Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM AND METHOD FOR MEASURING CARDIORESPIRATORY RESPONSE
Document Type and Number:
WIPO Patent Application WO/2018/201253
Kind Code:
A1
Abstract:
Systems and methods for use in measuring sympathetic nervous system activity or blood vessel autoregulation corrected for sympathetic activity. The choroid plexus in the human eye is imaged and, using the resulting image, the vascular perfusion density (VPD) in the choroid is measured. VPD provides a measurement that is directly related to sympathetic nervous system activity. The effect of stimuli on sympathetic nervous system activity can be measured by comparing pre-stimuli VPD measurements with post-stimuli measurements. Quantifying VPD can be performed by determining pixel density within specific areas of the choroid plexus image. Altered sympathetic nervous system activity can be detected in a subject by comparing that subject's VPD measurements to baseline VPD measurements from healthy individuals. Blood vessel autoregulation can be measured by imaging changes in other blood vessels in the eye and correcting with choroid VPD measurements of sympathetic activity.

Inventors:
WILSON RICHARD (CA)
JENDZJOWSKY NICHOLAS (CA)
HERMAN ROBERT (CA)
TSAI WILLIS (CA)
COSTELLO FIONA (CA)
STEINBACK CRAIG (CA)
Application Number:
PCT/CA2018/050526
Publication Date:
November 08, 2018
Filing Date:
May 03, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UTI LP (CA)
UNIV ALBERTA (CA)
International Classes:
A61B3/10; A61B3/14; A61B5/00; A61B5/0205; A61B5/026
Other References:
SANDER, B, THE INFLUENT OF THE AUTONOMIC NERVOUS SYSTEM ON THE HUMAN CHOROID, 2017, pages 31 , 32 , 70 - 74 , 80-83, 85-88, 93-94 and 278, Retrieved from the Internet
Attorney, Agent or Firm:
BRION RAFFOUL (CA)
Download PDF:
Claims:
We claim:

A system for determining sympathetic nervous system activity in a human, the system comprising:

- an imaging device for imaging at least one portion of a human eye, said imaging device producing at least one image of said at least one portion of said human eye;

- a data storage device for storing said image; wherein

- said data storage device stores said at least one image from said imaging device;

- said at least one portion comprises choroid vasculature of said human eye;

- properties of said at least one image is indicative of vascular perfusion density in said choroid vasculature such that said properties is directly related to said sympathetic nervous system activity.

2. The system according to claim 1, wherein said properties of said at least one image comprises pixel density.

3. The system according to claim 1, wherein said at least one image comprises at least one baseline image and at least one post-stimulus image.

4. The system according to claim 3, wherein a comparison of pixel or voxel density between said at least one baseline image and said at least one post-stimulus image is indicative of a change in sympathetic nervous system activity.

5. The system according to claim 1, wherein said at least one image comprises at least one baseline image from a first human subject and at least one comparison image from a second human subject.

6. The system according to claim 1, wherein said at least one image is processed prior to undergoing an analysis of said at least one image's properties.

7. The system according to claim 6, wherein said at least one image undergoes image processing comprising at least one of : image translation, image rotation, image reduction, image enlargement, and image registration.

8. The system according to claim 6, wherein, prior to said analysis, said at least one image said at least one image undergoes at least one of: image enhancement, color

enhancement, contrast adjustment, contrast enhancement, color enhancement, and color switching.

9. A method for determining an amount of autonomic nervous system activity in a human, the method comprising:

- obtaining at least one image of at least one portion of an eye of said human;

- determining a measurement of a characteristic in said eye from said image;

- comparing said measurement to a previously obtained measurement to determine if said autonomic nervous system activity is increased or decreased.

10. The method according to claim 9, wherein said at least one portion comprises choroid vasculature of said eye.

11. The method according to claim 9, wherein said at least one portion comprises retinal vasculature of said eye.

12. The method according to claim 9, wherein said previously obtained measurement is from an image of another human's eye.

13. The method according to claim 9, wherein said measurement comprises measuring vascular perfusion density.

14. The method according to claim 13, wherein said vascular perfusion density is measured by measuring at least one of: pixel density and voxel density.

15. The method according to claim 9, wherein said at least one image undergoes image processing, said image processing comprising at least one of: image translation, image rotation, image reduction, image enlargement, and image registration.

16. The method according to claim 9, wherein said at least one image undergoes at least one of: image enhancement, color enhancement, contrast adjustment, contrast enhancement, color enhancement, and color switching.

17. The method according to claim 9, wherein said previously obtained measurement is measured from a baseline image.

18. The method according to claim 9, wherein said previously obtained measurement is measured from an image of a different portion of said eye.

19. The method according to claim 9, wherein said at least one portion of said eye comprises a choroid plexus of said eye and said previously obtained measurement is measured from a region of said eye other than said choroid plexus.

20. The method according to claim 9, wherein said at least one portion comprises a retina of said eye.

Description:
SYSTEM AND METHOD FOR MEASURING CARDIORESPIRATORY RESPONSE TECHNICAL FIELD

[0001] The present invention relates to optical coherence tomography (OCT) . More specifically, the present invention relates to methods and systems for using OCT to determine sympathetic nervous system activity in living humans or other animal species.

BACKGROUND

[0002] Most organs and blood vessels in the body receive

inputs from the sympathetic nervous system. Altered sympathetic nervous system activity occurs as a consequence of drug administration/exposure, psychological and physiological stress (including hemorrhage) and disease. For example, alteration in sympathetic nervous system activity occurs during anaesthesia, in obesity, diabetes, hypertension, hypotension, asthma, chronic obstructive pulmonary disease (COPD), inflammation, anxiety/depression, sleep apnea, and other major cardiorespiratory and metabolic diseases . The consequences of sympathetic activity extend to all aspects of autonomic control and include direct hemodynamic effects such as changes in heart rate, blood pressure and/or regional distribution of blood flow to various vascular beds and organs, or other pathways involving inflammation, growth factors such as insulin and VEGF that

contribute to vascular remodelling and

atherosclerosis. In addition, most blood vessels are capable of autoregulation, adjusting their calibre according to their immediate environment.

Autoregulation is subject to many of the same diseases and conditions above, but measurements of

autoregulation in vivo are made difficult by the effects of sympathetic inputs. As such, assessment of sympathetic nervous system activity, and disentangling the effects of sympathetic activity from

autoregulation on vascular beds, are potentially warranted for treatment of all diseases that involve altered sympathetic activity, all phases of drug discovery and use, and assessment of physiological and psychological stress. Currently, measurement of sympathetic nervous system activity in biopharmaceutical research and development and in clinical settings is difficult to do and difficult to interpret. An effective and time- sensitive method for assessing sympathetic nervous system activity is urgently needed. The simplest of measurements of sympathetic nervous system activity may involve measuring the variation of beat-to-beat cardiac R-R intervals. However, the dual

parasympathetic and sympathetic innervation of cardiac tissue clouds the ability to differentiate

parasympathetic or sympathetic influence. Other techniques such as measurement of norepinephrine concentrations in blood or urine lack sensitivity and temporal resolution of moment-by-moment changes in hemodynamic function, and reproducibility may be compromised due to tissue re-uptake and clearance of noradrenaline. While these drawbacks have been overcome by the use of radiolabeled techniques and the direct delivery into specific tissues (cardiac and renal), these modifications further complicate routine use. One other option is to directly record nervous system activity. Indeed, the direct recording of sympathetic nervous system activity from sympathetic nerves using microneurography has long been the gold standard of sympathetic nervous system measurement. This technique possesses good sensitivity and reproducibility to measure real-time changes in sympathetic nervous system activity within subjects. However, the amplitude of nerve recordings cannot be easily compared between subjects due to differences in needle proximity within the nerve and inter-subject burst amplitude. In addition, discomfort associated with needle placement is likely to affect sympathetic nervous system activity itself and, in some cases, induce a strong vaso-vagal response that again compromises interpretation. Given the caveats associated with these techniques, their invasive nature, mixed success rate, and the need for

additional measures to corroborate the effect of sympathetic nervous system activity, a feasible alternative to these techniques is needed.

[0004] There is therefore a need for systems and/or methods which address the above issues and which mitigate if not overcome such issues.

SUMMARY

[0005] The present invention provides systems and methods for use in measuring sympathetic nervous system activity. The choroid plexus in the human eye is accurately imaged and, using the resulting image, the vascular perfusion density (VPD) in the choroid is measured. VPD provides a measurement that is directly related to sympathetic nervous system activity. The effect of stimuli on sympathetic nervous system activity can be measured by comparing pre-stimuli VPD measurements with post-stimuli measurements. Quantifying VPD can be performed by determining pixel/voxel density within specific regions of the choroid plexus image.

Heightened sympathetic nervous system activity can be detected in a subject by comparing that subject's VPD measurements over time and/or to baseline VPD

measurements from healthy individuals. In a first aspect, the present invention provides a system for measuring an effect of a stimulus to an autonomic nervous system of a human, the system comprising :

- an imaging device for imaging at least one portion of a human eye, said imaging device producing at least one image of said at least a portion of said human eye;

- a data storage device for storing said image; wherein

- said data storage device stores said at least one image from said imaging device;

- said at least one portion comprises choroid

vasculature of said human eye;

- said system is used to obtain at least one first measurement in said choroid vasculature prior to an application of said stimulus to said human and to obtain at least one second measurement in said choroid vasculature subsequent to said application of said stimulus ;

- a comparison of said first measurement to said second measurement indicating an effect of said stimulus on said autonomic nervous system.

[0007] In a second aspect, the present invention provides a system for determining a level of autonomic nervous system activity in a human, the system comprising:

- an imaging device for imaging at least one portion of a human eye, said imaging device producing at least one image of said at least a portion of said human eye;

- a data storage device for storing said image; wherein

- said data storage device stores said at least one image from said imaging device;

- said at least one portion comprises choroid vasculature of said human eye, said at least one image allowing for a measurement in said choroid

vasculature ;

- said system is used to obtain at least one

measurement in said choroid vasculature;

- said at least one measurement is compared with at least one previously obtained measurement to determine a level of said autonomic nervous system activity.

[0008] In a third aspect, the present invention provides a system for determining sympathetic nervous system activity in a human, the system comprising: - an imaging device for imaging at least one portion of a human eye, said imaging device producing at least one image of said at least one portion of said human eye;

- a data storage device for storing said image; wherein

- said data storage device stores said at least one image from said imaging device;

- said at least one portion comprises choroid vasculature of said human eye;

- properties of said at least one image is indicative of vascular perfusion density in said choroid vasculature such that said properties is directly related to said sympathetic nervous system activity.

[0009] In a fourth aspect, the present invention provides a method for determining an amount of autonomic nervous system activity in a human, the method comprising:

- obtaining at least one image of at least one portion of an eye of said human;

- determining a measurement of a characteristic in said eye from said image;

- comparing said measurement to a previously obtained measurement to determine if said autonomic nervous system activity is increased or decreased.

[0010] In a fifth aspect, the present invention provides a method for determining an amount of autoregulation in a human, the method comprising: - obtaining at least one image of at least one portion of a human eye;

- determining measurements of two characteristics in said human eye from said image, said two

characteristics being subject to different levels of autoregulation and sympathetic regulation; and

- comparing said measurements to determine if said autoregulation is increased or decreased.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The embodiments of the present invention will now be described by reference to the following figures, in which identical reference numerals in different figures indicate identical elements and in which:

FIGURE 1 is a block diagram of a system according to one aspect of the invention;

FIGURE 2 is an image of the choroid plexus subsequent to the Valsalva manoeuvre;

FIGURE 3 is an image of a choroid plexus prior to any stimuli or provocation to the sympathetic nervous system;

FIGURES 4A-4B are images of the choroid plexus subsequent to different stimuli and illustrating an increased VPD;

FIGURE 5A-5D are images of the choroid plexus subsequent to different stimuli and illustrating a decreased VPD; FIGURE 6 are graphs demonstrating the divergent responses of the choroid and the retinal layer to stimuli which increase and decrease sympathetic activity;

FIGURE 7 is a block diagram of a system for use in processing choroid images;

FIGURE 8A is a flowchart detailing the steps in a method according to another aspect of the invention;

FIGURE 8B show raw images and processed images of an individual's retina during baseline and various cardiorespiratory stimuli/challenges ;

FIGURE 9A is a plot showing the change from baseline of retina VPD due to different stimuli;

FIGURE 9B is a plot showing the change from baseline of choroid VPD due to different stimuli;

FIGURE 9C is a plot showing the change in muscle sympathetic nervous due to different stimuli;

FIGURES 10A-10D show the relationships between choro VPD, retina VPD, muscle sympathetic nerve activity (MSNA) , and mean arterial pressure (MAP);

FIGURES 11A-11C are plots of choroid VPD and retina VPD against MSNA and against each other; and

FIGURES 12A-12C are plots detailing the relationship between R-R intervals to muscle sympathetic nervous activity (MSNA) . DETAILED DESCRIPTION

;0012] As is well-known, the choroid plexus is richly

innervated by the sympathetic nervous system and vaso- regulation is mediated by both a- and β-adrenergic receptors (this is in contrast to blood vessels in the retina that receives weak sympathetic inputs) . The choroid vasculature appears to be reactive to isometric exercise, postural changes and hypoxia, all of which increase activity of the sympathetic nervous system. Importantly, since the sympathetic nervous system regulates blood flow, vessel diameter, and cardiac output, then by measuring blood flow, one may attain an altered index of sympathetic activity.

Vascular perfusion density (VPD) is a static

measurement of total blood volume in the choroid (~ml) and in the choroid, sympathetic activity dominates autoregulation in determining blood vessel diameter. Therefore, measuring VPD (which is dictated solely by vessel diameter) provides an indirect measurement of sympathetic nervous system activity that is minimally affected by competing signals or other physiological indications. VPD can be measured by imaging the human eye and then isolating or focusing on the choroid plexus . A section of the choroid plexus can then be further analyzed by determining voxel/pixel properties (e.g., intensity) in the image. These voxel/pixel properties provide a measure of VPD and can be compared with the voxel/pixel properties of other regions in the image and with regions in similar images. Such a comparison effectively compares VPD between subjects and, in effect, compares sympathetic nervous system activity between different subjects. Similarly, by comparing the VPD for the same subject at different instances in time, the effect of

treatments or of circumstances on a subject's sympathetic nervous system activity can also be compared. By comparing different regions of the eye, differentially affected by autoregulation and sympathetic innervation in this way, the effects of autoregulation and sympathetic activity can be disentangled: Sympathetic activity and/or

autoregulation corrected for sympathetic activity can be assessed.

[0013] It should be noted that using stimuli to increase or decrease sympathetic activity specifically isolates changes due to sympathetic nervous system activity. The imaging of choroid vasculature in combination with physiologic, psychologic and/or pharmacologic stimuli to stimulate the sympathetic nervous system creates an accurate, reliable, and time-sensitive tool which can be used by researchers and clinicians to measure sympathetic nervous system reactivity.

[0014] In one embodiment, the present invention involves the use of optical coherence tomography (OCT) to image choroid vasculature in the eyes of an individual. The acquired images are analyzed and, by comparing the analyzed images with previously acquired images, one can quantify the reactivity of sympathetic nervous system to cardiorespiratory relevant stimuli or to other interventions. In one implementation, optical coherence tomography equipment is repurposed for noninvasive, expedient yet comprehensive, and low-cost human sympathetic nervous system monitoring and cardiovascular risk assessment. This new use for the OCT platform may have a significant impact on drug research and development in general, while revolutionizing biopharmaceutical research and development for diseases involving altered sympathetic nervous system activity and/or autoregulation .

[0015] Referring to Figure 1, a block diagram of one aspect of the invention is provided. An imaging device 10 is used to capture images of a human eye 20. These images are then stored in a storage medium 30. As noted above, the imaging device is, preferably, a device which uses optical coherence tomography technology for imaging the eye. Other technologies which are based on optical interferometry may also be used. Other types of OCT-based technologies may also be used with the present invention. Specifically, OCT—EDI, swept— source OCT (SS—OCT) and image averaging OCT may also be used with the present invention.

[0016] In one implementation, a human eye was imaged using

OCT equipment. The equipment used was a ZEISS Cirrus HD-OCT 4000 (Cirrus HD-OCT or Cirrus) device which enabled examination of the posterior and anterior of the eye at an extremely fine spatial scale, without surgical biopsy or even any contact with the eye.

Using spectral domain optical coherence tomography, the Cirrus HD-OCT device acquires OCT data about 70 times faster (27,000 vs. 400 A-scans per second) and with better resolution (5 μπι vs. 10 μπι axial

resolution in tissue), compared to earlier generation OCT technology such as a Stratus OCT device, also manufactured by Carl Zeiss Meditec. Cirrus acquires whole cubes of OCT image data, composed of hundreds of line scans, in about the same time as a Stratus OCT device acquires a six-line scan. These data cubes can be viewed in three planes or through three dimensions, thereby providing access to an extensive amount of retinal image data in one scan. Experimental results indicate that Fourier Domain OCT devices are eminently suited for use in the provision of highly reliable, 3D ocular images such that their spatial and temporal resolutions are sufficient to measure changes in choroid microvascular responses to sympathetic nervous system provocation or stimuli. The system and method of the present invention can be used for routine assessment of the choroid microvasculature and its sympathetic regulation in humans .

[0017] To demonstrate the effectiveness of the present

invention, images of the choroid plexus from two males were taken before and after sympathetic nervous system provocation (see Figure 2). One subject (35 years old and an extreme athlete) had high choroid VPD, whereas the other (48 years old, sedate and newly-diagnosed as hypertensive) had low VPD. Two repeats for the 48-year old subject indicates that OCT yields stable

measurements of VPD. After 15s of a specific stimulus (Valsalva manoeuvre-mediated sympathetic provocation) , both males exhibited pronounced decreases in choroid VPD (meaning an increase in sympathetic nervous activity) .

[0018] Referring to Figure 3, an image of a choroid plexus obtained using OCT is illustrated. This image provides a baseline for comparison with the other choroid plexus images noted below. In addition to the image of the choroid plexus, a plot of the sympathetic nervous system activity during the period the image was taken is provided at the right of Figure 3. The image of the choroid plexus in Figure 3 was taken prior to any stimuli or provocation to the sympathetic nervous system. [0019] Referring to Figures 4A and 4B, illustrated are images of a choroid plexus subsequent to stimuli or

provocations that are known to reduce sympathetic nervous system activity. As with Figure 3, to the right of each Figure is a plot of the sympathetic nervous system activity during the period when the image of the choroid plexus was taken. Figure 4A illustrates the microvasculature of the choroid plexus after hyperoxia (high oxygen) while Figure 4B illustrates the microvasculature of the choroid plexus after hyperventilation. As can be seen,

qualitatively, the amount of dark areas in Figure 3 is less than in Figures 4A and 4B. Concurrent qualitative decreases in sympathetic activity (reduction of upward deflections) have occurred as can be seen from the traces in the Figures.

[0020] Referring to Figures 5A-5D, illustrated are images of a choroid plexus subsequent to other stimuli or provocations. Figures 5A-5D are images of the choroid plexus after stimuli that are known to increase sympathetic nervous system activity and thereby decrease choroid VPD . As with the previous Figures, to the left of the image of Figures 5A-5D are plots of sympathetic nervous system activity during the period when the images were taken. Figure 5A illustrates the choroid plexus after an end-expiratory breath hold where the subject holds his/her breath (known to stimulate the sympathetic nervous system) . Figure 5B illustrates the choroid plexus after hypoxia (low oxygen) . Figure 5C illustrates the choroid plexus after hypercapnia (high carbon dioxide), and Figure 5D is an image of the choroid plexus after a cold pressor (pain-based) provocation to the sympathetic nervous system. As can be seen, qualitatively, the image of Figure 3 is darker than those of Figures 5A-5D. For greater clarity, stimuli and provocations (and protocols using these stimuli) which may be used on the sympathetic nervous system to confirm results are as follows :

1) Hyperoxia/hypoxia (high/low oxygen) : hypoxia stimulates the sympathetic nervous system by exciting the chemical sensors in the carotid body (peripheral chemoreflex) , leading to lower choroid VPD. Hyperoxia diminishes sympathetic nervous activity (and thereby increases choroid VPD) by the same mechanism but in the opposite direction. To obtain the necessary post stimulus scans, imaging of the choroid plexus would be obtained during the last minute of a 3-5 minute bout of hyperoxic/hypoxic breathing.

2) Hypercapnia (high carbon dioxide) stimulates the chemical sensors in the brainstem (central

chemoreflex) . This stimulus increases the sympathetic nervous system activity, leading to lower choroid VPD. Scans of the choroid plexus are taken in the last minute of a 3-5 minute bout of hypercapnia.

3) Hyperventilation: The only way to expel carbon dioxide is through hyperventilation. This stimulus serves as a control experiment to hypercapnia. Each subject will hyperventilate for 1-2 minutes and scans of the subject's eye will be made prior to

hyperventilation and during the last 30 seconds of hyperventilation. As the opposite of hypercapnia, hyperventilation decreases sympathetic nervous system activity, leading to increased choroid VPD. 4) Hand grip exercise stimulates the muscle metabolite and mechanical sensors and, due to the sustained contraction, acts as a strong sympathetic nervous system stimulus independent of changes in blood gases. For the testing protocol, subjects produce a sustained contraction (e.g. 30% of predetermined maximal voluntary contraction) . Subjects will hold this for a set duration (e.g. 3 minutes). Scans of the subjects' eyes will be taken prior to contraction and during the last 30 seconds of contraction. Since this stimulus leads to increased sympathetic nervous system

activity, it produces reduced choroid VPD .

5) The cold pressor test is a general sympathetic stimulus which stimulates pain receptors. Subjects will immerse their non-dominant hand in an ice cold (1-2°C water bath) for 5 minutes. Scans will be taken prior to and during the last 30 seconds of hand immersion. This stimulus increases sympathetic nervous system activity and, as such, leads to lower choroid VPD.

6) Antagonist drugs. Using a combination of receptor antagonist drugs, the effects of the sympathetic nervous system on different receptors can be isolated. This way, an analysis of the sympathetic nervous system's effects on the choroid can be performed to best characterize how the sympathetic nervous system modulates VPD in the choroid. The differences in tissue beds which are predominantly under autoregulatory control versus tissues which are dominated by the sympathetic nervous system are demonstrated in Figure 6. The measurements in Figure 6 were obtained by microneurography in awake humans from the right fibular (peroneal) nerve, posterior to the fibular head. A fine tungsten need electrode is inserted into the nerve and maneuvered to discriminate sympathetic activity. A second needle electrode is used as a reference. The needles are connected to a high impedance amplifier and activity recorder on a computer. MSNA activity was analyzed using custom software .

;0022] Figure 6 illustrates that the choroid shows a

reduction in VPD in response to hypoxia (increase in sympathetic activity) and an increase in VPD in response to hyperoxia (reduced sympathetic activity) . In comparison, the retinal layer demonstrates the opposite effect such that the metabolic need (a driver of autoregulatory responses, i.e. the surrounding environment) dictates epiretinal VPD. During hypoxia (a state of heightened metabolic demand) epiretinal VPD increases. In contrast, during hyperoxia (a state of reduced metabolic demand) retinal VPD is reduced .

;0023] In one embodiment the present invention involves using

OCT to simultaneously image vasculature in two or more regions of the eye. The vasculature can then be measured. A mathematical combination of such measurements can then be calculated. Simple examples of this combination include calculating the ratio of the measurements or the difference of the

measurements. This mathematical combination of the measurements can be compared before and after relevant stimuli or other interventions to characterize sympathetic nervous system activity or autoregulation . Of particular convenience is the OCT measurement in the choroid and the epiretinal layers because they can be simultaneously measured with the same apparatus.

[0024] It should be noted that, for the images illustrated in the Figures, the data initially collected were static images of the eye. A 6(width)x 6 (height) x 2 (depth) mm cube of the eye was attained with a 15μπι transverse and a 5μπ\ axial resolution with 1024 data points per scan using the Cirrus HD OCT device noted above. The cube is bordered with vitreous superficial to the retina and the posterior choroid and is centered on the fovea.

[0025] In terms of viewing the image, the mode used with the device noted above is the scan mode, utilizing the advanced visualization parameter and RPE Slice. Slice thickness and distance from retina/optic disk are determined from vessel borders within the choroid slice. The analysis of the slice is then completed by thresholding the image to black and white and attaining pixel density. As an internal control the RGB pixel density and taken as a percentage of blue over all colors confirms thresholded images.

[0026] An automated process may be used when comparing

baseline choroid images with post stimuli choroid images. For such a process, each post stimulus image may need to undergo image processing steps to ensure that the post stimulus image is suitable for

comparison with the baseline image. Accordingly, image processing steps, which may include image translation, image rotation, image reduction, image enlargement, and image registration (i.e. ensuring that the post stimulus image registers with the baseline image so that similar areas are represented in the images) may be taken. In addition, image enhancement or color enhancement steps, including contrast adjustment, contrast or color enhancement, and/or color switching may also be taken. Once the post stimulus images have been processed, color and/or pixel depth as well as color or pixel density may be measured for both the baseline and the post stimulus images. The pixel depth and/or the pixel density may be used as the point of comparison between the baseline and the post stimulus images. As noted above, color images may have their colors converted/adjusted or the color images may be converted to black and white images, if necessary, to determine pixel density. Once pixel densities for the baseline image and for the post stimulus images have been calculated, these numbers may be compared to determine choroid VPD . Of course, a darker post stimulus image (i.e. having a higher pixel density than the baseline image) would indicate that the stimulus produces higher VPD due to lower sympathetic nervous system activity. Similarly, a lighter post stimulus image (i.e. having a lower pixel density than the baseline image) would indicate that the stimulus produces lower choroid VPD due to higher sympathetic nervous system activity. For the above automated process, a system such as that illustrated in Figure 7 may be used. As can be seen in Figure 7, the system may include the imaging device 100 that images the human eye 110. Once an image of the eye has been produced, the image is then stored in a storage device 120. The image can then be processed by an image processing block 130. Image processing can take the form of image translation, rotation, enhancement, color adjustment, color substitution, as well as other image processing steps. Preferably, the image processing steps are used to ensure that the image and its contents are suitable for within image comparison and measurement and for comparison with a baseline image or with images previously acquired. The processed image is then stored again in the storage device 120. From the storage device 120, an image comparison block 140 can retrieve the processed image as well as a processed baseline image or other previously processed and previously acquired images. The image comparison block 140 can then extract data from the retrieved images so that the extracted data sets can be compared. As noted above, one data set from the processed image may be the pixel density of the choroid plexus area as a representation of the vascular perfusion density for the area. The

extracted data sets (e.g. the pixel densities of the choroid plexus area for the baseline image and the acquired image) can then be compared to non-choroid regions and/or to each other to determine whether the newly acquired image indicates an increase or a decrease in sympathetic nervous system activity or if the newly acquired image indicates little or no change in the sympathetic nervous system activity. In another aspect, the invention may take the form of a method for determining the effects of a stimulus on an individual using that individual's choroid plexus. Referring to Figure 8A, a block diagram illustrating the steps in this method is illustrated. The method may be initiated with the image capture of the individual's eyeball, with particular attention being paid to the choroid plexus of the eye (step 200). Once the image has been captured, the image is then analyzed and the parameters regarding the eye (and in particular the choroid plexus) are derived (step 210). This step, as noted above, may include performing image processing steps on the image to assist in the extraction of data from the processed image. Once the image has been processed, the data can then be extracted. In one example, the data may include a measure of the vascular perfusion density for the choroid plexus. In another example, the data may include a measure of the vascular perfusion density for the choroid plexus and non-choroid plexus region that are differentially regulated by the sympathetic nervous system and autoregulation . The next step in the process may be the application of one or more stimuli on the individual (step 220) . The stimulus can be physical, physiological, mental, and/or psychological . After the stimulus has been applied, an image of the individual's eye is once again taken (step 230) . As with step 200, particular attention is given to the choroid plexus of the eye. The post stimulus image is then processed and data is extracted in much the same way as in step 210 (step 240) . With data extracted from the processed post stimulus image, this extracted data is then compared with the data extracted in step 210 (step 250) . The differences in the data sets can be used to determine what effects the stimulus had on the individual's physiology as evidenced by changes to the individual's choroid plexus in reference to itself, or to other parts of the eye that have a difference balance of

autoregulatory and sympathetic control. Optionally, the data extracted in step 240 can also be compared with other data sets previously extracted from other individuals . [0029] The steps in the above method can be used to screen patients for sympathetic nervous activity and/or autoregulation . In a clinical setting, the steps in the method can form part of a pre-screening process to identify patients with abnormal sympathetic nervous activity and/or abnormal autoregulation. With disease history and knowledge of sympathetic activity, patients may be better treated with personalized medicine .

[0030] The present invention may also be used as part of

pharmaceutical research and development as a method to conveniently monitor sympathetic activity/autonomic regulation of subjects enrolled in research projects and/or clinical trials. The use of such a method may reduce the number of drugs that proceed to late-stage trials only to fail because of unexpected

cardiovascular complications. As well, the present invention may be used to conduct "sympathetic /autoregulatory phenotyping" as this increases the prospect of personalized medicine, furthering research and development into medications that may be

beneficial to a specific phenotype but detrimental to others. These and other benefits may be the result of the present invention as the present invention allows for quick and easy assessment of key cardiorespiratory determinant .

[0031] Further studies and analysis have shown the

correlation between different stimuli and VPD. For these studies, both choroid and retina VPD (noted as being a static index of perfusion within the image) were calculated for participants before and after stimuli were applied. For the retina, images of the retina were attained from the 3D visualization mode and a 2D flattened image was selected in order to attain the aggregate vasculature of the retinal circulation. The results of these further studies can be seen in the Figures described below.

[0032] Referring to Figure 8B, illustrated are raw images

(left column) and processed images (right column) for an individual participant for the retina during baseline and various cardiorespiratory

stimuli/challenges (noted next to the relevant image) . Vascular perfusion is false colored in the raw images where blue and red represent high and low vascular perfusion, respectively. Retina VPD is demarcated by black pixels in the processed black and white images.

[0033] Referring to Figure 9A, the plot shows the change from baseline of choroid VPD due to different stimuli. As can be seen, for these tests, the stimuli were hyperoxia, hypoxia, hyperpnoea, hypercapnia, breath hold, and cold pressor test. All the data in Figure 9A are presented as a percentage change from baseline. Figure 9B shows the change from baseline of retina VPD after the same set of stimuli used for Figure 9A.

Figure 9C shows the muscle sympathetic nervous activity (MSNA) in response to the same stimuli used for Figures 9A and 9B .

[0034] In addition to the above, Figures 10A-10D show the

relationships between choroid VPD, retina VPD, muscle sympathetic nerve activity (MSNA) , and mean arterial pressure (MAP) . For these Figures, each data point represents a participant's response to hyperoxia (green), hypoxia, (blue), hyperpnoea (magenta), hypercapnia (gray), breath hold (cyan), and cold pressor test (red) . Figure 10A shows the relationship between choroid VPD and MSNA. Figure 10B shows the relationship between choroid VPD and MAP. Figure IOC shows the relationship between retina VPD and MSNA while Figure 10D shows the relationship between retina VPD and MAP. For clarity, Pearson R correlation coefficients with accompanying p-values are indicated for each panel. For relationships involving the retina, values in red text are inclusive of results for the cold pressor test and values in solid text exclude results for the cold pressor test.

[0035] Referring to Figures 11A-11C, choroid VPD and retina

VPD are plotted against MSNA when the stimuli are hypoxia (blue data points) and hyperoxia (green data points) . These plots show that the divergent vascular regulatory mechanisms of the choroid (sympathetically regulated) and retina (local vascular regulation) are underscored by the divergent relationships with sympathetic activity. For clarity, the plots are based on percentage change of MSNA from baseline.

Figure llA plots choroid VPD against MSNA while Figure 11B plots retina VPD against MSNA. Figure 11C shows the relationship between retina VPD and choroid VPD and it can be seen that this plot supports the use of choroid VPD as a surrogate measure of MSNA.

[0036] Referring to Figures 12A-12C, illustrated are plots detailing the relationship between R-R intervals to muscle sympathetic nervous activity (MSNA) . For these plots, each data point represents a participant's response to hyperoxia (green data points), hypoxia (blue data points), hyperpnoea (magenta data points), hypercapnia (gray data points), breath hold (cyan data points), and the cold pressor test (red data points) as a percentage change from baseline. Figure 12A shows the relationship between root mean square of standard deviation R-R interval (RMSSD) to MSNA in response to sympathetic provocations (i.e. stimuli). Figure 12B shows the relationship of low frequency R-R interval attained from Fast Fourier Transform (LF) to muscle sympathetic nervous activity (MSNA) in response to sympathetic provocations/stimuli. Figure 12C shows the relationship of low frequency to high frequency R- R interval ratio attained from Fast Fourier Transform (LF/HF) to muscle sympathetic nervous activity (MSNA) . While the above description focuses on optical coherence tomography for imaging an individual's eye, other technologies and techniques which allow for similar imaging results may also be used. As long as a technology or a technique allows for the imaging and/or characterization of an individual's choroid vascular system, it may be used with the present invention. The present invention may also be used with any manoeuvre or intervention (such as a drug treatment) that can activate or suppress the

sympathetic nervous system or alter autoregulation . The method of the invention may also be used to identify and characterize manoeuvres and/or

interventions previously unknown for its effect on the sympathetic nervous system and autoregulation. If such a manoeuvre or intervention with a previously unknown effect on the sympathetic nervous

system/autoregulation is found, the present invention can also be used to identify and characterize

manoeuvres or interventions that can counter or aggregate the effect of this manoeuvre or intervention with the previously unknown effect on the sympathetic nervous system/autoregulation . [ 0 038 ] The present invention may also be used for the development of new drugs targeting sympathetic abnormalities to treat hypertension, hypotension, COPD, asthma and other cardiorespiratory diseases. The development of personalized therapies, targeted to specific cardiorespiratory phenotypes, enhanced subject selection, and phenotyping prior to clinical trials may also benefit from the use of the present invention. Finally, the present invention may be used for earlier detection of unforeseen deleterious cardiorespiratory effects during clinical trials.

[ 0 039 ] The embodiments of the invention may be executed by a computer processor or similar device programmed in the manner of method steps, or may be executed by an electronic system which is provided with means for executing these steps. Similarly, an electronic memory means such as computer diskettes, CD-ROMs, Random Access Memory (RAM) , Read Only Memory (ROM) or similar computer software storage media known in the art, may be programmed to execute such method steps. As well, electronic signals representing these method steps may also be transmitted via a communication network.

[ 0 040 ] Embodiments of the invention may be implemented in any conventional computer programming language. For example, preferred embodiments may be implemented in a procedural programming language (e.g."C") or an object-oriented language (e.g. "C++", "java", "PHP", "PYTHON" or "C#") . Alternative embodiments of the invention may be implemented as pre-programmed hardware elements, other related components, or as a combination of hardware and software components. Embodiments can be implemented as a computer program product for use with a computer system. Such

implementations may include a series of computer instructions fixed either on a tangible medium, such as a computer readable medium (e.g., a diskette, CD- ROM, ROM, or fixed disk) or transmittable to a computer system, via a modem or other interface device, such as a communications adapter connected to a network over a medium. The medium may be either a tangible medium (e.g., optical or electrical

communications lines) or a medium implemented with wireless techniques (e.g., microwave, infrared or other transmission techniques). The series of computer instructions embodies all or part of the functionality previously described herein. Those skilled in the art should appreciate that such computer instructions can be written in a number of programming languages for use with many computer architectures or operating systems. Furthermore, such instructions may be stored in any memory device, such as semiconductor, magnetic, optical or other memory devices, and may be

transmitted using any communications technology, such as optical, infrared, microwave, or other transmission technologies. It is expected that such a computer program product may be distributed as a removable medium with accompanying printed or electronic documentation (e.g., shrink-wrapped software), preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed from a server over a network (e.g., the Internet or World Wide Web) . Of course, some embodiments of the invention may be implemented as a combination of both software (e.g., a computer program product) and hardware. Still other embodiments of the invention may be implemented as entirely hardware, or entirely software (e.g., a computer program product) . person understanding this invention may now conceive of alternative structures and embodiments or

variations of the above all of which are intended to fall within the scope of the invention as defined in the claims that follow.