Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM AND METHOD FOR PROCESSING OF MINERALS CONTAINING THE LANTHANIDE SERIES AND PRODUCTION OF RARE EARTH OXIDES
Document Type and Number:
WIPO Patent Application WO/2018/162951
Kind Code:
A1
Abstract:
The invention relates to a system and a method for the processing of minerals containing the lanthanide series and the production of rare earth oxides, which allow a completely closed and continuous treatment of the different materials and desorbent agents involved in the process, thus improving the efficiency in the extraction and avoiding environmental risks associated. The method comprising the steps of: reception and conditioning of the raw material; desorption of valuable product through a plurality of mixing and reaction stages in which the raw material is contacted in countercurrent with a stream of desorbent solution; separation of fine solids; precipitation of secondary minerals through the use of a first reactive solution; precipitation of rare earth carbonates through the use of a second reactive solution; and drying and roasting of the rare earth carbonates to obtain rare earth oxides; wherein the method further comprises a secondary process that allows further processing of the residual mineral, and a dewatering and washing step wherein the residual mineral from the desorption step is washed and a lanthanide-containing liquid is recovered.

Inventors:
ALBORNOZ WERGERTSEDER ARTURO JOSÉ DOMINGO (CL)
ROCK NUÑEZ ARTURO PATRICIO (CL)
Application Number:
PCT/IB2017/051339
Publication Date:
September 13, 2018
Filing Date:
March 07, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
REE UNO SPA (CL)
International Classes:
B01J23/10; C01F1/00; C01F17/206
Foreign References:
US20110280778A12011-11-17
US5879647A1999-03-09
US20070107318A12007-05-17
Other References:
MOLDOVEANU ET AL.: "Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism", HYDROMETALLURGY, vol. 117 -118, 16 February 2012 (2012-02-16), pages 71 - 78, XP055268679
FIERRO ET AL.: "Preparation and Characterization of the Catalytically Active Forms of Rare Earth Oxides", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 100, no. 2, August 1984 (1984-08-01), pages 303 - 310, XP055540497
YADA ET AL.: "Rare Earth (Er, Tm, Yb, Lu) Oxide Nanotubes Templated by Dodecylsulfate Assemblies", ADVANCED MATERIALS, vol. 14, no. 4, 19 February 2002 (2002-02-19), pages 309 - 313, XP001132514
Attorney, Agent or Firm:
ANDES CONSULTING SPA (CL)
Download PDF:
Claims:
CLAIMS

What is claimed is: 1 . A method for the processing of mineral containing the lanthanide series and the production of rare earth oxides, comprising the steps of:

a) reception and conditioning of the raw material;

b) desorption of valuable product through a plurality of mixing and reaction stages in which the raw material is contacted in countercurrent with a stream of desorbent solution;

c) separation of fine solids;

d) precipitation of secondary minerals through the use of a first reactive solution;

e) precipitation of rare earth carbonates through the use of a second reactive solution; and

f) drying and calcination of the carbonates to obtain rare earth oxides;

wherein the method further comprises a secondary process that allows further processing of the residual mineral, and a dewatering and washing step wherein the residual mineral from the desorption step is washed and a lanthanide-containing liquid is recovered.

2. The method of claim 1 , wherein the stream of desorbent solution used in the step of desorption of valuable product corresponds to an ammonium sulfate solution, and the first and second reactive solution used in the steps of precipitation of secondary minerals and precipitation of rare earth carbonates corresponds to ammonium bicarbonate.

3. The method of claim 1 , wherein the mixing and reaction stages in the desorption step comprise successive desorption steps arranged in series, wherein the material is contacted in countercurrent with an ammonium sulfate solution.

4. The method of claim 3, wherein the desorption step is carried out in two successive stages, by means of one or more primary reactors connected in series with one or more secondary reactors.

5. The method of claim 4, wherein in the one or more primary reactors the material is mixed with a desorbent solution from secondary grit separators to carry out a primary desorption, and then the material is discharged to primary grit separators wherein a clarified liquid is separated from the solid material.

6. The method of claim 5, wherein the secondary reactors receive the material from the primary grit separators to carry out a secondary desorption, contacting the material with a fresh desorbent solution. 7. The method of any of the preceding claims, wherein in the step of desorption of valuable product the ratio between the solid and the desorbent solution is 1 : 3.

8. The method of any of the preceding claims, wherein the minimum residence time in the desorption step is preferably 30 minutes.

9. The method of any of the preceding claims, wherein the step of separation of fine solids comprises one or more fine solids settlers, wherein particles of about 100 microns and below are separated. 10. The method of claim 9, wherein the minimum residence time in the step of separation of fine solids is about 60 minutes.

1 1 . The method of any of the preceding claims, wherein the dewatering and washing step comprises one or more serially connected dewatering tables, wherein the material is contacted with a stream of wash water in countercurrent to perform a washing process.

12. The method of claim 1 1 comprising a plurality of dewatering tables, wherein the solid material discharged from the first table is sent to a second table, where it is washed in countercurrent with the liquid coming from a third table, and continues its washing process throughout the following tables to finally being accumulated in a pile of ore that will be sent back to the mine.

13. The method of claims 1 1 or 12, wherein the liquid resulting from the dewatering tables contains lanthanides, and is sent to the secondary process for the recovery of lanthanides.

14. The method of any of the preceding claims, wherein the clarified liquid from the fine solids settlers is received and processed in the step of precipitation of secondary minerals, where the clarified liquid is contacted with the reactive solution. 15. The method of claim 14, wherein the processing of the clarified liquid is carried out in secondary minerals settlers, which preferably have a residence time of about 60 minutes for precipitation of particles.

16. The method of claim 14, wherein in the steps of precipitation of secondary minerals and precipitation of rare earth carbonates the pH is adjusted with the addition of sulfuric acid or ammonium hydroxide. 17. The method of any of the preceding claims, wherein the secondary minerals settlers and fine solids settlers correspond to lamellar settlers.

18. The method of any of the preceding claims, wherein in the step of precipitation of rare earth carbonates the clarified liquid is contacted with an ammonium bicarbonate solution in order to precipitate rare earth carbonates.

19. The method of claim 18, wherein the step of precipitation of rare earth carbonates comprises the use of rare earth carbonates settlers, which preferably have a residence time of 1 hour.

20. The method of any of the preceding claims, wherein in the drying and calcination step the carbonates from the step of precipitation of rare earth carbonates are received, together with the carbonates coming from the secondary process, and wherein these carbonates are processed in drying ovens.

21 . The method of claim 20, wherein in the drying ovens the material is heated to a temperature of about 105 °C.

22. The method of claim 21 , wherein the material is subsequently transferred to calcination furnaces to convert the carbonates into rare earth oxides.

23. The method of claim 22, wherein the calcination process is performed for about 6 hours at a temperature of 950 °C. 24. The method of any of the preceding claims, wherein the secondary process comprises: a fine solids separation step including fine solids settlers, analogous to the fine solids settles of the main process; a step of precipitation of secondary minerals wherein the pH is adjusted and ammonium bicarbonate is added, this step of precipitation including secondary minerals settlers analogous to those of the main process; and a step of precipitation of rare earth carbonates wherein the pH is adjusted and ammonium bicarbonate is added, and including rare earth carbonates settlers analogous to those of the main process.

25. The method of claim 24, wherein in the rare earth carbonates settlers a rare earth carbonates concentrate and a liquid stream are obtained, the rare earth carbonates being sent to the drying and calcination step and the liquid stream being sent to a water conditioning plant. 26. The method of claim 25, wherein the water conditioning plant corresponds to a reverse osmosis plant, in which is obtained a concentrated ammonium stream and a diluted elements stream, the concentrated ammonium stream being sent to the step of desorption of valuable product, and the stream of diluted elements being used in the washing and dewatering steps. 27. A system for the processing of minerals of the lanthanide series and the production of rare earth oxides, comprising:

means for the reception and conditioning of the raw material;

means for the desorption of valuable product comprising a plurality of mixing and reaction devices in which the raw material is contacted in countercurrent with a stream of desorbent solution;

means for the separation of fine solids;

means for the precipitation of secondary minerals through the use of a first reactive solution;

means for precipitation of rare earth carbonates through the use of a second reactive solution; and

means for drying and calcination of rare earth carbonates to obtain rare earth oxides; wherein the system further comprises a secondary system that allows further processing of the residual mineral, and means for the dewatering and washing of the residual mineral wherein the residual mineral is washed and a lanthanide-containing liquid is recovered.

28. The system of claim 27, wherein the means for the reception and conditioning of the raw material include means for conveying the raw material to feed hoppers, which includes filter means to prevent the entry of unwanted objects. 29. The system of claims 27 or 28, wherein the desorption means comprises primary and secondary reactors connected in series, where the material is mixed and desorbed in different stages with the desorbent solution.

30. The system of claim 29, wherein the desorbent solution corresponds to ammonium sulfate.

31 . The system of claims 29 or 30, wherein the primary and secondary reactors are connected to primary and secondary grit separators, respectively, in which desorption is completed and a settling of coarse solids is carried out.

32. The system of any of claims 27 to 31 , wherein the fine solids separating means comprises fine solids settlers that receives the clarified liquids from the valuable product desorption means. 33. The system of any of claims 27 to 32, wherein the secondary minerals precipitation means comprises secondary minerals settlers, which receives the clarified liquids from the fine solids settlers and is contacted with a reactive solution, in order to precipitate the secondary minerals.

34. The system of claim 33, wherein the reactive solution corresponds to ammonium bicarbonate.

35. The system of any of claims 27 to 34, wherein the rare earth carbonates precipitation means comprises rare earth carbonate settlers, which receives the clarified liquid from the secondary minerals precipitation means and is contacted with an ammonium bicarbonate solution in order to precipitate rare earth carbonates.

36. The system of any of claims 27 to 35, wherein the drying and calcination means comprises drying furnaces that receives and dry the rare earth carbonates, and calcination furnaces that convert the carbonates into rare earth oxides.

37. The system of any of claims 27 to 36, wherein the washing and dewatering means comprises one or more dewatering tables, connected in series and in contact with a stream of wash water in countercurrent. 38. The system of any of claims 27 to 37, wherein the secondary system comprises fine solids separation means, secondary minerals precipitation means and rare earth carbonates precipitation means, all having equivalent characteristics and operating in an analogous manner to those of the main system. 39. The system of claim 38, wherein in the rare earth carbonates settlers is obtained a rare earth carbonate concentrate and a liquid stream that is sent to a water conditioning plant.

40. The system of claim 39, wherein the water conditioning plant corresponds to a reverse osmosis plant, in which a stream of diluted elements and an ammonium-concentrated stream are obtained, the stream of diluted elements being used for the washing of ore in the dewatering and washing means, and the ammonium-concentrated stream being use as a desorbent solution in the valuable product desorption means.

Description:
SYSTEM AND METHOD FOR PROCESSING OF MINERALS CONTAINING THE LANTHANIDE SERIES AND PRODUCTION OF RARE EARTH OXIDES

APPLICATION FIELD

The present invention relates to the industry of extraction and processing of lanthanides.

In particular, the present invention relates to a completely closed and continuous process for the extraction, purification and production of oxides of elements of the lanthanide series, with the object of improving the efficiency over the recovery of ore and reducing the environmental impact in the place of interest.

BACKGROUND

In recent years the interest in so-called rare earths, and more specifically the elements of the lanthanide series, has grown considerably mainly because of its uses related with technological developments. These elements are used in applications as diverse as catalytic converters for vehicles, wind turbine generators, electronic devices and even in bills to detect forgeries by ultraviolet radiation.

However, the extraction of these elements is relatively complex, because in ore reservoirs these elements are usually mixed with other geological materials, making it difficult to extract them individually. For this reason, it is necessary to use several chemical products that may act as a source of contamination in the vicinity of the mine, generating acidic or radioactive materials.

This is mainly due to the way in which is commonly processed this mineral, since it is carried out mainly through two methods: by in situ desorption and by heap leaching. In the in situ desorption method, a series of wells are drilled directly into the reservoir, through which a desorbent agent is injected that is subsequently captured at the base of the wells. On the other hand, in the heap leaching process, piles are constructed with the material of interest, which are irrigated with the desorbent agent, which percolates and later being captured in the base of the pile.

As can be seen, both types of processing consider the use of chemicals in an "open" environment, potentially constituting an environmental risk in the areas near the mine, which may affect, for example, nearby vegetation or watercourses.

Additionally, while conventional methods for the production of rare earth or lanthanides concentrates are inexpensive, they have low recovery rates and environmental risks. Regarding to the in situ desorption, the greatest risk is the contamination of groundwater due to the injection of the desorbent agent directly into the soil, which is avoided in the second method due to the waterproofing of the soil where the piles are constructed. Regarding the heap leaching process, a large pile must be made so that the production of minerals can be attractive, which implies affecting a large surface, generating a change in the topography of the place. Both methods have recovery rates of about 75% of the content of mineral in the reservoir.

In view of the above, a need can be identified in the state of the art of having a technology for the extraction and processing of lanthanides, able to treat the different materials and desorbent agents in a closed and continuous environment, thereby improving the efficiency in the extraction and processing of ore and avoiding the environmental risks associated.

An example of the prior art describing a system for the extraction of rare earths is disclosed in the patent document number CN 102277493, which discloses the use of an extraction tank, so as to carry out the process in a closed environment. The document discloses a method comprising: filling a fixed amount of rare earth aqueous solution serving as heavy liquid into an extraction tank from a heavy liquid inlet on the top of the extraction tank; starting a stirring shaft; allowing an extracting agent serving as light liquid to uniformly enter the extraction tank, stirring to allow the light liquid and heavy liquid to mix and transfer mass; clarifying the light phase liquid in the clarifying tank; detecting the concentration of required rare earth elements in the light component solution discharged from the clarifying tank and judging if the leaching or extraction is finished. After the leaching or extraction is finished, stopping inputting light liquid, opening an emptying valve below the clarifying tank to empty the clarifying tank; and discharging the heavy liquid in the extraction tank from a heavy liquid outlet at the bottom of the extraction tank.

It can be seen that the above document discloses a system for the extraction of rare earth where leaching is not used in piles or in situ, but the process is carried out in an extraction tank and a clarification tank. However, the described system and method are very basic, lacking of different elements and operational steps that could allow an efficient and continuous processing. Particularly, the system and method are based on the use of a single extraction tank and a single clarification tank, in which rare earth processing is carried out. In addition, the invention disclosed in this document is a batch type process, which differs from a continuous and efficient extraction process.

In view of the above problems, there is a need in the state of the art of providing a completely closed and continuous system for the extraction, purification and production of rare earth oxides, in order to improve the efficiency in ore recovery and minimizing the environmental impact in the place of interest.

SUMMARY OF THE INVENTION To solve the mentioned problems, a system and methodology for processing and recovering lanthanides from a particular type of ore -ion-clays- is presented, which allows a completely closed and continuous treatment of the different materials and desorbent agents that intervene in the process, thus improving the extraction efficiency and the environmental risks. Particularly, the method of the present invention comprises the following steps:

a) reception and conditioning of the raw material;

b) desorption of valuable product through a series of mixing and reaction stages, wherein the raw material is contacted in countercurrent with a stream of a desorbent agent;

c) separation of fine solids;

d) precipitation of secondary minerals through the use of a first reactive solution;

e) precipitation of rare earth carbonates through the use of a second reactive solution; and

f) drying and roasting of rare earth carbonates to obtain rare earth oxides;

In addition, the method includes a secondary process which allows further processing the residual mineral from the previous steps, and also includes a dewatering and washing step wherein the depleted ore is washed and a liquid with rare earth contents is recovered.

Thus, with the method described above, it has been possible to reduce the size of the equipment and washing the clays with fresh water, thereby reducing sulfate and desorbed soil losses, and also allowing the recirculation of the desorbent solution at various stages of the process. In preferred embodiments of the invention, the stream recirculated into the mixing section corresponds to a fraction in the range of 75-90% of the outflow stream of the coarse solids separation stage, at the outlet of the mixing section.

In order to avoid environmental impact, the depleted mineral is washed in countercurrent, from which the solids finally returns to the quarry and a liquid stream is obtained containing rare earth and ammonium, more diluted than in the main process, which is sent to the secondary process operating in parallel and including stages of separation of fine solids, precipitation of secondary minerals, and precipitation and filtration of rare earth carbonates. The secondary minerals stream and the carbonates filtered from this secondary process are sent to the main process for their filtration and calcination, respectively. The liquid resulting from the secondary process is carried to a reverse osmosis plant, where is obtained a concentrated ammonium stream, which returns to the main stream, and a stream with diluted elements (or "pure water"), which is used for washing the depleted ore.

The present invention further includes a system for carrying out the steps of the method described above, comprising: means for receiving and conditioning the raw material; means for the desorption of valuable product comprising a plurality of mixing and reaction means wherein the raw material is contacted in countercurrent with a stream of a desorbent agent; means for the separation of fine solids; means for the precipitation of secondary minerals with the use of sodium sulfide or ammonium bicarbonate; means for the precipitation of rare earth carbonates with the use of ammonium bicarbonate; and calcination means to obtain rare earth oxides. In addition, the system also comprises a secondary system which allows for further processing of the residual mineral from the main system, and dewatering and washing means in which a liquid with rare earth contents is recovered from the residual mineral from the desorption means. The means for receiving and conditioning the raw material include means for transporting the material, which supply the raw material to feed hoppers including filtration media, such as metal grids, to prevent the entry of unwanted elements, such as stones, branches or other objects. The feed hoppers in turn supply the material to mixing chambers.

The desorption means comprises a plurality of reactors, wherein the material is desorbed in different stages, which can be connected in series and/or in parallel, and in countercurrent with an ammonium sulfate solution, thus contacting in several stages the coarse solids from the step of reception and conditioning of the raw material with the desorbent solution. The recovered coarse solids are carried to dewatering tables, whereas the stream of clarified liquid flows into a recirculation chamber.

The fine solids separating means comprises fine particles settlers, which are fed by the clarified liquids from the recirculation chamber, and where the small particles are separated with the aid of flocculants. The clarification obtained in these equipment is sent to a loading chamber and in order to carry out then the precipitation of secondary minerals.

The secondary mineral precipitation means comprise a chamber that receives the clarified stream coming from the fine solids settlers, where it is contacted with an ammonium bicarbonate solution in order to precipitate the secondary minerals present in the liquid solution. In this manner, the unwanted metals such as aluminum, iron, lead, etc. are precipitated in the form of hydroxides. This system further comprises secondary mineral settlers, which receive the liquid stream from the mentioned chamber, and in which is obtained a wet solid with precipitates of secondary mineral and a clarified liquid which continues the process.

The rare earth carbonates precipitation means comprises a chamber which receives the clarified stream from the secondary mineral precipitation means and wherein it is contacted with an ammonium bicarbonate solution in order to precipitate rare earth carbonates. From this chamber the liquid stream flows to a rare earth carbonate settlers, which allow the precipitation of rare earth carbonates.

The calcination means include drying furnaces which receive the wet earth rare carbonates, where they are preferably heated to a temperature of 105 °C. Afterwards, the cooled carbonates are then transported to calcination furnaces which convert the carbonates into rare earth oxides. Preferably, the calcination process is carried out for about 6 hours at a temperature of about 950 °C.

DESCRIPTION OF THE DRAWINGS Figure 1 shows a flowchart of each of the steps of the method for the processing of rare earth oxides according to the present invention.

Figure 2 shows a scheme of the different means used in the steps of mixing and reaction of the raw material in the method of Figure 1 . Figure 3 shows a scheme of the different means used in the steps of fine solids separation, precipitation of secondary minerals, and rare earth carbonates precipitation, for the method of Figure 1 .

Figure 4 shows a scheme of the different means used in the dewatering and washing steps for method of Figure 1 .

Figure 5 shows a scheme of the different means used in the step of drying and calcination of the carbonates for the preparation of rare earth oxides, for the method of Figure 1 .

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As shown in Figures 1 to 5, the present invention relates to a system and method for processing minerals of the lanthanide series and the production of rare earth oxides, which allows a completely closed and continuous treatment of the different materials and desorbent agents involving the process, thus improving the extraction efficiency and avoiding environmental risks.

The method of the present invention comprises the steps of:

a) reception and conditioning of the raw material (1 10);

b) desorption of valuable product (120) through a plurality of mixing and reaction stages in which the raw material is contacted in countercurrent with a stream of desorbent solution; c) separation of fine solids (130);

d) precipitation of secondary minerals (140) through the use of a first reactive solution; e) precipitation of rare earth carbonates (150) through the use of a second reactive solution; and

f) drying and calcination of the carbonates to obtain rare earth oxides;

wherein the method further comprises a secondary process (300) which allows further processing the residual mineral from the previous steps, and also includes a dewatering (230) and washing step (220) wherein the depleted ore is washed and a liquid containing lanthanides is recovered.

Preferably, the stream of desorbent solution used in the valuable product desorption step (120) corresponds to an ammonium sulfate solution. In addition, the first reactive solution used in the secondary mineral precipitation step (140) preferably corresponds to ammonium bicarbonate, while the second reactive solution in the rare earth carbonate precipitation step (150) also corresponds to ammonium bicarbonate.

The step of receiving and conditioning of the raw material (1 10) comprises receiving the material from the extraction zone in one or more feed chambers or hoppers (1 1 1 ) operating in parallel, and further comprises conditioning the material through the use of filtration means in each of said feed hoppers. The filtration means preferably corresponds to metal grids or other filtration means, preferably a mesh of 100 mm, to prevent the entry of unwanted stones, branches or other objects. The material is discharged through the bottom of the hoppers into means that carries the material to a plurality of reactors (121 ) which may have other filtration means at their upper end, such as 25 mm grids, to prevent the entry of unwanted materials. The inflow of material into said plurality of reactors initiates the step of valuable product desorption (120).

In the step of desorption of valuable product (120) the reactors receive the ore from the feed chambers (1 1 1 ), initiating successive steps of desorption arranged in series, where the material is contacted in countercurrent with an ammonium sulfate solution. Preferably, the step of desorption of valuable product is carried out in two successive stages, through a plurality of primary reactors connected in series with a plurality of secondary reactors.

As shown in Figure 2, the desorption step is initiated with the inflow of material into the primary reactors (121 ) where it is mixed with a desorbent solution coming from a secondary grit separator (124) to carry out a step of primary desorption. Subsequently, the material is discharged from the primary reactors (121 ) to a primary grit separator (122), where the clarified liquid and the solid material are separated, after the primary desorption. The material is then discharged from the primary grit separator (122) into the secondary reactors (123), where a secondary desorption step is carried out, contacting said material with a fresh desorbent solution.

Preferably, during the step of desorption of valuable product, the mass ratio between the solid entered into the system and the desorbent solution is 1 :3.

As shown in Figure 1 , the ammonium sulfate solution required for desorption comes from a desorbent recovery tank (440).

The primary and secondary reactors are designed with a useful capacity that ensures a residence time to disperse the solid material and initiate desorption. In preferred embodiments of the invention residence time at this stage is 30 minutes. In addition, to ensure the pH conditions in the desorption step, sulfuric acid or ammonium hydroxide may optionally be added as appropriate.

The coarse solids corresponding to the residual material at the outlet of the secondary grit separator (124) are transported by means of any conveyor means, such as a conveyor belt, to dewatering tables (221 ) in the step of dewatering (230) and washing (220). The clarified liquid streams leave the reactors at their upper end and flow into a recirculation chamber (155).

In the step of fine solids separation (130), the clarified liquid coming from the step of desorption of valuable product (120) is distributed from the recirculation chamber (155) to two or more fine particulate settlers (131 ), where the small particles are separated with the aid of flocculant. It is possible to use one or more settlers in parallel, in order to allow a greater capacity (as represented in Figure 3). In preferred embodiments of the invention, the minimum residence time at this stage is about 60 minutes.

On the other hand, as can be seen in the scheme of Figure 3, the clarified liquid obtained in the settlers (131 ) is sent to a loading chamber (141 ) in order to initiate the step of precipitation of secondary minerals (140).

As shown in Figures 3 and 4, the material accumulated at the bottom of each fine particulate settler is sent to a dynamic thickener (210), from which a stream of material with lower moisture is obtained, which is sent to a first dewatering table (221 ) in the dewatering (230) and washing step (220). At this dewatering table the moisture is further reduced and the resultant fine solids stream is directed to a second dewatering table (222) connected in series with the first one. As shown in Figures 2 and 4, the liquid resulting from the operation of the dewatering tables is reincorporated into the step of desorption (120).

In the step of precipitation of secondary minerals (140) the clarified liquid from the fine solids settlers (131 ) is fed into the loading chamber (141 ) where it is contacted with a reactive solution which preferably corresponds to ammonium bicarbonate, in order to precipitate the secondary minerals present in the liquid solution. Because of the use of this reactive solution, unwanted metals such as aluminum, iron, lead, or the like are precipitated in the form of hydroxides. As in other stages, the pH adjustment is achieved with the addition of sulfuric acid or ammonium hydroxide, as appropriate, and the range of pH is about 5.0. Optionally, to obtain a better mixing this chamber can include a stirrer.

From this chamber two streams of liquid are sent to secondary mineral settlers (142). Preferably, in these secondary mineral settlers the residence time is around 60 minutes for the precipitation of particles. In addition, both the secondary mineral settlers and the fine solids settlers preferably correspond to lamellar settlers.

In the rapid agitation zone of each secondary mineral settler (142), flocculant is added by corresponding metering pumps.

The bottom with secondary mineral concentrate obtained from the sedimentation zone of each settler (142) is sent to a dynamic thickener (143) where the precipitation is finished. To this dynamic thickener can also come the bottoms of the settlers of secondary minerals of the secondary process (322). The liquid resulting from the dynamic thickener (143) is sent to the reprocessing tank (400), while the solid material accumulated in the thickener is pumped to a filter (144), from which is obtained a liquid stream that can be sent to the reprocessing tank, and a wet solid with precipitates of secondary minerals (145).

The clarified product of the secondary mineral settlers (142) is directed to a corresponding loading tank (146), from which it is fed to polishing filters (147), to remove solids that may have been entrained through the settlers and to ensure a liquid free of particles. In this manner, finally a liquid stream is obtained which is sent to a loading chamber (151 ) so as to continue the process, and a wet solid is also obtained with secondary mineral precipitates (145). As shown in Figure 1 , the precipitate of secondary minerals is incorporated into the depleted mineral (510).

In this stage of the process, optionally an industrial water line can be provided, considered in each filter to wash the solids before discharge.

In the step of precipitation of rare earth carbonates (150), the clarified liquid from the secondary mineral filters (147) is received in a chamber (151 ) where it is contacted with an ammonium bicarbonate solution in order to precipitate rare earth carbonates. The pH adjustment is achieved with the addition of sulfuric acid or ammonium hydroxide, as appropriate, and the pH adjustment is within the range of 6,5 to 7,5. Optionally, to achieve a better mixing the chamber can include an agitator.

From this chamber stream of liquid flow into rare earth carbonates settlers (152), which preferably have a residence time of about 1 hour for the precipitation of rare earth carbonates.

As shown in Figure 3, the sedimentation zone at the bottom of each settler (152) contains concentrates of rare earth carbonates, which are sent to a filter (153), from which is obtained a concentrate of rare earth carbonates (156) and a liquid stream, which is sent to the reprocessing tank (400). On the other hand, the clarified liquid from the settlers (152) is sent to a fine solids filter (154) to remove solids that may have been entrained through the settlers and to ensure a liquid free of particulate. In this manner, a concentrate of rare earth carbonates (156) is recovered in the fine solids filter (154), while the resulting liquid is sent to the reprocessing tank (400). Both filters (153, 154) may optionally be shared with the streams of the secondary process (300), as will be described later.

In the drying and calcination step 160, as shown in Figure 5, the wet carbonates from the filters of the previous step (150), along with those from the secondary process (300), are directed to drying ovens (161 ), preferably electric ovens, where the carbonates are heated to a temperature of about 105 °C. Thereafter, these carbonates are cooled and transferred, preferably in refractory brick crucibles, to calcination furnaces (162) to convert the carbonates into rare earth oxides. Preferably, the calcination process is carried out for about 6 hours at a temperature of 950 °C.

To complete the processing of the lanthanides, optionally a packaging system may be available, which could consist of transport means to provide the rare earth oxides on drums or any appropriate storage means.

In the washing (220) and dewatering (230) step the depleted ore from the desorption step (120) is disposed in a variable number of serially connected dewatering tables (221 , 222, 223, 224, 226), which are contacted with a stream of washing water (231 ) in countercurrent, in order to perform a washing process (230), as shown in Figures 1 and 4. In the first dewatering table (221 ) it is possible to reduce the humidity to 30%.

Preferably, the liquid obtained in the first dewatering table 221 is accumulated in a chamber, from which is pumped to the recirculation tank (155). As shown in Figure 4, the material discharged from the first table is sent to the next table (222), where it is washed in countercurrent with the liquid from the third table (223), and continues its washing process throughout the following tables to finally be accumulated in the mineral stack (510) which will be sent back to the mine (520). On the other hand, because of the countercurrent arrangement, the liquid from each table is accumulated in respective chambers from which is pumped to the next washing stage.

The resulting liquid from the dewatering tables contains lanthanides and ammonium, which is why it is accumulated in a chamber and is sent to the secondary process (300) for the recovery of the lanthanides (Figures 1 and 3).

As shown in Figure 3, the secondary process (300) is similar to the main process, already described. From the final chamber of the washing step (220), the material is sent to a step of separation of fine solids of the secondary process (310) comprising fine solids setters (31 1 ), equal to those of the main process. Upon admission of the material to these equipment, flocculating agent is added, using metering pumps. The mud accumulated in these settlers is sent to the dynamic thickener (210).

The clarified liquid is sent to a loading chamber where the pH is adjusted and ammonium bicarbonate is added, initiating a step of secondary minerals precipitation of the secondary process (320), as shown in Figure 1. Optionally, for a better mixing the chamber can include a stirrer.

From this loading chamber two liquid streams are sent to the secondary mineral settlers

(322) of the secondary process, equal to those of the main process, where a flocculating agent is added.

The sedimentation zone of these settlers (322) having secondary mineral concentrate is sent to the dynamic thickener (143). The clarified liquid from the settlers is sent to a loading tank (323), from which it is directed to a filter (324), thereby obtaining a clarified liquid stream and a wet solid having secondary minerals precipitates (145).

Subsequently, a step of precipitation of rare earth carbonates is carried out in the secondary process (330), where the clarified liquid from the filter is received in a chamber (331 ), the pH is adjusted and ammonium bicarbonate is added. For better mixing the chamber can include a stirrer. Preferably, from this chamber three streams of liquid flow to the rare earth carbonates settlers (332), equal to those of the main process, where flocculant is added.

The sedimentation zone at the bottom of these carbonate settlers contains a concentrate of rare earth carbonates, which is directed to a filter (333), from which a wet solid is obtained with rare earth carbonates. The liquid stream in turn is directed to a water conditioning plant (410), from which is recovered an ammonia-concentrated stream, which returns to the main stream, and a stream of diluted elements (or "pure water"), which is used in the steps of washing (220) of clays. The carbonates are directed to the drying and calcination step (160) of the primary processing. Additionally, the present invention also contemplates a system for the processing of rare earth oxides, which carries out the method described above, and comprising the following elements:

means for the reception and conditioning of the raw material;

means for the desorption of valuable product comprising a plurality of mixing and reaction equipment wherein the raw material is contacted in countercurrent with a stream of desorbent solution;

means for the separation of fine solids;

means for the precipitation of secondary minerals through the use of a first reactive solution;

means for the precipitation of rare earth carbonates through the use of a second reactive solution; and

means for drying and calcination of rare earth carbonates to obtain rare earth oxides; wherein the system further comprises a secondary system which allows further processing of the residual mineral from the main system, and dewatering and washing means wherein the residual mineral is washed and a liquid with contents of rare earth is recovered coming from the means for the desorption of valuable product.

The means for the reception and conditioning of the raw material includes material transport means (1 12) supplying the feedstock to the feed hoppers (1 1 1 ) already described above, operating in parallel and including filter media, such as metal grids, to prevent the entry of unwanted stones, branches or other objects.

The desorption means comprises the primary and secondary reactors (121 , 123), wherein the material is desorbed in multiple stages connected in series and in countercurrent with a stream of ammonium sulfate solution. The primary and secondary reactors (121 , 123) are connected to primary and secondary grit separators (122, 124), respectively, in which desorption is completed and the sedimentation of the coarse solids occurs. The recovered coarse solids are carried to a dewatering table (221 ), while the clarified liquid streams flow into the recirculation tank (155).

The fine solids separating means comprises fine particle settlers (131 ), connected with the recirculation chamber (155) to receive the clarified liquids. In these settlers the small particles are separated with the aid of flocculant, and are further connected with a loading chamber (141 ) where the clarified obtained is sent.

The means for the precipitation of secondary minerals comprises the loading chamber (141 ) wherein the clarified liquid from the fine solids settlers is contacted with a reactive solution, such as sodium sulfide or ammonium bicarbonate, in order to precipitate the secondary minerals. These precipitation means further includes secondary mineral settlers (142) which receive streams of liquid from the loading chamber (141 ), and in which is obtained a wet solid with precipitates of secondary minerals and a clarified liquid that continue the process.

The means for the precipitation of rare earth carbonates comprise a chamber (151 ) receiving the clarified liquid from the secondary mineral filters and where it is contacted with an ammonium bicarbonate solution in order to precipitate rare earth carbonates. From this chamber stream of liquid flow to the rare earth carbonates settlers (152), which allow the precipitation of rare earth carbonates.

The drying and calcination means comprises drying ovens (161 ) which receive wet rare earth carbonates, connecting then with calcination ovens (162), which convert the carbonates into rare earth oxides.

The washing and dewatering means (220, 230) comprise a variable number of dewatering tables, which in the configuration shown in Figure 4 corresponds to six (221 , 222, 223, 224, 225, 226), all connected in series and in contact with a backwash water stream.

The liquid obtained in the first dewatering table (221 ), which has passed through the previous tables, is accumulated in a chamber and from there is pumped into the recirculation tank (155). As shown in Figure 4, the mineral discharged from the next dewatering table (222) is flushed in countercurrent with the liquid stream from the third table (223), and continues its washing process through the following tables to finally accumulate in the stack of depleted ore to be sent to a disposal area.

The secondary system (300) is similar to the main system. As shown in Figures 1 and 3, this system comprises means for the separation of fine solids of the secondary system (310) comprising fine solids settlers (31 1 ), equal to those of the main system. The clean clarified is sent to a loading chamber, from which liquid streams are sent to secondary mineral settlers of the secondary system (322), equal to those of the main system.

The means for the precipitation of rare earth carbonates of the secondary system comprises a chamber receiving the clean clarified, from which liquid streams flow towards the rare earth carbonates settlers of the secondary system (332), equal to those of the main system.

The sedimentation zone at the bottom of said carbonate settlers, which contains a rare earth carbonate concentrate, is connected to a filter, from which a wet solid is obtained with rare earth carbonates. On the other hand, the liquid stream is sent to the water conditioning plant (410), which will be detailed below.

In preferred embodiments of the invention, the system includes a water conditioning plant (410), wherein the liquid solution obtained after the precipitation of rare earth carbonates in the secondary process is treated. Preferably, this plant corresponds to a reverse osmosis plant, the purpose of which is to obtain a stream of water for the washing of depleted mineral at the last dewatering table, and also obtain an ammonia-concentrated stream for use as a desorbent solution, which is sent to the desorbent or reprocessing recovery tank (400) for subsequent recirculation.

The foregoing description relates to the embodiment of the figures, which corresponds to one of the preferred embodiments of the invention, however, it is important to consider that different aspects may vary. For example, the number of reactors used, such as those shown in Figure 2, should not be limited exclusively to groups of 3 reactors connected in series, and the presence of a parallel processing of reactors and grit separators (shown in the lower part of Figure 2). Similarly, the number of settlers in the stages of fine solids separation, secondary mineral precipitation, and rare earth carbonates precipitation is equally variable, all depending on the volume of raw material to be processed.

Finally, it should be noted that the dimensions, the choice of materials, and specific aspects of the preferred embodiments described above can be varied or modified depending on the design requirements. Accordingly, the description of the specific configurations described above are not intended to be limiting, and possible variations and/or modifications thereto are within the spirit and scope of the invention.