Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A SYSTEM AND A METHOD FOR MODIFYING A SURFACE OF A SUBSTRATE
Document Type and Number:
WIPO Patent Application WO/2017/050378
Kind Code:
A1
Abstract:
The present technique presents a method and a system for modifying a surface of a substrate. The method includes a step of abrasive blasting of a part of the surface of the substrate. In the abrasive blasting an abrasive media is provided to the part of the surface. The abrasive media is carried to the part by a first carrier. The abrasive media collides with the part of the surface and causes abrasion to the part of the surface. In the method the first carrier includes steam. The steam of the first carrier heats the part of the surface.

Inventors:
MÖLLER PER (DK)
ANDERSEN ASGER (DK)
EISENHARDT SARA (DK)
HANSEN KASPER (DK)
HANSEN MARTIN KALMAR (DK)
RÖEFZAAD MELANIE (DK)
Application Number:
PCT/EP2015/071993
Publication Date:
March 30, 2017
Filing Date:
September 24, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS AG (DE)
UNIV DANMARKS TEKNISKE (DK)
International Classes:
B24C1/00; B24C7/00
Domestic Patent References:
WO1985004614A11985-10-24
Foreign References:
RU2050251C11995-12-20
Other References:
None
Attorney, Agent or Firm:
SIEMENS AKTIENGESELLSCHAFT (DE)
Download PDF:
Claims:
Patent claims

1. A method (1000) for modifying a surface (4) of a substrate (6), the method (1000) comprising:

- abrasive blasting (100) of a part (2) of the surface (4) of the substrate (6), wherein abrasive blasting (100) compris¬ es providing an abrasive media (12) carried by a first car¬ rier (14) to the part (2) of the surface (4), wherein the abrasive media (12) is configured to collide with the part (2) of the surface (4) and to cause abrasion to the part

(2) of the surface (4) and wherein the first carrier (14) comprises steam (15).

2. The method (1000) according to claim 1, comprising:

- providing (300) an additive (22) carried by a second carri¬ er (24) to the part (2) of the surface (4) of the substrate (6), wherein the additive (22) is configured to form a coating (27) on the part (2) of the surface (4) of the sub¬ strate ( 6) .

3. The method (1000) according to claim 2, wherein the second carrier (24) comprises steam (25) .

4. The method (1000) according to claim 3, wherein the steam (15) of the first carrier (14) and/or the steam (25) of the second carrier (25) is saturated.

5. The method (1000) according to claim 3, wherein the steam (15) of the first carrier (14) and/or the steam (25) of the second carrier (25) is superheated.

6. The method (1000) according to claim 5, wherein the superheated steam is generated by burning a fuel in form of a burning mixture and injecting saturated steam or atomized wa- ter into the burning mixture.

7. The method (1000) according to any of claims 3 to 6, wherein the steam (15) of the first carrier (14) and the steam (25) of the second carrier (24) are received from a common source of steam (50) .

8. The method (1000) according to claim 7, wherein the common source of steam (50) is operated at a pressure ranging be¬ tween 3 bars and 30 bars.

9. The method (1000) according to claim 7 or 8, wherein the common source of steam (50) is operated at a temperature ranging between 100 degree Centigrade and 300 degree Centi¬ grade .

10. The method (1000) according to any of claims 1 to 9, com¬ prising providing (200) a protective environment (34) to the part (2) of the surface (4), wherein the protective environ¬ ment (34) is provided by enveloping the part (2) of the sur¬ face (4) with a non-reactive material (32) and/or a reducing material ( 32 ) . 11. The method (1000) according to any of claims 1 to 10, further comprising providing (110) the substrate (6) wherein the substrate (6) is a metallic substrate.

12. The method (1000) according to claim 11, wherein the me- tallic substrate comprises aluminum and/or magnesium.

13. The method (1000) according to any of claims 1 to 12, wherein the abrasive media (12) comprises one of alumina grits, steel based grits, quartz, silicon carbide, ceramic granules, polymer and a combination thereof.

14. A system (1) for modifying a surface (4) of a substrate (6), the system (1) comprising:

- an abrasive blasting module (10) configured to provide an abrasive media (12) carried by a first carrier (14) to a part (2) of the surface (4) of the substrate (6), wherein the first carrier (14) comprises steam (15); and - an additive providing module (20) configured to provide an additive (22) carried by a second carrier (24) to the part (2) of the surface (4) of the substrate (6), wherein the additive (22) is configured to interact with the substrate (6) to form a coating (27) on the part (2) of the surface

(4) of the substrate (6) .

15. The system (1) according to claim 14, wherein the second carrier (24) comprises steam (25) .

16. The system (1) according to claim 15, wherein the abrasive blasting module (10) and the additive providing module (20) are in fluid communication with a common source of steam (50) .

17. The system (1) according to claim 14 to 16, wherein the system (1) comprises a moving mechanism (70) configured to implement a change in relative orientation between the part (2) of the surface (4) of the substrate (6) with respect to the abrasive blasting module (10) and the additive providing module (20), and wherein the abrasive blasting module (10) and the additive providing module (20) are in a fixed orien¬ tation relative to each other. 18. The system (1) according to claim 14 to 17, further comprising a pre-coating protection module (30) configured to provide a non-reactive material (32) and/or a reducing mate¬ rial to the part (2) of the surface (4) of the substrate (6) such that the non-reactive material (32) and/or the reducing material envelops the part (2) of the surface (4) of the sub¬ strate ( 6) .

Description:
Description

A system and a method for modifying a surface of a substrate The present invention relates to a technique for modifying a surface of a substrate, and more particularly to a method and a system for modifying a surface of a substrate.

Surface modification or modifications of surfaces, like lami- nates, metallic alloys surfaces, metal surfaces, etc has been long employed in related industries. Surface modification mainly includes bringing, to a surface of a substrate, physi ¬ cal or chemical characteristics that are different from the ones originally found on the surface of a material before subjecting the surface to the surface modification. One example of surface modification is cleaning the surface by get ¬ ting rid of any unwanted deposits, such as dirt or oxidized layers for example rust, etc. Surface modification also in ¬ cludes preparing the surface, for example - smoothening a rough surface, roughening a smooth surface, shaping a surface, removing surface contaminants, and so on and so forth, for further processes downstream. Modification may also include the downstream processes such as coating the surface after it has been prepared.

As is known, modification of surfaces is done in various ways for example by using sandpaper or glasspaper, a type of coated abrasive that consists of sheets of paper or cloth with abrasive material glued to one face and is used to remove small amounts of material from surfaces, either to make them smoother, to remove a layer of material (such as old paint or rust or other oxidization products) , or sometimes to make the surface rougher (for example, as a preparation for the downstream process of surface modification such as gluing) . An- other way of surface modification is abrasive blasting. In abrasive blasting stream of abrasive material, also referred to as abrasive media, is forcibly propelled against a surface of a substrate under high pressure to smoothen a rough sur- face, roughen a smooth surface, shape a surface, remove sur ¬ face contaminants, and so on and so forth.

After cleaning the surface or preparing the surface, for ex- ample by abrasive blasting, in most cases the surface is sub ¬ jected to other surface modification methods, say downstream surface modifications, such as coating the surface. Many of the further uses of a surface subjected to surface modifica ¬ tion or many of the downstream surface modifications are of- ten facilitated or positively affected if the surface and/or surroundings of the surface are at a raised or higher temper ¬ ature. One example of such surface modification process used downstream after abrasive blasting of the surface and that is facilitated by raised temperature of the surface and/or the surroundings of the surface is a process of chemical conver ¬ sion coating. In the process of chemical conversion coating, used mainly for metallic surfaces, a part of the metallic surface is converted into the coating with a chemical or electro-chemical process for example by using an additive that reacts with the substrate at the surface and forms a layer, on the surface, of a new material such as a mineral of the additive and the substrate. Examples of chemical conver ¬ sion coating include chromate conversion coatings especially used for aluminum alloy surfaces, phosphate conversion coat- ings, bluing, black oxide coatings on steel, and anodizing. The chemical conversion coatings are used for corrosion pro ¬ tection, increased surface hardness, to add decorative color, as adhesion promoter primers, and so on and so forth. The rate at which the process of building up of the coat, i.e. the layer of the new material or the mineral, on the surface of the substrate takes place is increased with increasing temperature within a defined range.

However, the presently used surface modification processes either do not heat up the surface and/or the surroundings of the surface at all or do not heat up the surface and/or the surroundings of the surface to a desired degree. Thus, the downstream processes that are facilitated by heat or by raised temperatures of the surface and/or the surroundings of the surface occur at a slower rate or may require additional steps and hardware for heating or providing heat to the sur ¬ face and/or the surroundings of the surface before or during these downstream processes.

Thus the object of the present disclosure is to provide a technique, in particular a method and a system, for modifying a surface of a substrate in such a way that the surface and/or the surroundings of the surface are heated up simulta ¬ neously along with other steps of surface modification. The technique is desired to be simple and cost effective. Fur ¬ thermore, the system of the technique is desired to be com ¬ pact .

The above objects are achieved by a method for modifying a surface of a substrate according to claim 1 and a system for modifying a surface of a substrate according to claim 14 of the present technique. Advantageous embodiments of the pre ¬ sent technique are provided in claims. Features of claim 1 may be combined with features of claims dependent on claim 1, and features of dependent claims can be combined together. Similarly, features of claim 14 may be combined with features of claims dependent on claim 14, and features of dependent claims can be combined together.

According to an aspect of the present technique, a method for modifying a surface of a substrate is presented. The method includes a step of abrasive blasting of a part of the surface of the substrate. In the abrasive blasting an abrasive media is provided to the part of the surface. The abrasive media is carried to the part by a first carrier. The abrasive media collides with the part of the surface and causes abrasion to the part of the surface. In the method the first carrier in- eludes steam. The steam of the first carrier heats the part of the surface. Thus the part of the surface which may be subjected to any further modification is preheated by the steam of the first carrier during abrasive blasting, and the pre-heated surface facilitates further modifications of the type that are facilitated by heat or by higher ambient tem ¬ peratures when such further modifications are performed on the part of the surface of the substrate.

In an embodiment of the method, the method includes providing an additive to the part of the surface of the substrate. The additive is carried to the part by a second carrier. The ad ¬ ditive interacts with the surface to form a coating, for ex- ample the additive reacts with the substrate to form a chemi ¬ cal conversion coating, on the part of the surface of the substrate. Thus the part of the surface forms the coating or the chemical conversion coating which protects the surface from corrosion or provides special properties, such as higher heat resistance, through the chemical conversion coating.

When forming the chemical conversion coating, the formation of the coating is facilitated by heat or by higher ambient temperatures and since the part was preheated by steam of the first carrier a rate of formation of the chemical conversion coating is increased.

In another embodiment of the method, the second carrier in ¬ cludes steam. Thus the part of the surface is further heated by the steam of the second carrier. The rate of formation of the chemical conversion coating is further increased.

In another embodiment of the method, the steam included in the first carrier and/or the steam included in the second carrier is saturated steam.

In another embodiment of the method, the steam included in the first carrier and/or the steam included in the second carrier is superheated steam. In another embodiment of the method, the superheated steam is generated by burning a fuel, for example fuel having hydrogen or hydrocarbon, in form of a burning mixture and injecting saturated steam or atomized water into the burning mixture. The saturated steam or atomized water injected into the burn ¬ ing mixture means injected directly into the burning mixture or injected in proximity of the burning mixture such that burning fuel has an effect on the saturated steam or atomized water for example an effect of raising a temperature.

In another embodiment of the method, the steam of the first carrier and the steam of the second carrier are received from a common source of steam. Thus the method is economically im- plemented and requires lesser components to implement, there ¬ by making the method simple and cost effective.

In another embodiment of the method, the common source of steam is operated at a pressure ranging between 3 bars and 30 bars, more particularly between 8 bars and 17 bars. This pro ¬ vides an advantageous range of pressure for the steam used in the method. The pressure of the steam facilitates the projec ¬ tion of the abrasive media and/or the additive on to the part of the surface. The pressure also helps in imparting a force to the abrasive media which is required for effective colli ¬ sion of the abrasive media with the part of the surface and thus abrasion of the part of the surface by the colliding abrasive media is increased. In another embodiment of the method, the common source of steam is operated at a temperature ranging between 100 degree Centigrade and 300 degree Centigrade. This provides an advan ¬ tageous range of temperature for the steam used in the meth ¬ od. The temperature of the steam provides heat that is trans- ferred to the part by the steam of the first carrier and/or the steam of the second carrier thereby facilitates the heat ¬ ing of the part of the surface.

In another embodiment of the method, the method includes providing a protective environment to the part of the surface after abrasive blasting and before providing additive to the part of the surface or simultaneously with abrasive blasting i.e. while abrasive blasting is being performed. The protec- tive environment is provided by enveloping the part of the surface with a non-reactive material, for example a noble gas such as nitrogen, or by enveloping the part of the surface with a reducing material, such as a reducing gas for example carbon mono-oxide gas or hydrogen gas. Thus the part of the surface that has been subjected to abrasive blasting is pro ¬ tected from surrounding factors for example ambient air which may promote undesired oxidation of the substrate in the part of the surface, or from dirt present in the ambient air which may get deposited on the part of the surface and interfere with the formation of the coating or the chemical conversion coating in the step of providing additives to the part of the surface. When using the reducing gas, the part of the surface that has been subjected to abrasive blasting if gets oxidized again prior to formation of the coating, then the part of the surface is reduced by the reducing gas before providing addi ¬ tives to the part of the surface.

In another embodiment of the method, the method further in- eludes providing the substrate wherein the substrate is a me ¬ tallic substrate. Thus the method is used with metallic sub ¬ strates and the effectiveness of the method is increased be ¬ cause the metallic substrates are at least partially cleaned by the abrasive blasting and are more heated than non- metallic substrates such as ceramics.

In another embodiment of the method, the metallic substrate comprises aluminum and/or magnesium, including aluminum- magnesium alloys. Thus the method is used with aluminum and/or magnesium substrates including aluminum alloys and/or magnesium alloys and the effectiveness of the method is in ¬ creased because the aluminum and/or magnesium substrates are at least partially cleaned by the abrasive blasting of unde ¬ sired surface layers such as aluminum oxide layers formed on the aluminum substrate. The method becomes especially effec ¬ tive because aluminum is a soft metal. In another embodiment of the method, the abrasive media com ¬ prises one of alumina grits, steel based grits, quarts or sand, silicon carbide, ceramic granules, plastic and a combi ¬ nation thereof. This provides a simple way of implementing the method as the abrasive media are easily available. Fur ¬ thermore, the abrasive media are inexpensive and this the method becomes more cost effective.

According to another aspect of the present technique, a sys- tern for modifying a surface of a substrate is presented. The system includes an abrasive blasting module and an additive providing module. The abrasive blasting module provides an abrasive media to a part of the surface of the substrate. The abrasive media is carried to the part by a first carrier ejected, along with the abrasive media, from the abrasive blasting module. The first carrier includes steam. The addi ¬ tive providing module provides an additive to the part of the surface of the substrate. The additive is carried to the part by a second carrier ejected, along with the additive, from the additive providing module. The additive interacts with the substrate to form a coating, for example the additive re ¬ acts with the substrate to form a chemical conversion coat ¬ ing, on the part of the surface of the substrate. The steam of the first carrier that is provided by the abrasive blast- ing module heats up the part of the surface. Thus when the part of the surface is subjected to further modification by providing the additives by the additive providing module, the part is preheated by the steam of the first carrier during abrasive blasting, and the pre-heated surface facilitates and/or higher ambient temperatures facilitate the formation of the coating or the chemical conversion coating.

In an embodiment of the system, the second carrier includes steam. Thus the part of the surface is further heated by the steam of the second carrier provided by the additive provid ¬ ing module. The rate of formation of the coating is further increased . In another embodiment of the system, the abrasive blasting module and the additive providing module are in fluid commu ¬ nication with a common source of steam. Thus the steam of the first carrier and the steam of the second carrier are re- ceived or obtained from the common source of steam. This makes the system simple. Since the system is implemented us ¬ ing the common source of steam the system does not need two separate supplies, and related hardware, for the two carriers - the first carrier and the second carrier - this makes the system cost-effective and compact.

In another embodiment of the system, the system includes a moving mechanism. The moving mechanism implements a change in relative orientation between the part of the surface of the substrate with respect to the abrasive blasting module and the additive providing module. The change in the relative orientation of the part with respect to the abrasive blasting module and the additive providing module may either be achieved by moving only the part while the abrasive blasting module and the additive providing module remain stationary, or by only moving the abrasive blasting module and the addi ¬ tive providing module together and the part remains station ¬ ary, or by a combination of simultaneously moving the part along with the abrasive blasting module and the additive providing module. In this embodiment of the system, the abra ¬ sive blasting module and the additive providing module are in a fixed orientation relative to each other. Thus the system may be used for continuously modifying several parts on the surface of the substrate. Furthermore, the abrasive blasting module and the additive providing module may be operated sim ¬ ultaneously. When operated simultaneously, when the abrasive blasting module has performed abrasive blasting on the part, say first part, the first part is moved by the moving mecha ¬ nism to align with the additive providing module, and while the additive providing module performs on the first part, an ¬ other part, say the second part, of the surface of the sub ¬ strate may be aligned with the abrasive blasting module which can perform abrasive blasting on the second part while the additive providing module is performing on the first part.

In another embodiment of the system, the system further in- eludes a pre-coating protection module. The pre-coating protection module provides a non-reactive and/or a reducing ma ¬ terial to the part of the surface of the substrate such that the non-reactive material envelops the part of the surface of the substrate. The non-reactive material may be any material that is inert to the substrate, for example a noble gas such as nitrogen. The reducing material may be any material that reduces an oxidized form of the substrate, for example the reducing material, may be a reducing gas, such as carbon monoxide, that chemically reduces an oxidized substrate, such as ferric oxide where iron is the substrate and the ferric oxide is the oxidized from of the substrate. Thus the part of the surface that has been subjected to abrasive blasting by the abrasive blasting module is protected from surrounding fac ¬ tors for example ambient air which may promote undesired oxi- dation of the substrate in the part of the surface, or from dirt present in the ambient air which may get deposited on the part of the surface and interfere with the formation of the coating or the chemical conversion coating by the additive providing module.

The present technique is further described hereinafter with reference to illustrated embodiments shown in the accompany ¬ ing drawing, in which:

FIG 1 schematically illustrates an exemplary embodiment of a system for modifying a surface of a substrate;

FIG 2 schematically illustrates another exemplary embodi ¬ ment of the system;

FIG 3 schematically illustrates functioning of a compo ¬ nent of an exemplary embodiment of the system; schematically illustrates functioning of another exemplary embodiment the system; schematically illustrates functioning of the exem ¬ plary embodiment of FIG 4 of the system subsequent to the functioning depicted in FIG 4 ; schematically illustrates functioning of the exem ¬ plary embodiment of FIGs 4 and 5 of the system sub ¬ sequent to the functioning depicted in FIG 5; schematically illustrates a detailed layout of an exemplary embodiment of the system; and depicts a flow chart of an exemplary embodiment of a method for modifying a surface of a substrate; in accordance with aspects of the present technique.

Hereinafter, above-mentioned and other features of the pre- sent technique are described in details. Various embodiments are described with reference to the drawing, wherein like reference numerals are used to refer to like elements

throughout. In the following description, for purpose of ex ¬ planation, numerous specific details are set forth in order to provide a thorough understanding of one or more embodi ¬ ments. It may be noted that the illustrated embodiments are intended to explain, and not to limit the invention. It may be evident that such embodiments may be practiced without these specific details.

It may be noted that in the present disclosure, the terms "first", "second", etc. are used herein only to facilitate discussion, and carry no particular temporal or chronological significance unless otherwise indicated.

The idea of the present technique is a surface modification in which at least an initial step of abrasive blasting is performed by using steam along with an abrasive media pro- pelled towards the surface to be modified. So along with the abrasive media, the steam also interacts with the surface to be modified and the result is that the surface gets modified by the abrasive media and gets heated by the steam. Thus for further steps of surface modification or for later use of the surface for another processes where such further steps of surface modification and/or such another processes making later use of the surface are facilitated by heat or elevated temperatures, the surface and/or its surroundings or ambience or adjacent atmosphere are at an elevated temperature and thus such further steps of surface modification and/or such another processes are facilitated.

The technique has been explained hereinafter in greater de- tails with reference to FIGs 1 and 8, which respectively pre ¬ sent a system 1 and a method 1000 of the present technique.

FIG 1 schematically presents an exemplary embodiment of the system 1 for modifying a surface 4 of a substrate 6. The sub- strate 6 may be a metallic substrate for example aluminum al ¬ loy or may be a non-metallic substrate for example composites like laminates. The phrase Modifying a surface' and related phrases as used hereinafter, include, but are not limited to, providing to or bringing in, to the surface 4 of the sub- strate 6, physical or chemical characteristics that are dif ¬ ferent from the ones originally found on the surface 4 of the substrate 6 before subjecting the surface 4 of the substrate 6 to the surface modification. For example, Modifying a surface' and related phrases include, removing some material, whether same as the substrate 6 or otherwise, from the sur ¬ face 4 of the substrate 6; adding some material, whether same as the substrate 6 or otherwise, to the surface 4 of the sub ¬ strate 6; or a combination thereof i.e. removing some material and adding some material, in which the material removed and added may be same or different to one another and each of the material may be same or different as the material of the substrate 6. The system 1 includes an abrasive blasting module 10 and an additive providing module 20. The abrasive blasting module 10 provides an abrasive media 12 to a part 2 of the surface 4 of the substrate 6. The abrasive media 12 is carried by a first carrier 14. The first carrier 14 includes steam 15.

The abrasive blasting module 10 basically performs abrasive blasting on the part 2 of the surface 4 of the substrate 6. The abrasive blasting module 10 forcibly propels a stream of the abrasive media 12, also referred to as the abrasive mate ¬ rial 12, towards the part 2 of the surface 4. The force with which the abrasive media 12 is propelled towards the part 2 of the surface 4 comes from the first carrier 14. The first carrier 14 includes the steam 15. The first carrier 14 may also include other parts such as compressed air (not shown) or pressurized air. A part of the energy required to propel or shoot the abrasive media 12 from the abrasive blasting module 10 towards the part 2 of the surface 4 may be contrib ¬ uted by the steam 15 of the first carrier 14. Advantageously, the steam 15 may be pressurized.

The abrasive media 12 may be any substance in granular or gritty form that is physically hard enough to remove a mate ¬ rial, whether same as the material of the substrate 6 or dif- ferent than the material of the substrate 6, from the surface 4, mainly from the part 2 of the surface 4 of the substrate 6. The abrasive media 12, also referred to as grits 12, is chosen depending upon the material to be removed. For example, when the substrate 6 is aluminum, also called aluminium, or an alloy of aluminum such as A16060, the material to be removed may be an undesirable layer of aluminum oxide formed by oxidation of the surface 4 of the aluminum substrate 6 or may be simply part of the aluminum substrate 6 that may be desired to be removed from the part 2 of the surface 4 to prepare the surface 4 or the part 2 of the surface 4 for fur ¬ ther processing such as application of chemical conversion coating. The abrasive media 12 may be, but not limited to, alumina grits, steel based grits, sand, silicon carbide, ce ¬ ramic granules, and a combination thereof.

The abrasive blasting module 10 is designed as a module or unit or part of the system 1 having an opening or a nozzle (not shown) from which the abrasive media 12 is propelled from carried by or along with the first carrier 14 released with a force towards the part 2 of the surface 4. From the same nozzle or opening, the steam 15 is also released as con- stituent of the first carrier 14. In an exemplary embodiment the first carrier 14 may be only the steam 15, and in this embodiment the force with which the abrasive media 12 is pro ¬ pelled by the abrasive blasting module 10 may entirely be contributed by the steam 15. The steam 15 may be pressurized between 3 and 30 bars, or more particularly between 8 to 20 bars and even more particularly between 8 to 17 bars at the release of the steam 15 from the abrasive blasting module 10. Furthermore, the steam 15 may be heated to temperatures such that at the release of the steam 15 from the abrasive blast- ing module 10, the temperature of the steam 15 is between 100 degree Centigrade (°C) and 300°C. The steam 15 may be gener ¬ ated at a steam generating unit (not shown) which is capable of generating and controlling steam at desired pressures and/or temperatures. Such steam generating units, for example boilers with pressure valves and temperature sensors are known in the art of boilers and steam generation for industrial use, and thus have not been described in details herein for sake of brevity. The propelled abrasive media 12 collides with the part 2 of the surface 4 of the substrate 6 and chips away or scrapes or abrades materials, same as the material of the substrate 6 or otherwise or both, from the part 2 of the surface 4. Thus a physical change is introduced or brought into the part 2 of the surface 4 of the substrate 6 which at least partially forms the surface modification of the surface 4 of the sub ¬ strate 6. Simultaneously, the steam 15 also hits or physical ¬ ly contacts the part 2 of the surface 4 and thus the part 2 of the surface 4 gets heated and has a raised temperature compared to an instance of abrasive blasting where the steam 15 is not used. As shown in FIG 1, the steam 15 and the abra ¬ sive media 12 are mixed with each other before propelling out the steam 15 and the abrasive media 12 together towards the part 2 of the surface 4 of the substrate 6.

The additive providing module 20, of the system 1, provides an additive 22 to the part 2 of the surface 4 of the sub- strate 6. The additive 22 is carried by a second carrier 24. The additive 22 reacts with the substrate 6 in the part 2 to form a coating (not shown) or a chemical conversion coating 27 (shown in FIG 7) on the part 2 of the surface 4 of the substrate 6. The second carrier 24 may include steam 25.

The additive providing module 20 basically performs propel ¬ ling of the additive 22 towards the part 2 of the surface 4. The propelling can be in form of a spray or a mist wherein the additive 22 is dissolved in the second carrier 24 or simply as a stream of the additive 22 carried in granular form by the second carrier 24. The force with which the addi ¬ tive 22 is propelled towards the part 2 of the surface 4 comes from the second carrier 24. The second carrier 24 may also include other parts such as compressed air (not shown) or pressurized air or solvents of parts of the additive 22. A part of the energy required to propel or shoot the additive 22 from the additive providing module 20 towards the part 2 of the surface 4 may be contributed by the steam 25 of the second carrier 24, when the steam 25 is part of the second carrier 24. Advantageously, the steam 25 may be pressurized.

The additive 22 may be any substance or a collection of dif ¬ ferent substances having at least one substance that inter ¬ acts physically and/or chemically with the substrate to form the coating (not shown) on the part 2 of the surface 4 of the substrate 6. The substance or the at least one substance that interacts with the substrate 6 may interact with the sub ¬ strate 6 in a physical reaction to form the coating or in a chemical reaction to build up the chemical conversion coating 27 (shown in FIG 7) . The additive 22 may also include addi ¬ tional components such as chemicals that stabilize the coat ¬ ing or the chemical conversion coating 27, or attribute spe- cial characteristics to the coating or the chemical conver ¬ sion coating 27 such as decreasing porosity, hardening, accelerating the formation of the coating or the chemical conversion coating 27, inhibiting corrosion, and so on and so forth. The additive 22 is chosen depending upon the material of the substrate 6. For example, when the substrate 6 is alu ¬ minum alloy, say A16060, the additive 22 may include phos ¬ phate including substance which chemically interacts with the aluminum 6 and forms Berlinite (aluminium phosphate, chemical fomula AIPO 4 ) as the chemical conversion coating 27. For an- other example, when the substrate 6 is aluminum alloy, say A16060, the additive 22 may include silicate including sub ¬ stance which chemically interacts with the aluminum 6 and forms Kaolinite (aluminium silicate, chemical fomula AI 2 S1 2 O 5 ) as the coating 27. Furthermore, the additive 22 may include substances that further modify the chemical conversion coat ¬ ing 27 by acting as catalyst i.e. for accelerating a rate of formation of the chemical conversion coating 27, or by acting as a passivation material or corrosion inhibiters that de ¬ crease a rate of corrosion of the coating 27, and so on and so forth.

The additive providing module 20 is designed as a module or unit or part of the system 1 having an opening or a nozzle (not shown) from which the additive 22 is provided to or pro- pelled from carried by or along with the second carrier 24 released with a force towards the part 2 of the surface 4. From the same nozzle or opening, the steam 25 is also re ¬ leased as constituent of the second carrier 24. In an exem ¬ plary embodiment the second carrier 24 may be only the steam 25, and in this embodiment the force with which the additive 22 is provided by the additive providing module 20 may en ¬ tirely be contributed by the steam 25. The steam 25 may be pressurized between 3 and 30 bars, particularly between 8 to 20 bars and more particularly between 8 to 17 bars at the re ¬ lease of the steam 25 from the additive providing module 20. Furthermore, the steam 25 may be heated to temperatures such that at the release of the steam 25 from the additive provid- ing module 20, the temperature of the steam 25 is between 100°C and 300°C. The steam 25 may be generated at a steam generating unit (not shown) which is capable of generating and controlling steam at desired pressures and/or tempera ¬ tures. Such steam generating units, for example boilers with pressure valves and temperature sensors are known in the art of boilers and steam generation for industrial use, and thus have not been described in details herein for sake of brevi ¬ ty. The propelled additive 22 interacts with the part 2 of the surface 4 of the substrate 6 and forms, for example by miner ¬ alization or deposition, the chemical conversion coating 27 or the coating on the surface 4 in the part 2 of the surface 4. Thus a physical change and/or chemical change is intro- duced or brought into the part 2 of the surface 4 of the sub ¬ strate 6 which at least partially forms the surface modifica ¬ tion of the surface 4 of the substrate 6. Simultaneously, when the second carrier 24 includes the steam 25, the steam 25 also hits or physically contacts the part 2 of the surface 4 and thus the part 2 of the surface 4 gets further heated and has a further raised temperature compared to an instance of adding additives 22 where the steam 25 is not used. As shown in FIG 1, the steam 25 and the additive 22 are mixed with each other before propelling out the steam 25 and the additive 22 together towards the part 2 of the surface 4 of the substrate 6. The raised temperate in the part 2 facili ¬ tates formation of the coating 27.

Furthermore, as seen in FIG 1, in an exemplary embodiment of the system 1 the abrasive blasting module 10 and the additive providing module 20 are in fluid communication with a common source of steam 50. Thus the steam 15 of the first carrier 14 and the steam 25 of the second carrier 24 are derived or re- ceived or generated from the same source i.e. the common source of steam 50. The common source of steam 50 may be, but not limited to, a boiler. The common source of steam 50 may be connected to the abrasive blasting module 10 and the addi- tive providing module 20 through a fuel supply line 52 through which the steam 15, 25 flows to the abrasive blasting module 10 and the additive providing module 20. The common source of steam 50 may be operated such that the steam 15, 25 is pressurized between 3 and 30 bars, particularly between 8 to 20 bars and more particularly between 8 to 17 bars in the common source of steam 50. Furthermore, the common source of steam 50 may be operated such that the steam 15, 25 is at temperatures between 100°C and 300°C in the common source of steam 50.

The steam 15 and/or the steam 25 may be saturated or super ¬ heated steam. The superheated steam may be, but not limited to, generated by burning a fuel such as hydrogen based or hy ¬ drocarbon based fuels and injecting saturated steam or atom- ized water into or next to the burning fuel such that a tem ¬ perature of the saturated steam or the atomized water is raised .

Referring to FIG 3 in combination with FIG 1, another exem- plary embodiment of the system 1 has been described. In this exemplary embodiment of the system 1, the system 1 also includes a pre-coating protection module 30. The pre-coating protection module 30 provides a non-reactive material 32 and/or a reducing material 32 to the part 2 of the surface 4 of the substrate 6. The non-reactive material 32 and/or the reducing material 32 is provided to the part 2 either along with abrasive blasting by the abrasive blasting module 10 or after the abrasive blasting is performed by the abrasive blasting module 10. The non-reactive material 32 and/or the reducing material 32 provided by the pre-coating protection module 30 covers or surrounds or envelops the part 2, by forming a protective environment 34 surrounding the part 2, such that the non-reactive material 32 isolates or seals of the part 2 from surroundings including ambient air, impuri ¬ ties, etc. When providing the reducing material 32, the re ¬ ducing material 32 interacts with any oxidized forms of the substrate 6 and reduces the oxidized form before the additive 22 is provided to the part 2 to form the coating or the chem ¬ ical conversion coating 27.

The pre-coating protection module 30 is designed as a module or unit or part of the system 1 having an opening or a nozzle (not shown) from which the non-reactive material 32 and/or the reducing material 32 is provided to the part 2 of the surface 4 and the surroundings of the part 2 of the surface 4. The pre-coating protection module 30 may include a non- reactive material supply 36 and/or a reducing material supply 36 where the non-reactive material 32 and/or the reducing ma ¬ terial 32 is generated or stored. Furthermore, a non-reactive material supply line 38 and/or a reducing material supply line 38 may be present in the system 1 through which the non- reactive material 32 and/or the reducing material 32 is pro- vided from the non-reactive material supply 36 and/or the re ¬ ducing material supply 36, respectively, towards the part 2 of the surface 4. The non-reactive material 32, for example may be, but not limited to, a noble gas such as nitrogen, which when provided by the pre-coating protection module 30 covers the part 2 and the surroundings of the part 2 in the protective environment 34 or a cloud of the noble gas 32, as depicted in FIG 3. The reducing material 32, for example may be, but not limited to, a reducing gas for an oxidized sub ¬ strate for example such carbon mono-oxide gas for ferric ox- ide (oxidized form of iron substrate) , which when provided by the pre-coating protection module 30 covers the part 2 and the surroundings of the part 2 in the protective environment 34 or a cloud of the reducing gas 32, as depicted in FIG 3. Referring to FIG 2 in combination with FIG 1, another exemplary embodiment of the system 1 has been described. In this exemplary embodiment of the system 1, the system 1 further includes a moving mechanism 70. The moving mechanism 70 im- plements a change in relative orientation between the part 2 of the surface 4 of the substrate 6 with respect to the abra ¬ sive blasting module 10 and the additive providing module 20. The abrasive blasting module 10 and the additive providing module 20 are in a fixed orientation relative to each other. One way of changing the relative orientation of the part 2 with respect to the abrasive blasting module 10 and the addi ¬ tive providing module 20 may be by moving only the part 2 along an axis 71 while the abrasive blasting module 10 and the additive providing module 20 remain stationary. Another way of changing the relative orientation of the part 2 with respect to the abrasive blasting module 10 and the additive providing module 20 may be by only moving the abrasive blast ¬ ing module 10 and the additive providing module 20 together along an axis 72 and the part 2 remains stationary.

Yet another way of changing the relative orientation of the part 2 with respect to the abrasive blasting module 10 and the additive providing module 20 may be by a combination of simultaneously moving the part 2 along the axis 71 and moving the abrasive blasting module 10 and the additive providing module 20 along the axis 72, in preferably opposite direc ¬ tions, for example, as depicted in FIG 2, the part 2 is moved in a first direction 73 along the axis 71 whereas simultane- ously the abrasive blasting module 10 and the additive providing module 20 are moved in a second direction 74, oppo ¬ site to the first direction 71, along the axis 72. The moving mechanism 70 may include moving the substrate 6 or moving the abrasive blasting module 10 and the additive providing module 20 through a mechanism of motors and/or conveyors. In another exemplary embodiment, the system 1 may include a substrate slot 60. The substrate slot 60 receives the substrate 6 and maintains the substrate 6 at a desired orientation, such as the part 2 facing, and placed at a desired distance, from the abrasive blasting module 10 and the additive providing module 20. In an exemplary embodiment of the system 1, the moving mechanism 70 may move the substrate slot 60 and thus change the relative orientation of the part 2 with respect to the abrasive blasting module 10 and the additive providing module 20. Such moving mechanism with motors and/or conveyors is well known technique in manufacturing and fabrication assemblies and thus not described herein in more details for sake of brevity.

It may be noted from combination of FIGs 1 to 3, that the abrasive blasting module 10, the additive providing module 20 and the pre-coating protection module 30 may be arranged in any orientation relative to each other, for example the pre- coating protection module 30 may be positioned in between the abrasive blasting module 10 and the additive providing module 20, as depicted in FIG 2 and 3, or may be positioned at a side of the abrasive blasting module 10 and the additive providing module 20 as depicted in FIG 1. Furthermore, as de ¬ picted in FIGs 2 and 3, the abrasive blasting module 10 and the additive providing module 20 may be positioned parallel to each other or as depicted in FIG 1, the abrasive blasting module 10 and the additive providing module 20 may be ar ¬ ranged at an angle to each other.

Referring now to FIGs 4, 5, and 6 in combination with FIG 1, 2 and 3, a detailed working of the system 1 of an exemplary embodiment of the system 1 has been described. At the initia- tion of use of the system 1, as shown in FIG 4, the part 2 is aligned such that the abrasive blasting from the abrasive blasting module 10 is performed on the part 2. At this stage, the additive providing module 20 and the pre-coating protec ¬ tion module 30 are not being operated. Then, the relative orientation of the part 2 is changed with respect to the abrasive blasting module 10 and the additive providing module 20, by moving part 2 in the direction 73, such that part 2 is now passing from a position of alignment with the abrasive blasting module 10 to a new position where it will be aligned with the additive providing module 20. This changing of the position has been depicted schematically in FIG 5, during this time of changing the pre-coating protection module 30 forms the protective environment 34 surrounding the part 2. Finally, as depicted in FIG 6, the part 2 reaches the new po ¬ sition where the part 2 is now aligned with the additive providing module 20 which forms the coating 27 on the part 2. The formation of the coating 27 is facilitated due to heating of the part 2 by the steam 15 and the steam 25 and also by the heating of the surrounding of the part by the steam 25 when the coating 27, which may include, but not limited to chemical conversion coating, is being formed. Furthermore, though not depicted in FIG 4, 5 and 6, it may be understood by one skilled in the art that the system 1 of the present technique may be operated as an assembly line is op ¬ erated, for example by simultaneously operating the abrasive blasting module 10 and the additive providing module 20. When operated simultaneously, when the abrasive blasting module 10 has performed abrasive blasting on the part 2, subsequently, the part 2 is moved to align with the additive providing mod ¬ ule 20, and while the additive providing module 20 performs on the part 2, another part (not shown), say a second part of the surface of the substrate may now be in alignment with the abrasive blasting module 10 which now can perform abrasive blasting on said another part while the additive providing module 20 is performing on the part 2. Referring now to FIG 7, a detailed layout of an exemplary embodiment of the system 1 is depicted. In the system 1, a wa ¬ ter inlet 80 receives water (not shown) which is filtered and/or de-ionized by a water filtration unit 81 and collected subsequently in a water reservoir 84. A main valve 83 is used to control the flow of the water from the water filtration unit 81 to the water reservoir 84. Subsequently, with the help of a pump 85 the water from the water reservoir 84 is pumped into the common source of steam 50 i.e. the boiler 50. In between the pump 85 and the boiler 50 a check valve 86 is positioned to ensure that the water flows in a desired direc ¬ tion only i.e. from the water reservoir 84 to the boiler 50. The boiler 50 has a heating element 55 or a heater 55 using which the water is heated in the boiler 50 to generate the steam 15, 25 (shown in FIG 1) . The boiler 50 may be equipped with a blow off valve 87 and a safety relief valve 56. From the boiler 50, the steam travel towards the abrasive blasting module 10 and the additive providing module 20, passing through first and second line valves 89 and 88, respectively which control the release of the steam 15 and 25. An abrasive supply 11 connects to the abrasive blasting module 10 and the abrasive media 12 is supplied to the steam 15 in an abrasive flow 95 before exiting the abrasive blasting module 10 at an abrasive ejection 94. The flow of abrasive media 12 is con ¬ trolled through a valve 91 for the abrasive media 12. An ad ¬ ditive supply 21 connects to the additive providing module 20 and the additive 22 is supplied to the steam 25 in an addi ¬ tive flow 92 before exiting the additive providing module 20 at an additive ejection 93. The flow of additive 22 is facil ¬ itated and/or controlled through an additive supply pump 90 for the additive 22.

Referring back to FIG 8 in combination with FIGs 1 to 7, the method 1000 has been described further.

In the method 1000, in a step 110 the substrate 6 is provid ¬ ed. The substrate 6 may be a metallic substrate or a non me ¬ tallic substrate such as composite material. The substrate 6 when metallic may be including aluminum and/or magnesium, for example aluminum alloy, magnesium alloy. In the method 1000, the part 2 of the surface 4 of the substrate 6 is subjected to abrasive blasting in a step 100. The abrasive blasting 100 includes providing the abrasive media 12 carried by the first carrier 14 to the part 2. The abrasive media 12 collides with the part 2 and causes abrasion to the part 2. The first car ¬ rier includes steam 15. The abrasive media 12 may include, but not limited to alumina grits, steel based grits, quarts, silicon carbide, ceramic granules, and a combination thereof. In another embodiment of the method 1000, subsequent to step 100, in a step 200, the additive 22 carried by the second carrier 24 is provided to the part 2. The additive reacts with the substrate and forms the coating or the chemical con- version coating 27 on the part 2. The second carrier 24 may include steam 25. In another embodiment of the method 1000, the steam 15 and the steam 25 are received from the common source of steam 50. The steam 15 and/or the steam 25 may be saturated or superheated steam. The superheated steam may be generated by burning a fuel having hydrogen or hydrocarbon and injecting saturated steam or atomized water into the burning fuel such that a temperature of the saturated steam or the atomized water is raised.

As aforementioned, the common source of steam 50 is operated at a pressure ranging between 3 and 30 bars, particularly 8 bars and 20 bars and more particularly between 8 to 17 bars, in an exemplary embodiment of the method 1000. In a related embodiment of the method 1000, the common source of steam 50 is operated at a temperature ranging between 100°C and 300°C. Furthermore, optionally in the method 1000, after step 100 and before step 300, in a step 200, the protective environ ¬ ment 34 is provided to the part 2 by enveloping the part 2 with the non-reactive material 32 and or the reducing materi ¬ al 32. The elements such as the part 2, the surface 4, the substrate 6, first carrier 14, the second carrier 24, the steam 15, 25, the abrasive media 12, the additive 22, the non-reactive and/or reducing material 32, and so on and so forth used in explanation of FIG 8 may be understood to be same as the elements with same reference numerals described in reference to FIGs 1 to7.

While the present technique has been described in detail with reference to certain embodiments, it should be appreciated that the present technique is not limited to those precise embodiments. Rather, in view of the present disclosure which describes exemplary modes for practicing the invention, many modifications and variations would present themselves, to those skilled in the art without departing from the scope and spirit of this invention. The scope of the invention is, therefore, indicated by the following claims rather than by the foregoing description. All changes, modifications, and variations coming within the meaning and range of equivalency of the claims are to be cons idered within their scope .