Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM AND METHOD FOR LAYING AN UNDERWATER PIPELINE ON A BED OF A BODY OF WATER
Document Type and Number:
WIPO Patent Application WO/2016/046805
Kind Code:
A1
Abstract:
A system (1) for laying an underwater pipeline (2) on a bed (3) of a body of water (4) has a construction site (11) to form a string (8) of an underwater pipeline (2), the string (8) being defined by a curved portion (9) shaped substantially like a portion of the bed (3) of the body of water (4) characterized by an abrupt change in slope; at least two vessels (14) to transfer, in the body of water (4), the string (8) from the construction site (11) to a laying site (13) in the body of water (4) and substantially on the vertical of a path (5) along which to lay the string (8); and a plurality of floating devices (15) configured to be coupled to the string (8) and so as to selectively support and sink the string (8) in the body of water, and progressively lay the string (8) along the path (5) on the bed (3) of the body of water (4).

Inventors:
LAZZARIN, Diego (Via Pozzuolo del Friuli 16, Treviso, I-31100, IT)
MAMELI, Alessio (Via Martiri di Cefalonia 67, San Donato Milanese, I-20097, IT)
Application Number:
IB2015/057397
Publication Date:
March 31, 2016
Filing Date:
September 25, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SAIPEM S.P.A. (Via Martiri di Cefalonia 67, San Donato Milanese, I-20097, IT)
International Classes:
F16L1/16
Domestic Patent References:
WO2006117249A22006-11-09
WO2011061605A12011-05-26
WO1994008166A11994-04-14
Foreign References:
EP1022501A12000-07-26
GB2267945A1993-12-22
US20140093317A12014-04-03
US4147455A1979-04-03
Attorney, Agent or Firm:
ECCETTO, Mauro et al. (Via Viotti 9, Torino, I-10121, IT)
Download PDF:
Claims:
CLAIMS

1. A system for laying an underwater pipeline along a path on a bed of a body of water, the system (1) comprising a construction site (11) to form a string (8) of an underwater pipeline (2), the string (8) including at least one curved portion (9) shaped substantially like a portion of the bed (3) of the water body (4) characterized by an abrupt change in slope; at least two vessels (14) to transfer, in the body of water (4), the string (8) from the construction site (11) to a laying site (13) in the body of water (4) and substantially on the vertical of a path (5) along which to lay the string (8) ; and a plurality of floating devices (15) configured to be coupled to the string (8) and so as to selectively support and sink the string (8) in the body of water (4) , and progressively lay the string (8) along the path (5) on the bed (3) of the body of water (4) .

2. The system as claimed in claim 1, and comprising a stabilizer device (16), configured to be coupled to the curved portion (9) of the string (8) and to prevent deformation of the curved portion (9) of the string (8) .

3. The system as claimed in any one of the preceding claims, wherein the two vessels (14) comprise respective traction elements (17) configured to be connected to the opposite ends of the string (8) .

4. The system as claimed in any one of the preceding claims, wherein the two vessels (14) comprise respective winches (18) configured to be connected to the opposite ends of the string (8) .

5. The system as claimed in any one of the preceding claims, wherein each floating device (15) is configured to vary its own buoyancy.

6. The system as claimed in any one of the preceding claims, wherein each floating device (15) is configured to be selectively uncoupled from the string (8) .

7. The system as claimed in any one of the preceding claims, wherein each floating device (15) is configured to vary the distance between the floating device (15) and the string (8) . 8. The system as claimed in any one of the preceding claims, wherein each floating device (15) is controllable independently of the other floating devices (15) .

9. The system as claimed in any one of the preceding claims, and comprising a further vessel (14) comprising a traction element (17) connectable to the curved portion (9) of the string ( 8 ) .

10. The system as claimed in claim 9, wherein the further vessel (14) comprises a further winch (18) configured to be connected to the curved portion (9) of the string (8) .

11. The system as claimed in claim 9 or 10, and comprising an ROV (19) connected to the further vessel (14) and configured to control the laying operations of the string (8) on the bed (3) of the body of water (4) .

12. A method for laying an underwater pipeline on the bed of a body of water, the method comprising the steps of assembling a string (8) of an underwater pipeline (2) in a construction site (11), the string (8) including at least one curved portion (9) shaped substantially like a portion of the bed (3) of the body of water (4) characterized by an abrupt change in slope; transferring, in the body of water, the string (8) from the construction site (11) to a laying site (13) in the body of water (4) substantially on the vertical of a path (5) along which to lay the string (8) ; sinking the string (8) in the body of water (4) ; and laying the string (8) along the path (5) on the bed (3) of the body of water (4) . 13. The method as claimed in claim 12, and comprising the step of coupling the curved portion (9) of the string (8) to a stabilizer device (16), configured to prevent deformation of the curved portion (9) of the string (8) . 14. The method as claimed in claim 12 or 13, wherein, during the transfer step, the string (8) lies in the body of water (4) substantially on a horizontal plane in proximity of the free surface of the body of water (4) . 15. The method as claimed in any one of claims 12 to 14, and comprising the step of rotating the string (8) in the body of water (4) at the laying site (13) so as to arrange the string (8) substantially along a vertical plane.

16. The method as claimed in any one of claims 12 to 15, wherein the step of laying the string (8) on the bed (3) of the body of water (4) provides for arranging in succession on the bed (3) of the body of water (4), the curved portion (9) and progressively two straight portions (10) arranged on opposite sides of the curved portion (9) .

17. The method as claimed in any one of claims 12 to 16, and comprising the step of tying the string (8) to a plurality of vessels (14) to realize the steps of constructing, transferring, rotating, sinking, and laying the string (8) .

18. The method as claimed in claim 17 and comprising the step of tying the string (8) at its opposite ends to two vessels (14) .

19. The method as claimed in claim 17 or 18, and comprising the step of tying the string (8) in correspondence to the curved portion (9) to a further vessel (14) .

20. The method as claimed in any one of claims 12 to 19, and comprising the step of coupling a plurality of floating devices (15) to the string (8) to perform the steps of constructing, transferring, rotating, sinking, and laying the string ( 8 ) . 21. The method as claimed in claim 20, and comprising the step of varying the buoyancy of each floating device (15) independently of the other floating devices (15) .

22. The method as claimed in claim 20 or 21, and comprising the steps of uncoupling each floating device (15) from the string (8) independently of the other floating devices (15) .

23. The method as claimed in one of claims 20 to 22, and comprising the steps of varying the distance of each floating device (15) from the string (8) independently of the other floating devices (15) .

Description:
"SYSTEM AND METHOD FOR LAYING AN UNDERWATER PIPELINE ON A BED OF A BODY OF WATER"

TECHNICAL FIELD

The present invention relates to a system for laying underwater pipeline on a bed of a body of water.

In particular, the present invention relates to a system for laying an underwater pipeline along a path on a bed of the body of water affected by abrupt bathymetric changes, such as escarpments for example.

BACKGROUND ART

It is known that once an underwater pipeline is laid on the bed of the body of water, it assumes a configuration imposed by the points or areas that support it. The laying of an underwater pipeline consequently envisages an accurate preliminary study for a path that avoids the underwater pipeline having spanned portions or spanned portions of excessive length once laid.

Sometimes, the preferable path has portions along which ridges and depressions alternate or an escarpment is encountered. In these cases, the morphology of the bed imposes carrying out specific operations to reduce the length of any such spans. A known technique is to carry out operations preparatory to laying the underwater pipeline, such as flattening out the ridges and filling the depressions for example.

In other cases where the bed of the body of water does not have significant discontinuities, it is sufficient to dig a trench in such a way as to create a bathymetric profile for the bottom of the trench as even as possible, as shown in Patent WO 2011/061,605 and in the name of the applicant. Another known technique aimed at rectifying bathymetric profiles characterized by marked variability provides for arranging at least one support in a depression between two successive ridges to provide a further point of support for the underwater pipeline and reduce the length of the free-span portion of the underwater pipeline.

A support of the above-indicated type is shown in Patent Application US 2014/093317. This support is preliminarily arranged in a given zone of the bed of the body of water and comprises a vertical structure, a carriage selectively movable in a vertical direction along the vertical structure, and a cradle configured to accommodate the underwater pipeline. The underwater pipeline is positioned in the cradle, which is selectively set at a desired height with respect to the bed of the body of water.

A support, based on a similar principle to the previous one is described in Patent US 4,147,455.

Patent WO 94/08166 shows a straddle carrier, which is laid on the bed straddling the underwater pipeline and is provided with a gripper element capable of grasping a portion of the underwater pipeline and raising this portion until it reaches a desired height.

The described supports must be arranged inside a predetermined area and the underwater pipeline must then be coupled to the support .

These operations are costly in terms of time and complicate the laying operations of the underwater pipeline.

All of the described methodologies offer respective advantages and disadvantages and can be conveniently applied depending on the operating conditions encountered in the laying sites, such as depth, morphology, geological structure of the bed of the body of water and the prevailing sea and weather conditions.

DISCLOSURE OF INVENTION

The object of the present invention is to provide an alternative system to those known so as to broaden the range of possible technical solutions.

In accordance with the present invention a system is provided for laying an underwater pipeline along a path on the bed of a body of water, the system comprising a construction site to form a string of an underwater pipeline, the string including at least one curved portion shaped substantially like a portion of the bed of the body of water characterized by an abrupt change in slope; at least two vessels to transfer, in the body of water, the string from the construction site to a laying site in the body of water and on the vertical of a path along which to lay the string; and a plurality of floating devices configured to be coupled to the string and so as to selectively support and sink the string in the body of water, and progressively lay the string along the path on the bed of the body of water.

Thanks to the present invention, it is possible to directly arrange the string on the bed of the body of water to copy the bathymetric profile of the bed of the body of water even when there are abrupt changes in slope. In this way, earth-moving operations on the bed of the body of water or positioning supports along the body of water are not needed.

In particular, the system comprises a stabilizer device configured to be coupled to the curved portion of the string and prevent deformation of the curved portion of the string. In this way, the stabilizer device is able to absorb part of the stress induced on the curved portion and prevent plastic deformation occurring in the curved portion.

In particular, two vessels comprise respective traction elements configured to be connected to the opposite ends of the string.

In this way, it is possible to control the position and the orientation of the string in the body of water and arrange it in the correct position above the path in the exact point where it must be laid.

In accordance with the present invention, the vessels comprise respective winches configured to be connected to the opposite ends of the string.

In particular, the two vessels ae equipped with suitable mooring or dynamic positioning systems that comprise respective winches configured to be connected to the opposite ends of the string.

In this way, the winches, due to their responsiveness, contribute to controlling the position and orientation of the string in a rapid and efficient manner and compensating possible movements of the vessels, which have a certain inertia in performing manoeuvres.

In accordance with the present invention, each floating device has variable buoyancy. The variation in buoyancy enables supporting, sinking and defining a plurality of equilibrium positions of the string in the body of water.

In particular, each floating device can be selectively decoupled from the string. In this way, it is possible to let the string sink and/or recover the floating device.

In particular, each floating device is configured to vary the distance between the floating device and the string.

In this way it also is possible to sink the string without altering the buoyancy of the floating devices. In accordance with the present invention, each floating device can be controlled independently of the other floating devices.

In this way, it is possible to first lay some portions of the string and, subsequently, other portions of the string.

In particular, the change in buoyancy of each floating device is obtained by flooding each floating element in a controlled manner so as to achieve controlled sinking of the string. In accordance with the present invention, the system comprises a further vessel comprising a traction element that can be connected to a curved portion of the string.

Thanks to this further vessel, it is possible to control the shape of the string in the construction and transfer steps and therefore prevent undesired deformation. In addition, the further vessel controls the string in the step of rotating it from the horizontal plane to the vertical plane. In particular, the further vessel comprises a further winch configured to be connected to the curved portion of the string .

In this way, the further winch is able to compensate any inertia of the further vessel. In accordance with the present invention, the system comprises an ROV connected to the further vessel and configured to control the operations of laying the string on the bed of the body of water.

In accordance with the present invention, in the case where required by sea/weather conditions, such as in the event of strong currents for example, the system comprises a guide device comprising ballast configured to be placed on the bed of the body of water and a guide constrained by the ballast and by the string to limit the positioning tolerance of the string with respect to the path in the step of laying the string . A further object of the present invention is to provide an alternative method for laying an underwater pipeline with respect to the known methods.

In accordance with the present invention, a method is provided for laying an underwater pipeline along a path on the bed of a body of water, the method comprising the steps of assembling a string of an underwater pipeline at a construction site, the string including at least one curved portion shaped substantially like a portion of the bed of the body of water characterized by an abrupt change in slope; transferring, in the body of water, the string from the construction site to a laying site in the body of water on the vertical of a path along which to lay the string; sinking the string in the body of water; and laying the string along the path on the bed of the body of water.

In this way, it is possible to copy the shape of the bed, including parts characterized by abrupt changes in slope. In particular, the method provides for coupling a stabilizer device to the curved portion of the string that is configured to prevent deformation of the curved portion of the string.

In this way, harmful deformation of the curved portion is prevented .

In accordance with the present invention, in the transfer step, the string lies in the body of water substantially on a horizontal plane close to the free surface of the body of water .

In this way, stress is reduced during the transfer step.

In accordance with the present invention, the method provides for arranging the string substantially along a vertical plane in the body of water.

In practice, the string is made to face the path in the area where it is to be laid. In particular, the method provides for laying in succession on the bed of the body of water the curved portion and progressively two straight portions, possibly arranged on opposite sides of the curved portion. In practice, the method provides for connecting the string to a plurality of vessels to implement the steps of constructing, transferring, rotating, sinking and laying the string.

In this way, it is possible to move the string in the body of water.

In accordance with the present invention, the method provides for coupling a plurality of floating devices to the string to perform the steps of constructing, transferring, rotating, sinking and laying the string. In this way, the movements of the string in the body of water are facilitated, in particular when the floating devices are distributed along the string. BRIEF DESCRIPTION OF THE DRAWINGS

Further characteristics and advantages of the present invention will become clear from the description below of a preferred embodiment, with reference to the figures in the accompanying drawings, in which:

- Figure 1 is an elevation view, with parts shown schematically and parts removed for clarity, of a system for laying an underwater pipeline positioned in an operating field;

- Figure 2 is a side elevation view, with parts removed for clarity, of an underwater pipeline lying on the bed of a body of water;

- Figures 3 to 6 are plan views, in a reduced scale with parts removed for clarity, of a construction site of a string of the underwater pipeline;

- Figure 7 is a plan view, with parts removed for clarity, of a transfer step of the string in the body of water;

- Figures 8 to 12, are side elevation views, with parts in section and parts removed for clarity, of successive steps of laying the string on the bed of the body of water; and

- Figure 13 is a side elevation view, with parts removed for clarity and parts in section, depicting the string laid on the bed of the body of water.

BEST MODE FOR CARRYING OUT THE INVENTION

Referring to Figure 1, a system 1 is shown, as a whole, for laying an underwater pipeline 2 on a bed 3 of a body of water 4 along a predefined path 5.

With reference to the case shown in Figure 2, the bed 3 of the body of water 4 comprises an escarpment 6, which has an upper edge 7 characterized by an abrupt change in slope. The system 1 is configured to form a string 8 of the underwater pipeline 2, lay the string 8 and successively complete the underwater pipeline 2.

The string 8 includes a curved portion 9 shaped substantially like a portion of the bed 3 of the body of water 4 characterized by an abrupt change in slope. In the case shown, the curved portion 9 is shaped to substantially follow the abrupt change in slope of the bed 3 at the upper edge 7 of the escarpment 6. In the case shown, the string 8 comprises two straight portions 10 joined to the curved portion 9 on opposite sides. The portions 10 are defined "straight" because they are made straight. However, the straight portions 10 have a certain flexibility that allow them to assume curved configurations with broad radii of curvature so as not to cause plastic deformation of the string 8. In fact, once laid on the bed 3 of the body of water 4, the straight portions 10 follow the profile of the bed 3 without exceeding the permissible deformation values and may also bend without exceeding the deformation limits in the transfer and laying steps .

Referring to Figure 1, the system 1 comprises a construction site 11, where the curved portion 9 (Figure 2) and straight pieces of pipe, not shown in the accompanying figures, are joined together to form the string 8 (Figure 2) . The joining operations envisage preparation of the ends, welding and the application of a protective coating on the weld (field joint coating) . The construction site 11 thus comprises an assembly line 12 and can be positioned on shore or in the body of water 4 close to the shore or part on shore and part in the body of water 4. Referring to Figure 3, the assembly line 12 is positioned on shore, while, during construction, the string 8 leaving the assembly line 12 is positioned in the body of water 4. Referring to Figure 1, the system 1 comprises a laying site 13, which is located in the body of water 4 over the path 5 wherein it is intended to lay the string 8.

The transfer of the string 8 from the construction site 11 to laying site 13 is carried out in the body of water 4. The construction and transfer of the string 8 envisage vessels 14 that are connected to the string 8. The system 1 also comprises floating devices 15 configured to be distributed along the string 8 and to selectively support and sink the string 8 in the body of water 4.

Referring to Figures 5 to 7, the system 1 comprises a stabilizer device 16 configured to be coupled to the curved portion 9 of the string 8 and to prevent deformation along the curved portion 9 of the string 8. In fact, the stabilizer device 16 comprises a stay wire that defines a chord of the curved portion 9 and is connected to the string 8. In particular, the stay wire comprises at least one steel or textile cable or at least one bar or chain and is connected to the curved portion 9 by constraints, such as clamps or eyebolts, for example. In particular, in the step of transferring the string 8, two vessels 14 are connected by respective traction elements 17 to the opposite ends of the string 8. The two vessels 14 comprise respective winches 18 configured to control the respective traction elements 17.

In the step of rotating the string 8, a further vessel 14 is connected to the curved portion 9 of the string 8 by a traction element 17. The traction element can be connected to the same constraints to which the stabilizer device 16 is connected. The further vessel 14 comprises a further winch 18 to control the traction element 17. The floating devices 15 have variable buoyancy so as to be able to vary the position of the string 8 in the body of water .

The floating devices 15 can be selectively uncoupled from the string 8.

In particular, each floating device 15 can be controlled independently of the other floating devices 15. In practice, the buoyancy of each floating device 15 is controlled independently of the other floating devices 15.

Furthermore, the release of each floating device 15 from the string 8 can also be controlled and performed independently of the other floating devices 15.

Each floating device 15 is connected to the string 8 by a stay wire, the length of which can be selectively varied, independently of the other floating devices 15, from a remote location. In accordance with a variant that is not shown, the floating devices are directly coupled to the string, in particular by clamps or bands. The system 1 comprises an ROV 19 connected to the further vessel 14 and configured to control the operations of laying the string 8 on the bed 3 of the body of water 4.

The information transmitted by the ROV 19 enables controlling the step of laying the string 8 and governing the position of the vessels 14, the winches 18 and the operations of the floating devices 15.

From the operational viewpoint, the system 1 provides for laying a string 8 on the bed 3 of the body of water 4 on an edge 7 of an escarpment 6 and subsequently completing the underwater pipeline 2 by joining pieces of pipe (not shown in the accompanying figures) to the string 8 to complete the underwater pipeline 2. The completion of the underwater pipeline 2 can be performed, for example, by a laying vessel, not shown in the accompanying figures, which recovers an end of the string on board for performing the subsequent steps of assembly and laying.

Conversely, the string 8 is prefabricated on the assembly line 12 and progressively set afloat in the body of water 4, as shown in Figure 3. The prefabrication of the string 8 provides the assembly and setting afloat in succession of a first straight portion 10, the curved portion 9 (Figure 5), and a second straight portion 10 (Figure 6) . The floating devices 15 are coupled to the string 8 as the string 8 is assembled. In a similar manner, the stabilizer device 16 is coupled to the curved portion 9.

A vessel 14 is connected to the free end of the first straight portion 10 by a traction element 17 and the winch 18. The vessel 14 keeps the first straight portion 10 in a straight position so as to maintain the string 8 in tension during the assembly step and advances in direction D as the length of the first straight portion 10 grows.

One the first straight portion 10 has been completed and the curved portion 9 has been joined to the first straight portion 10, the first straight portion 10 is inclined in a horizontal plane with respect to direction D, as shown in Figure 4. The entity of the inclination is a function of the angle between the two straight portions 10 of the string 8 and, consequently, of the curved portion 9. In particular, the curved portion 9 is made by joining straight pieces with the ends opportunely shaped so as to approximate the curve with a polygonal shape. Then, the stabilizer device 16 and a vessel 14 are coupled to the curved portion 9. Both vessels 14 are advanced in direction D as the second straight portion 10 is assembled and increases in length, as shown in Figures 5 and 6. Once assembly of the second straight portion 10 is completed, the free end of the second straight portion 10 is also secured to a vessel 14, as shown in Figure 7. The straight portions 10 may also deform provided that such deformation does not exceed certain threshold values.

Once completed, the string 8 is supported by the floating devices 15 and by the vessels 14, and is transported in the body of water 4 by the vessels 14 to the laying site 13, as show in Figure 8. In this step, due to the support provided by the floating devices 15, the string 8 lies in the body of water 4 substantially on a horizontal plane in proximity of the free surface of the body of water 4.

In the next step, the string 8 is rotated so as to arrange the string 8 substantially on a vertical plane above the path 5. The rotation is performed by the selective and differential sinking of the string 8, and by the action of the vessel 14 connected to the curved portion 9. In the case shown in Figure 9, rotation of the underwater pipeline 2 is made possible by the varying of distance between the underwater pipeline 2 and the floating devices 15. In practice, each floating device 15 is capable of varying the length of its stay wire in a remotely-controlled manner.

Alternatively, the same operation is possible by varying the buoyancy of each floating device. In particular, rotation of the string 8 is made possible by a defined sequence of varying the buoyancy or flooding of selected floating devices. The sequence enables keeping induced strain on the string 8 within acceptable limits. The shape of the string 8 is preferably monitored during the rotation step to avoid excessive deformation. The control tools that can be used to perform this checking are acoustic instruments and structural simulation software.

Then, the string 8 is sunk so as to progressively move the string 8 closer to the path 5. This step is performed by reducing the buoyancy of the floating devices 15, which start to sink, as shown in Figure 10.

The sinking of the string 8 is selective and performed so as to initially arrange the curved portion 9 in contact with the edge 7 and successively the straight portions 10, as shown in Figures 11 and 12. The stabilizer device 16 is removed before the curved portion 9 touches down. As the string 8 is gradually laid, the floating devices 15 are uncoupled from the string and recovered, as shown in Figures 12 and 13.

Finally, it is evident that variants can be made to the present invention with respect to the embodiments described with reference to the accompanying drawings without departing from the scope of the appended claims.