that indicates continued operation of the compressor is undesirable because the potential fault is severe. As one example, the potential fault may be judged as severe if the leakage of an exhaust valve exceeds a predetermined threshold.

[00131 ] In some embodiments, a request to schedule service is sent, such as by a message sent via communications system 144, Further, by sending the potential fault condition and the severity of the potential fault, down-time of rail vehicle 106 may be reduced. For example, service may be deferred on rail vehicle 106 when the potential fault is of low severity, Down-time may be further reduced by derating power of the compressor, such as by adjusting a compressor operating parameter based on the diagnosed condition.

[00132] In yet other embodiments, backup or redundant systems may be available, in an example, backup systems can be evaluated to detennine if adequate substitute resources exist to replace the compromised compressor, in some instances, a pre- ordered list of backup systems is used to prioritize the use of backup systems, such as other compressors configured to supply compressed air to pneumatic devices on a plurality of rail vehicles. Various backup systems may be employed including stopping the faulty compressor and receiving charged air from another source. In one example, the other source is a compressor that is disposed on an adjacent locomotive engine. In another example, the other source is a redundant compressor on the same locomotive that is used for this purpose. The backup procedure can be designed to minimize negative system-wide consequences to operation of the locomotive. This is especially true for mission critical systems.

[00133] The aforementioned systems, components, (e.g., controller, detection component, among others), and the like have been described with respect to interaction between several components and/or elements. It should be appreciated that such devices and elements can include those elements or sub-elements specified therein, some of the specified elements or sub-elements, and/or additional elements. Further yet, one or more elements and/or sub-elements may be combined into a single component to provide aggregate functionality. The elements may also interact with one or more other elements not specifically described herein.

[00134] In view of the exemplary devices and elements described supra, methodologies that may be implemented in accordance with the disclosed subject matter will be better appreciated with reference to the flow charts of FIGS. 16-19. The methodologies are shown and described as a series of blocks, the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Moreover, not all illustrated blocks may be required to implement the methods described hereinafter. The methodologies can be implemented by a component or a portion of a component that includes at least a processor, a memory, and an instruction stored on the memory for the processor to execute.

[00135] FIG. 16 illustrates a flow chart of a method 1600 for monitoring a pressure of an intermediate stage of a compressor to identify a condition thereof. At reference numeral 1602, a compressor can be operated to compress air from a first stage compressor into an intermediate stage reservoir, to deliver air from the intermediate stage reservoir to a second stage compressor, and to further compress the air into the second stage compressor into a primary reservoir. At reference numeral 1604, an intermediate stage pressure of the intermediate stage reservoir can be monitored. For instance, the intermediate stage pressure of the compressor can be monitored by the pressure sensor 266 (illustrated in FIG. 2). At reference numeral 1606, a condition of the compressor can be identified through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. [00136] In an embodiment, a method for a compressor is provided that includes operating a compressor to compress air from a first stage compressor into an intermediate stage reservoir, to deliver air from the intermediate stage reservoir to a second stage compressor, and to further compress the air in the second stage compressor into a primary reservoir; monitoring an intermediate stage pressure of the intermediate stage reservoir; and identifying a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated.

[00137] In an embodiment, the method includes filling the primary reservoir with compressed air to a determined pressure value, wherein the reservoir is configured to store compressed air to be provided to at least one pneumatic device. In an embodiment, the method includes identifying a condition of the compressor by correlating the monitored intermediate stage pressure and an indication of a position of a piston in a cylinder of the compressor. In an embodiment, the method includes identifying a condition of one of a plurality of cylinders of the compressor based on the correlation of the intermediate stage pressure and the indication of the position of the piston in the cylinder of the compressor.

[00138] In an embodiment, the method includes calculating an average of the intermediate stage pressure over a time period; and comparing the average intermediate stage pressure over the time period to a nominal intermediate stage average pressure. In an embodiment, the method includes determining the nominal intermediate stage average pressure from at least one of ambient air temperature and ambient air pressure. In an embodiment, the method includes identifying the nominal intermediate stage average pressure from at least one of compressor speed, primary reservoir pressure, and oil temperature.

[00139] In an embodiment, the method includes identifying a condition of the compressor by identifying a faulty exhaust valve of a low pressure cylinder. In an embodiment, the method includes identifying a condition of the compressor by identifying a piston blow-by condition of at least one cylinder of the compressor. In an embodiment, the method includes identifying a condition of the compressor by identifying an intake valve failure of a high pressure cylinder. [00140] In an embodiment, the method includes generating a signal in response to identify a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. In an embodiment, the method includes reducing a duty cycle of the compressor in response to identifying a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. In an embodiment, the method includes notifying personnel via one or more of an audio alarm, a visual alarm, a text message, an email, an instant message, or a phone call in response to determining a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated.

[00141 ] In an embodiment, a controller that is operable to identify a condition of a compressor is provided in which the controller is configured to receive a signal corresponding to a monitored intermediate stage pressure of the intermediate stage reservoir of the compressor; and identify a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated. In an embodiment, the compressor is a two-stage compressor, and wherein the intermediate stage reservoir is disposed between at least one low pressure cylinder and at least one high pressure cylinder. In an embodiment, the controller is further configured to correlate the monitored intermediate stage pressure and an indication of a position of a piston in a cylinder of the compressor. In an embodiment, the controller is further configured to identify a condition of one of a plurality of cylinders of the compressor based on the correlation of the intermediate stage pressure and an indication of a position of a piston in a cylinder of the compressor.

[00142] In an embodiment, the controller is further configured to calculate an average of the intermediate stage pressure over a time period; and compare the average intermediate stage pressure over the time period to a nominal intermediate stage average pressure. In an embodiment, the controller is further configured to communicate with one or more intermediate stage pressure sensors and receive the signal corresponding to the monitored intermediate stage pressure from the one or more intermediate stage pressure sensors. [00143] In embodiments, a system is provided in which the system includes an engine; a compressor operatively connected to the engine, wherein the compressor comprises: a first stage compressor configured to compress air into an intermediate stage reservoir at a first pressure, and a second stage compressor configured to receive air from the intermediate stage compressor at the first pressure and further compress the air into a primary reservoir of the compressor at a second pressure, wherein the second pressure is greater than the first pressure; and a controller that is operable to identify a condition of the compressor, wherein the controller is configured to receive a signal corresponding to a monitored intermediate stage pressure of the intermediate stage reservoir of the compressor, and identify a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated.

[00144] in embodiments, a compressor system is provided that includes means for operating a compressor to compress air from a first stage compressor into an intermediate stage reservoir, to deliver air from the intermediate stage reservoir to a second stage compressor, and to further compress the air in the second stage compressor into a primary reservoir (for example, the controller 130 can control and compress air within the compressor system); means for monitoring an intermediate stage pressure of the intermediate stage reservoir (for example, the intermediate sensor 266, detection component 128, among others can monitor the intermediate stage pressure); and means for identifying a condition of the compressor through recognition of a change in the monitored intermediate stage pressure during a time period in which the compressor is operated (for example, the controller 130 and/or the detection component 128 can identify the condition of the compressor).

[00145] In an embodiment, a compressor is provided that includes at least one intermediate stage reservoir disposed between a first stage compressor and a second stage compressor, wherein the first stage compressor is configured to compress air into the intermediate stage reservoir and the second stage compressor is configured to receive air from the intermediate stage reservoir and further compress the air into a primary reservoir; a pressure sensor configured to measure pressure in the intermediate stage reservoir; and means for identifying a condition of the compressor through recognition of a change in the monitored intermediate stage reservoir pressure during a time period during which the compressor is operated. In an embedment, the method includes the compressor which can be a two-stage reciprocating compressor, and wherein the first stage compressor comprises at least one low pressure cylinder and the second stage compressor comprises at least on high pressure cylinder. In an embodiment, the compressor further includes a crankcase; a sensor configured to measure pressure in the crankcase of a compressor; and means for identifying a condition of the compressor based on a correlation of the monitored crankcase pressure and an indication of a position of a piston in a cylinder of the compressor.

[00146] FIG. 17 illustrates a flow chart of a method 1700 for identifying a leak condition for a compressor based upon a cycling piston. At reference numeral 1702, a pressure of compressed air within a reservoir can be monitored. At reference numeral 1704, a piston within a cylinder of the compressor can be actuated. At reference numeral 1706, a leak condition of an exhaust valve of the cylinder can be detected through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the piston is actuated.

[00147] In an embodiment, a method for a compressor is provided that includes monitoring a pressure of compressed air within a reservoir; actuating a piston within a cylinder of the compressor; and detecting a leak condition of an exhaust valve of the cylinder through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the piston is actuated. In an embodiment, the method can further include detecting a leak condition of the exhaust valve of the cylinder by correlating the monitored pressure of the compressed air within the reservoir with an indication of a position of the piston in the cylinder. In an embodiment, the method includes filling the reservoir with compressed air to a determined pressure value, wherein the reservoir is configured to store compressed air to be provided to at least one pneumatic device.

[00148] In an embodiment of the method, actuating the piston within the cylinder can include cycling the piston within the cylinder at a first rate during a first portion of the time period and cycling the piston within the cylinder at, a second rate during a second portion of the time period. In an embodiment, detecting a leak condition of the exhaust valve of the cylinder includes recognizing a once-per-revolution signature in a frequency analysis of the monitored pressure, wherein the once-per-revolution signature corresponds to a rate at which the piston is actuated within the cylinder.

[00149] In an embodiment, actuating the piston within the cylinder includes cycling the piston within the cylinder in an unloaded condition. In an embodiment, actuating the piston within the cylinder can include cycling the piston within the cylinder in a loaded condition. In an embodiment, detecting a leak condition of the exhaust value of the cylinder further includes recognizing a reduction in the monitored pressure corresponding to a suction stroke of the piston in the cylinder. In an embodiment, detecting a leak condition of the exhaust valve of the cylinder further includes recognizing an increase in the monitored pressure corresponding to a compression stroke of the piston in the cylinder.

[00150] In an embodiment, the method also includes generating a signal in response to recognizing a change in the monitored pressure of the compressed air within the reservoir during a time period in which the piston is actuated. In an embodiment, the method includes reducing a duty cycle of the compressor in response to recognizing a change in the monitored pressure of the compressed air within the reservoir during a time period in which the piston is actuated. In an embodiment, the method includes notifying personnel via one or more of an audio alarm, a visual alarm, a text message, an email, an instant message, or a phone call in response to recognizing a change in the monitored pressure of the compressed air within the reservoir during a time period in which the piston is actuated.

[00151] In an embodiment, a controller that is operable to determine a condition of a compressor is disclosed. The controller is configured to receive a signal corresponding to a monitored pressure of compressed air within a reservoir of a compressor; and detect a leak condition of an exhaust valve of a cylinder of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which a piston is actuated within the cylinder, in an embodiment, the controller is further configured to actuate the piston within the cylinder of the compressor during at least a portion of the time period. The controller 130 can actuate a piston within the compressor such that the actuation is outside the compressor's normal duty cycle for compressing air. During this actaation outside the normal duty cycle, the system can detect a leak condition based upon comparisons of the monitored pressure. In another embodiment, the controller 130 can actuate the piston within the compressor such that the actuation is inside the compressor's normal duty cycle for compressing air. During this actuation inside the normal duty cycle, the system can detect a leak condition based upon comparison of the monitored pressure. Thus, the controller 130 can actuate the piston outside the compressor's normal duty cycle, inside the compressor's normal duty cycle, an alternating actuating of the piston from inside or outside the normal duty cycle, or a combination thereof. In an embodiment, the controller is further configured to correlate the signal corresponding to the monitored pressure of the compressed air within the reservoir with an indication of a position of the piston in the cylinder of the compressor. In an embodiment, the controller is further configured to actuate the piston within the cylinder of the compressor in an unloaded condition. In an embodiment, the controller is further configured to actuate the piston within the cylinder of the compressor in a loaded condition.

[00152] In an embodiment, the controller is further configured to recognize a reduction in the monitored pressure corresponding to a suction stroke of the piston in the cylinder. In an embodiment, the controller is further configured to recognize an increase in the monitored pressure corresponding to a compression stroke of the piston in the cylinder. In an embodiment, the controller is further configured to recognize a once-per-revolution signature in a frequency analysis of the monitored pressure, wherein the once-per-revolution signature corresponds to a rate at which the piston is actuated within the cylinder. In an embodiment, the controller is further configured to communicate with one or more reservoir pressure sensors and receive the signal corresponding to the monitored pressure from the one or more reservoir pressure sensors.

[00153] In embodiments, a system is disclosed that includes an engine; a compressor operatively connected to the engine, wherein the compressor includes a reservoir configured to store compressed air; a controller that is operable to determine a condition of the compressor, wherein the controller is configured to receive a signal corresponding to a monitored pressure of compressed air within the reservoir, and detect a leak condition of an exhaust valve of a cylinder of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which a piston is actuated within the cylinder,

[00154] In embodiments, a compressor system is disclosed that includes means for means for monitoring a pressure of compressed air within a reservoir (for instance, a pressure sensor 185 can monitor a pressure of compressed air within a reservoir); means for actuating a piston within a cylinder (for example, a controller 130 can actuate a piston within a cylinder); and means for detecting a leak condition of an exhaust valve of the cylinder through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the piston is actuated (for example, a detection component 128 can detect a leak condition of an exhaust valve of the cylinder).

[00155] In an embodiment, a compressor can be provided that includes a reservoir configured to receive and store compressed air for use with at least one pneumatic device and a sensor configured to monitor a pressure of compressed air within the reservoir. The compressor can additionally include a compressor stage that has an exhaust port and an exhaust valve configured to seal the exhaust port, wherein the compressor stage is configured to compress air and discharge the compressed air through the exhaust port into the reservoir. In the embodiment, the compressor can further include means for detecting a leak condition of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the compressor stage is operated in an unloaded condition.

[00156] in the embodiment, the compressor stage can include a cylinder and a piston, wherein the piston is actuated in the cylinder to compress air to be discharged into the reservoir through the exhaust port. In the embodiment, the compressor can include means for unloading the compressor stage by venting the compressor stage to atmospheric pressure.

[00157] FIG. 18 illustrates a flow chart of a method 1800 for identifying a condition of a compressor based upon a measured crankcase pressure. At reference numeral 1802, a crankcase pressure of a compressor can be monitored. At reference numeral 1804, the monitored crankcase pressure can be analyzed. At reference numeral 1806, a condition of the compressor can be identified based on the analysis of the monitored crankcase pressure.

[00 58] In an embodiment, a method for a compressor is provided that includes monitoring a crankcase pressure of a compressor; analyzing the monitored crankcase pressure; and determining a condition of the compressor based on the analysis of the monitored crankcase pressure. In embodiments, the method can include analyzing the monitored crankcase pressure by calculating an average of the crankcase pressure over a time period; and comparing the average crankcase pressure over the time period to a nominal crankcase average pressure. In an embodiment, the method includes determining a condition of the compressor based on the difference between the calculated crankcase average pressure and the nominal crankcase average pressure. In an embodiment, the method includes determining the nominal crankcase average pressure from at least one of ambient air temperature and ambient air pressure. In an embodiment, the method includes determining the nominal crankcase average pressure from at least one of compressor speed, reservoir pressure, and oil temperature.

[00159] In an embodiment, the method includes analyzing the monitored crankcase pressure by identifying frequency content of the monitored crankcase pressure at one or more known frequencies. In an embodiment, the method includes determining the one or more known frequencies based on a rate at which the compressor is operated. In an embodiment, the method includes analyzing the monitored crankcase pressure by correlating the monitored crankcase pressure with an indication of the position of one or more pistons of the compressor during a time period in which the one or more pistons are operated. In an embodiment, the method includes determining a condition of the compressor by identifying a condition of one of a plurality of cylinders of the compressor based on a correlation of the monitored crankcase pressure and an indication of the position of the piston in the cylinder of the compressor.

[00160] In an embodiment, the method includes determining a condition of the compressor by identifying a piston blow-by condition of at least one cylinder of the compressor based on the analysis of the monitored crankcase pressure. In an embodiment, the method includes determining a condition of the compressor by identifying a crankcase breather valve failure based on the analysis of the monitored crankcase pressure. In an embodiment, the method includes monitoring the crankcase pressure of a compressor while a piston is cycled within a cylinder of the compressor in an unloaded condition. In an embodiment, the method includes monitoring the crankcase pressure of the compressor while a piston is cycled within a cylinder of the compressor in a loaded condition.

[00161] In an embodiment, the method includes monitoring the crankcase pressure of the compressor during a first time period during which a piston is cycled within a cylinder of the compressor in an unloaded; monitoring the crankcase pressure of the compressor during second time period during which the piston is cycled within the cylinder of the compressor in a loaded condition; and determining a condition of the compressor based on the analysis of the monitored crankcase pressure from the first time period and the second time period.

[00162] In an embodiment, the method includes generating a signal in response to determining a condition of the compressor based on the analysis of the monitored crankcase pressure. In an embodiment, the method includes reducing a duty cycle of the compressor in response to determining a condition of the compressor based on the analysis of the monitored crankcase pressure. In an embodiment, the method includes notifying personnel via one or more of an audio alarm, a visual alarm, a text message, an email, an instant message, or a phone call in response to determining a condition of the compressor based on the analysis of the monitored crankcase pressure.

[00163] In an embodiment, a controller that is operable to determine a condition of a compressor is provided in which the controller is configured to receive a signal corresponding to a monitored pressure within a crankcase of the compressor; analyze the monitored crankcase pressure; and identify a condition of the compressor based on the analysis of the monitored crankcase pressure. In an embodiment, the condition of the compressor is a piston blow-by condition of at least one cylinder of the compressor. In an embodiment, the condition of the compressor is a crankcase breather valve failure. In an embodiment, the controller is further configured to calculate an average of the crankcase pressure over a time period; and compare the average crankcase pressure over the time period to a nominal crankcase average pressure. In an embodiment, the controller is further configured to communicate with one or more crankcase pressure sensors and receive the signal corresponding to the monitored pressure from the one or more crankcase pressure sensors.

[00164] In embodiments, a system is disclosed. The system includes an engine; a compressor operatively connected to the engine, wherein the compressor includes a crankcase having a crankcase pressure sensor; a controller thai is operable to determine a condition of the compressor, wherein the controller is configured to receive a signal corresponding to a monitored pressure within the crankcase of the compressor from the crankcase pressure sensor, analyze the monitored crankcase pressure; and determine a condition of the compressor based on the analysis of the monitored crankcase pressure.

[00165] in embodiments, a compressor system is disclosed that includes means for means for monitoring a crankcase pressure of a compressor (for example, a crankcase pressure of a compressor can be monitored by the pressure sensor 170, the sensor 172, the detection component 128, among others); means for analyzing the monitored crankcase pressure (for example, the analysis of the monitored crankcase pressure can be provided by the controller 130, the detection component 128, among others); and means for determining a condition of the compressor based on the analysis of the monitored crankcase pressure (for example, the condition of the compressor can be determined by the controller 130).

[00166] In an embodiment, a compressor can be provided that includes a sensor configured to measure pressure in a crankcase of a compressor and means for determining the position of a piston in a cylinder of the compressor, wherein the piston is operably connected to a crankshaft in the crankcase of the compressor. In the embodiment, the compressor can further include means for determining a condition of the compressor based on a correlation of the monitored crankcase pressure and an indication of a position of a piston in a cylinder of the compressor. Furthermore, the means for determining the position of a piston in a cylinder of the compressor can include a crankshaft position sensor.

[00167] FIG. 19 illustrates a flow chart of a method 1900 for identifying a leak condition for a compressor based upon a cycling unloader valve. At reference numeral 1902, a pressure of compressed air within a reservoir of a compressor can be monitored. For example, the pressure sensor 185 can monitor the pressure of compressed air within the reservoir of a compressor. At reference numeral 1904, an unloader valve of the compressor can be actuated. For instance, the unloader valve can be actuated between an open position to a closed position, wherein each actuation (e.g., open position, closed position, transitioning between open position and/or close position, among others) can be for a duration of time. In an example, the controller 130 can actuate an unloader valve. At reference numeral 1 06, a leak condition of the compressor can be detected through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the unloader valve is actuated. For example, the detection component 128 can detect a pattern of the monitored pressure of the compressed air during a time period.

[00168] In another embodiment, the method includes filling the reservoir with compressed air to a determined pressure value. In another embodiment, detecting a leak condition of the compressor includes correlating changes in the monitored pressure of the compressed air within the reservoir with an indication of a position of the unloader valve.

[00169] In another embodiment, detecting a leak condition of the compressor includes detecting a leak condition of a valve of the compressor disposed between the reservoir and a cylinder of the compressor. In another embodiment, detecting a leak condition of the compressor includes detecting a leak condition of the reservoir of the compressor.

[00170] Sn another embodiment, actuating the unloader valve of the compressor includes cycling the unloader valve between an open position and a closed position during at least a portion of the time period. In another embodiment, during said at least the portion of the time period the unloader valve is maintained in the open position for a first duration and is maintained in the closed position for a second duration, wherein the first duration is not equal to the second duration.

[00171 ] In another embodiment, actuating the unloader valve of the compressor includes cycling the unloader valve between an open position and a closed position at a known rate during at least a portion of the time period. In another embodiment, actuating the unloader valve of the compressor includes cycling the unloader valve between an open position and a closed position at a first rate during a first portion of the time period and at a second rate during at least a second portion of the time period. In another embodiment, actuating the unloader valve of the compressor includes unloading the compressor.

[00172] In another embodiment, the method further includes generating a signal in response to recognizing a change in the monitored pressure during a time period in which the unloader valve is actuated, wherein the signal corresponds to a severity level of a leak condition. In another embodiment, the method further includes reducing a duty cycle of the compressor in response to recognizing a change in the monitored pressure during a time period in which the unloader valve is actuated. In another embodiment, the method further includes notifying personnel via one or more of an audio alarm, a visual alarm, a text message, an email, an instant message, or a phone call in response to recognizing a change in the monitored pressure during a time period in which the unloader valve is actuated. β

[00173] In an embodiment, a controller that is operable in association with a compressor is disclosed. The controller is configured to receive a signal corresponding to a monitored pressure of compressed air within a reservoir of a compressor; and detect a leak condition of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which an unloader valve of the compressor is actuated. In an embodiment, the controller is further configured to actuate the unloader valve of the compressor. In another embodiment, the controller is further configured to correlate changes in the signal corresponding to the monitored pressure of the compressed air within the reservoir with a position of the unloader valve, in another embodiment, the controller is further configured to detect a leak condition of a valve of the compressor disposed between the reservoir and a cylinder of the compressor. In another embodiment, the controller is further configured to actuate the unloader valve by cycling the unloader valve between an open position and a closed position at a kiiown frequency during at least a portion of the time period. In an embodiment, the controller is further configured to communicate with one or more reservoir pressure sensors and receive the signal corresponding to the monitored pressure from the one or more reservoir pressure sensors.

[00174] In an embodiment, a system includes an engine; a compressor operatively connected to the engine, wherein the compressor includes a reservoir configured to store compressed air and an unloader valve configured to release pressure from a portion of the compressor; and a controller that is operable to determine a condition of the compressor, wherein the controller is configured to receive a signal corresponding to a monitored pressure of compressed air within the reservoir of the compressor, and detect a leak condition of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which an unloader valve is actuated.

[00175] In embodiments, a compressor system is disclosed that includes means for monitoring a pressure of compressed air within a reservoir of a compressor (for example, the pressure sensor 185 can monitor the pressure of compressed air within the reservoir of a compressor); means for actuating an unloader valve of the compressor (in an example, the controller 330 can actuate an unloader valve); and means for detecting a leak condition of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the unloader valve is actuated (for example, the detection component 128 can detect a pattern of the monitored pressure of the compressed air during a time period).

[00176] In an embodiment, a compressor system is provided that includes a reservoir configured to receive and store compressed air for use with at least one pneumatic device and at least one sensor configured to monitor a pressure of compressed air within the reservoir. The compressor system can include a compressor stage having an exhaust port and an exhaust valve configured to seal the exhaust port, wherein the compressor stage is configured to compress air and discharge the compressed air through the exhaust port into the reservoir. Further, the compressor system can include means for unloading the compressor stage by venting the compressor stage to atmospheric pressure and means for detecting a leak condition of the compressor through recognition of a change in the monitored pressure of the compressed air within the reservoir during a time period in which the means for unloading the compressor stage is actuated.

[00177] In the compressor system, the compressor stage can include a cylinder and a piston, wherein the piston is actuated in the cylinder to compress air to be discharged into the reservoir through the exhaust port. In the compressor system, the means for unloading the compressor can include at least one unloader valve. Moreover, in the compressor system the at least one unloader valve can be configured to be cycled between an open position and a closed position during at least a portion of the time period.

[00178] As used herein, the terms "high pressure" and "low pressure" are relative to one another, that is, a high pressure is higher than a low pressure, and a low pressure is lower than a high pressure. In an air compressor, low pressure may refer to a pressure that is higher than atmospheric pressure, but that is lower than another, higher pressure in the compressor. For example, air at atmospheric pressure may be compressed to a first, low pressure (which is still higher than atmospheric pressure), and further compressed, from the first, low pressure, to a second, high pressure that is higher than the low pressure. An example of a high pressure in a rail vehicle context is 140 psi (965 kPa).

[00179] In the specification and claims, reference will be made to a number of terms that have the following meanings. The singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise. Approximating language, as used herein throughout the specification and claims, may be applied to modify a quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as "about" is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Moreover, unless specifically stated otherwise, a use of the terms "first," "second," etc., do not denote an order or importance, but rather the terms "first," "second," etc., are used to distinguish one element from another.

[00180] As used herein, the terms "may" and "may be" indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of "may" and "may be" indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur - this distinction is captured by the terms "may" and "may be."

[00181] This written description uses examples to disclose the invention, including the best mode, and also to enable one of ordinary skill in the art to practice the invention, including making and using a devices or systems and performing incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to one of ordinary skill in the art. Such other examples are intended to be within the scope of the c!aims if they have structural elements that do not differentiate from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.